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Information & Locality

Understanding what information are needed to
achieve a computational task is a central
question not only in DC (eg., data structure
theory, communication complexity,...)

The ultimate goal in Labeling Schemes is to
understand how localized and how much
iInformation are required to solve a given task on
a network.



Taskl: Routing in a physical network

Routing query: next hop to go from x to y?

pre-processing to compute routing information
a node x stores only routing information involving x
= distributed data structure



Task2: Ancestry in rooted trees

Motivation: [Abiteboul,Kaplan,Milo '01]

The <TAG> ... </TAG> structure of a huge XML data-base is a
rooted tree. Some queries are ancestry relations in this tree.

Ex: Is <“distributed computing”> descendant of <booktitle>?

Use compact index for fast query XML search engine. Here the
constants do matter. Saving 1 byte of fast memory on each entry
of the index table is important. Here n is large, ~ 10°.



Folklore solution: DFS labelling
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Best solution:
logn + 6(loglogn) bit labels

[Alstrup,Rauhe — Siam J.Comp. ‘06]
[Fraigniaud,Korman — STOC'10]



A distributed data structure

* Get the labels of nodes involved in the query
* Compute/decode the answer from the labels
* No other source of information is required



Some labelling schemes

Adjacency

Distance (exact or approximate)

First edge on a (near) shortest path

Ancestry, parent, nca, sibling relations in trees
Edge/vertex connectivity, flow

Proof labelling systems
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The Distance Labelling Problem

Given a graph, find a labelling of its nodes such that the
distance between any two nodes can be computed by
inspecting only their labels.
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Subject to:

*label the nodes of every graph of a family (scheme),
*using short labels (size measured in bits), and
*with a fast distance decoder (algorithm)



Motivation
[Peleg '99]

If a short label (say of poly-logarithmic size) can be
added to the address of the destination, then routing to
any destination can be done without routing tables and

with a “limited” number of messages.

X dist(x,y)

message header=hop-count
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Motivation
[Peleg '99]

If a short label (say of poly-logarithmic size) can be
added to the address of the destination, then routing to
any destination can be done without routing tables and

with a “limited” number of messages.

message header=hop-count



Label Size:

a trivial upper bound

There is a labelling scheme using labels of O(nlogn) bits for
every (unweighted) graph G with n nodes, and constant time
decoding.

L.(1)=(i, [dist(i,1),...,dist(i,7),...,dist(i,n)] )

= distance vector



Label Size:

a trivial lower bound

No labelling scheme can guarantee labels of less than 0.5n
bits for all n-node graphs (whatever the distance decoder
complexity is)

Proof. The sequence <L.(1),...,L.(n)> and the decoder

6(.,.) is a representation of G on n-k+0O(1) bits if each
label has size k: i adjacent to j iff 6(L.(1),L.(5))=1.

n-k + O(1) = log,(#graphs(n))=n:(n-1)/2



Squashed Cube Dimension
[Graham,Pollack "71]

Labeling: word over {0,1,*}
Decoder: Hamming distance
(where *=don't care)
(graphs must be connected)

SCyim(G)=max{n*,n }

n*/-=#positive/negative eigen-
values of the distance matrix of G

SCdim(Kn)':n_l




Squashed Cube Dimension
[Winkler '83]

Theorem. Every connected n-node graph has squashed
cube dimension at most n-1.

Therefore, for the family of all connected n-node graphs:

Label size: O(n) bits, in fact nlog,3 ~ 1.58n bits
Decoding time: O(n/logn) in the RAM model

Rem: all graphs = connected graphs + O(logn) bits



Current best solution

Label size: n(log,3)/2 ~ 0.793n bits
Decoding time: O(1)

Space
om) | . 2011
11n e 2001
(log 3)n e 1972/1983

log 3 n x

Time

O(1) O(log*n) Ofloglogn) O(n/ log-n)>
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Un oracle simple pour les arbres

Idée générale : compresser et « localiser » les informations
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Un oracle simple pour les arbres

Idée générale : compresser et « localiser » les informations

ﬁvb@
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1. Choisir un nceud r arbitraire comme racine de T’

2. Prendre un chemin P qui « coupe en deux » T

3. Le nceud x stocke (r,d, h) ou d = dr(x,a) et h = dp(r,a)
4. Recommencer avec les noeuds restant de 7'\ P



Décodage de la distance et analyse

Le nceud x stocke : (ry,dy, 1), ..., (75, di, hg) OU di, =0

Distance entre x et y :
1. Calculer le plus grand i tq r;(z) = r;(y)
2. renvoyer d;(x) + di(y) + |hi(x) — hi(y)|

