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Representation of a Graph
adjacency list

1 node = 1 pointer in the data-structure
(it does not carry any specific information)
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Implicit Representation

To associate with the nodes more information, 
typically adjacency, and to remove the data-
structure.

Interval graphs: 𝒖 ↦ I(𝒖) ⊆ [1,2𝒏]
Edges: 𝒖−𝒗 ó I(𝒖) ∩ I(𝒗) ≠ ∅

Compact representation: O(log𝒏) bits/node
Possibly time O(𝒏) algorithms vs. O(𝒏+𝒎)



Labelling Schemes

A P-labelling scheme for F is a pair (𝝺,𝗳) such 
that " G Î F, " 𝒖,𝒗 Î V(G):

• [labelling] 𝝺(𝒖,G) is a binary string
• [decoder] 𝗳(𝝺(𝒖,G),𝝺(𝒗,G))=P(𝒖,𝒗,G)

P = a graph property defined on pairs of nodes
F = a graph family

Goal: to minimize the maximum label size
In this talk:  P(𝒖,𝒗,G) is true ó 𝒖𝒗 Î E(G) 



Basic Example: Trees
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Basic Example: Trees

𝝺(𝒖,T)=(𝒖,parent(𝒖)) or (𝒖,𝒖)
𝗳(𝒖𝒗,𝒙𝒚)=(𝒗=𝒙 or 𝒖=𝒚)
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Basic Example: Trees

For trees with 𝒏 nodes: ~ 2log𝒏 bits/node
(the constant does matter [Abiteboul et al. - SICOMP ’06])

𝝺(𝒖,T)=(𝒖,parent(𝒖)) or (𝒖,𝒖)
𝗳(𝒖𝒗,𝒙𝒚)=(𝒗=𝒙 or 𝒖=𝒚)
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Induced-Universal Graphs
[Babai,Chung,Erdös,Graham,Spencer ’82]

A graph U is an induced-universal graph for the 
family F if every graph of F is isomorphic to an 
induced subgraph of U.
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Induced-Universal Graphs
[Babai,Chung,Erdös,Graham,Spencer ’82]

A graph U is an induced-universal graph for the 
family F if every graph of F is isomorphic to an 
induced subgraph of U.



induced-universal graph U graphs of F

𝒄log𝒏-bit labelling ó induced-universal graph of 𝒏𝒄 nodes
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From the (𝒖,parent(𝒖)) labelling
Þ induced-universal graph of 𝒏2=36 nodes

Universal Graphs for Trees
(for 𝒏=6 nodes)

Using DFS for T: (𝒖,𝒗)
Þ 𝒖>𝒗 or 𝒖=𝒗=1
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From the (𝒖,parent(𝒖)) labelling
Þ induced-universal graph of 𝒏2=36 nodes

Universal Graphs for Trees
(for 𝒏=6 nodes)

Using DFS for T: (𝒖,𝒗)
Þ 𝒖>𝒗 or 𝒖=𝒗=1
Þ 𝒏(𝒏-1)/2+1=16 nodes

32

43

54

65



11

31 32

21

41 42 43

51 52 53 54

61 62 63 64 65

From the (𝒖,parent(𝒖)) labelling
Þ induced-universal graph of 𝒏2=36 nodes

Universal Graphs for Trees
(for 𝒏=6 nodes)

Using DFS for T: (𝒖,𝒗)
Þ 𝒖>𝒗 or 𝒖=𝒗=1
Þ 𝒏(𝒏-1)/2+1=16 nodes



Universal Graphs for Trees
(universal trees)

14 nodes



Labelling Schemes for Planar Graphs

Edge partition: combining schemes

Arboricity-𝒌 graphs: (𝒌+1)log𝒏 bits
Þ Planar (𝒌=3): 4log𝒏 bits   [KNR – STOC’88]
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Better Labelling Schemes

For trees: log𝒏 + O(log*𝒏), log𝒏 + O(1)
[Alstrup,Rauhe – FOCS’02]
[Alstrup,Dahlgaard,B.T.Knudsen – FOCS’15 & JACM’17]
Þ Arboricity-𝒌: 𝒌log𝒏 + O(1)
Þ Planar: 3log𝒏 + O(1)

