Distributed Computing with
 Quantum Ressources and Beyond

Cyril Gavoille

LaBRI, University of Bordeaux
Complexity, Algorithms, Automata and Logic Meet (CAALM)
Chennai Mathematical Institute
January 22, 2019

Agenda

(1) The Coloring Problem
(2) Distributed Computing
(3) Quantum Information
(Beyond Quantum

Coloring a graph with few colors

Coloring a graph with few colors

Sequentiel greedy algorithm: First Free
For each node u, in any order, color u with the smallest

Coloring a graph with few colors

Sequentiel greedy algorithm: First Free
For each node u, in any order, color u with the smallest

Coloring a graph with few colors

Sequentiel greedy algorithm: First Free
For each node u, in any order, color u with the smallest

Coloring a graph with few colors

Sequentiel greedy algorithm: First Free
For each node u, in any order, color u with the smallest

Coloring a graph with few colors

Sequentiel greedy algorithm: First Free
For each node u, in any order, color u with the smallest

Coloring a graph with few colors

Sequentiel greedy algorithm: First Free
For each node u, in any order, color u with the smallest

Coloring a graph with few colors

Sequentiel greedy algorithm: First Free
For each node u, in any order, color u with the smallest available color in the palette ${ }^{0} 0_{0}^{0} 0_{0}^{2} 0_{0}^{3} 0_{0}^{4}, 5$
"Few" means at most $\Delta+1$ colors ($\Delta=$ max degree)
[Ordering $0,2,5,4,3,1$ would give $\chi=3$ colors]

Distributed Graph Coloring

The distributed system is the graph it-self.
Goal. To produce a $(\Delta+1)$-coloring by inspecting neighborhoods only.

Running in parallel First Free...

Distributed Graph Coloring

The distributed system is the graph it-self.
Goal. To produce a $(\Delta+1)$-coloring by inspecting neighborhoods only.

Running in parallel First Free... does not work. We would like they don't act at the same round. Works if they have different color!

The LOCAL Model

(focuses on locality of a task)

- Nodes have IDs
- Nodes run in synchronous rounds
- Communication between neighbors
- No message size limits

- No local computational power limits
- No failures

Complexity measure. The number of rounds

The LOCAL Model

(focuses on locality of a task)

- Nodes have IDs
- Nodes run in synchronous rounds
- Communication between neighbors
- No message size limits

- No local computational power limits
- No failures

Complexity measure. The number of rounds

A task can be solved in k rounds iff nodes can decide their output by inspecting their distance- k neighborhood.

Distributed $(\Delta+1)$-Coloring

Challenge. Design a parallel version of a typically greedy algorithm. A fundamental and toy problem, likewise a drosophilia fly of biologists.

Distributed $(\Delta+1)$-Coloring

Challenge. Design a parallel version of a typically greedy algorithm. A fundamental and toy problem, likewise a
 drosophilia fly of biologists.

Best known bounds (\#rounds)

- $2^{O(\sqrt{\log n)}}$
[STOC'92]
- $\frac{1}{2} \log ^{*} n$
[FOCS'87]
- $O\left(\sqrt{\Delta \log ^{5} \Delta}\right)+\log ^{*} n$
[FOCS'16]
- $O(\sqrt{\log \Delta})+2^{O(\sqrt{\log \log n})}$
(rand.) [STOC'16]
$\log ^{*} n=\min \left\{i \in \mathbb{N}: \log ^{(i)} n \leqslant 1\right\}$

Beyond the LOCAL Model

Goal. Study the locality of a problem when nodes have access to exotic ressources, like entangled qubits or others.

Beyond the LOCAL Model

Goal. Study the locality of a problem when nodes have access to exotic ressources, like entangled qubits or others.

Extensions of the LOCAL model:
(1) Shared-randomness ressources
(2) Quantum ressources
(3) Any ressource and mechanism preserving physical locality

Beyond the LOCAL Model

Goal. Study the locality of a problem when nodes have access to exotic ressources, like entangled qubits or others.