T



Décodage de la distance et analyse

Le nceud x stocke : (ry,dy, 1), ..., (75, di, hg) OU di, =0

Distance entre x et y :
1. Calculer le plus grand i tq r;(z) = r;(y)
2. renvoyer d;(x) + di(y) + |hi(x) — hi(y)|

i

Complexité : O(k) = O(logn) [O(1) possible]
Pré-calcul : O(nk) = O(nlogn) [O(n) possible]
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Problem

To route a message from = to y in an n-node tree, V x,y

Constraints :

e Shortest paths;

e |local and compact routing tables;

e fast routing decision.



A Tool for Universal Routing Schemes

Hierarchical routing schemes applicable to all the networks
[Awerbuch,Cowen, Eilam,Frederickson,Peleg,Upfal,...]




Standard Techniques
[Santoro-Khatib/van Leeuwen-Tan]

|

® © = DFS numbering
® interval routing based
® O(nlogn) bits in total!




4:([5,6]:1,[7,9]:2,[10,3]:3)

Binary search = O(logn) routing time

Memory Space = O(dlogn) bits, d = degree
Problem: Space 2(n) bits whenever d > n/logn

Yy

'

12345678910111213141516

Another solution: 4: 000010100110 000 0 0
"o

Routing algorithm (local): compute the number of 1's (mod d)
before position y.

— n bit space, but Q(n) time! (In fact, this problem can be solved
with n 4+ o(n) bits and constant time on a O(logn) bit word-RAM
machine.)



Can we do better than n bits?

Lower bound: ¢y/n bits at least, ¢~ 3.7

e test in x its local routing table to-
wards all the possible destinations
ye{l,...,n}\ {z}

e sort answers by frequency n; = |T;],
ny << Ny

Zgzlnizn—l and 1 <ny <+ < ny.
x ‘“computes” (ni,...,ng) knowing n and .

The number of partitions of n is ~ oe/n c\/n bits for x. [



Can we do better than n bits? (cond’'t): YES!

1

® ©@ = DFS numbering w.r.t.
the number of descendents

® port #1 = lightest child
port #2= 2nd lightest child

13

14

8 6
9
4 :(2,3) = description with O(y/n ) bits (partition enumeration).
y €]4,4 + 2]? y €]6,6 + 3]? otherwise route on port 3.

Problem: Routing time? What happens if addresses ¢ {1,...,n}
and coded on more than logon bits? #ports numbering?



Results (for n-node trees)

Port Address Local Table Routing Preprocessing
permut.? Size Size time time

yes logn > 3.7y/n

yes logn <3.7yn  204/n) 20(vn)

no logn >n—o(n)

no logn <n—+ o(n) O(1) O(n?)

2 2
o 0(%r) o) o Omlogn)

yes <5logn < 3logn O(1) O(nlogn)




Principle
(some notations)

r = root of the tree
weight(z) = number of descendents of x
id(x) = identifier for z using a DFS w.r.t. the heaviest children

port(z,child(z)) = p+ 1 for the p-th heaviest child of x (p=rank)
¢path(xz) = list of large ports (rank> 2) on the path from r to «x

Q(x)
table(x)

(id(x), Lpath(x))
(id(x), weight(x), weight(child{(x)), |¢path(z)|)



Routing Algorithm

@(z) = (id(z),fpath(z))
table(x) = (id(x),weight(x),weight(child{(z)), [¢path(x)]|)
r=1 Routing algorithm from x to y:

® 0 (=stop) if id(y) = id(x)

* 1 ifid(y) € [id(z),id(z) + weight(z)][

* 2 if id(y) € [id(z),id(z) + weight(childi(z))[
®* » 4+ 1 otherwise, p-th item of Zpath(y)

<12,2,1,1> ¢path(12) = (2,2,2)
¢path(3) = (1, 2)

10



Bit Counting

rank(x,y) = rank of the weight of the child y of x
(~ port(z,y) —1:1,2,...)
Observation:

o If y child z, rank(z,y) < weight(z)/weight(y)

— If lpath(z) = (p1,...,pL), [Ip; <n and k< logn

11



Coding of ¢path(x)
Ex: ¢path(z) = (3,9,2,5,2,4,6) — (A, B)

¢path(x)
binary writing: A
field separator: B

3 9 2 5 2 4 6
11 1001 10 101 10 100 110
10 1000 10 100 10 100 100

k

Bl =|A| and |A|< Y [logp;] <log ([Ipi) +k < 2logn
1=1

= ¢path(z) = (A, B) on 4logn bits

= ©@(x) on 5logn bits
= table(x) on 3logn + O(loglogn) bits

12



Extracting the p-th item

selectg(t) = position of the t-th “1" in B.

