An Overview on Compact Routing (in Discrete Domains)

Cyril Gavoille

University of Bordeaux, France

12 October 2015
Searching and Routing in Discrete and Continuous Domains
CMO-BIRS Workshop, Oaxaca, Mexico

The Compact Routing Problem

Input: a network G (a weighted connected graph)

Ouput: a routing scheme for G

A *routing scheme* is a distributed algorithm that allows **any** source node to route messages to **any** destination node, given the destination's network identifier

The Compact Routing Problem

Input: a network G (a weighted connected graph)

Ouput: a routing scheme for G

A *routing scheme* is a distributed algorithm that allows any source node to route messages to any destination node, given the destination's network identifier

Goal: to minimize the size of the routing tables

Example: Grid with X,Y-coordinates

Routing algorithm: X,Y-routing

Example: Grid with X,Y-coordinates

Routing algorithm: X,Y-routing

Space = size of the largest local routing tables

Space = size of the largest local routing tables (more precisely, size of the local routing algorithm including all constants and data-structures)

In the grid example: $\operatorname{space} = O(\log n)$ bits

Space = size of the largest local routing tables (more precisely, size of the local routing algorithm including all constants and data-structures)

In the grid example: space = $O(\log n)$ bits

Stretch = ratio between length of the route and distance

$$|\text{route}(x,y)| \leq \text{stretch} \cdot \text{dist}(x,y)$$

In the grid example: stretch = 1 (shortest path)

Space = size of the largest local routing tables (more precisely, size of the local routing algorithm including all constants and data-structures)

In the grid example: $\operatorname{space} = O(\log n)$ bits

Stretch = ratio between length of the route and distance

$$|\text{route}(x,y)| \leqslant \text{stretch} \cdot \text{dist}(x,y)$$

In the grid example: stretch = 1 (shortest path)

Other: average space, time complexity of routing decision, time complexity for building routing tables, header size, number of header updates, ...

Space = size of the largest local routing tables (more precisely, size of the local routing algorithm including all constants and data-structures)

In the grid example: space = $O(\log n)$ bits

Stretch = ratio between length of the route and distance

$$|\text{route}(x,y)| \leqslant \text{stretch} \cdot \text{dist}(x,y)$$

In the grid example: stretch = 1 (shortest path)

Question: for a given family of graphs, find routing schemes with best space-stretch trade-off

Two variants: Name-independent vs. Labeled

The destination enters the network with its **name**, which is determined by either the **designer** of the routing scheme (labeled), or an **adversary** (name-independent).

Labeled: the designer is free to name the nodes according to the topology and the edge weights of the graph

Name-independent: the input is a graph with fixed node manes (more realistic IP addresses, cow-path problem with advice, ...)

Two variants: Name-independent vs. Labeled

The destination enters the network with its **name**, which is determined by either the **designer** of the routing scheme (labeled), or an **adversary** (name-independent).

Labeled: the designer is free to name the nodes according to the topology and the edge weights of the graph

Name-independent: the input is a graph with fixed node manes (more realistic IP addresses, cow-path problem with advice, ...)

Other variants: random labeling, coordinate labeling based (geometric), ...

network	stretch	space/node (bits)	
arbitrary	1	$n \lceil \log n \rceil$	[folk]

network	stretch	space/node (bits)
arbitrary $(2\leqslant k\in\mathbb{N})$	$1 \\ 4k - 5$	$n \lceil \log n \rceil$ $\tilde{O}(n^{1/k})$	[folk] [Thorup,Zwick]

network	stretch	space/node ((bits)
arbitrary $(2\leqslant k\in\mathbb{N})$	$1 \\ 4k - 5$	$n \lceil \log n \rceil \\ \tilde{O}(n^{1/k})$	[folk] [Thorup,Zwick]
tree	1	$\tilde{O}(1)$	[TZ/Fraigniaud,G.]

network	stretch	space/node	(bits)
arbitrary $(2\leqslant k\in\mathbb{N})$	$1 \\ 4k - 5$	$n \lceil \log n \rceil \\ \tilde{O}(n^{1/k})$	[folk] [Thorup,Zwick]
tree	1	$\tilde{O}(1)$	[TZ/Fraigniaud,G.]
doubling- α dim. (Euclidian, bounded growth,)	$1 + \varepsilon$	$\log \Delta$ $ ilde{O}(1)$ [Chan	[Talwar/Slivkins] et al./Abraham,G. et al.]

