An Overview on Compact Routing
 (in Discrete Domains)

Cyril Gavoille

University of Bordeaux, France

12 October 2015
Searching and Routing in Discrete and Continuous Domains
CMO-BIRS Workshop, Oaxaca, Mexico

The Compact Routing Problem

```
Input: a network \(G\) (a weighted connected graph)
Ouput: a routing scheme for \(G\)
```

A routing scheme is a distributed algorithm that allows any source node to route messages to any destination node, given the destination's network identifier

The Compact Routing Problem

```
Input: a network \(G\) (a weighted connected graph)
Ouput: a routing scheme for \(G\)
```

A routing scheme is a distributed algorithm that allows any source node to route messages to any destination node, given the destination's network identifier

Goal: to minimize the size of the routing tables

Example: Grid with X, Y-coordinates

Routing algorithm: X,Y-routing

Example: Grid with X,Y-coordinates

Routing algorithm: X,Y-routing

Complexity Measures: Space \& Stretch

Space $=$ size of the largest local routing tables

Complexity Measures: Space \& Stretch

Space $=$ size of the largest local routing tables (more precisely, size of the local routing algorithm including all constants and data-structures)

In the grid example: space $=O(\log n)$ bits

Complexity Measures: Space \& Stretch

Space $=$ size of the largest local routing tables (more precisely, size of the local routing algorithm including all constants and data-structures)

In the grid example: space $=O(\log n)$ bits
Stretch $=$ ratio between length of the route and distance

$$
|\operatorname{route}(x, y)| \leqslant \operatorname{stretch} \cdot \operatorname{dist}(x, y)
$$

In the grid example: stretch $=1$ (shortest path)

Complexity Measures: Space \& Stretch

Space $=$ size of the largest local routing tables (more precisely, size of the local routing algorithm including all constants and data-structures)
In the grid example: space $=O(\log n)$ bits
Stretch $=$ ratio between length of the route and distance

$$
\mid \text { route }(x, y) \mid \leqslant \operatorname{stretch} \cdot \operatorname{dist}(x, y)
$$

In the grid example: stretch $=1$ (shortest path)

Other: average space, time complexity of routing decision, time complexity for building routing tables, header size, number of header updates, ...

Complexity Measures: Space \& Stretch

Space $=$ size of the largest local routing tables (more precisely, size of the local routing algorithm including all constants and data-structures)
In the grid example: space $=O(\log n)$ bits
Stretch $=$ ratio between length of the route and distance

$$
\mid \text { route }(x, y) \mid \leqslant \operatorname{stretch} \cdot \operatorname{dist}(x, y)
$$

In the grid example: stretch $=1$ (shortest path)

Question: for a given family of graphs, find routing schemes with best space-stretch trade-off

Two variants: Name-independent vs. Labeled

The destination enters the network with its name, which is determined by either the designer of the routing scheme (labeled), or an adversary (name-independent).

Labeled: the designer is free to name the nodes according to the topology and the edge weights of the graph
Name-independent: the input is a graph with fixed node manes (more realistic IP addresses, cow-path problem with advice, ...)

Two variants: Name-independent vs. Labeled

The destination enters the network with its name, which is determined by either the designer of the routing scheme (labeled), or an adversary (name-independent).

Labeled: the designer is free to name the nodes according to the topology and the edge weights of the graph
Name-independent: the input is a graph with fixed node manes (more realistic IP addresses, cow-path problem with advice, ...)

Other variants: random labeling, coordinate labeling based (geometric), ...

An overview: Labeled Model (1/2)

Labels and headers are of polylogarithmic size $\tilde{O}(f(n))=f(n) \cdot \operatorname{polylog}(n)$
network stretch space/node (bits)
arbitrary $1 \quad n\lceil\log n\rceil$ [fo|k]

An overview: Labeled Model (1/2)

Labels and headers are of polylogarithmic size $\tilde{O}(f(n))=f(n) \cdot \operatorname{polylog}(n)$
network stretch space/node (bits)

$$
\begin{array}{ccl}
\text { arbitrary } & 1 & n\lceil\log n\rceil \\
(2 \leqslant k \in \mathbb{N}) & 4 k-5 & \tilde{O}\left(n^{1 / k}\right)
\end{array}
$$