If B is fixed, selectg(:) can be implemented with |B| 4+ o(|B|) bit
space and constant time (word-RAM model)

[Munro-Raman FOCS'97]

Ex: ¢path(z) = (3,9,2,5,2,4,6), p = 4.

A =1110011010110100110
B =1010001010010100100

a := selectg(p),

b:=selectg(p+ 1),
s =(AkK(a—1)) > (JA|+a—-0b) = “101" — 5.

13
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Improving the Constants

Lemma (Kalmar 1930). Let Z(n) be the number of integer
seguences pi,po,... such that p;, > 2 and [[p; < n. Then,

Z(n) ~ n1.7286... (as n — +00)

(where 1.7286... is the real root of ((z) =2, {(z) = > ;>11 7).
Thus, @(x) on 2.72861logn bits and table(z) on 3logn bits.
Independently, [Thorup-Zwick, SPAA'01]:

@(x) on (1 4+ 0(1))logn bits and
table(z) on (1 4+ o(1)) logn bits.

14
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Theorem. Thereis a linear time algorithm that labels the n nodes
of a rooted tree T with labels of length O(logn) bits such that from
the labels of nodes x,y € T alone, one can compute the label of
nca(x,y) in O(1) time.

Corollary. Let z1,...,xzn be a sequence of n real numbers. We can
assign in linear time a label of length O(logn) bits to each element,
such that, given the labels Ofa:i,a:j, the label of a maximum among
ri,...,Tj; can be computed in O(1) time from the labels of x; and

T alone.


Cyril Gavoille


NCA Labeling Algorithm

root

size(w) = |V (Ty)|



NCA Labeling Algorithm

root

Partition the nodes and the edges of T

The heavy child is a child u with size(u) maximum. The other
children are light. The root r is light. Heavy/light edges.




NCA Labeling Algorithm

root

O =light

® =heavy

Partition the nodes and the edges of T

The heavy child is a child u with size(u) maximum. The other
children are light. The root r is light. Heavy/light edges.




NCA Labeling Algorithm

root

HP(w)=Heavy Path containing w.
apex(v)=closest light ancestor of v.



NCA Labeling Algorithm

root

If v is light then:

= size(v) < %size(parent(v))
= v has at most logs n light ancestors (or apex)



Labels

v has: a light label: llabel(v)
a heavy label: hlabel(v)

1. llabel(root) ;= ¢
2. light label, v # root

llabel(v) ¢ {llabel(z) | z # v, z € children(parent(v))}

3. heavy label, v #= root

hlabel (v) <jex min {hlabel(z) | z # v,z € T, N HP(v)}
eXx

(lex: lexicographic order on binary strings)



label(parent(apex(v;)))

label(v) := label(parent(apex(v))) - llabel(apex(v)) - hlabel(v)
hog:-l1-hy-lo-ho---lt-hy (t<logsn)

(with label(parent(root) :=¢)


Cyril Gavoille

Cyril Gavoille

Cyril Gavoille



NCA label computation

Iabel(a:) =hg:l1-hy---1;h;
label(y) = halllhlll; -h;-



NCA label computation

Iabel(x) =hg:l1-hy---1;h;
label(y) = h’olllhlll; -h;-

If label(x),label(y) differ at a light label [, then
[case parent(apex(x)) = parent(apex(y))]

Iabel(nca(:c,y)) = hg-l1-hy--- lp—l . hp—l



NCA label computation

Iabel(x) =hg:l1-hy---1;h;
label(y) = h6l’1h,1l; -h;-

If label(x),label(y) differ at a light label [, then
[case parent(apex(x)) = parent(apex(y))]

Iabel(nca(:c,y)) = hg-l1-hy--- lp—l . hp—l

If label(x), label(y) differ at a heavy label hy, then
[case HP(x) = HP(y)]

label(nca(x,y)) = hg-l1-hy---lp-min {hp7 h;}

lex



Label length

|

/ N
//|\\

// / l ~
S92 54

Let sq1,...,5, be numbers > 1 with > ;s;, =n

There exists: s; — code(s;) a binary string such that

code(s1) <lex -+ <lex COde(s;) and

1 < |code(s;)| < [logon] — [logss;|  bits


Cyril Gavoille
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Alphabetic code

S1
S2
N .
S4
X <
A
3 5 3 4 1
| | | | - —

0O 1 2 3 4 5 6 7 8 9 10| 11 12 13 14 | 15




Alphabetic code

S1
S2
N .
S4
N <
A
3 5 3 4 1
| | | | - —

0000 0001 0010|0011 0100 0101 01100111 |1000 1001 1010|1011 1100 1101 1110 {1111

There is z € [x,z + s;) with at least [logs s;| rightmost zero bits.



