Consequences for adjacency labelling schemes

Cyril Gavoille $\lfloor\operatorname{csj} \mid\{\mid$ - University of Bordeaux

JCRAALMA on Product Structure Theorems
@Home on BBB
May 29, 2020

Representation of a Graph

adjacency list
matrix

12345

1 node $=1$ pointer in the data-structure (it does not carry any specific information)

Implicit Representation

To associate with the nodes more information, typically adjacency, and to remove the datastructure.

Interval graphs: $u \mapsto \mathrm{I}(u) \subseteq[1,2 n]$
Edges: $u-v \Leftrightarrow I(u) \cap \mathrm{I}(v) \neq \varnothing$

Compact representation: O(logn) bits/node Possibly time $O(n)$ algorithms vs, $O(n+m)$

Labelling Schemes

$P=$ a graph property defined on pairs of nodes
$\mathrm{F}=\mathrm{a}$ graph family

A P-labelling scheme for F is a pair (λ, f) such that $\forall \mathrm{G} \in \mathrm{F}, \forall u, v \in \mathrm{~V}(\mathrm{G})$:

- [labelling] $\lambda(u, G)$ is a binary string
- [decoder] $f(\lambda(u, G), \lambda(v, G))=P(u, v, G)$

Goals: to minimize the maximum label size
In this talk: $P(u, v, G)$ is TRUE $\Leftrightarrow u v \in E(G)$

Basic Example: Trees

Basic Example: Trees

Basic Example: Trees

Basic Example: Trees

$$
\begin{aligned}
& \lambda(u, T)=(u, \text { parent }(u)) \text { or }(u, u) \\
& f(\boldsymbol{u} v, x y)=(v=x \text { or } u=y)
\end{aligned}
$$

Basic Example: Trees

$$
\begin{aligned}
& \lambda(u, T)=(u, \operatorname{parent}(\boldsymbol{u})) \text { or }(\boldsymbol{u}, u) \\
& \mathbf{f}(\boldsymbol{u} v, \boldsymbol{x} y)=(v=x \text { or } \boldsymbol{u}=y)
\end{aligned}
$$

For trees with n nodes: ~ $2 \log n$ bits/node (the constant does matter [Abiteboul et al. - SICOMP '06])

Induced-Universal Graphs

 [Babai,Chung,Erdös,Graham,Spencer '82]A graph U is an induced-universal graph for the family F if every graph of F is isomorphic to an induced subgraph of U.

Induced-Universal Graphs

 [Babai,Chung,Erdös,Graham,Spencer '82]A graph U is an induced-universal graph for the family F if every graph of F is isomorphic to an induced subgraph of U.

Induced-Universal Graphs

induced-universal graph U
graphs of F
clogn-bit labelling \Leftrightarrow induced-universal graph of n^{c} nodes

Universal Graphs for Trees (for $n=6$ nodes)

From the (u, parent (\boldsymbol{u})) labelling
\Rightarrow induced-universal graph of $n^{2}=36$ nodes

0	0	0	0	0	0	
61	62	63	64	65	66	Using DFS for T: $(\boldsymbol{u}, \boldsymbol{v})$
0	0	0	0	0	0	$\Rightarrow \boldsymbol{u} \geqslant \boldsymbol{v}$ or $\boldsymbol{u}=\boldsymbol{v}=1$
51	52	53	54	55	56	
0	0	0	0	0	0	
41	42	43	44	45	46	
0	0	0	0	0	0	
31	32	33	34	35	36	
0	0	0	0	0	0	
21	22	23	24	25	26	
0	0	0	0	0	0	
11	12	13	14	15	16	

Universal Graphs for Trees (for $n=6$ nodes)

From the (u,parent (u)) labelling
\Rightarrow induced-universal graph of $n^{2}=36$ nodes

Universal Graphs for Trees (for $n=6$ nodes)

From the (u, parent (u)) labelling
\Rightarrow induced-universal graph of $n^{2}=36$ nodes

$$
\begin{aligned}
& \text { Using DFS for T: }(u, v) \\
& \Rightarrow u>v \text { or } u=v=1 \\
& \Rightarrow n(n-1) / 2+1=16 \text { nodes }
\end{aligned}
$$

Universal Graphs for Trees (universal trees)

ON GRAPHS WHICH CONTAIN ALL SMALL TREES, II.
F.R.K. CHUNG - R.L. GRAHAM - N. PIPPENGER

COLLOQUIA MATHEMATICA SOCIETATIS JÁNOS ROLYAI

18. COMBINATORICS, KESZTHELY (HUNGARY), 1976.

14 nodes

Labelling Schemes for Planar Graphs

Edge partition: combining schemes

Arboricity- k graphs: $(k+1) \log n$ bits
\Rightarrow Planar $(k=3): 4 \log n$ bits [KNR - STOC' $\left.^{\prime} 88\right]$

