Consequences for adjacency labelling schemes

Cyril Gavoille BORDELAIS DE RECHERCHE EN INFORMATIQUE

JCRAALMA on Product Structure Theorems @Home on BBB May 29, 2020

Representation of a Graph

1 node = 1 pointer in the data-structure (it does not carry any specific information)

Implicit Representation

To associate with the nodes more information, typically adjacency, and to remove the datastructure.

Interval graphs: $u \mapsto I(u) \subseteq [1,2n]$ Edges: $u-v \Leftrightarrow I(u) \cap I(v) \neq \emptyset$

Compact representation: $O(\log n)$ bits/node Possibly time O(n) algorithms vs. O(n+m)

Labelling Schemes

P = a graph property defined on pairs of nodesF = a graph family

A P-labelling scheme for F is a pair (λ, f) such that $\forall G \in F, \forall u, v \in V(G)$:

• [labelling] $\lambda(u,G)$ is a binary string • [decoder] $f(\lambda(u,G),\lambda(\nu,G))=P(u,\nu,G)$

Goal: to minimize the maximum label size **In this talk**: P(u,v,G) is TRUE $\Leftrightarrow uv \in E(G)$

 $\lambda(u,T)=(u, parent(u)) \text{ or } (u,u)$ f(uv,xy)=(v=x or u=y)

 $\lambda(u,T) = (u, parent(u)) \text{ or } (u,u)$ f(uv,xy) = (v = x or u = y)

For trees with n nodes: ~ $2\log n$ bits/node (the constant does matter [Abiteboul et al. - SICOMP '06])

Induced-Universal Graphs [Babai,Chung,Erdös,Graham,Spencer '82]

A graph U is an **induced-universal** graph for the family **F** if every graph of **F** is isomorphic to an *induced* subgraph of U.

Induced-Universal Graphs [Babai,Chung,Erdös,Graham,Spencer '82]

A graph U is an **induced-universal** graph for the family F if every graph of F is isomorphic to an *induced* subgraph of U.

Induced-Universal Graphs

induced-universal graph U graphs of F clogn-bit labelling ⇔ induced-universal graph of n^c nodes

Universal Graphs for Trees (for *n*=6 nodes)

From the (u, parent(u)) labelling \Rightarrow induced-universal graph of $n^2=36$ nodes

0	0	0	0	<mark>0</mark>	<mark>0</mark>
61	62	63	64	65	66
о	<mark>0</mark>	<mark>0</mark>	<mark>0</mark>	•	<mark>0</mark>
51	52	53	54	55	56
•	<mark>0</mark>	<mark>0</mark>	<mark>0</mark>	•	0
41	42	43	44	45	46
0	<mark>0</mark>	o	<mark>0</mark>	<mark>0</mark>	<mark>0</mark>
31	32	33	34	35	36
0	<mark>0</mark>	<mark>0</mark>	<mark>0</mark>	<mark>0</mark>	0
21	22	23	24	25	26
0	<mark>0</mark>	<mark>0</mark>	<mark>0</mark>	<mark>0</mark>	<mark>0</mark>
11	12	13	14	15	16

Using DFS for T: (u,v) $\Rightarrow u > v$ or u = v = 1

Universal Graphs for Trees (for *n*=6 nodes)

From the (u, parent(u)) labelling \Rightarrow induced-universal graph of $n^2=36$ nodes

0 61	0 62	<mark>0</mark> 63	0 64	6 5	
о 51	• 52	<mark>0</mark> 53	0 54		
0 41	0 42	0 43			
0 31	0 32				
<mark>0</mark> 21					
0 11	● 12				● 16

Using DFS for T: (u,v) $\Rightarrow u > v$ or u = v = 1 $\Rightarrow n(n-1)/2+1=16$ nodes

Universal Graphs for Trees (for *n*=6 nodes)

From the (u, parent(u)) labelling \Rightarrow induced-universal graph of $n^2=36$ nodes

Using DFS for T: (u,v) $\Rightarrow u > v$ or u = v = 1 $\Rightarrow n(n-1)/2 + 1 = 16$ nodes

Universal Graphs for Trees (universal trees)

ON GRAPHS WHICH CONTAIN ALL SMALL TREES, II.

F.R.K. CHUNG - R.L. GRAHAM - N. PIPPENGER

COLLOQUIA MATHEMATICA SOCIETATIS JÁNOS BOLYAI 18. COMBINATORICS, KESZTHELY (HUNGARY), 1976.