Alphabetic code

51

A

e E A K 5

5

3 3 4 1
\

( 0000 001 0010|001 (J101 0110 0111 1000 IpO1 1010 1111
5 4

There is z € [x,z + s;) with at least [logs s;| rightmost zero bits.
= code(s;) = z with rightmost zero bits removed
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Alphabetic code

S1
S2
N .
S4
X <
A
3 5 3 4 1
| | | | - —

0000 0001 0010|0011 0100 0101 01100111 |1000 1001 1010|1011 1100 1101 1110 {1111

There is z € [x,z + s;) with at least [logs s;| rightmost zero bits.
= code(s;) = z with rightmost zero bits removed



Length analysis
Isize(v) = size(v) — size(w), for w heavy child of v.
lllabel(w)| < logp Isize(parent(w)) — logs size(w) + O(1)
lhlabel(w)]| < Iogg(zver(w) Isize(v)) — logs Isize(w) + O(1)

= |label(w)| < logon — logs Isize(w) + O(1)



Length analysis
Isize(v) = size(v) — size(w), for w heavy child of v.

lllabel(w)| < logp Isize(parent(w)) — logs size(w) + O(1)
lhlabel(w)]| < Iogg(zver(w) Isize(v)) — logs Isize(w) + O(1)

= |label(w)| < logon — logs Isize(w) + O(1)

[By induction]
True if apex(w) = root since label(w) = hlabel(w).
Otherwise, by hypothesis we have:

[label(parent(apex(w)))| < logpon — logs Isize(parent(apex(w)))
But

[llabel(apex(w))| < logs Isize(parent(apex(w))) —logs size(apex(w))

And, |hlabel(w)| < logs size(w) — logy Isize(w) using
> wEHP (w) Isize(v) < size(apex(w))



Constant query time
using bit manipulations

O(logn)
-

Iabel(w)z ho l1 hl l2 h2
3b 4b 2b 3b 5b
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Constant query time
using bit manipulations
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-

Iabel(w) = ho l1 hl l2 h2
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000 1111 00 111 00000 (mask for light label test)

= label(nca(z,y)) extracted in constant time on a RAM computer
with Q(logn) bit words.



Constant query time
using bit manipulations

O(logn)
-

Iabel(w) = ho l1 hl l2 h2
100 1000 10 100 10000 (field delimiter)
000 1111 00 111 00000 (mask for light label test)

= label(nca(z,y)) extracted in constant time on a RAM computer
with Q(logn) bit words.

= Linear time for computing all the labels.
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for the bicomponent/cut-vertex tree: = O(logn) bit labels]



Forbidden-set labelling scheme
(extension of labelling scheme)

+ Goal: to treat more elaborated queries
Given (u,v,w): is there a path from u to v in G\{w}?

[this particular task reduces to classical nca-labelling scheme
for the bicomponent/cut-vertex tree: = O(logn) bit labels]

» Challenge: Given (u,v,wy,...,W,): is there a path from
utovin G\{wy,...,W, }?



Emergency planning for connectivity

[Patrascu, Thorup - FOCS’'07/]

+ Motivation: parallel attack (link/node failure in IP
black-bone, earthquake on road networks, malicious
attack from worms or viruses,...)
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Emergency planning for connectivity

[Patrascu, Thorup - FOCS’'07/]

Motivation: parallel attack (link/node failure in IP
black-bone, earthquake on road networks, malicious
attack from worms or viruses,...)

CONN(U,Vv) = constant time (after pre-processing G)
CONN(Uu,Vv,w) = constant time (after pre-proc. G)

CONN(U,V,W,,...,w,) = O(k) or O(k) time? (after pre-
proc. G), and constant time? (after pre-proc. wy...w,)

Note: O(n+m) time is too much. Need a query time
depending only on the #nodes involved in the query.



Assume there is a failure x
(node or edge) due to:

flooding, earthquake, damage, &
attack ...