An overview: Labeled Model (1/2)

Labels and headers are of polylogarithmic size $\tilde{O}(f(n))=f(n) \cdot \operatorname{polylog}(n)$
network stretch space/node (bits)

arbitrary	1	$n\lceil\log n\rceil$
$(2 \leqslant k \in \mathbb{N})$	$4 k-5$	$\tilde{O}\left(n^{1 / k}\right)$
tree	1	$\tilde{O}(1)$

[Thorup,Zwick]

An overview: Labeled Model (1/2)

Labels and headers are of polylogarithmic size $\tilde{O}(f(n))=f(n) \cdot \operatorname{polylog}(n)$
network stretch space/node (bits)

arbitrary	1	$n\lceil\log n\rceil$
$(2 \leqslant k \in \mathbb{N})$	$4 k-5$	$\tilde{O}\left(n^{1 / k}\right)$
tree	1	$\tilde{O}(1)$

doubling- α dim.
(Euclidian, bounded growth, ...)

$$
\begin{array}{lll}
1+\varepsilon & \log \Delta & \text { [Talwar/Slivkins }] \\
& \tilde{O}(1) & {[\text { Chan et al./Abraham, G. et al. }]}
\end{array}
$$

[Thorup,Zwick]
[TZ/Fraigniaud,G.]

An overview: Labeled Model (1/2)

Labels and headers are of polylogarithmic size $\tilde{O}(f(n))=f(n) \cdot \operatorname{polylog}(n)$
network stretch space/node (bits)

arbitrary	1	$n\lceil\log n\rceil$
$(2 \leqslant k \in \mathbb{N})$	$4 k-5$	$\tilde{O}\left(n^{1 / k}\right)$
tree	1	$\tilde{O}(1)$

doubling- α dim.
(Euclidian, bounded growth, ...) planar
$1+\varepsilon \quad \log \Delta$
$\tilde{O}(1)$ [Chan et al. /Abraham, G. et al.]
$1+\varepsilon \quad \tilde{O}(1)$

[Talwar/Slivkins]
[Thorup]

An overview: Labeled Model (1/2)

Labels and headers are of polylogarithmic size $\tilde{O}(f(n))=f(n) \cdot \operatorname{polylog}(n)$
network stretch space/node (bits)

arbitrary	1	$n\lceil\log n\rceil$
$(2 \leqslant k \in \mathbb{N})$	$4 k-5$	$\tilde{O}\left(n^{1 / k}\right)$
tree	1	$\tilde{O}(1)$

doubling- α dim.

$$
1+\varepsilon \quad \log \Delta
$$

(Euclidian, bounded growth, ...)

$$
\tilde{O}(1)[\text { Chan et al./Abraham, G. et all] }
$$

$$
\begin{array}{ccc}
\text { planar } & 1+\varepsilon & \tilde{O}(1) \\
H \text {-minor-free } & 1+\varepsilon & \tilde{O}(1)
\end{array}
$$

[Thorup]
[Abraham,G.]

An overview: Labeled Model (2/2)

network	stretch	space/node (bits)
arbitrary	1	$n \log n$
$(k \geqslant 2)$	$4 k-5$	$\tilde{O}\left(n^{1 / k}\right) \quad$ [Thorup, Zwick'01]
$(k=4)$	10.52	$\tilde{O}\left(n^{1 / 4} \log \Delta\right) \quad$ [Chechik'13]

An overview: Labeled Model (2/2)

network	stretch	space/node (bits)	
arbitrary	1	$n \log n$	
$(k \geqslant 2)$	$4 k-5$	$\tilde{O}\left(n^{1 / k}\right)$	[Thorup, Zwick'01]
$(k=4)$	10.52	$\tilde{O}\left(n^{1 / 4} \log \Delta\right)$	[Chechik'13]
$(k=4)$	$9+\varepsilon$	$\tilde{O}\left(n^{1 / 4} \log \Delta\right)$	[Roditty,Tov'15]

