
Consequences for adjacency
labelling schemes

Cyril Gavoille
- University of Bordeaux

JCRAALMA on Product Structure Theorems
@Home on BBB
May 29, 2020

Representation of a Graph
adjacency list

1 node = 1 pointer in the data-structure
(it does not carry any specific information)

matrix

3

1

2

5

4
1 2 3 4 5

1 0 1 0 0 1
2 1 0 1 0 0
3 0 1 0 1 1
4 0 0 1 0 0
5 1 0 1 0 0

1 2,5
2 1,3
3 2,4,5
4 3
5 1,3

Implicit Representation

To associate with the nodes more information,
typically adjacency, and to remove the data-
structure.

Interval graphs: 𝒖 ↦ I(𝒖) ⊆ [1,2𝒏]
Edges: 𝒖−𝒗 ó I(𝒖) ∩ I(𝒗) ≠ ∅

Compact representation: O(log𝒏) bits/node
Possibly time O(𝒏) algorithms vs. O(𝒏+𝒎)

Labelling Schemes

A P-labelling scheme for F is a pair (𝝺,𝗳) such
that " G Î F, " 𝒖,𝒗 Î V(G):

• [labelling] 𝝺(𝒖,G) is a binary string
• [decoder] 𝗳(𝝺(𝒖,G),𝝺(𝒗,G))=P(𝒖,𝒗,G)

P = a graph property defined on pairs of nodes
F = a graph family

Goal: to minimize the maximum label size
In this talk: P(𝒖,𝒗,G) is true ó 𝒖𝒗 Î E(G)

Basic Example: Trees

Basic Example: Trees

3
4

5

7

2

9
8

6

1

Basic Example: Trees

3
4

5

7

2

9
8

6

1

Basic Example: Trees

𝝺(𝒖,T)=(𝒖,parent(𝒖)) or (𝒖,𝒖)
𝗳(𝒖𝒗,𝒙𝒚)=(𝒗=𝒙 or 𝒖=𝒚)

32
42

54

76

21

96
86

61

11

Basic Example: Trees

For trees with 𝒏 nodes: ~ 2log𝒏 bits/node
(the constant does matter [Abiteboul et al. - SICOMP ’06])

𝝺(𝒖,T)=(𝒖,parent(𝒖)) or (𝒖,𝒖)
𝗳(𝒖𝒗,𝒙𝒚)=(𝒗=𝒙 or 𝒖=𝒚)

32
42

54

76

21

96
86

61

11

Induced-Universal Graphs
[Babai,Chung,Erdös,Graham,Spencer ’82]

A graph U is an induced-universal graph for the
family F if every graph of F is isomorphic to an
induced subgraph of U.

b

e

b

c

e
d

f

g

c
e

c g
a

ga

U

F

000

001

010

011

110

101

100

001

010

110

100
110

010

100

000
U

F

Induced-Universal Graphs
[Babai,Chung,Erdös,Graham,Spencer ’82]

A graph U is an induced-universal graph for the
family F if every graph of F is isomorphic to an
induced subgraph of U.

induced-universal graph U graphs of F

𝒄log𝒏-bit labelling ó induced-universal graph of 𝒏𝒄 nodes

000

001

010

011

110

101

100

001

010

110

100
110

010

100

000

Induced-Universal Graphs

From the (𝒖,parent(𝒖)) labelling
Þ induced-universal graph of 𝒏2=36 nodes

Universal Graphs for Trees
(for 𝒏=6 nodes)

Using DFS for T: (𝒖,𝒗)
Þ 𝒖>𝒗 or 𝒖=𝒗=1

11 12 13 14 15 16

31 32 33 34 35 36

21 22 23 24 25 26

41 42 43 44 45 46

51 52 53 54 55 56

61 62 63 64 65 66

11 12 13 14 15 16

31 33 34 35 3632

21 22 23 24 25 26

41 42 44 45 4643

51 52 53 54 55 56

61 62 63 64 65 66

From the (𝒖,parent(𝒖)) labelling
Þ induced-universal graph of 𝒏2=36 nodes

Universal Graphs for Trees
(for 𝒏=6 nodes)

Using DFS for T: (𝒖,𝒗)
Þ 𝒖>𝒗 or 𝒖=𝒗=1
Þ 𝒏(𝒏-1)/2+1=16 nodes

32

43

54

65

11

31 32

21

41 42 43

51 52 53 54

61 62 63 64 65

From the (𝒖,parent(𝒖)) labelling
Þ induced-universal graph of 𝒏2=36 nodes

Universal Graphs for Trees
(for 𝒏=6 nodes)

Using DFS for T: (𝒖,𝒗)
Þ 𝒖>𝒗 or 𝒖=𝒗=1
Þ 𝒏(𝒏-1)/2+1=16 nodes

Universal Graphs for Trees
(universal trees)