Assume there is a failure x
(node or edge) due to:

flooding, earthquake, damage, B
attack ...

How to find efficiently the connected component of any node u in G\{x}?

= Update all the component labels with a linear time traversal of G\{x},
and then answer in O(1) for each query node u.
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Main issue: G is extremely large, and even linear time is too much in
case of emergency! We would like the answer immediately.
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If we pre-process G accordingly, can we then quickly answer queries “is
there a path from u to v in G\{x}"?



Yes we can!

Pre-process G in a more clever way. Identify cut-vertices, the component-
tree and design an efficient NCA data structure (all take linear time).

U,v are not connected in G\{x} Iiff X IS a cut-vertex on the path from c(u) to c(v) in the
component-tree.




Forbidden-set labelling scheme

[Courcelle, Twigg - STACS'07]

Let P bea graph property defined on pairs of vertices, and let F bea
graph family.

A P —forbidden-set labeling scheme for F is a
pair <L,f>s.t. VG eF, Yu,v € G, V X CG:

e | (U,G) is a binary string
o f(L(u,G),L(v,G),L(X,G)) = P (u,v,X,G)

where L(X,G):={L(w,G):w € X}



FS connectivity labelling

[Courcelle,G.,Kante, Twigg — TGGT'08]
[Borradaile,Pettie, Wulff-Nilsen — SWAT'12]

Connectivity in planar graphs: O(logn) bit labels
[O(loglogn) query time after O(klogk) time for query pre-processing]



FS connectivity labelling

[Courcelle,G.,Kante, Twigg — TGGT'08]
[Borradaile,Pettie, Wulff-Nilsen — SWAT'12]

Connectivity in planar graphs: O(logn) bit labels
[O(loglogn) query time after O(klogk) time for query pre-processing]

Meta-Theorem: [Courcelle, Twigg — STACS'07/]

If G has “cligue-width” at most cw (generalization of
tree-width) and if predicate P is expressed in MSO-logic
(like distances, connectivity, ...), then labels of O(cw?
logZn)-bit suffice.

Notes: same (optimal) bounds for distances in trees
for the static case, but do not include planar ...



Routing with forbidden-sets

Design a routing scheme for G s.t. for every subset X
of “forbidden” nodes (crashes, malicious, ...) routing
tables can be updated efficiently provided X.

=> This capture routing policies

next-hop to y
ﬂ in G\{W,...w,}

router: x




Some results for FS routing

[Courcelle, Twigg — STACS'07/]

Cligue-width cw: O(cw?log?n) bit labels and routing
tables for shortest path routing.

[Abraham,Chechik,G.,Peleg — PODC'10]

Doubling dimension-a: O(1+¢-1)%«log?n bit labels and
routing tables for stretch 1+¢ routing (wrt. shortest
path)

[Abraham,Chechik,G. — STOC"12]
Planar: O(e-1log>n) bit routing tables and O(e-2log-n)
bit labels for stretch 1+¢ routing



Focus on Connectivity
(in planar graphs)

(1) [Courcelle,G.,Kante, Twigg — TGGT'08]
(2) [Borradaile,Pettie, Wulff-Nilsen — SWAT"12]

Pre-processing time: O(n)

Query pre-processing time: O(|X]|log|X])

(2) Space: O(n) & Q. Time: O(loglogn)

(1) Space: O(logn) bit labels & Q. time: O(+/logn)

(2) can be generalized to H-minor free graphs



Main ldea (1)

[Here X subset of edges only ... much more tricky otherwise]




Main ldea (1)

[Here X subset of edges only ... much more tricky otherwise]




Main ldea (1)

[Here X subset of edges only ... much more tricky otherwise]




Main Idea (1)

[Here X subset of edges only ... much more tricky otherwise]




Main Idea (1)

[Here X subset of edges only ... much more tricky otherwise]




Main ldea (1)

[Here X subset of edges only ... much more tricky otherwise]

- \ A

- \‘b‘; -

Query = PLANAR POINT LOCATION in O(Vlogn) time (polynomial
coordinates)

Note: space does NOT depend on |X|.
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A Simple Solution for Trees
*

Findg\y(Uu)?