An overview: Labeled Model (2/2)

network stretch space/node (bits)

arbitrary	1	$n \log n$	[folk]
$(k \geqslant 2)$	$4 k-5$	$\tilde{O}\left(n^{1 / k}\right)$	[Thorup, Zwick'01]
$(k=4)$	10.52	$\tilde{O}\left(n^{1 / 4} \log \Delta\right)$	[Chechik'13]
$(k=4)$	$9+\varepsilon$	$\tilde{O}\left(n^{1 / 4} \log \Delta\right)$	[Roditty, Tov'15]
$(k \geqslant 3)$	$4 k-7+\varepsilon$	$\tilde{O}\left(n^{1 / k} \log \Delta\right)$	["]
$(k \geqslant 4)$	$3.68 k+O(1)$	$\tilde{O}\left(n^{1 / k} \log \Delta\right)$	[Chechik'13]

An overview: Labeled Model (2/2)

network
arbitrary
$(k \geqslant 2)$
$(k=4)$
$(k=4)$
$9+\varepsilon$
$(k \geqslant 3) \quad 4 k-7+\varepsilon$
$\tilde{O}\left(n^{1 / k} \log \Delta\right)$
$\tilde{O}\left(n^{1 / k} \log \Delta\right)$
[Thorup,Zwick'01]
$3.68 k+O(1)$
$\tilde{O}\left(n^{3 / 4}\right)$
$\tilde{O}\left(n^{2 / 3}\right)$

An overview: Name-independent Model

network stretch space/node (bits)
bounded growth $1+\varepsilon \quad \tilde{O}(1) \quad$ [Abraham et al.]

An overview: Name-independent Model

network stretch space/node (bits)
bounded growth $1+\varepsilon \quad \tilde{O}(1) \quad$ [Abraham et al.] doubling- α dim. $9+\varepsilon \quad \tilde{O}(1)$ [Konjevod et al./Abraham, G. et al.]

An overview: Name-independent Model

network stretch space/node (bits)

bounded growth	$1+\varepsilon$	$\tilde{O}(1)$	[Abraham et al.]
doubling- α dim.	$9+\varepsilon$	$\tilde{O}(1)$ [Konjevod et al./Abraham, G. et al.]	
H-minor-free (unweighted)	$O(1)$	$\tilde{O}(1)$	[Abraham, G.]

An overview: Name-independent Model

network stretch space/node (bits)
bounded growth $1+\varepsilon \quad \tilde{O}(1) \quad$ [Abraham et al.] doubling- α dim. $9+\varepsilon \quad \tilde{O}(1)$ [Konjevod et al./Abraham, G. et al.]
H-minor-free
(unweighted) $\quad O(1) \quad \tilde{O}(1) \quad$ [Abraham, G.]
trees $\quad 2^{k}-1 \quad \tilde{O}\left(n^{1 / k}\right)$
[Laing]

An overview: Name-independent Model

network stretch space/node (bits)
bounded growth $1+\varepsilon \quad \tilde{O}(1) \quad$ [Abraham et al.] doubling- α dim. $9+\varepsilon \quad \tilde{O}(1)$ [Konjevod et al./Abraham, G. et al.]
H-minor-free $\quad O(1) \quad \tilde{O}(1)$
[Abraham, G.] (unweighted)

trees	$2^{k}-1$	$\tilde{O}\left(n^{1 / k}\right)$
arbitrary	3	$\tilde{O}(\sqrt{n})$

An overview: Name-independent Model

network stretch space/node (bits)
bounded growth $1+\varepsilon \quad \tilde{O}(1) \quad$ [Abraham et al.] doubling- α dim.
$9+\varepsilon$
$\tilde{O}(1)$ [Konjevod et al./Abraham, G. et al.]
H-minor-free
$O(1) \quad \tilde{O}(1)$
[Abraham, G.] (unweighted)

trees	$2^{k}-1$	$\tilde{O}\left(n^{1 / k}\right)$	[Laing]
arbitrary	3	$\tilde{O}(\sqrt{n})$	[A., G.,Malkhi, Nisan, Thorup]
	$O\left(k^{2} 2^{k}\right)$	$\tilde{O}\left(n^{1 / k}\right)$	[Arias et al./Awerbuch, Peleg]
	$O(k)$	$\tilde{O}\left(n^{1 / k}\right)$	[Abraham,G. et al.]

