
Distributed Computing with
Quantum Ressources and Beyond

Cyril Gavoille

, University of Bordeaux

Complexity, Algorithms, Automata and Logic Meet (CAALM)
Chennai Mathematical Institute

January 22, 2019



Agenda

1 The Coloring Problem
2 Distributed Computing
3 Quantum Information
4 Beyond Quantum



Coloring a graph with few colors
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2 3

Sequentiel greedy algorithm: First Free

For each node u, in any order, color u with the smallest
available color in the palette 50 1 2 3 4

“Few” means at most ∆ + 1 colors (∆ = max degree)
[Ordering 0, 2, 5, 4, 3, 1 would give χ = 3 colors]
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Distributed Graph Coloring

The distributed system is the graph it-self.

Goal. To produce a (∆ + 1)-coloring by inspecting
neighborhoods only.
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45

2 3

50 1 2 3 4

Running in parallel First Free...

does not work. We would
like they don’t act at the same round. Works if they have
different color!
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The LOCAL Model
(focuses on locality of a task)

Nodes have IDs
Nodes run in synchronous rounds
Communication between neighbors
No message size limits
No local computational power limits
No failures

Complexity measure. The number of rounds

A task can be solved in k rounds iff nodes can decide their
output by inspecting their distance-k neighborhood.
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Distributed (∆ + 1)-Coloring
Challenge. Design a parallel version
of a typically greedy algorithm. A fun-
damental and toy problem, likewise a
drosophilia fly of biologists.

Best known bounds (#rounds)
• 2O(

√
logn) [STOC’92]

• 1
2

log∗ n [FOCS’87]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
• O(

√
∆ log5 ∆ ) + log∗ n [FOCS’16]

• O(
√

log ∆ ) + 2O(
√
log logn ) (rand.) [STOC’16]

log∗ n = min
{
i ∈ N : log(i) n 6 1

}
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Beyond the LOCAL Model

Goal. Study the locality of a problem when nodes have access
to exotic ressources, like entangled qubits or others.

Extensions of the LOCAL model:

1 Shared-randomness ressources
2 Quantum ressources
3 Any ressource and mechanism preserving physical locality

Fact. Shared-randomness does not help for 3-coloring a cycle,
Ω(log∗ n) still holds. Unknown for quantum ressources.

There are proof-of-concept problems showing that it may help.



Beyond the LOCAL Model

Goal. Study the locality of a problem when nodes have access
to exotic ressources, like entangled qubits or others.

Extensions of the LOCAL model:

1 Shared-randomness ressources
2 Quantum ressources
3 Any ressource and mechanism preserving physical locality

Fact. Shared-randomness does not help for 3-coloring a cycle,
Ω(log∗ n) still holds. Unknown for quantum ressources.

There are proof-of-concept problems showing that it may help.



Beyond the LOCAL Model

Goal. Study the locality of a problem when nodes have access
to exotic ressources, like entangled qubits or others.

Extensions of the LOCAL model:

1 Shared-randomness ressources
2 Quantum ressources
3 Any ressource and mechanism preserving physical locality

Fact. Shared-randomness does not help for 3-coloring a cycle,
Ω(log∗ n) still holds. Unknown for quantum ressources.

There are proof-of-concept problems showing that it may help.



Shared-Randomness

Task. Select in 0 rounds two adjacent nodes in G isomorphic
to Kn \ {e}. To win, exactly two adjacent nodes must output
select, the others unselect.

n = 5
0
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Shared-Randomness

0

1
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3

4

Cannot be solved in the classical LOCAL model with Pr > 1/e.

[One can tends to 1/e ≈ 36% by always selecting node with ID= 0

and each other with Pr = (n− 2)/(n− 1), if n > 6]



Shared-Randomness
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With shared-randomness, each node can select any edge of Kn

uniformly at random in a coordinated manner.

Pr(win) = 1− 1/

(
n

2

)
= 1− o(1)



Quantum Extension

Nodes may share arbitrary entangled states (before inputs
come) ... use quantum communication channels with
teleportation effects and others.

To understand why quantum extensions is strictly stronger
than shared-randomness extensions, we need to introduce
quantum information background ...



Quantum Physics
(for computer scientists)



Causality & Locality

Two fundamental principles in physics:

Causality: Causes preceed consequences.
Locality: No instantaneously and distant interactions.

Reproducible experiments of Alain Aspect in ’82 show that one
of the two principles (at least) does not hold ... Bell’s
inequalities are violated.
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Causality & Locality

+ Quantum effects/non-locality: a quantum particle (the
support of information) can be in several places at the
same time (superposition) ... Really.

- Unlike relativity theory, quantum physics do not logically
follows from easy-to-validate axioms, like the invariance
principle and causality.

