Shorter Implicit Representation for Planar Graphs

Cyril Gavoille

LaBRI - University of Bordeaux

Joint with Marthe Bonamy (U. Bordeaux)

and Michał Pilipczuk (U. Warsaw)

9th Slovenian International Conference on Graph Theory, Bled 2019

Representation of a Graph

adjacency list

matrix

12345

$$\begin{array}{c|cccc}
1 & 01001 \\
2 & 10100 \\
3 & 01011 \\
4 & 00100 \\
5 & 10100
\end{array}$$

1 node = 1 pointer in the data-structure (it does not carry any specific information)

Implicit Representation

To associate with the nodes more information, typically adjacency, and to remove the data-structure.

Interval graphs: $u \mapsto I(u) \subseteq [1,2n]$

Edges: $u-v \Leftrightarrow I(u) \cap I(v) \neq \emptyset$

Compact representation: $O(\log n)$ bits/node Possibly time O(n) algorithms vs. O(n+m)

Labelling Schemes

P = a graph property defined on pairs of nodes

F = a graph family

A P-labelling scheme for F is a pair (λ, f) such that $\forall G \in F, \forall u, v \in V(G)$:

- [labelling] $\lambda(u,G)$ is a binary string
- [decoder] $f(\lambda(u,G),\lambda(v,G))=P(u,v,G)$

Goal: to minimize the maximum label size **In this talk**: P(u,v,G) is TRUE $\Leftrightarrow uv \in E(G)$


```
\lambda(u,T)=(u, parent(u)) \text{ or } (u,u)

f(uv,xy)=(v=x \text{ or } u=y)
```


For trees with n nodes: $\sim 2\log n$ bits/node (the constant does matter [Abiteboul et al. - SICOMP '06])

Induced-Universal Graphs

[Babai, Chung, Erdös, Graham, Spencer '82]

A graph U is an **induced-universal** graph for the family F if every graph of F is isomorphic to an *induced* subgraph of U.

Induced-Universal Graphs

[Babai, Chung, Erdös, Graham, Spencer '82]

A graph U is an **induced-universal** graph for the family F if every graph of F is isomorphic to an *induced* subgraph of U.

Induced-Universal Graphs

induced-universal graph U

graphs of F

 ${\color{red}c} \log n$ -bit labelling \Leftrightarrow induced-universal graph of $n^{\color{red}c}$ nodes

Universal Graphs for Trees (for n=6 nodes)

From the (u, parent(u)) labelling \Rightarrow induced-universal graph of n^2 =36 nodes

61	62	63	6 4	65	66
o	<u>•</u>	•	•	<u>•</u>	•
51	52	53	54	55	56
o	o	•	o	4 5	•
41	42	43	44		46
o	o	o	o	o	•
31	32	33	34	35	36
o	o	o	<u>o</u>	o	o
21	22	23	24	25	26
o 11	<u>o</u> 12	o 13	<u> </u>	<u> </u>	o 16

Using DFS for T: (u,v) $\Rightarrow u>v$ or u=v=1

Universal Graphs for Trees (for n=6 nodes)

From the (u, parent(u)) labelling \Rightarrow induced-universal graph of n^2 =36 nodes

6 1	6 2	63	6 4	65	
o 51	• 52	• 53	• 54		
• 41	o 42	43			
o 31	32				
o 21					
o 11					

Using DFS for T: (u,v)

$$\Rightarrow u>v$$
 or $u=v=1$

$$\Rightarrow n(n-1)/2+1=16$$
 nodes

Universal Graphs for Trees (for n=6 nodes)

From the (u, parent(u)) labelling \Rightarrow induced-universal graph of n^2 =36 nodes

Using DFS for T: (u,v)

 $\Rightarrow u>v$ or u=v=1

 $\Rightarrow n(n-1)/2+1=16$ nodes

Universal Graphs for Trees (universal trees)

$$n=2$$
:

$$n = 3$$
:

$$n = 4$$
:

n = 5:

$$n = 6$$
:

ON GRAPHS WHICH CONTAIN ALL SMALL TREES, II.