(find some identifier of the component of u In G\X)
1.Find the closest failure x ancestor of u
2.Next-hop when routing from x to u in the tree



Label(z):=<[a(z),b(z)],@(z)>

[a(z),b(z)]=first/last visit time in Euler tour
@(z)=routing label for routing to/from z

*xo:[1,72]

X;:[3,46]

X5:[60,66]

X5:[29,43]



@3: [60,66]

X5:[29,43]

S=[1 [3 [29 43] 46] [60 66] 72]




Xo:[1,72]

Findg\y(u): =(x,route(@(x),@(u)))

x=A[p] (closest ancestor failure)
p=PRED<(a(u))=max{seS:s<a(u)} (predecessor)

/ijg%;§[6ox%ﬂ

X5:[29,43]

I/——————aun=23
s=[1 [3 [2% 43] 46] [60 66] 72]



Xo:[1,72]

Biispaces)Otlogmusit(lekels@(u)))
Query pre-processing: O(SORT(]|X],n))

X, (G185 ARGEEI0S %] Y5§logn )

p=PRED<(a(u))=max{seS:s<a(u)J} (predecessor)

%3:[60,66]

X5:[29,43]

(—a(u)=23
s=[1 [3 [2% 43] 46] [60 66] 72]



Query Time Lower Bound
Why Q(loglogn) is required? (for large |X|)

1 2 .. X4 X, X n

Path x—o—o—o—o—o%o—o—o—o—o—o—o—o—o%—o—o%o—o%—o—o

Given X and Findp,,\« We construct an associative table
Tab[Findp i (X;+1)]1=X; in time O(|X[log|X]).

= PRED, (u)=Tab[Findpg(u)]
= Query-time(PREDy) < Query-time(Findpimy)+0(1)



Query Time Lower Bound
Why Q(loglogn) is required? (for large |X|)

1 2 .. X4 X, X n

Path x—o—o—o—o—o%o—o—o—o—o—o—o—o—o%—o—o%o—o%—o—o

Given X and Findp,,\« We construct an associative table
Tab[Findp i\ (Xi+1)]=X;in time O(|X|log|X]).

= PRED, (u)=Tab[Findpg(u)]
= Query-time(PREDy) < Query-time(Findpimy)+0(1)

[Patrascu, Thorup — STOC06]

Any data structure with space O(|X|) and supporting PREDX queries
requires query time Q(loglogn) provided |X|e[ns,ni=].



Agenda

Distance Labelling in General Graphs
Distance Labelling in Trees

Routing In Trees

Nearest Common Ancestor Labelling
Forbldden Set Labelling

noE W oN e

Distance in Minor-Free Graphs




Distance labeling in planar networks
Shortest path metrics of planar graphs are difficult to capture

@ Planars are # Euclidian networks (TSP, ¢, embedding, ...)
@ Planars have no tree structure, treewidth can be Q(y/n)




Distance labeling in planar networks
Shortest path metrics of planar graphs are difficult to capture

@ Planars are # Euclidian networks (TSP, ¢, embedding, ...)
@ Planars have no tree structure, treewidth can be Q(y/n)

Some history

stretch label size (bits)  reference

1 n'/3...n'?log A G., Peleg et al . [SODA '01]



Distance labeling in planar networks
Shortest path metrics of planar graphs are difficult to capture

@ Planars are # Euclidian networks (TSP, ¢, embedding, ...)
@ Planars have no tree structure, treewidth can be Q(y/n)

Some history

stretch label size (bits)  reference

1 n'/3...n'?log A G., Peleg et al . [SODA '01]
3 n'/3log A G., Peleg et al. [ESA '01]



Distance labeling in planar networks
Shortest path metrics of planar graphs are difficult to capture

@ Planars are # Euclidian networks (TSP, ¢, embedding, ...)
@ Planars have no tree structure, treewidth can be Q(y/n)

Some history

stretch label size (bits)  reference

1 n'/3...n'?log A G., Peleg et al . [SODA '01]
3 n'/3log A G., Peleg et al. [ESA '01]
3 log nlog A Gupta et al. [SICOMP '05]



Distance labeling in planar networks
Shortest path metrics of planar graphs are difficult to capture

@ Planars are # Euclidian networks (TSP, ¢, embedding, ...)
@ Planars have no tree structure, treewidth can be Q(y/n)

Some history

stretch label size (bits)  reference

1 n'/3...n'?log A G., Peleg et al . [SODA '01]
3 n'/3log A G., Peleg et al. [ESA '01]
3 log nlog A Gupta et al. [SICOMP '05]

1+e ellognlogA  Thorup [JACM '04]
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at most 3 leaves such that each component of G\ T has
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Shortest-path separator

Every n-node planar graph G has a shortest-path tree T' with
at most 3 leaves such that each component of G\ T has
< n/2 nodes.

w(R) =#tnodes in region R
w(A), w(B), w(C) < n/2: done
or w(C) >n/2
w(A) +w(B) <n/2
merge & repeat
w(C") < w(C)

® 6 6 66 ¢ o




Shortest-path tree-decomposition

logn

X, = highest separator where node u belongs to



Shortest-path tree-decomposition

logn

Let P be any path s — t.
Property 1. 3@ € ancestor(X;) N ancestor(X;), Q@ N P # &.