BTW, invariance (laws are the same under any coordinates axis)
and causality imply an upper bound speed limit for light.
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Unit of Information (mathematically)

Deterministic bit B: represented by a value B ∈ {0,1}.

Probabilistic bit P: represented by a real vector
(
p
q

)
• p = probability to get 0
• q = probability to get 1

Required: p+ q = 1

Interpret vector
(

1
0

)
as the value 0, and

(
0
1

)
as 1. Then

P = p

(
1
0

)
+ q

(
0
1

)
=

(
p
q

)
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Unit of Information (mathematically)

Quantum bit Q: represented by a complexe vector
(
α
β

)
• |α|2 = probability to get 0
• |β|2 = probability to get 1

Required: |α|2 + |β|2 = 1

Interpret vector
(

1
0

)
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(
0
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Qubit (in the real world)

Implemented by a physical particle (photon, electron, atome).
The mesure of a qubit is a physical measurement of an
observable, a property like: polarization, spin, electrical
charge, energy level, speed, position, impulsion, ...



Superposition & Interference

Superposition even for a single particle ...



Reality?



Entanglement of Qubit Systems

A system of two independent probabilist bits
(
p1
q1

)
and

(
p2
q2

)
represented by a tensor product.

(
p1
q1

)
⊗
(
p2
q2

)
=

p1 ·
(
p2
q2

)
q1 ·
(
p2
q2

)
 =


p1p2
p1q2
q1p2
q1q2



= p1p2


1
0
0
0

+ p1q2


0
1
0
0

+ q1p2


0
0
1
0

+ q1q2


0
0
0
1





Entanglement of Qubit Systems

A system (A,B) composed of two qubits represented as linear
combinaisons of four unit vectors:

(A,B) =


c00
c01
c10
c11

 = c00


1
0
0
0

+c01


0
1
0
0

+c10


0
0
1
0

+c11


0
0
0
1


where cij ∈ C and

∑
ij |cij|2 = 1, the probability to observe

A = i et B = j being controled by |cij|2.



Entangled vs. Separable States

The state of a system (A,B) is separable if (A,B) = A⊗B.
Otherwise it is entangled.

(A,B) =
1√
2


1
0
0
0

+
1√
2


0
0
0
1





Operators
The state of a system S of n qubits is denoted |S〉 which is a
vector in H2n . Operations on state vector is a reversible unit
matrix of H2n×2n .

For n = 1,

NOT :=

(
0 1
1 0

)
, NOT ·

(
1
0

)
=

(
0 1
1 0

)
·
(

1
0

)
=

(
0
1

)

R(θ) :=

(
cos θ − sin θ
sin θ cos θ

)

√
NOT :=

1

2

(
1 + i 1− i
1− i 1 + i

)
,
√

NOT ·
√

NOT = NOT



On Bell’s Inequalities

Using a Gedankenexperiment invented by David Bohm (1951),
John S. Bell (1964) showed that the nonexistence of
properties before measurement is a direct consequence of
the quantitative numerical predictions of the quantum theory.
Alain Aspect (1982) showed that the quantum-theoretic
predictions were indeed obeyed.



A Gedankenexperiment
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(U) Uniformity. If we look only flashs, results are uniform random
(C) Correlation. If same detector positions, then flash same color

Hypothesis. What is measured by detectors is an intrinsic
property of the particles that is fixed before measurement.
(Fixed at the creation in C, or along their travel to A or B,
but before fixing selecting positions.)
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Hypothesis. What is measured by detectors is an intrinsic
property of the particles that is fixed before measurement.

For type RGR, same flashs for positions 11, 22, 33 or 13, 31
(and 6= flashs for 12, 21, 23, 32). Positions are selected indep.
uniformly at random (1/9 each pair), so we should obtained
same flashs 5/9 > 55% of the time.
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Hypothesis. What is measured by detectors is an intrinsic
property of the particles that is fixed before measurement.

More generally, for types with twice the same letter (RGR,
RRG, RGR, GRR, GGR, GRG and RGG) we should observe
same flashs 55% of the time. For types RRR and GGG, it
should occur 100% of the time.



A Gedankenexperiment
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Hypothesis. What is measured by detectors is an intrinsic
property of the particles that is fixed before measurement.

More generally, for types with twice the same letter (RGR,
RRG, RGR, GRR, GGR, GRG and RGG) we should observe
same flashs 55% of the time. For types RRR and GGG, it
should occur 100% of the time.

Whatever the type distribution, detectors should flash the
same color at least 55% of the time, contradicting (U).