F.R.K. CHUNG - R.L. GRAHAM - N. PIPPENGER

COLLOQUIA MATHEMATICA SOCIETATIS JÁNOS BOLYAI
18. COMBINATORICS, KESZTHELY (HUNGARY), 1976.

14 nodes

Labelling Schemes for Planar Graphs

Edge partition: combining labelling schemes


```
Arboricity-k graphs: (k+1)\log n bits \Rightarrow Planar (k=3): 4\log n bits [KNR - STOC'88]
```

Better Labelling Schemes

```
For trees: \log n + O(\log^* n)
[Alstrup,Rauhe - FOCS'02]
\Rightarrow Arboricity-k: k \log n + O(\log^* n)
\Rightarrow Planar: 3\log n + O(\log^* n)
For treewidth-k: \log n + O(k \log \log n)
[G.,Labourel - ESA'07]
\Rightarrow Planar & Minor-free: 2\log n + O(\log \log n)
For trees: \log n + O(1)
[Alstrup, Dahlgaard, B.T. Knudsen - FOCS'15 & JACM'17]
```

A New Bound

For planar & bounded genus: $\frac{4}{3} \log n + O(\log \log n)$

 \Rightarrow induced-universal graph of $n^{4/3+o(1)}$ nodes for n-node planar graphs (and bounded genus graphs)

Labelling the nodes is polynomial Decoding adjacency takes constant time

Sketch of Proof (1/2)

Edge partition: $G = S \cup B$ (Strips & Border)

S: components have depth $d \sim n^{1/3}$

B: has treewidth ≤ 5 and $n/d \sim n^{2/3}$ nodes

Sketch of Proof (1/2)

Edge partition: $G = S \cup B$ (Strips & Border)

S: components have depth $d \sim n^{1/3}$

B: has treewidth ≤ 5 and $n/d \sim n^{2/3}$ nodes

BFS & shift $\in [1...d]$

 B_{i-1}

Bi

 B_{i+1}

Sketch of Proof (2/2)

- **Labelling for B**: $\log(n/d)$
- **Labelling for S:** $\log n + \log d$ new!
- [up to +O(loglogn) terms]
- **Problem:** nodes in V(B) pay both labels $\Rightarrow \log(n/d) + \log n + \log d = 2\log n$
- **Improved labelling for S**: nodes in V(B) pay only log|B| = log(n/d) bits!
- \Rightarrow nodes in S\V(B): $\log n + \log d = \frac{4}{3} \log n$
- \Rightarrow nodes in V(B): $\log(n/d) + \log(n/d) = \frac{4}{3} \log n$

Improved Scheme for Treewidth-k

G = treewidth-k, V(G) = V₁ \cup V₂, K_u = simplicial complex of u, $|K_u| \le k+1$.

Lemma. G has a scheme providing, for each u, id(u) and $\lambda(u)$ st. id(v) can be extracted $\forall v \in K_u$ from $\lambda(u)$. Moreover, for $u \in V_i$

 $|\lambda(u)| = \log|V_i| + O(k \log\log|V(G)|).$

 $u-v \Leftrightarrow id(v) \in \{id(K_u)\} \text{ or } id(u) \in \{id(K_v)\}$

Labelling Scheme for S

Key lemma. [2018,2019] If G is planar, there is a node partition into monotone paths taken from any given BFS such that contracting each one leads to a treewidth-8 graph.

Label $\lambda(u)$ consists of:

- the treewidth-8 scheme
- the depth of \mathbf{u} in S (unless if $\mathbf{u} \in B$)
- 3 bits/path in the treewidth-8 scheme, i.e., 3x8 = 24 extra bits

Open Problems

- 1. Improve to $c \log n$ with c < 4/3 for planar
- Extend to minor-free graphs
- 3. Improve to $\log n + \theta(k)$ for treewidth-k
- 4. Prove lower bounds for planar or minor-free

Best lower bound for planar: $\log n + \Omega(1)$

No hereditary family with $n! 2^{O(n)}$ labelled graphs (trees, planar, bounded genus, bounded treewidth, minor-free ...) is known to require labels of $\log n + o(1)$ bits.

THANK YOU!