Landmark and e-cover

Property 2. For every s and @), at most 1 + 4 /¢ landmarks
suffices to e-cover every = € @, i.e.,
da(s,si) +dg(si,x) < (1+¢€)-dg(s,z) for some landmark s;.



Landmark and e-cover

Property 2. For every s and @), at most 1 + 4 /¢ landmarks
suffices to e-cover every = € @, i.e.,
da(s,si) +dg(si,x) < (1+¢€)-dg(s,z) for some landmark s;.



Landmark and e-cover

Property 3. If Q) intersects P, then there are landmarks s;, t;
st. dg(s, Si) ar dQ(Si, tj) aF d(;<tj, t) < (1 ar E) : dg(S, t).



Conclusion

Properties 1, 2 & 3 show that each node only needs to store
at most (1 +4/¢) x 3logn distances informations, that is
O(e tlognlog A) bits per node label, to (1 + €)-approximate
any s, t-distance in the graph. [J
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edge contraction.
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Some H-minor free graph families

@ Trees are K3-minor free

@ Outerplanar graphs are K5 3-minor free

@ Series-Parallel graphs are Kj;-minor free

@ Planar are Ks-minor free (and also K3 3-minor free)
e Genus-g graphs are K5+L2\/3—9J—mmor free

@ Treewidth-t graphs are K ,-minor free

@ The graphs of any minor closed families & are H-minor
free for some H = H(%F).
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Excercise: is there a K 4-minor?
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Ks-minor free graphs

Theorem (Wagner - 1937)

Every Ks-minor free graph has a tree-decomposition whose
bags intersect in at most 3 vertices, and induced a planar
graph or a V.

Corollary: 4-coloring of Ks-minor free graphs < 4CC.



H-minor free graphs

Theorem (Robertson & Seymour - Graph Minor 16)

Every H-minor free graph has a tree-decomposition whose
bags intersect in < k vertices, and induced graphs that either
have < k vertices, or are k-almost embeddable on a surface >
on which H has no embedding.
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H-minor free graphs

Theorem (Robertson & Seymour - Graph Minor 16)

Every H-minor free graph has a tree-decomposition whose
bags intersect in < k vertices, and induced graphs that either
have < k vertices, or are k-almost embeddable on a surface >
on which H has no embedding.

Wagner's Theorem : H = K5, k=3, L = S,.
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Problem: the constant!

The structure given by [RS] Theorem is not fine enough for
practical use. No bounds on k = k(H) is known!

Bounds if H is planar [RST '94]: the tree-decomposition has
width k£ = k(H), and thus has a (k + 1)-coloring.

Problem: k < 202(VIEIH4IEH))®

So excluding H = K, leads to treewidth of at most 40028’

In fact this is 2, such graphs are series-parallel. They have a
3-coloring.
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Every K, 1-minor free graph has a r-coloring.

Proved for r € {1,...,5}.



Kg-minor free: conjectures

Conjecture (Hadwiger - 1943)

Every K, 1-minor free graph has a r-coloring.

Proved for r € {1,...,5}.
[Robertson et al. - 1993] (r = 5)

5-coloring of Kg-minor free graphs < 4CC

[Every minimal counter-example is
a planar plus one vertex (83 pages)]

However, the structure of Kg-minor free graph is still
unknown. Ken-ichi Kawarabayashi explains in SODA '07 why
the problem is important and difficult.
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Conjecture (Jgrgensen - 2001)
Every Kg-minor free graph has a arboricity at most 3.




Kg-minor free: conjectures

Conjecture (Jgrgensen - 2001)
Every Kg-minor free graph has a arboricity at most 3.

Conjecture (Jgrgensen - 1994)

Every 6-connected Kg-minor free graph has a vertex u such
that G \ {u} is planar.

DeVos, Hegde, Kawarabayashi, Norine, Thomas, and Wollan
have announced that [J94] is true if the graph has many
vertices ...

