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Beyond The LOCAL Model

Goal. Study the locality of a problem when nodes have access
to exotic ressources, like entangled qubits or others.

Reminder:

Nodes have IDs
Run in synchronous rounds
No message size limits
No local computational power limits

Fact. 3-coloring an n-node ring requires 1
2

log∗ n rounds.
(Similar for a path and for MIS computation.)
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Extending the LOCAL Model

Extensions:

1 Shared-randomness
2 Quantum ressources
3 Arbitrary ressources preserving physical locality

Fact. It is not known if 3-coloring an n-node ring can be done
faster than 1

2
log∗ n rounds if nodes have quantum ressources

There are proof-of-concept problems showing that it may help.



Extending the LOCAL Model

Extensions:

1 Shared-randomness
2 Quantum ressources
3 Arbitrary ressources preserving physical locality

Fact. It is not known if 3-coloring an n-node ring can be done
faster than 1

2
log∗ n rounds if nodes have quantum ressources

There are proof-of-concept problems showing that it may help.



Extending the LOCAL Model

Extensions:

1 Shared-randomness
2 Quantum ressources
3 Arbitrary ressources preserving physical locality

Fact. It is not known if 3-coloring an n-node ring can be done
faster than 1

2
log∗ n rounds if nodes have quantum ressources

There are proof-of-concept problems showing that it may help.



Shared-Randomness

Reminder. Randomness does not help for 3-coloring a ring.

Task. Select in 0 rounds two adjacent nodes in Kn \ {e}.
Exactly two adjacent nodes must output select, the others
unselect.

0

1

2

3

4



Shared-Randomness

Task. Select in 0 rounds two adjacent nodes in Kn \ {e}.
Exactly two adjacent nodes must output select, the others
unselect.

Cannot be solved in the classical LOCAL model with Pr > 1/e.

[One can tends to 1/e by always selecting node with ID=1 and
each other with Pr = (n− 2)/(n− 1), if n > 6]

With shared-randomness, each node can select any edge of Kn

uniformly at random in a coordinated manner. This is correct
with Pr = 1− 1/

(
n
2

)
= 1−O(1/n2).
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Quantum Extension

Nodes may share arbitrary entangled states (before inputs
come) ... use quantum communication channels with
teleportation effects and others.

To understand why quantum extensions is strictly stronger
than shared-randomness extensions, we need to introduce
quantum information background ...
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Quantum Physics
(for computer scientists)



Causality & Locality

Two fundamental principles in physics: causality and locality.

Reproducible experiments of Alain Aspect in ’82 show that one
of the two principles (at least) does not hold. Bell’s
inequalities are violated ...

Quantum effects/non-locality: a quantum particle (the support
of information) can be in several places at the same time ...

Unlike relativity theory, quantum physics do not logically
follows from easy-to-validate axioms, like the invariance
principle (laws are the same under any coordinates axis) and
causality. BTW, invariance and causality imply an upper
bound speed limit for light.
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Unit of Information

Deterministic bit B: represented by a value B ∈ {0, 1}.
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Probabilistic bit P : represented by a vector of two reals(
p
q

)
where p is the probability to get 0 and q to get 1. Need

0 6 p, q 6 1 and p+ q = 1.
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Unit of Information

Quantum bit (or qubit) Q: represented by a vector of two

complexes
(
α
β

)
where |α|2 is the probability to get 0 and |β|2

to get 1. Need |α|2 + |β|2 = 1.

Denoting by 0 the vector
(

1
0

)
et by 1 the vector

(
0
1

)
, one

can represent P as:

Q = α

(
1
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)
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(
0
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Qubit

A qubit is implemented by a physical particle (photon,
electron, atome). The mesure of a qubit is a physical
measurement of an observable, a property like: polarisation,
spin, electrical charge, energy level, speed, impulsion, ...



Superposition & Interference

Superposition even for a single particle ...





Reality?



Entanglement of Qubit Systems

A system of two probabilist bits
(
p1
q1

)
and

(
p2
q2

)
represented

by a tensor product.