For treewidth-𝒌: log𝒏 + O(𝒌loglog𝒏)
[G.,Labourel – ESA’07]
Þ Planar & Minor-free: 2log𝒏 + O(loglog𝒏)



Bonamy, G., Pilipczuk - SODA’20

For planar & bounded genus: 4⁄3 log𝒏 + O(loglog𝒏)
Þ

Labelling the nodes is polynomial
Decoding adjacency takes constant time

Induced-universal graph of 𝒏4/3+o(1) 

nodes for 𝒏-node planar graphs
(and bounded genus graphs)



Sketch of Proof (1/2)
Edge partition: G = S ∪ B     (Strips & Border)

S: components have 𝒅 layers ~ 𝒏1/3

B: has treewidth≤5 and 𝒏/𝒅 ~ 𝒏2/3 nodes
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BFS & shiftÎ[1..𝒅]
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Sketch of Proof (2/2)

Labelling for B: log(𝒏/𝒅)           ✔
Labelling for S: log𝒏 + log𝒅 new!
[up to +O(loglog𝒏) terms]

Problem: nodes in V(B) pay both labels
Þ log(𝒏/𝒅) + log𝒏 + log𝒅 = 2log𝒏 L

Improved labelling for S: nodes in V(B) pay 
only log|B| = log(𝒏/𝒅) bits!

Þ nodes in S\V(B): log𝒏+log𝒅 = 4⁄3 log𝒏 J
Þ nodes in V(B): log(𝒏/𝒅)+log(𝒏/𝒅) = 4⁄3 log𝒏 J



Improved Scheme for Treewidth-𝒌
G = treewidth-𝒌, V(G) = V1 ∪ V2, K𝒖 = N[𝒖] = 
simplicial complex of 𝒖, |K𝒖 |≤ 𝒌+1.

Lemma. G has a scheme providing, for each 𝒖, 
id(𝒖) and 𝝺(𝒖) st. "𝒗ÎK𝒖 id(𝒗) can be extracted 
from 𝝺(𝒖). Moreover, for 𝒖ÎV𝒊

|𝝺(𝒖)| = log|V𝒊| + O(𝒌loglog|V(G)|).

𝒖−𝒗 ó id(𝒗)Î{id(K𝒖)} or id(𝒖)Î{id(K𝒗)}

K𝒖
id(𝒖)

id(𝒗1)
id(𝒗2)

id(𝒗3)

G



Labelling Scheme for S
Key lemma. [2018,2019] If G is planar, there is 
a node partition into monotone paths taken from 
any given BFS such that contracting each one 
leads to a treewidth-8 graph.

Label 𝝺(𝒖) consists of:
• the treewidth-8 scheme
• the depth of 𝒖 in S (unless 𝒖∈B)
• 3 bits/path in the treewidth-8 

scheme, i.e., 3x8 = 24 extra bits

B

S 𝒖

B

[Extend to genus-g graphs]



Improved Bound: Dujmovic, 
Esperet, G., Joret, Micek, Morin

Theorem. The family of 𝒏-vertex subgraphs of H⊠P 
has a labelling scheme with log𝒏 + o(log𝒏) bit labels, 
where H has bounded treewidth and P is a path.

Þ

Labelling the nodes takes O(𝒏log𝒏) time
Decoding adjacency takes ~ √log𝒏 time

Induced-universal graph of 𝒏1+o(1) nodes 
for 𝒏-node planar graphs

(and many other families of graphs)









Open Problems

1. Improve the 2nd order term, log𝒏+O(1)?
2. Extend to minor-free graphs
3. Improve to log𝒏 + 𝛳(𝒌) for treewidth-𝒌
4. Prove lower bounds for planar or minor-free

Best lower bound for planar: log𝒏 + Ω(1)  L
No families with 𝒏! 2O(𝒏) labelled graphs like trees, planar, bounded 
genus, bounded treewidth, minor-free (hereditary)… is known to 
require labels of log𝒏 + w(1) bits.



THANK YOU!