Extensions of the LOCAL model:
(1) Shared-randomness ressources
(2) Quantum ressources
(3) Any ressource and mechanism preserving physical locality

Fact. Shared-randomness does not help for 3-coloring a cycle, $\Omega\left(\log ^{*} n\right)$ still holds. Unknown for quantum ressources.

There are proof-of-concept problems showing that it may help.

Shared-Randomness

Task. Select in $\mathbf{0}$ rounds two adjacent nodes in G isomorphic to $K_{n} \backslash\{e\}$. To win, exactly two adjacent nodes must output select, the others unselect.
$n=5$

Shared-Randomness

Task. Select in $\mathbf{0}$ rounds two adjacent nodes in G isomorphic to $K_{n} \backslash\{e\}$. To win, exactly two adjacent nodes must output select, the others unselect.
$n=5$

Shared-Randomness

Task. Select in $\mathbf{0}$ rounds two adjacent nodes in G isomorphic to $K_{n} \backslash\{e\}$. To win, exactly two adjacent nodes must output select, the others unselect.
$n=5$

Shared-Randomness

Cannot be solved in the classical LOCAL model with $\operatorname{Pr}>1 / e$. [One can tends to $1 / e \approx 36 \%$ by always selecting node with ID $=0$ and each other with $\operatorname{Pr}=(n-2) /(n-1)$, if $n \geqslant 6$]

Shared-Randomness

With shared-randomness, each node can select any edge of K_{n} uniformly at random in a coordinated manner.

$$
\operatorname{Pr}(\operatorname{win})=1-1 /\binom{n}{2}=1-o(1)
$$

Quantum Extension

Nodes may share arbitrary entangled states (before inputs come) ... use quantum communication channels with teleportation effects and others.

To understand why quantum extensions is strictly stronger than shared-randomness extensions, we need to introduce quantum information background ...

Quantum Physics

(for computer scientists)

Causality \& Locality

Two fundamental principles in physics:

- Causality: Causes preceed consequences.
- Locality: No instantaneously and distant interactions.

Causality \& Locality

Two fundamental principles in physics:

- Causality: Causes preceed consequences.
- Locality: No instantaneously and distant interactions.

Reproducible experiments of Alain Aspect in ' 82 show that one of the two principles (at least) does not hold ... Bell's inequalities are violated.

Causality \& Locality

+ Quantum effects/non-locality: a quantum particle (the support of information) can be in several places at the same time (superposition) ... Really.

Causality \& Locality

+ Quantum effects/non-locality: a quantum particle (the support of information) can be in several places at the same time (superposition) ... Really.
- Unlike relativity theory, quantum physics do not logically follows from easy-to-validate axioms, like the invariance principle and causality.

BTW, invariance (laws are the same under any coordinates axis) and causality imply an upper bound speed limit for light.

Unit of Information (mathematically)

Deterministic bit B: represented by a value $\mathbf{B} \in\{\mathbf{0}, \mathbf{1}\}$.

Unit of Information (mathematically)

Deterministic bit B: represented by a value $\mathbf{B} \in\{\mathbf{0}, \mathbf{1}\}$.
Probabilistic bit P: represented by a real vector $\binom{p}{q}$

- $p=$ probability to get $\mathbf{0}$
- $q=$ probability to get 1

Required: $p+q=1$

Unit of Information (mathematically)

Deterministic bit B: represented by a value $\mathbf{B} \in\{\mathbf{0}, \mathbf{1}\}$.
Probabilistic bit P: represented by a real vector $\binom{p}{q}$

- $p=$ probability to get $\mathbf{0}$
- $q=$ probability to get 1

Required: $p+q=1$
Interpret vector $\binom{1}{0}$ as the value $\mathbf{0}$, and $\binom{0}{1}$ as $\mathbf{1}$. Then

$$
\mathbf{P}=p\binom{1}{0}+q\binom{0}{1}=\binom{p}{q}
$$

Unit of Information (mathematically)