Better Labelling Schemes

For trees: $\log n+O\left(\log ^{*} n\right), \log n+O(1)$
[Alstrup,Rauhe - FOCS'02]
[Alstrup,Dahigaard,B.T.Knudsen - FOCS'15 \& JACḾ17]
\Rightarrow Arboricity-k: klogn $+\mathrm{O}(1)$
\Rightarrow Planar: $3 \log n+\mathrm{O}(1)$
For treewidth-k: $\log n+O(k \log \log n)$
[G.,Labourel - ESA'07]
\Rightarrow Planar \& Minor-free: $2 \log n+O(\log \log n)$

Bonamy, G., Pilipczuk - SODA'20

For planar \& bounded genus: $4 / 3 \log n+O(\log \log n)$
\Rightarrow

Induced-universal graph of $n^{4 / 3+o(1)}$ nodes for n-node planar graphs (and bounded genus graphs)

Labelling the nodes is polynomial Decoding adjacency takes constant time

Sketch of Proof (1/2)

Edge partition: $G=S \cup B$
 (Strips \& Border)

S: components have d layers $\sim n^{1 / 3}$ B: has treewidth ≤ 5 and $n / d \sim n^{2 / 3}$ nodes BFS \& shift $\in[1 . . d]$

Sketch of Proof (1/2)

Edge partition: G = S U B (Strips \& Border)
S: components have d layers $\sim n^{1 / 3}$ B: has treewidth ≤ 5 and $n / d \sim n^{2 / 3}$ nodes

BFS \& shift $\in[1 . . d]$
dV dV

$$
\Lambda i \Lambda i \Lambda i 91 \quad \mathrm{~B}_{\mathrm{B}+1}
$$

Sketch of Proof (2/2)

Labelling for $\mathrm{B}: \log (n / d)$
Labelling for $S: \log n+\log d$ new!
[up to +O(loglogn) terms]
Problem: nodes in $V(B)$ pay both labels
$\Rightarrow \log (n / d)+\log n+\log d=2 \log n$
Improved labeling for S : nodes in V(B) pay only $\log |B|=\log (n / d)$ bits!
\Rightarrow nodes in $S \backslash V(B): \log n+\log d=4 / 3 \log n$
\Rightarrow nodes in $V(B): \log (n / d)+\log (n / d)=4 / 3 \log n$

Improved Scheme for Treewidth- k

$\mathrm{G}=$ treewidth $-k, \mathrm{~V}(\mathrm{G})=\mathrm{V}_{1} \cup \mathrm{~V}_{2}, \mathrm{~K}_{u}=\mathrm{N}[u]=$ simplicial complex of $u_{,}\left|\mathrm{K}_{u}\right| \leq k+1$.

Lemma, G has a scheme providing, for each $u_{\text {, }}$ id (u) and $\lambda(u)$ st. $\forall v \in \mathrm{~K}_{u} \mathrm{id}(v)$ can be extracted from $\lambda(u)$. Moreover, for $u \in V_{i}$

$$
|\lambda(u)|=\log \left|\mathrm{V}_{i}\right|+\mathrm{O}(k \log \log |\mathrm{~V}(\mathrm{G})|) .
$$

$$
u-v \Leftrightarrow \operatorname{id}(v) \in\left\{\mathrm{id}\left(\mathrm{~K}_{u}\right)\right\} \text { or } \mathrm{id}(u) \in\left\{\mathrm{id}\left(\mathrm{~K}_{v}\right)\right\}
$$

Labelling Scheme for S

Key lemma. [2018,2019] If G is planar, there is a node partition into monotone paths taken from any given BFS such that contracting each one leads to a treewidth-8 graph.

Label $\lambda(u)$ consists of:

- the treewidth-8 scheme
- the depth of u in S (unless $u \in B$)
- 3 bits/path in the treewidth-8 scheme, i.e., $3 \times 8=24$ extra bits
[Extend to genus-g graphs]

Improved Bound: Dujmovic, Esperet, G., Joret, Micek, Morin

Theorem. The family of n-vertex subgraphs of H®P has a labelling scheme with $\log n+o(\log n)$ bit labels, where H has bounded treewidth and P is a path.
> \Rightarrow Induced-universal graph of $n^{1+o(1)}$ nodes for n-node planar graphs
> (and many other families of graphs)

Labelling the nodes takes $O(n \log n)$ time Decoding adjacency takes $\sim \sqrt{ } / \log n$ time

PB: Need to know position of v in T_{i+1} from position of v in $T_{i} \ldots$

PB:
Need to know position of v in T_{i+1} from position of v in $T_{i} \ldots$

Key obs: T_{i+1} and T_{i} are not indep.
\Rightarrow Given o($\log n)$ bits we can extract position of v in T_{i+1} given its pos. in T_{i}.
Tools: $T_{i} \rightarrow T_{i+1}$

- bulk insertions
- bulk deletions
- rebalancing

Open Problems

1. Improve the 2 nd order term, $\log n+O(1)$?
2. Extend to minor-free graphs
3. Improve to $\log n+\theta(k)$ for treewidth- k
4. Prove lower bounds for planar or minor-free

Best lower bound for planar: $\log n+\Omega(1)$ (2)
No families with $n!2^{\circ(n)}$ labelled graphs like trees, planar, bounded genus, bounded treewidth, minor-free (hereditary)... is known to require labels of $\log n+\omega(1)$ bits.