14 nodes

Labelling Schemes for Planar Graphs

Edge partition: combining schemes

Arboricity-𝒌 graphs: (𝒌+1)log𝒏 bits
Þ Planar (𝒌=3): 4log𝒏 bits [KNR – STOC’88]

875

113

764

425

335

213

618

513

Better Labelling Schemes

For trees: log𝒏 + O(log*𝒏), log𝒏 + O(1)
[Alstrup,Rauhe – FOCS’02]
[Alstrup,Dahlgaard,B.T.Knudsen – FOCS’15 & JACM’17]
Þ Arboricity-𝒌: 𝒌log𝒏 + O(1)
Þ Planar: 3log𝒏 + O(1)

For treewidth-𝒌: log𝒏 + O(𝒌loglog𝒏)
[G.,Labourel – ESA’07]
Þ Planar & Minor-free: 2log𝒏 + O(loglog𝒏)

Bonamy, G., Pilipczuk - SODA’20

For planar & bounded genus: 4⁄3 log𝒏 + O(loglog𝒏)
Þ

Labelling the nodes is polynomial
Decoding adjacency takes constant time

Induced-universal graph of 𝒏4/3+o(1)

nodes for 𝒏-node planar graphs
(and bounded genus graphs)

Sketch of Proof (1/2)
Edge partition: G = S ∪ B (Strips & Border)

S: components have 𝒅 layers ~ 𝒏1/3

B: has treewidth≤5 and 𝒏/𝒅 ~ 𝒏2/3 nodes

Si+1

Bi+1

Si

Bi

𝒅≥3

Bi-1
BFS & shiftÎ[1..𝒅]

𝒅≥3

Sketch of Proof (1/2)
Edge partition: G = S ∪ B (Strips & Border)

S: components have 𝒅 layers ~ 𝒏1/3

B: has treewidth≤5 and 𝒏/𝒅 ~ 𝒏2/3 nodes

Bi+1

Bi

Bi-1
BFS & shiftÎ[1..𝒅]

Sketch of Proof (2/2)

Labelling for B: log(𝒏/𝒅) ✔
Labelling for S: log𝒏 + log𝒅 new!
[up to +O(loglog𝒏) terms]

Problem: nodes in V(B) pay both labels
Þ log(𝒏/𝒅) + log𝒏 + log𝒅 = 2log𝒏 L

Improved labelling for S: nodes in V(B) pay
only log|B| = log(𝒏/𝒅) bits!

Þ nodes in S\V(B): log𝒏+log𝒅 = 4⁄3 log𝒏 J
Þ nodes in V(B): log(𝒏/𝒅)+log(𝒏/𝒅) = 4⁄3 log𝒏 J

Improved Scheme for Treewidth-𝒌
G = treewidth-𝒌, V(G) = V1 ∪ V2, K𝒖 = N[𝒖] =
simplicial complex of 𝒖, |K𝒖 |≤ 𝒌+1.

Lemma. G has a scheme providing, for each 𝒖,
id(𝒖) and 𝝺(𝒖) st. "𝒗ÎK𝒖 id(𝒗) can be extracted
from 𝝺(𝒖). Moreover, for 𝒖ÎV𝒊

|𝝺(𝒖)| = log|V𝒊| + O(𝒌loglog|V(G)|).

𝒖−𝒗 ó id(𝒗)Î{id(K𝒖)} or id(𝒖)Î{id(K𝒗)}

K𝒖
id(𝒖)

id(𝒗1)
id(𝒗2)

id(𝒗3)

G

Labelling Scheme for S
Key lemma. [2018,2019] If G is planar, there is
a node partition into monotone paths taken from
any given BFS such that contracting each one
leads to a treewidth-8 graph.

Label 𝝺(𝒖) consists of:
• the treewidth-8 scheme
• the depth of 𝒖 in S (unless 𝒖∈B)
• 3 bits/path in the treewidth-8

scheme, i.e., 3x8 = 24 extra bits

B

S 𝒖

B

[Extend to genus-g graphs]

Improved Bound: Dujmovic,
Esperet, G., Joret, Micek, Morin

Theorem. The family of 𝒏-vertex subgraphs of H⊠P
has a labelling scheme with log𝒏 + o(log𝒏) bit labels,
where H has bounded treewidth and P is a path.

Þ

Labelling the nodes takes O(𝒏log𝒏) time
Decoding adjacency takes ~ √log𝒏 time

Induced-universal graph of 𝒏1+o(1) nodes
for 𝒏-node planar graphs

(and many other families of graphs)

Open Problems

1. Improve the 2nd order term, log𝒏+O(1)?
2. Extend to minor-free graphs
3. Improve to log𝒏 + 𝛳(𝒌) for treewidth-𝒌
4. Prove lower bounds for planar or minor-free

Best lower bound for planar: log𝒏 + Ω(1) L
No families with 𝒏! 2O(𝒏) labelled graphs like trees, planar, bounded
genus, bounded treewidth, minor-free (hereditary)… is known to
require labels of log𝒏 + w(1) bits.

THANK YOU!