Quantum bit Q: represented by a complexe vector $\binom{\alpha}{\beta}$

- $|\alpha|^{2}=$ probability to get $\mathbf{0}$
- $|\beta|^{2}=$ probability to get $\mathbf{1}$

Required: $|\alpha|^{2}+|\beta|^{2}=1$

Unit of Information (mathematically)

Quantum bit Q: represented by a complexe vector $\binom{\alpha}{\beta}$

- $|\alpha|^{2}=$ probability to get $\mathbf{0}$
- $|\beta|^{2}=$ probability to get $\mathbf{1}$

Required: $|\alpha|^{2}+|\beta|^{2}=1$
Interpret vector $\binom{1}{0}$ as the value $\mathbf{0}$, and $\binom{0}{1}$ as $\mathbf{1}$. Then

$$
\mathbf{Q}=\alpha\binom{1}{0}+\beta\binom{0}{1}=\binom{\alpha}{\beta}
$$

Qubit (in the real world)

Implemented by a physical particle (photon, electron, atome). The mesure of a qubit is a physical measurement of an observable, a property like: polarization, spin, electrical charge, energy level, speed, position, impulsion, ...

Superposition \& Interference

Superposition even for a single particle ...

Reality?

Entanglement of Qubit Systems

A system of two independent probabilist bits $\binom{p_{1}}{q_{1}}$ and $\binom{p_{2}}{q_{2}}$ represented by a tensor product.

$$
\begin{aligned}
& \binom{p_{1}}{q_{1}} \otimes\binom{p_{2}}{q_{2}}=\binom{p_{1} \cdot\binom{p_{2}}{q_{2}}}{q_{1} \cdot\binom{p_{2}}{q_{2}}}=\left(\begin{array}{l}
p_{1} p_{2} \\
p_{1} q_{2} \\
q_{1} p_{2} \\
q_{1} q_{2}
\end{array}\right) \\
= & p_{1} p_{2}\left(\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right)+p_{1} q_{2}\left(\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right)+q_{1} p_{2}\left(\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right)+q_{1} q_{2}\left(\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right)
\end{aligned}
$$

Entanglement of Qubit Systems

A system (A, B) composed of two qubits represented as linear combinaisons of four unit vectors:

$$
(A, B)=\left(\begin{array}{l}
c_{00} \\
c_{01} \\
c_{10} \\
c_{11}
\end{array}\right)=c_{00}\left(\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right)+c_{01}\left(\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right)+c_{10}\left(\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right)+c_{11}\left(\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right)
$$

where $c_{i j} \in \mathbb{C}$ and $\sum_{i j}\left|c_{i j}\right|^{2}=1$, the probability to observe $A=i$ et $B=j$ being controled by $\left|c_{i j}\right|^{2}$.

Entangled vs. Separable States

The state of a system (A, B) is separable if $(A, B)=A \otimes B$. Otherwise it is entangled.

$$
(A, B)=\frac{1}{\sqrt{2}}\left(\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right)+\frac{1}{\sqrt{2}}\left(\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right)
$$

Operators

The state of a system S of n qubits is denoted $|S\rangle$ which is a vector in $\mathbb{H}^{2^{n}}$. Operations on state vector is a reversible unit matrix of $\mathbb{H}^{2^{n} \times 2^{n}}$.

For $n=1$,

$$
\begin{gathered}
\mathrm{NOT}:=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), \quad \mathrm{NOT} \cdot\binom{1}{0}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \cdot\binom{1}{0}=\binom{0}{1} \\
R(\theta):=\left(\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right) \\
\sqrt{\mathrm{NOT}}:=\frac{1}{2}\left(\begin{array}{ll}
1+i & 1-i \\
1-i & 1+i
\end{array}\right), \quad \sqrt{\mathrm{NOT}} \cdot \sqrt{\mathrm{NOT}}=\mathrm{NOT}
\end{gathered}
$$

On Bell's Inequalities

Using a Gedankenexperiment invented by David Bohm (1951), John S. Bell (1964) showed that the nonexistence of properties before measurement is a direct consequence of the quantitative numerical predictions of the quantum theory. Alain Aspect (1982) showed that the quantum-theoretic predictions were indeed obeyed.