network	stretch	space/node (bits)	
arbitrary $(2\leqslant k\in\mathbb{N})$	$1 \\ 4k - 5$	$n \lceil \log n \rceil \\ \tilde{O}(n^{1/k})$	[folk] [Thorup,Zwick]
tree	1	$\tilde{O}(1)$	[TZ/Fraigniaud,G.]
doubling- α dim. (Euclidian, bounded growth,)	$1+\varepsilon$	~	[Talwar/Slivkins] et al./Abraham, G. et al.]
planar	$1 + \varepsilon$	$\tilde{O}(1)$	[Thorup]

network	stretch	space/node (bits)	
arbitrary $(2\leqslant k\in\mathbb{N})$		$n \lceil \log n \rceil \\ \tilde{O}(n^{1/k})$	[folk] [Thorup,Zwick]
tree	1	$\tilde{O}(1)$	[TZ/Fraigniaud,G.]
doubling- α dim. (Euclidian, bounded growth,)	$1 + \varepsilon$	~~	[Talwar/Slivkins] et al./Abraham,G. et al.]
planar	$1 + \varepsilon$	$\tilde{O}(1)$	[Thorup]
$H ext{-}minor ext{-}free$	$1 + \varepsilon$	$\tilde{O}(1)$	[Abraham,G.]

network	stretch	space/node (bits)
arbitrary $(k \geqslant 2)$	$1 \\ 4k - 5$	$n\log n$ [folk] $ ilde{O}(n^{1/k})$ [Thorup,Zwick'01]
(k=4)	10.52	$ ilde{O}(n^{1/4}\log\Delta)$ [Chechik'13]

network	stretch	space/node (bits)
arbitrary $(k\geqslant 2)$	$1 \\ 4k - 5$	$n\log n$ [folk] $ ilde{O}(n^{1/k})$ [Thorup,Zwick'01]
(k = 4)	10.52	$ ilde{O}(n^{1/4}\log\Delta)$ [Chechik'13]
(k=4)	$9 + \varepsilon$	$ ilde{O}(n^{1/4}\log\Delta)$ [Roditty, Tov'15]

network	stretch	space/node (bits)
arbitrary	1	$n \log n$ [folk]
$(k \geqslant 2)$	4k - 5	$\tilde{O}(n^{1/k})$ [Thorup,Zwick'01]
(k=4)	10.52	$ ilde{O}(n^{1/4}\log\Delta)$ [Chechik'13]
(k = 4)	$9 + \varepsilon$	$ ilde{O}(n^{1/4}\log\Delta)$ [Roditty,Tov'15]
$(k \geqslant 3)$	$4k-7+\varepsilon$	$\tilde{O}(n^{1/k}\log\Delta)$ ["]
$(k\geqslant 4)$	3.68k + O(1)	$ ilde{O}(n^{1/k}\log\Delta)$ [Chechik'13]

network	stretch	space/node (bits)
arbitrary	1	$n \log n$ [folk]
$(k \geqslant 2)$	4k - 5	$\tilde{O}(n^{1/k})$ [Thorup,Zwick'01]
(k = 4)	10.52	$ ilde{O}(n^{1/4}\log\Delta)$ [Chechik'13]
(k = 4)	$9 + \varepsilon$	$ ilde{O}(n^{1/4}\log\Delta)$ [Roditty, Tov'15]
$(k \geqslant 3)$	$4k-7+\varepsilon$	$\tilde{O}(n^{1/k}\log\Delta)$ ["]
$(k \geqslant 4)$	3.68k + O(1)	$ ilde{O}(n^{1/k}\log\Delta)$ [Chechik'13]
(unweighted)	$(2\times, +1)$	$ ilde{O}(n^{3/4})$ [Abraham,G.'11]
(unweighted)	$((2+\varepsilon)\times,+1)$	$\tilde{O}(n^{2/3})$ [Roditty, Tov'15]

network	stretch	space/node (bits)	
bounded growth	$1 + \varepsilon$	$ ilde{O}(1)$	[Abraham et al.]

net	work	stretch	space/node (bit	s)
bounde	d growth	$1 + \varepsilon$	$ ilde{O}(1)$	[Abraham et al.]
doubling	g- $lpha$ dim.	$9 + \varepsilon$	$ ilde{O}(1)$ [Konjevod	et al./Abraham,G. et al.]