Lower Bounds for Name-Independent

Rem: lower bound for labeled \Rightarrow lower bound for name-indep

Lower Bounds for Name-Independent

Rem: lower bound for labeled \Rightarrow lower bound for name-indep network stretch space/node (bits)
arbitrary $<1.4 \quad \Omega(n \log n) \quad$ [G.,Pérennès.]
$<3 \quad \Omega(n)$
[G.,Gengler]
(only $k=1,2,3, \times, 5) \quad<2 k+1 \quad \Omega\left(n^{1 / k}\right)$
[Thorup, Zwick]

Lower Bounds for Name-Independent

Rem: lower bound for labeled \Rightarrow lower bound for name-indep network stretch space/node (bits)

\[

\]

trees

$$
\begin{array}{llr}
\leqslant 3 & \Omega(\sqrt{n}) & \text { [Laing,Rajaraman }] \\
\leqslant 9-\varepsilon & \Omega\left(n^{(\varepsilon / 60)^{2}}\right) & {[\text { Konjevod et al.] }}
\end{array}
$$

Lower Bounds for Name-Independent

Rem: lower bound for labeled \Rightarrow lower bound for name-indep network stretch space/node (bits)

arbitrary	<1.4	$\Omega(n \log n)$	[G.,Pérennès.]
	<3	$\Omega(n)$	[G., Gengler]

[Thorup,Zwick]
trees

$$
\begin{array}{llr}
\leqslant 3 & \Omega(\sqrt{n}) & {[\text { Laing,Rajaraman }]} \\
\leqslant 9-\varepsilon & \Omega\left(n^{(\varepsilon / 60)^{2}}\right) & {[\text { Konjevod et al. }]}
\end{array}
$$

for all $k \geqslant 1 \quad<2 k+1 \quad \frac{1}{8}(n \log n)^{1 / k}$ [Abraham, G. et al.]

Theorem [Abraham, G.,Malkhi]

(1) Any name-indep. routing scheme using $<\frac{1}{8}(n \log n)^{1 / k}$ bits/node has a max stretch $\geqslant 2 k+1$ for some graph.
(2) Any name-indep. routing scheme using $<\frac{1}{8}(n / k)^{1 / k}$ bits/node has an average stretch $\geqslant k / 4$ for some graph.

Theorem [Abraham, G.,Malkhi]

(1) Any name-indep. routing scheme using $<\frac{1}{8}(n \log n)^{1 / k}$ bits/node has a max stretch $\geqslant 2 k+1$ for some graph.
(2) Any name-indep. routing scheme using $<\frac{1}{8}(n / k)^{1 / k}$ bits/node has an average stretch $\geqslant k / 4$ for some graph.

Rem 1: All previous lower bounds for labeled case (Peleg, Upfal / G.,Pérennès / G., Gengler / Kranakis,Krizanc / Thorup,Zwick) are based on the construction of dense large girth graphs

if stretch $<2 k+1$, then
u is forced to "know" the edge (u, v)

Theorem [Abraham, G.,Malkhi]

(1) Any name-indep. routing scheme using $<\frac{1}{8}(n \log n)^{1 / k}$ bits/node has a max stretch $\geqslant 2 k+1$ for some graph.
(2) Any name-indep. routing scheme using $<\frac{1}{8}(n / k)^{1 / k}$ bits/node has an average stretch $\geqslant k / 4$ for some graph.

Erdös-Simonovits Conjecture: \exists graph of girth $2 k+2$ with $\Omega\left(n^{1+1 / k}\right)$ edges (proved only for $k=1,2,3,5$). So, the extra $(\log n)^{1 / k}$ term cannot be obtained with a girth approach.

Theorem [Abraham, G.,Malkhi]

(1) Any name-indep. routing scheme using $<\frac{1}{8}(n \log n)^{1 / k}$ bits/node has a max stretch $\geqslant 2 k+1$ for some graph.
(2) Any name-indep. routing scheme using $<\frac{1}{8}(n / k)^{1 / k}$ bits/node has an average stretch $\geqslant k / 4$ for some graph.

Rem 2: It makes a clear separation between labeled and nameindependent routing, at least for the average stretch.