Property does not exist before measurement



The CHSH Game: a⊕ b = x ∧ y

Input: x, y ∈ {0, 1}
Output: a, b ∈ {0, 1}

b

BA

x y

a



The CHSH Game: a⊕ b = x ∧ y

(1) No deterministic strategies allow Alice & Bob to win.

a(0)⊕ b(0) = 0 ∧ 0 = 0

a(0)⊕ b(1) = 0 ∧ 1 = 0

a(1)⊕ b(0) = 1 ∧ 0 = 0

a(1)⊕ b(1) = 1 ∧ 1 = 1



The CHSH Game: a⊕ b = x ∧ y

(2) If Alice & Bob share random bits, then they have a
strategy to win 75% of the times, and no probabilistic
algorithm can do better.

x y x ∧ y 0 1 x ¬x y ¬y x⊕ y ¬x⊕ y success probability
0 0 0 p1 0 p3 0 p5 0 p7 0 P00 = p1 + p3 + p5 + p7
0 1 0 p1 0 0 p4 p5 0 0 p8 P01 = p1 + p4 + p5 + p8
1 0 0 p1 0 p3 0 0 p6 0 p8 P10 = p1 + p3 + p6 + p8
1 1 1 0 p2 p3 0 p5 0 0 p8 P11 = p2 + p3 + p5 + p8

min {P00, P01, P10, P11} 6 3/4

because S = P00 + P01 + P10 + P11 =
3p1 +p2 +3p3 +p4 +3p5 +p6 +p7 +p8 6 3 · (p1 + · · ·+p8) 6 3.



The CHSH Game: a⊕ b = x ∧ y

(3) If Alice & Bob have qubits, then they have a strategy to
win cos2(π/8) > 85% of the times, and no quantum algorithm
can do better.

|A,B〉 =
1√
2


1
0
0
0

− 1√
2


0
0
0
1


Alice applies a rotation R(θ) with θ = −π/16 if x = 0 and
3π/16 is x = 1. Similarly for Bob.



The CHSH Game: a⊕ b = x ∧ y

(1) No deterministic strategies allow Alice & Bob to win.

(2) If Alice & Bob share random bits, then they have a
strategy to win 75% of the times, and no probabilistic
algorithm can do better.

(3) If Alice & Bob have qubits, then they have a strategy to
win cos2(π/8) > 85% of the times, and no quantum algorithm
can do better.



The ϕ-LOCAL Model
(the ultimate non-signalling local model?)



Aim

+ A weaker model than the quantum extension of the
LOCAL model for a better understanding of the absolute
limits of any conceivable extensions of the LOCAL model
by any non-signalling physical theory (preserving causality
principle).

+ A simple combinatorial model avoiding linear algebra in
Hilbert space.

– Does not give concrete distributed algorithms because
instructions with new physics may do not exist yet.
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The Physical Locality: the ϕ-LOCAL Model

Thesis. Locality is violated if and only if, based on the
available output data, we can conclusively verify that after k
rounds some subset S of nodes was affected by input data of
G initially localized outside its view.

In the ϕ-LOCAL model, we allow any kind of correlation
(possibly non-local) in the output distribution that does not
violate locality. It allows non-signalling distributions only.



Non-Signalling Distribution

If A,B are nodes at distance more than k, then for an entry
(x, y), the output (a, b) must verify the non-signalling
property:

Pr(a|x, y) =def

∑
b

Pr(a, b|x, y) = Pr(a|x)

Pr(b|x, y) =def

∑
a

Pr(a, b|x, y) = Pr(b|y) .



Non-Signalling Distribution

b

BA

x y

a

x y a b a b

0 0 0 0 or 1 1 (proba. 1/2)
0 1 0 0 or 1 1 (proba. 1/2)
1 0 0 0 or 1 1 (proba. 1/2)
1 1 0 1 or 1 0 (proba. 1/2)

NB: a⊕ b = x ∧ y

(4) There is a distribution in the ϕ-LOCAL model with k = 0
round that allows Alice & Bob to win the CHSH game 100%
of the time.
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View-Based Lower Bounds

The best currently known round lower bounds for many
distributed problems, such as Maximal Independent Set
(MIS) in general graphs, cannot be broken with quantum or
non-signalling LOCAL extensions.

E.g., MIS requires Ω(
√

log n/ log log n) rounds in general
graphs in the ϕ-LOCAL model.

The Ω(log∗ n) lower bound for 3-coloring a ring (or MIS in a
path) is not a view based argument.
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Some Results for ϕ-LOCAL

2-coloring a ring requires dn/4e rounds, and this is tight.

2-coloring a path requires dn/3e rounds, and this is tight.
Computing an MIS for a path requires at least two
rounds, and three rounds are sufficient.
[Holroyd-Ligget’16] have constructed a stationary
1-dependent distribution for 4-coloring a path.
⇒ 4-coloring can be done in one half-round, and
3-coloring in one round.
3-coloring a path cannot be done in one half-round.
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Thank you!