network	stretch	space/node (bits)
bounded growth	$1 + \varepsilon$	$ ilde{O}(1)$ [Abraham et al.]
doubling- $lpha$ dim.	$9 + \varepsilon$	$ ilde{O}(1)$ [Konjevod $_{ ext{et}}$ al./Abraham,G. $_{ ext{et}}$ al.]
H-minor-free (unweighted)	O(1)	$ ilde{O}(1)$ [Abraham,G.]

network	stretch	space/node (bits)	
bounded growth	$1 + \varepsilon$	$ ilde{O}(1)$	[Abraham et al.]
doubling- α dim.	$9 + \varepsilon$	$ ilde{O}(1)$ [Konjevod $_{ ext{et}}$ al./	Abraham, G. et al.]
H-minor-free (unweighted)	O(1)	$\tilde{O}(1)$	[Abraham,G.]
trees	$2^{k} - 1$	$\tilde{O}(n^{1/k})$	[Laing]

network	stretch	space/node (bits)
bounded growth	$1 + \varepsilon$	$ ilde{O}(1)$ [Abraham et al.]
$\operatorname{doubling-}\alpha \operatorname{dim}.$	$9 + \varepsilon$	$ ilde{O}(1)$ [Konjevod $_{ ext{et al.}}/ ext{Abraham,G.}$ $_{ ext{et al.}}]$
H-minor-free (unweighted)	O(1)	$ ilde{O}(1)$ [Abraham,G.]
trees	$2^{k} - 1$	$ ilde{O}(n^{1/k})$ [Laing]
arbitrary	3	$\tilde{O}(\sqrt{n})$ [A.,G.,Malkhi,Nisan,Thorup]

network	stretch	space/node (bits)
bounded growth	$1 + \varepsilon$	$ ilde{O}(1)$ [Abraham et al.]
$doubling\text{-}\alpha \ dim.$	$9 + \varepsilon$	$ ilde{O}(1)$ [Konjevod et al./Abraham,G. et al.]
H-minor-free (unweighted)	O(1)	$ ilde{O}(1)$ [Abraham, G.]
trees	$2^{k} - 1$	$ ilde{O}(n^{1/k})$ [Laing]
arbitrary	3	$ ilde{O}(\sqrt{n})$ [A.,G.,Malkhi,Nisan,Thorup]
	$O(k^2 2^k)$	$ ilde{O}(n^{1/k})$ [Arias et al./Awerbuch,Peleg]
	O(k)	$ ilde{O}(n^{1/k})$ [Abraham,G. et al.]

Rem: lower bound for labeled ⇒ lower bound for name-indep

(only $k = 1, 2, 3, \times, 5$)

	arhitran,	~ 1 <i>1</i>	$O(n \log n)$	[C D4
network stretc		stretch	n space/node (bits)	
	Rem: lower bound for	$labeled \Rightarrow low$	wer bound for n	ame-indep

network 		stretch	space/node (bits)	
	arbitrary	< 1.4	$\Omega(n \log n)$	[G.,Pérennès.]

< 3

 $\Omega(n)$

<2k+1 $\Omega(n^{1/k})$

[G., Gengler]

[Thorup, Zwick]

Rem: lower bound for labeled \Rightarrow lower bound for name-indep				
network	network stretch spa		space/node (bits)	
arbitrary	< 1.4	$\Omega(n \log n)$	[G.,Pérennès.]	
	< 3	$\Omega(n)$	[G.,Gengler]	
(only $k = 1, 2, 3, \times, 5$)	< 2k + 1	$\Omega(n^{1/k})$	[Thorup,Zwick]	
trees	€ 3	$\Omega(\sqrt{n})$	[Laing,Rajaraman]	
	$\leq 9 - \varepsilon$	$\Omega(n^{(\varepsilon/60)^2})$	[Konjevod et al.]	

for all $k \geqslant 1$

Rem: lower bound for labeled \Rightarrow lower bound for name-indep				
network stretch		space/node (bits)		
arbitrary	< 1.4	$\Omega(n \log n)$	[G.,Pérennès.]	
	< 3	$\Omega(n)$	[G.,Gengler]	
(only $k = 1, 2, 3, \times, 5$)	< 2k + 1	$\Omega(n^{1/k})$	[Thorup,Zwick]	
trees	€ 3	$\Omega(\sqrt{n})$	[Laing,Rajaraman]	

 $\leqslant 9 - \varepsilon \qquad \Omega(n^{(\varepsilon/60)^2}) \qquad \text{[Konjevod et al.]}$ $< 2k + 1 \quad \frac{1}{8} (n \log n)^{1/k} \text{ [Abraham, G. et al.]}$

- Any name-indep. routing scheme using $<\frac{1}{8}(n\log n)^{1/k}$ bits/node has a max stretch $\geqslant 2k+1$ for some graph.
- ② Any name-indep. routing scheme using $<\frac{1}{8}(n/k)^{1/k}$ bits/node has an average stretch $\geqslant k/4$ for some graph.