In the labelel model, schemes with polylog(n) space and constant average stretch do exsit for every graph! [Abraham, Bartal, Chan, Gupta, Kleinberg et al. (FOCS'05)]
In the name-indep model, if space is $\operatorname{polylog}(n)$, then the average stretch must be $\Omega(\log n / \log \log n)$ for some graphs.

The Metric Model

A weaker model, but conceptually easier
Input: a metric space (V, d)
Ouput: an overlay network $G=(V, E)$, and a routing scheme for G

The Metric Model

A weaker model, but conceptually easier
Input: a metric space (V, d)
Ouput: an overlay network $G=(V, E)$, and a routing scheme for G

An extra complexity measure: the size $|E|$ of the overlay

The Metric Model

A weaker model, but conceptually easier
Input: a metric space (V, d)
Ouput: an overlay network $G=(V, E)$, and a routing scheme for G

An extra complexity measure: the size $|E|$ of the overlay

Goal: to minimize the size of G, and the space for each node must be \approx the average degree of G

Example: Stretch-3 for Arbitrary Metric

Example: Stretch-3 for Arbitrary Metric

$B_{u}=$ the set of $\sqrt{n \ln n}$ closest nodes from u

Example: Stretch-3 for Arbitrary Metric

$B_{u}=$ the set of $\sqrt{n \ln n}$ closest nodes from u $L=$ hitting set of $\left\{B_{u} \mid u \in V\right\}$ of size $\leqslant \sqrt{n \ln n}$

Example: Stretch-3 for Arbitrary Metric

$B_{u}=$ the set of $\sqrt{n \ln n}$ closest nodes from u
$L=$ hitting set of $\left\{B_{u} \mid u \in V\right\}$ of size $\leqslant \sqrt{n \ln n}$
Overlay: $u \rightarrow w, \forall w \in B_{u}$ and $u \rightarrow \ell, \forall \ell \in L$

Example: Stretch-3 for Arbitrary Metric

$B_{u}=$ the set of $\sqrt{n \ln n}$ closest nodes from u
$L=$ hitting set of $\left\{B_{u} \mid u \in V\right\}$ of size $\leqslant \sqrt{n \ln n}$
Overlay: $u \rightarrow w, \forall w \in B_{u}$ and $u \rightarrow \ell, \forall \ell \in L$ $\Rightarrow|E| \leqslant \sum_{u}\left(\left|B_{u}\right|+|L|\right) \leqslant n^{3 / 2} \sqrt{\ln n}$

Example: Stretch-3 for Arbitrary Metric

$B_{u}=$ the set of $\sqrt{n \ln n}$ closest nodes from u
$L=$ hitting set of $\left\{B_{u} \mid u \in V\right\}$ of size $\leqslant \sqrt{n \ln n}$
Overlay: $u \rightarrow w, \forall w \in B_{u}$ and $u \rightarrow \ell, \forall \ell \in L$ $\Rightarrow|E| \leqslant \sum_{u}\left(\left|B_{u}\right|+|L|\right) \leqslant n^{3 / 2} \sqrt{\ln n}$
Routing: If $v \in B_{u}$, route $u \rightsquigarrow v$, else $u \rightsquigarrow \ell_{u} \rightsquigarrow v$

Example: Stretch-3 for Arbitrary Metric

$B_{u}=$ the set of $\sqrt{n \ln n}$ closest nodes from u
$L=$ hitting set of $\left\{B_{u} \mid u \in V\right\}$ of size $\leqslant \sqrt{n \ln n}$
Overlay: $u \rightarrow w, \forall w \in B_{u}$ and $u \rightarrow \ell, \forall \ell \in L$ $\Rightarrow|E| \leqslant \sum_{u}\left(\left|B_{u}\right|+|L|\right) \leqslant n^{3 / 2} \sqrt{\ln n}$
Routing: If $v \in B_{u}$, route $u \rightsquigarrow v$, else $u \rightsquigarrow \ell_{u} \rightsquigarrow v$