14 nodes

Labelling Schemes for Planar Graphs

Edge partition: combining schemes

Arboricity-k graphs: $(k+1)\log n$ bits \Rightarrow Planar (k=3): $4\log n$ bits [KNR - STOC'88]

Better Labelling Schemes

For trees: $\log n + O(\log^* n)$, $\log n + O(1)$ [Alstrup,Rauhe - FOCS'02] [Alstrup,Dahlgaard,B.T.Knudsen - FOCS'15 & JACM'17] \Rightarrow Arboricity-k: $k\log n + O(1)$ \Rightarrow Planar: $3\log n + O(1)$

For treewidth-k: $\log n + O(k \log \log n)$ [G.,Labourel - ESA'07] \Rightarrow Planar & Minor-free: $2\log n + O(\log \log n)$

Bonamy, G., Pilipczuk - SODA'20

For planar & bounded genus: $\frac{4}{3}\log n + O(\log\log n)$ \Rightarrow

Induced-universal graph of $n^{4/3+o(1)}$ nodes for *n*-node planar graphs (and bounded genus graphs)

> Labelling the nodes is polynomial Decoding adjacency takes constant time

Sketch of Proof (1/2)

Edge partition: $G = S \cup B$ (Strips & Border)

S: components have *d* layers ~ $n^{1/3}$

B: has treewidth \leq 5 and $n/d \sim n^{2/3}$ nodes

Sketch of Proof (1/2)

Edge partition: $G = S \cup B$ (Strips & Border)

S: components have *d* layers ~ $n^{1/3}$ B: has treewidth ≤ 5 and $n/d \sim n^{2/3}$ nodes

BFS & shift∈[1..*d*]

Bi

<u>^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ 1 </u> В_{i+1}

Sketch of Proof (2/2)

Labelling for B: log(n/d) \checkmark Labelling for S: logn + logd*new!*[up to +O(loglogn) terms]

Problem: nodes in V(B) pay both labels $\Rightarrow \log(n/d) + \log n + \log d = 2\log n \otimes$

Improved labelling for S: nodes in V(B) pay only $\log|B| = \log(n/d)$ bits!

⇒ nodes in S\V(B): $\log n + \log d = \frac{4}{3} \log n$ ③ ⇒ nodes in V(B): $\log(n/d) + \log(n/d) = \frac{4}{3} \log n$ ③

Improved Scheme for Treewidth-k

G = treewidth-k, V(G) = V₁ \cup V₂, K_u = N[u] = simplicial complex of u, $|K_u| \le k+1$.

Lemma. G has a scheme providing, for each u, id(u) and $\lambda(u)$ st. $\forall v \in K_u$ id(v) can be extracted from $\lambda(u)$. Moreover, for $u \in V_i$

 $|\lambda(u)| = \log |V_i| + O(k \log \log |V(G)|).$

 $u - v \Leftrightarrow id(v) \in \{id(K_u)\} \text{ or } id(u) \in \{id(K_v)\}$

Labelling Scheme for S

Key lemma. [2018,2019] If G is planar, there is a node partition into monotone paths taken from any given BFS such that contracting each one leads to a treewidth-8 graph.

Label $\lambda(u)$ consists of:

- the treewidth-8 scheme
- the depth of u in S (unless $u \in B$)
- 3 bits/path in the treewidth-8 scheme, i.e., 3x8 = 24 extra bits

[Extend to genus-g graphs]

Improved Bound: Dujmovic, Esperet, G., Joret, Micek, Morin

Theorem. The family of *n*-vertex subgraphs of $H \boxtimes P$ has a labelling scheme with $\log n + o(\log n)$ bit labels, where H has bounded treewidth and P is a path.

Induced-universal graph of n^{1+o(1)} nodes for n-node planar graphs (and many other families of graphs)

> Labelling the nodes takes $O(n \log n)$ time Decoding adjacency takes ~ $\sqrt{\log n}$ time

H
(
$$n_{i}$$
) H
(n_{i}) H
balancad binary
search tree
 $v \rightarrow position in T_{i}$
(ald (v) $\approx noot - to - position (v) path
odj: (n_{i}) - (n_{i})$

Open Problems

- 1. Improve the 2nd order term, $\log n + O(1)$?
- 2. Extend to minor-free graphs
- 3. Improve to $\log n + \theta(k)$ for treewidth-k
- 4. Prove lower bounds for planar or minor-free

Best lower bound for planar: $\log n + \Omega(1)$ 8

No families with $n! 2^{O(n)}$ labelled graphs like trees, planar, bounded genus, bounded treewidth, minor-free (hereditary)... is known to require labels of log $n + \omega(1)$ bits.

JHANKYOU!

D

logn + O(loglogn)

[0, 100) [100, 150)

KNO.

lley.