A Gedankenexperiment

A Gedankenexperiment

12GR 32RG 32GR 22RR 33RR 12RG 22GG 13RG 21RG 22GG 11GG 31 RG 22RR 21 RG 21GG 21 GR 11GG $13 G R$ 11GG 31RG 32RG 21GR 31GR 31RG 12GR 23RG 11RR 21GR 13GR 13RG 33GG 21RR 12RG 33RR 23RG 23GR 33GG 33RR 12RR 21RG 31GR 32GR 23RR 13GG 23GG 33RR 12GR 12RG 31GG 33GG 13GG 32GR 32RR 23RG 11RR 31GR 22RR 11RR 23GR 23GR 22GG 13RR 33GG 22GG 11GG 12GR 32RG 32GG 31RR 13RG 22RR 11RR

A Gedankenexperiment

$12 G R$	$32 R G$	$32 G R$	$22 R R$	$33 R R$	$12 R G$	$22 G G$	$13 R G$	$21 R G$
$22 G G$	$11 G G$	$31 R G$	$22 R R$	$21 R G$	$21 G G$	$21 G R$	$11 G G$	$13 G R$
$11 G G$	$31 R G$	$32 R G$	$21 G R$	$31 G R$	$31 R G$	$12 G R$	$23 R G$	$11 R R$
$21 G R$	$13 G R$	$13 R G$	$33 G G$	$21 R R$	$12 R G$	$33 R R$	$23 R G$	$23 G R$
$33 G G$	$33 R R$	$12 R R$	$21 R G$	$31 G R$	$32 G R$	$23 R R$	$13 G G$	$23 G G$
$33 R R$	$12 G R$	$12 R G$	$31 G G$	$33 G G$	$13 G G$	$32 G R$	$32 R R$	$23 R G$
$11 R R$	$31 G R$	$22 R R$	$11 R R$	$23 G R$	$23 G R$	$22 G G$	$13 R R$	$33 G G$
$22 G G$	$11 G G$	$12 G R$	$32 R G$	$32 G G$	$31 R R$	$13 R G$	$22 R R$	$11 R R$

(U) Uniformity. If we look only flashs, results are uniform random
(C) Correlation. If same detector positions, then flash same color

A Gedankenexperiment

(U) Uniformity. If we look only flashs, results are uniform random (C) Correlation. If same detector positions, then flash same color Hypothesis. What is measured by detectors is an intrinsic property of the particles that is fixed before measurement. (Fixed at the creation in C, or along their travel to A or B, but before fixing selecting positions.)

A Gedankenexperiment

Hypothesis. What is measured by detectors is an intrinsic property of the particles that is fixed before measurement.

For type RGR, same flashs for positions 11, 22, 33 or 13, 31 (and \neq flashs for $12,21,23,32$). Positions are selected indep. uniformly at random ($1 / 9$ each pair), so we should obtained same flashs $5 / 9>55 \%$ of the time.

A Gedankenexperiment

Hypothesis. What is measured by detectors is an intrinsic property of the particles that is fixed before measurement.

More generally, for types with twice the same letter (RGR, RRG, RGR, GRR, GGR, GRG and RGG) we should observe same flashs 55% of the time. For types RRR and GGG, it should occur 100% of the time.

A Gedankenexperiment

Hypothesis. What is measured by detectors is an intrinsic property of the particles that is fixed before measurement.

More generally, for types with twice the same letter (RGR, RRG, RGR, GRR, GGR, GRG and RGG) we should observe same flashs 55% of the time. For types RRR and GGG, it should occur 100% of the time.

Whatever the type distribution, detectors should flash the same color at least 55% of the time, contradicting (U).