Problem: replace “6" by “r" in [J94].
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Our approach: path separator technique

Definition (Main)
A weighted graph G with n nodes is k-path separable if there
exists a subgraph S, called k-path separator, such that:

Q@ S=FUP,U---, where each subgraph P, is the union
of k; shortest paths in G\ U, _, P;;

Q > ki <k and

© each connected component of G\ S is k-path separable
and has at most n/2 nodes.

j<i

If ) is a path forming P;, then:
@ () is not necessarily of bounded size

@ () is not necessarily a shortest path in G
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Some basic examples

@ Unweighted meshes are 1-path separable

@ Trees are 1-path separable

Lemma (Thorup [JACM '04])

Every n-node planar graph G has a shortest-path tree T' with
at most 3 leaves such that each component of G\ T has
< n/2 nodes.

= planars are 3-path separable
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Conjecture (Thorup)

Every n-node H-minor-free graph has a shortest-path tree T’
with at most { = ((H) leaves such that each component of
G\ T has < n/2 nodes.

True for H = K5, K3, K4, K5, also true if H is planar

Wrong for Kg! There are Kg-minor-free graphs for which a
sequence of unions of shortest paths is required!

------------ genus (n)

tree-width Q(y/n)

no Kg minor

Q(y/n) shortest paths to halve
... but is 2-path separable




Conjecture (Thorup)

Every n-node H-minor-free graph has a shortest-path tree T’
with at most { = ((H) leaves such that each component of
G\ T has < n/2 nodes.

True for H = K5, K3, K4, K5, also true if H is planar

Wrong for Kg! There are Kg-minor-free graphs for which a
sequence of unions of shortest paths is required!

Theorem (Main)
Every H-minor-free graph is k-path separable for k = k(H).

A k-path separator can be find in n°®) time



Consequences of the Main Theorem

Theorem (Object Location)

Let G be a weighted k-path separable graph of aspect ratio A
Q stretch-(1 + ¢) distance labeling with
O(ke ' logn log(c~* log A))-bit labels
Q stretch-(1 + ¢) labeled routing scheme with
O(ke ' log® n/ log log n)-bit headers and routing tables
© One can augment G with 1 directed edge per node such

that greedy routing performs in O(k? log® n log? A)
expected number of hops

Q And others: reachability, distance oracles in digraphs, ...




Proving the Object Location Theorem

(= extension of Thorup's data-structures)

V s, t-shortest path R in G there exist:
@ a subgraph G’ in the separator decomposition of G;
@ a k-path separator S’ of G’; and
@ a path ) that composes S’ such that

@ and R intersect and both are shortest paths in G'.

t

s, R 7 G
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Proving the Object Location Theorem

(= extension of Thorup's data-structures)

V s, t-shortest path R in G there exist:
@ a subgraph G’ in the separator decomposition of G;
@ a k-path separator S’ of G’; and
@ a path ) that composes S’ such that

@ and R intersect and both are shortest paths in G'.

Node s can select, independently of ¢, few “landmarks” on
(@ so that one of these landmarks is close to R N Q)
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Proving the Main Theorem

Theorem (Main)

Every H-minor-free graph is k-path separable for k = k(H).

The full proof is technical (needs long preliminaries), based on
the recent decomposition theorem of Robertson & Seymour:

Roughly speaking,
Theorem (Graph Minor-16, 2003)

Every graph excluding a fixed minor has a tree-decomposition
in subgraphs that are h-almost embeddable on a surface of
bounded Euler genus.




Proving the Main Theorem

Theorem (Main)

Every H-minor-free graph is k-path separable for k = k(H).

The full proof is technical (needs long preliminaries), based on
the recent decomposition theorem of Robertson & Seymour:

Actually,
Theorem (Graph Minor-16, 2003)

Every graph excluding a minor H has a tree-decomposition
whose the “torso” of its bags are h-almost embeddable on a
surface on which H cannot be embedded.
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h-almost embeddable graphs

Vortices




A tree of h-almost embeddable graphs




A tree of h-almost embeddable graphs
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Finding a k-path separator with this?

Some remarks:

@ shortest paths go everywhere
@ Y can be non-orientable

@ Jordan curve Theorem does not work (vortices!)
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Vortex-path

Note: a vortex-path can be covered by a constant number of
shortest paths if segments are shortest paths



Vortex-path

Note: a vortex-path can be covered by a constant number of
shortest paths if segments are shortest paths

If the center subgraph is “nearly-planar” (= no apices and
Yy = R? ), there are three vortex-paths whose segments are
shortest paths, and whose deletions leave components of size

<n/2.

Q.E.D.