Example: Stretch-3 for Arbitrary Metric

$B_{u}=$ the set of $\sqrt{n \ln n}$ closest nodes from u
$L=$ hitting set of $\left\{B_{u} \mid u \in V\right\}$ of size $\leqslant \sqrt{n \ln n}$
Overlay: $u \rightarrow w, \forall w \in B_{u}$ and $u \rightarrow \ell, \forall \ell \in L$ $\Rightarrow|E| \leqslant \sum_{u}\left(\left|B_{u}\right|+|L|\right) \leqslant n^{3 / 2} \sqrt{\ln n}$
Routing: If $v \in B_{u}$, route $u \rightsquigarrow v$, else $u \rightsquigarrow \ell_{u} \rightsquigarrow v$
Rem: $\ell_{u} \rightarrow v$ is not easy to implement in the graph model (usually simulated with some tree routings)

Some Results in the Metric Model

Both labeled and name-independent variants exist ... metric stretch average degree

Euclidian \mathbb{R}^{d}

$$
\begin{array}{lll}
(d=2) & O(1) & O(1) \\
\text { ame-indep.) } & O(1) & O(1) \\
& 1+\varepsilon & \tilde{O}(1)
\end{array}
$$

[Hassin,Peleg/Bose et al.]
[Abraham,Malkhi]
[Gottlieb,Roditty'08]

Some Results in the Metric Model

Both labeled and name-independent variants exist ... metric stretch average degree

Euclidian \mathbb{R}^{d}

$(d=2)$	$O(1)$	$O(1)$
(name-indep.)	$O(1)$	$O(1)$
	$1+\varepsilon$	$\tilde{O}(1)$

[Hassin,Peleg/Bose et al.]
[Abraham,Malkhi] [Gottlieb,Roditty'08]
doubling- α dim.

$$
\begin{array}{llr}
1+\varepsilon & \tilde{O}(\log \Delta) & {[\text { Talwar/Chan et al./Slivkins] }} \\
1+\varepsilon & \tilde{O}(1) & \text { [Abraham et al.' } 06]
\end{array}
$$

Undirected vs. Directed

(graph model only!)

Problem: there is no stretch-space trade-off for routing in directed graphs! The stretch maybe not bounded if $o(n)$ bits of memory are used, even in strongly connected digraphs [Thorup,Zwick]

Undirected vs. Directed

(graph model only!)

Problem: there is no stretch-space trade-off for routing in directed graphs! The stretch maybe not bounded if $o(n)$ bits of memory are used, even in strongly connected digraphs [Thorup,Zwick]

New measure: roundtrip stretch factor

$$
\text { stretch }=\frac{|\operatorname{route}(u, v)|+|\operatorname{route}(v, u)|}{\operatorname{dist}(u, v)+\operatorname{dist}(v, u)}
$$

Rem: $\operatorname{dist}(u, v)+\operatorname{dist}(v, u)$ is now a distance function

Some Results for Arbitrary Digraphs

Labeled:

[Roditty,Thorup,Zwick - SODA '02]

stretch $=4 k+\varepsilon$	stretch $=3$
space $=\tilde{O}\left(\varepsilon^{-1} k n^{1 / k} \log \Delta\right)$	space $=\tilde{O}(\sqrt{n} \log \Delta)$
labels $=o\left(\varepsilon^{-1} k \log ^{2} n \log \Delta\right)$	labels $=o\left(\log ^{2} n \log \Delta\right)$

Name-independent:
[Arias, Cowen,Laing - PODC '03]

stretch $=O\left(k^{2}\right)$	stretch $=6$
space $=\tilde{O}\left(\varepsilon^{-1} k n^{1 / k} \log \Delta\right)$	space $=\tilde{O}(\sqrt{n} \log \Delta)$
labels $=o\left(\varepsilon^{-1} k^{2} \log ^{2} n \log \Delta\right)$	labels $=o\left(\log ^{2} n \log \Delta\right)$

Lower bound: if stretch <2, then $\Omega(n)$ bits is required

Open Questions: Arbitrary Networks

Q1: Labeled: stretch $\leqslant 4 k-O(1)$ for $\tilde{O}\left(n^{1 / k}\right)$ space. Optimal only for $k=1,2$. The lower bound on the stretch is $\leqslant 2 k-1$.
For $k=4$, the lower bound is even not known to be $2 k-1$ because the Erdös-Simonovits conjecture is proved only for $k=1,2,3, \times, 5$.