- Any name-indep. routing scheme using $<\frac{1}{8}(n\log n)^{1/k}$ bits/node has a max stretch $\geqslant 2k+1$ for some graph.
- ② Any name-indep. routing scheme using $<\frac{1}{8}(n/k)^{1/k}$ bits/node has an average stretch $\geqslant k/4$ for some graph.

Rem 1: All previous lower bounds for labeled case (Peleg, Upfal / G., Pérennès / G., Gengler / Kranakis, Krizanc / Thorup, Zwick) are based on the construction of **dense large girth** graphs

if stretch< 2k + 1, then u is forced to "know" the edge (u, v)

- Any name-indep. routing scheme using $<\frac{1}{8}(n\log n)^{1/k}$ bits/node has a max stretch $\geqslant 2k+1$ for some graph.
- ② Any name-indep. routing scheme using $<\frac{1}{8}(n/k)^{1/k}$ bits/node has an average stretch $\geqslant k/4$ for some graph.

Erdös-Simonovits Conjecture: \exists graph of girth 2k+2 with $\Omega(n^{1+1/k})$ edges (proved only for k=1,2,3,5). So, the extra $(\log n)^{1/k}$ term **cannot** be obtained with a girth approach.

- Any name-indep. routing scheme using $<\frac{1}{8}(n\log n)^{1/k}$ bits/node has a **max stretch** $\geqslant 2k+1$ for some graph.
- ② Any name-indep. routing scheme using $<\frac{1}{8}(n/k)^{1/k}$ bits/node has an average stretch $\geqslant k/4$ for some graph.

Rem 2: It makes a clear separation between labeled and name-independent routing, at least for the average stretch.

In the labelel model, schemes with $\operatorname{polylog}(n)$ space and constant average stretch do exsit for every graph! [Abraham, Bartal, Chan, Gupta, Kleinberg et al. (FOCS'05)]

In the name-indep model, if space is $\operatorname{polylog}(n)$, then the average stretch must be $\Omega(\log n/\log\log n)$ for some graphs.

The Metric Model

A weaker model, but conceptually easier

Input: a metric space (V, d)

Ouput: an overlay network G = (V, E), and a routing

scheme for ${\cal G}$

The Metric Model

A weaker model, but conceptually easier

Input: a metric space (V, d)

Ouput: an overlay network G = (V, E), and a routing

scheme for G

An extra complexity measure: the size |E| of the overlay

The Metric Model

A weaker model, but conceptually easier

Input: a metric space (V, d)

Ouput: an overlay network G = (V, E), and a routing

scheme for G

An extra complexity measure: the size |E| of the overlay

Goal: to minimize the size of G, and the space for each node must be \approx the average degree of G

 $B_u =$ the set of $\sqrt{n \ln n}$ closest nodes from u

 $B_u = \text{the set of } \sqrt{n \ln n} \text{ closest nodes from } u$ $L = \text{hitting set of } \{B_u \mid u \in V\} \text{ of size } \leqslant \sqrt{n \ln n}$

 $B_u = \text{the set of } \sqrt{n \ln n} \text{ closest nodes from } u$ $L = \text{hitting set of } \{B_u \mid u \in V\} \text{ of size } \leqslant \sqrt{n \ln n}$

Overlay: $u \to w$, $\forall w \in B_u$ and $u \to \ell$, $\forall \ell \in L$

$$B_u = \text{the set of } \sqrt{n \ln n} \text{ closest nodes from } u$$

 $L = \text{hitting set of } \{B_u \mid u \in V\} \text{ of size } \leqslant \sqrt{n \ln n}$

Overlay:
$$u \to w$$
, $\forall w \in B_u$ and $u \to \ell$, $\forall \ell \in L$
 $\Rightarrow |E| \leq \sum_{u} (|B_u| + |L|) \leq n^{3/2} \sqrt{\ln n}$