(
p1
q1

)
⊗
(
p2
q2

)
=

p1 ·
(
p2
q2

)
q1 ·
(
p2
q2

)
 =


p1p2
p1q2
q1p2
q1q2



= p1p2


1
0
0
0

+ p1q2


0
1
0
0

+ q1p2


0
0
1
0

+ q1q2


0
0
0
1





Entanglement of Qubit Systems

A system (A,B) composed of two qubits represented as linear
combinaisons of four unit vectors:

(A,B) =


c00
c01
c10
c11

 = c00


1
0
0
0

+c01


0
1
0
0

+c10


0
0
1
0

+c11


0
0
0
1


where cij ∈ C and

∑
ij |cij|2 = 1, the probability to observe

A = i et B = j being controled by |cij|2.



Entangled vs. Separable States

The state of a system (A,B) is separable if (A,B) = A⊗B.
Otherwise it is entangled.

(A,B) =
1√
2


1
0
0
0

+
1√
2


0
0
0
1





Operators

The state of a system S of n qubits is denoted |S〉 which is a
vector in H2n . Operations on state vector is a reversible unit
matrix of H2n×2n .

For n = 1,

NOT :=

(
0 1
1 0

)
, NOT ·

(
1
0

)
=

(
0 1
1 0

)
·
(

1
0

)
=

(
0
1

)
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Operators
The state of a system S of n qubits is denoted |S〉 which is a
vector in H2n . Operations on state vector is a reversible unit
matrix of H2n×2n .

For n = 1,
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√
NOT :=

1

2

(
1 + i 1− i
1− i 1 + i

)
,
√

NOT ·
√

NOT = NOT



No Cloning & No Erasing

The is no operator U that for a qubit A that makes:

U · |A, 0〉 = |A,A〉 or U · |A〉 =

(
1
0

)



On Bell’s Inequalities

Using a Gedankenexperiment invented by David Bohm (1951),
John S. Bell (1964) showed that the nonexistence of properties
before measurement is a direct consequence of the
quantitative numerical predictions of the quantum theory.
Alain Aspect (1982) showed that the quantum-theoretic
predictions were indeed obeyed.



A Gedankenexperiment
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(1) Correlation. If same detector position, then flash same color
(2) Uniformity. If we look only flashs, results are uniform random

Hypothesis. What is measured by detectors is an intrinsic
property of the particles that is fixed before measurement.
(Fixed at the creation in C, or along their travel to A or B,
but before fixing selecting positions.)
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Hypothesis. What is measured by detectors is an intrinsic
property of the particles that is fixed before measurement.

For type RGR, same flashs for positions 11, 22, 33 or 12, 21.
(Different flashs for positions 12, 31, 23, 32.) Since positions
are selected indep. uniformly at random (1/9 each pair), so we
should obtained same flashs 5/9 > 55% of the time.
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property of the particles that is fixed before measurement.

For type RGR, same flashs for positions 11, 22, 33 or 12, 21.
(Different flashs for positions 12, 31, 23, 32.) Since positions
are selected indep. uniformly at random (1/9 each pair), so we
should obtained same flashs 5/9 > 55% of the time.

More generally, for types with twice the same letters (RGR,
RRG, RGR, GRR, GGR, GRG and RGG) we should observe
same flashs 55% of the time. For types RRR and GGG, it
should occur 100% of the time.
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Hypothesis. What is measured by detectors is an intrinsic
property of the particles that is fixed before measurement.

More generally, for types with twice the same letters (RGR,
RRG, RGR, GRR, GGR, GRG and RGG) we should observe
same flashs 55% of the time. For types RRR and GGG, it
should occur 100% of the time.

Whatever the type distribution, detectors should flash the
same color at least 55% of the time. A contradiction with
characteristic (2). Properties do not exist before detection.



The CHSH Game: a⊕ b = x ∧ y

Input: x, y ∈ {0, 1}
Output: a, b ∈ {0, 1}
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The CHSH Game: a⊕ b = x ∧ y

(1) No deterministic strategies allow Alice & Bob to win.

a(0)⊕ b(0) = 0

a(0)⊕ b(1) = 0

a(1)⊕ b(0) = 0

a(1)⊕ b(1) = 1



The CHSH Game: a⊕ b = x ∧ y

(2) If Alice & Bob share random bits, then they have a
strategy to win 75% of the times, and no probabilistic
algorithm can do better.