Open Questions: Arbitrary Networks

Q1: Labeled: stretch $\leqslant 4 k-O(1)$ for $\tilde{O}\left(n^{1 / k}\right)$ space. Optimal only for $k=1,2$. The lower bound on the stretch is $\leqslant 2 k-1$.
For $k=4$, the lower bound is even not known to be $2 k-1$ because the Erdös-Simonovits conjecture is proved only for $k=1,2,3, \times, 5$.

Q2: Name-independent = labeled ???
For $k=1,2$, the same bounds hold.

Open Questions: Arbitrary Networks

Q1: Labeled: stretch $\leqslant 4 k-O(1)$ for $\tilde{O}\left(n^{1 / k}\right)$ space. Optimal only for $k=1,2$. The lower bound on the stretch is $\leqslant 2 k-1$.
For $k=4$, the lower bound is even not known to be $2 k-1$ because the Erdös-Simonovits conjecture is proved only for $k=1,2,3, \times, 5$.

Q2: Name-independent $=$ labeled ??? For $k=1,2$, the same bounds hold.
Q3: Directed = Undirected???

Open Questions: Specific Networks

Q4: Name-indep. scheme for unweighted trees: What's the best stretch if using polylog space?
Current best stretch: 17 .

Open Questions: Specific Networks

Q4: Name-indep. scheme for unweighted trees: What's the best stretch if using polylog space?
Current best stretch: 17 .
Q5: Labeled scheme for weighted treewidth- k : Can we do shortest path with $o\left(k \log ^{2} n\right)$-bit table \& labels?
True for trees and weighted outerplanar (and even $K_{2,4}$-minor free graphs): $\Theta\left(\log ^{2} n / \log \log n\right)$ bits are enough and necessary [Dieng, G.]. What about weighted series-parallel graphs?

Open Questions: Specific Networks

Q4: Name-indep. scheme for unweighted trees: What's the best stretch if using polylog space?
Current best stretch: 17 .
Q5: Labeled scheme for weighted treewidth- k : Can we do shortest path with $o\left(k \log ^{2} n\right)$-bit table \& labels?
True for trees and weighted outerplanar (and even
$K_{2,4}$-minor free graphs): $\Theta\left(\log ^{2} n / \log \log n\right)$ bits are enough and necessary [Dieng,G.]. What about weighted series-parallel graphs?
Q6: Shortest path in planar with polylog labels: space ranges between $\Omega\left(n^{1 / 3}\right) \ldots O(n)$. Current best bound: $7.18 n$ bits [Lu'02].

Open Questions: Misc

Q7: $\tilde{O}(\operatorname{deg}(u))$ with constant stretch for general graphs? What about bounded degree graphs? Sparse graphs are known to be non-compact. But, bounded degree nodes "increase" distances, so stretch tends to 1 . No lower bounds are known. Bounded degree includes expanders ...

Open Questions: Misc

Q7: $\tilde{O}(\operatorname{deg}(u))$ with constant stretch for general graphs? What about bounded degree graphs? Sparse graphs are known to be non-compact. But, bounded degree nodes "increase" distances, so stretch tends to 1 . No lower bounds are known. Bounded degree includes expanders ...
Q8: Average stretch? ε-slack routing? Labeled and name-indep. differ. Average stretch \& additive stretch are interesting in practice.

Open Questions: Misc

Q7: $\tilde{O}(\operatorname{deg}(u))$ with constant stretch for general graphs? What about bounded degree graphs? Sparse graphs are known to be non-compact. But, bounded degree nodes "increase" distances, so stretch tends to 1 . No lower bounds are known. Bounded degree includes expanders ...
Q8: Average stretch? ε-slack routing? Labeled and name-indep. differ. Average stretch \& additive stretch are interesting in practice.
Q9: Distributed algorithms for constructing tables?
Known for some speficic graphs (planar,
[Frederickson'90]). Best $o\left(n^{3}\right)$-message distributed implementation of stretch- 3 space- \sqrt{n} name-indep. Abraham et al.'s scheme has stretch ... only 5 .

Thank you!