 $B_u = \text{the set of } \sqrt{n \ln n} \text{ closest nodes from } u$ $L = \text{hitting set of } \{B_u \mid u \in V\} \text{ of size } \leqslant \sqrt{n \ln n}$

Overlay: $u \to w$, $\forall w \in B_u$ and $u \to \ell$, $\forall \ell \in L$ $\Rightarrow |E| \leq \sum_{u} (|B_u| + |L|) \leq n^{3/2} \sqrt{\ln n}$

Routing: If $v \in B_u$, route $u \leadsto v$, else $u \leadsto \ell_u \leadsto v$

 $B_u = \text{the set of } \sqrt{n \ln n} \text{ closest nodes from } u$ $L = \text{hitting set of } \{B_u \mid u \in V\} \text{ of size } \leqslant \sqrt{n \ln n}$

Overlay: $u \to w$, $\forall w \in B_u$ and $u \to \ell$, $\forall \ell \in L$ $\Rightarrow |E| \leq \sum_{u} (|B_u| + |L|) \leq n^{3/2} \sqrt{\ln n}$

Routing: If $v \in B_u$, route $u \leadsto v$, else $u \leadsto \ell_u \leadsto v$

 $B_u = \text{the set of } \sqrt{n \ln n} \text{ closest nodes from } u$ $L = \text{hitting set of } \{B_u \mid u \in V\} \text{ of size } \leqslant \sqrt{n \ln n}$

Overlay: $u \to w$, $\forall w \in B_u$ and $u \to \ell$, $\forall \ell \in L$ $\Rightarrow |E| \leq \sum_u (|B_u| + |L|) \leq n^{3/2} \sqrt{\ln n}$

Routing: If $v \in B_u$, route $u \leadsto v$, else $u \leadsto \ell_u \leadsto v$

Rem: $\ell_u \to v$ is not easy to implement in the graph model (usually simulated with some tree routings)

Some Results in the Metric Model

Both labeled and name-independent variants exist ...

metric	stretch	average degree	
Euclidian \mathbb{R}^d $(d=2)$ (name-indep.)	$O(1)$ $O(1)$ $1 + \varepsilon$	$O(1)$ $O(1)$ $\tilde{O}(1)$	[Hassin,Peleg/Bose et al.] [Abraham,Malkhi] [Gottlieb,Roditty'08]

Some Results in the Metric Model

Both labeled and name-independent variants exist ...

metric	stretch	average degree	
Euclidian \mathbb{R}^d			
(d=2)	O(1)	O(1) [Hassin, Peleg/Bose et al.]	
(name-indep.)	O(1)	O(1) [Abraham, Malkhi]	
	$1+\varepsilon$	$\tilde{O}(1)$ [Gottlieb,Roditty'08]	
doubling- α dim.			
	$1+\varepsilon$	$ ilde{O}(\log \Delta)$ [Talwar/Chan et al./Slivkins]	
	$1 + \varepsilon$	$\tilde{O}(1)$ [Abraham et al.'06]	

Undirected vs. Directed

(graph model only!)

Problem: there is no stretch-space trade-off for routing in directed graphs! The stretch maybe not bounded if o(n) bits of memory are used, even in strongly connected digraphs [Thorup,Zwick]

Undirected vs. Directed

(graph model only!)

Problem: there is no stretch-space trade-off for routing in directed graphs! The stretch maybe not bounded if o(n) bits of memory are used, even in strongly connected digraphs [Thorup,Zwick]

New measure: roundtrip stretch factor

stretch =
$$\frac{|\text{route}(u, v)| + |\text{route}(v, u)|}{\text{dist}(u, v) + \text{dist}(v, u)}$$

Rem: dist(u, v) + dist(v, u) is now a distance function

Some Results for Arbitrary Digraphs

Labeled: [Roditty,Thorup,Zwick - SODA '02]

stretch=3
$\operatorname{space} = \tilde{O}(\sqrt{n}\log \Delta)$
$labels = o(\log^2 n \log \Delta)$

Name-independent:

[Arias, Cowen, Laing - PODC '03]

$stretch=O(k^2)$	stretch=6
$\operatorname{space} = \tilde{O}(\varepsilon^{-1}kn^{1/k}\log\Delta)$	$\operatorname{space} = \tilde{O}(\sqrt{n}\log \Delta)$
labels= $o(\varepsilon^{-1}k^2\log^2 n\log \Delta)$	$labels = o(\log^2 n \log \Delta)$

Lower bound: if stretch < 2, then $\Omega(n)$ bits is required

Open Questions: Arbitrary Networks

Q1: Labeled: stretch $\leq 4k - O(1)$ for $O(n^{1/k})$ space. Optimal only for k = 1, 2. The lower bound on the stretch is $\leq 2k - 1$.