Property does not exist before measurement

The CHSH Game: $a \oplus b=x \wedge y$

Input: $x, y \in\{0,1\}$
Output: $a, b \in\{0,1\}$

The CHSH Game: $a \oplus b=x \wedge y$

(1) No deterministic strategies allow Alice \& Bob to win.

$$
\begin{aligned}
& a(0) \oplus b(0)=0 \wedge 0=0 \\
& a(0) \oplus b(1)=0 \wedge 1=0 \\
& a(1) \oplus b(0)=1 \wedge 0=0 \\
& a(1) \oplus b(1)=1 \wedge 1=1
\end{aligned}
$$

The CHSH Game: $a \oplus b=x \wedge y$

(2) If Alice \& Bob share random bits, then they have a strategy to win 75% of the times, and no probabilistic algorithm can do better.

x	y	$x \wedge y$	0	1	x	$\neg x$	y	$\neg y$	$x \oplus y$	$\neg x \oplus y$	success probability
0	0	0	p_{1}	0	p_{3}	0	p_{5}	0	p_{7}	0	$P_{00}=p_{1}+p_{3}+p_{5}+p_{7}$
0	1	0	p_{1}	0	0	p_{4}	p_{5}	0	0	p_{8}	$P_{01}=p_{1}+p_{4}+p_{5}+p_{8}$
1	0	0	p_{1}	0	p_{3}	0	0	p_{6}	0	p_{8}	$P_{10}=p_{1}+p_{3}+p_{6}+p_{8}$
1	1	1	0	p_{2}	p_{3}	0	p_{5}	0	0	p_{8}	$P_{11}=p_{2}+p_{3}+p_{5}+p_{8}$

$$
\min \left\{P_{00}, P_{01}, P_{10}, P_{11}\right\} \leqslant 3 / 4
$$

because $S=P_{00}+P_{01}+P_{10}+P_{11}=$
$3 p_{1}+p_{2}+3 p_{3}+p_{4}+3 p_{5}+p_{6}+p_{7}+p_{8} \leqslant 3 \cdot\left(p_{1}+\cdots+p_{8}\right) \leqslant 3$.

The CHSH Game: $a \oplus b=x \wedge y$

(3) If Alice \& Bob have qubits, then they have a strategy to win $\cos ^{2}(\pi / 8)>85 \%$ of the times, and no quantum algorithm can do better.

$$
|A, B\rangle=\frac{1}{\sqrt{2}}\left(\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right)-\frac{1}{\sqrt{2}}\left(\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right)
$$

Alice applies a rotation $R(\theta)$ with $\theta=-\pi / 16$ if $x=0$ and $3 \pi / 16$ is $x=1$. Similarly for Bob.

The CHSH Game: $a \oplus b=x \wedge y$

(1) No deterministic strategies allow Alice \& Bob to win.
(2) If Alice \& Bob share random bits, then they have a strategy to win 75% of the times, and no probabilistic algorithm can do better.
(3) If Alice \& Bob have qubits, then they have a strategy to win $\cos ^{2}(\pi / 8)>85 \%$ of the times, and no quantum algorithm can do better.

The φ-LOCAL Model

(the ultimate non-signalling local model?)

Aim

+ A weaker model than the quantum extension of the LOCAL model for a better understanding of the absolute limits of any conceivable extensions of the LOCAL model by any non-signalling physical theory (preserving causality principle).

Aim

+ A weaker model than the quantum extension of the LOCAL model for a better understanding of the absolute limits of any conceivable extensions of the LOCAL model by any non-signalling physical theory (preserving causality principle).
+ A simple combinatorial model avoiding linear algebra in Hilbert space.

Aim

+ A weaker model than the quantum extension of the LOCAL model for a better understanding of the absolute limits of any conceivable extensions of the LOCAL model by any non-signalling physical theory (preserving causality principle).
+ A simple combinatorial model avoiding linear algebra in Hilbert space.
- Does not give concrete distributed algorithms because instructions with new physics may do not exist yet.

The Physical Locality: the φ-LOCAL Model

Thesis. Locality is violated if and only if, based on the available output data, we can conclusively verify that after k rounds some subset S of nodes was affected by input data of G initially localized outside its view.