x y x ∧ y 0 1 x ¬x y ¬y x⊕ y ¬x⊕ y success probability
0 0 0 p1 0 p3 0 p5 0 p7 0 P00 = p1 + p3 + p5 + p7
0 1 0 p1 0 0 p4 p5 0 0 p8 P01 = p1 + p4 + p5 + p8
1 0 0 p1 0 p3 0 0 p6 0 p8 P10 = p1 + p3 + p6 + p8
1 1 1 0 p2 p3 0 p5 0 0 p8 P11 = p2 + p3 + p5 + p8

min {P00, P01, P10, P11} 6 3/4

because S = P00 + P01 + P10 + P11 =
3p1 +p2 +3p3 +p4 +3p5 +p6 +p7 +p8 6 3 · (p1 + · · ·+p8) 6 3.



The CHSH Game: a⊕ b = x ∧ y

(3) If Alice & Bob have qubits, then they have a strategy to
win cos2(π/8) > 85% of the times, and no quantum algorithm
can do better.

|A,B〉 =
1√
2


1
0
0
0

− 1√
2


0
0
0
1


Alice applies a rotation R(θ) with θ = −π/16 if x = 0 and
3π/16 is x = 1. Similarly, Bob applies R(−π/16) or
R(3π/16) depending whether y = 0 or 1.



The CHSH Game: a⊕ b = x ∧ y

(1) No deterministic strategies allow Alice & Bob to win.

(2) If Alice & Bob share random bits, then they have a
strategy to win 75% of the times, and no probabilistic
algorithm can do better.

(3) If Alice & Bob have qubits, then they have a strategy to
win cos2(π/8) > 85% of the times, and no quantum algorithm
can do better.



The ϕ-LOCAL Model
(the ultimate non-signalling local model?)



Aim

+ A weaker model than the quantum extension of the
LOCAL model for a better understanding of the absolute
limits of any conceivable extensions of the LOCAL model
by any non-signalling physical theory (preserving causality
principle).

+ A simple combinatorial model avoiding linear algebra in
Hilbert space.

– Does not give concrete distributed algorithms because
instructions with new physics may do not exist yet.
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The Physical Locality: the ϕ-LOCAL Model

Thesis. Locality is violated if and only if, based on the
available output data, we can conclusively verify that after t
rounds some subset S of nodes was affected by input data of
G~x initially localized outside its view, which is

viewt(G~x, S) :=
⋃
v∈S

viewt(G~x, v)

In the ϕ-LOCAL model, we allow any kind of correlation
(possibly non-local) in the output distribution that does not
violate locality.



Non-Signalling Distribution

If A,B are nodes at distance more than t, then for an entry
(x, y), the output (a, b) must verify the non-signalling
property:

Pr(a|x, y) =def

∑
b

Pr(a, b|x, y) = Pr(a|x)

Pr(b|x, y) =def

∑
a

Pr(a, b|x, y) = Pr(b|y) .



Non-Signalling Distribution

b

BA

x y

a

x y a b a b

0 0 0 0 or 1 1 (proba. 1/2)
0 1 0 0 or 1 1 (proba. 1/2)
1 0 0 0 or 1 1 (proba. 1/2)
1 1 0 1 or 1 0 (proba. 1/2)

NB: a⊕ b = x ∧ y

(4) There is a distribution in the ϕ-LOCAL model with t = 0
round that allows Alice & Bob to win the CHSH game 100%
of the time.
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View-Based Lower Bounds

The best currently known round lower bounds for many
distributed problems, such as MIS, cannot be broken by
applying quantum processing, in any conceivable way.

E.g., MIS requires Ω(
√

log n/ log log n) rounds in general
graphs.

The Ω(log∗ n) lower bound for 3-coloring a ring (or MIS in a
path) is NOT based on a view argument.
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Some Results for ϕ-LOCAL

2-coloring a ring requires dn/4e rounds, and this is tight.

2-coloring a path requires dn/3e rounds, and this is tight.
Computing an MIS for a path requires at least two
rounds, and three rounds are sufficient.
Holroyd-Ligget’16 (stronger model) have constructed a
stationary 1-dependent distribution for 4-coloring a path,
and that such distribution for 3-coloring is not possible.
It follows that 4-coloring can be done in one 1-directional
round, and 3-coloring in one (2-directional) round.
3-coloring a path cannot be done in one 1-directional
round.
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Thank you!