For k=4, the lower bound is even not known to be 2k-1 because the Erdös-Simonovits conjecture is proved only for $k=1,2,3,\times,5$.

Open Questions: Arbitrary Networks

Q1: Labeled: stretch $\leq 4k - O(1)$ for $O(n^{1/k})$ space. Optimal only for k = 1, 2. The lower bound on the stretch is $\leq 2k - 1$.

For k=4, the lower bound is even not known to be 2k-1 because the Erdös-Simonovits conjecture is proved only for $k=1,2,3,\times,5$.

Q2: Name-independent = labeled ??? For k = 1, 2, the same bounds hold.

Open Questions: Arbitrary Networks

Q1: Labeled: stretch $\leq 4k - O(1)$ for $O(n^{1/k})$ space. Optimal only for k = 1, 2. The lower bound on the stretch is $\leq 2k - 1$.

For k=4, the lower bound is even not known to be 2k-1 because the Erdös-Simonovits conjecture is proved only for $k=1,2,3,\times,5$.

Q2: Name-independent = labeled ??? For k = 1, 2, the same bounds hold.

Q3: Directed = Undirected???

Open Questions: Specific Networks

Q4: Name-indep. scheme for unweighted trees: What's the best stretch if using polylog space?

Current best stretch: 17.

Open Questions: Specific Networks

- Q4: Name-indep. scheme for unweighted trees: What's the best stretch if using polylog space? Current best stretch: 17.
- Q5: Labeled scheme for weighted treewidth-k: Can we do shortest path with $o(k \log^2 n)$ -bit table & labels?

True for trees and weighted outerplanar (and even $K_{2,4}$ -minor free graphs): $\Theta(\log^2 n/\log\log n)$ bits are enough and necessary [Dieng,G.]. What about weighted series-parallel graphs?

Open Questions: Specific Networks

- Q4: Name-indep. scheme for unweighted trees: What's the best stretch if using polylog space? Current best stretch: 17.
- Q5: Labeled scheme for weighted treewidth-k: Can we do shortest path with $o(k \log^2 n)$ -bit table & labels?

True for trees and weighted outerplanar (and even $K_{2,4}$ -minor free graphs): $\Theta(\log^2 n/\log\log n)$ bits are enough and necessary [Dieng,G.]. What about weighted series-parallel graphs?

Q6: Shortest path in planar with polylog labels: space ranges between $\Omega(n^{1/3}) \ldots O(n)$.

Current best bound: 7.18n bits [Lu'02].

Open Questions: Misc

Q7: $O(\deg(u))$ with constant stretch for general graphs? What about bounded degree graphs? Sparse graphs are known to be non-compact. But, bounded degree nodes "increase" distances, so stretch tends to 1. No lower bounds are known. Bounded degree includes expanders ...

Open Questions: Misc

- Q7: $O(\deg(u))$ with constant stretch for general graphs? What about bounded degree graphs? Sparse graphs are known to be non-compact. But, bounded degree nodes "increase" distances, so stretch tends to 1. No lower bounds are known. Bounded degree includes expanders ...
- Q8: Average stretch? ε -slack routing? Labeled and name-indep. differ. Average stretch & additive stretch are interesting in practice.

Open Questions: Misc

- Q7: $\tilde{O}(\deg(u))$ with constant stretch for general graphs? What about bounded degree graphs? Sparse graphs are known to be non-compact. But, bounded degree nodes "increase" distances, so stretch tends to 1. No lower bounds are known. Bounded degree includes expanders ...
- Q8: Average stretch? ε -slack routing? Labeled and name-indep. differ. Average stretch & additive stretch are interesting in practice.
- Q9: Distributed algorithms for constructing tables? Known for some speficic graphs (planar, [Frederickson'90]). Best $o(n^3)$ -message distributed implementation of stretch-3 space- \sqrt{n} name-indep. Abraham et al.'s scheme has stretch ... only 5.

Thank you!