In the φ-LOCAL model, we allow any kind of correlation (possibly non-local) in the output distribution that does not violate locality. It allows non-signalling distributions only.

Non-Signalling Distribution

If A, B are nodes at distance more than k, then for an entry (x, y), the output (a, b) must verify the non-signalling property:

$$
\begin{aligned}
& \operatorname{Pr}(a \mid x, y)=_{\text {def }} \sum_{b} \operatorname{Pr}(a, b \mid x, y)=\operatorname{Pr}(a \mid x) \\
& \operatorname{Pr}(b \mid x, y)=_{\text {def }} \sum_{a} \operatorname{Pr}(a, b \mid x, y)=\operatorname{Pr}(b \mid y) .
\end{aligned}
$$

Non-Signalling Distribution

x	y	a	b		a	b	
0	0	0	0	or	1	1	(proba. 1/2)
0	1	0	0	or	1	1	(proba. $1 / 2)$
1	0	0	0	or	1	1	(proba. $1 / 2)$
1	1	0	1	or	1	0	(proba. 1/2)

Non-Signalling Distribution

NB: $a \oplus b=x \wedge y$
(4) There is a distribution in the φ-LOCAL model with $k=0$ round that allows Alice \& Bob to win the CHSH game 100\% of the time.

View-Based Lower Bounds

The best currently known round lower bounds for many distributed problems, such as Maximal Independent Set (MIS) in general graphs, cannot be broken with quantum or non-signalling LOCAL extensions.

View-Based Lower Bounds

The best currently known round lower bounds for many distributed problems, such as Maximal Independent Set (MIS) in general graphs, cannot be broken with quantum or non-signalling LOCAL extensions.
E.g., MIS requires $\Omega(\sqrt{\log n / \log \log n})$ rounds in general graphs in the φ-LOCAL model.

View-Based Lower Bounds

The best currently known round lower bounds for many distributed problems, such as Maximal Independent Set (MIS) in general graphs, cannot be broken with quantum or non-signalling LOCAL extensions.
E.g., MIS requires $\Omega(\sqrt{\log n / \log \log n})$ rounds in general graphs in the φ-LOCAL model.

The $\Omega\left(\log ^{*} n\right)$ lower bound for 3 -coloring a ring (or MIS in a path) is not a view based argument.

Some Results for φ-LOCAL

- 2-coloring a ring requires $\lceil n / 4\rceil$ rounds, and this is tight.

Some Results for φ-LOCAL

- 2-coloring a ring requires $\lceil n / 4\rceil$ rounds, and this is tight.
- 2-coloring a path requires $\lceil n / 3\rceil$ rounds, and this is tight.

Some Results for φ-LOCAL

- 2-coloring a ring requires $\lceil n / 4\rceil$ rounds, and this is tight.
- 2-coloring a path requires $\lceil n / 3\rceil$ rounds, and this is tight.
- Computing an MIS for a path requires at least two rounds, and three rounds are sufficient.

Some Results for φ-LOCAL

- 2-coloring a ring requires $\lceil n / 4\rceil$ rounds, and this is tight.
- 2-coloring a path requires $\lceil n / 3\rceil$ rounds, and this is tight.
- Computing an MIS for a path requires at least two rounds, and three rounds are sufficient.
- [Holroyd-Ligget'16] have constructed a stationary 1-dependent distribution for 4 -coloring a path. $\Rightarrow 4$-coloring can be done in one half-round, and 3 -coloring in one round.

Some Results for φ-LOCAL

- 2-coloring a ring requires $\lceil n / 4\rceil$ rounds, and this is tight.
- 2-coloring a path requires $\lceil n / 3\rceil$ rounds, and this is tight.
- Computing an MIS for a path requires at least two rounds, and three rounds are sufficient.
- [Holroyd-Ligget'16] have constructed a stationary 1-dependent distribution for 4 -coloring a path. $\Rightarrow 4$-coloring can be done in one half-round, and 3 -coloring in one round.
- 3-coloring a path cannot be done in one half-round.

Thank you!

