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Input: a network G (a weighted connected graph)
Ouput: a routing scheme for G

A routing scheme is a distributed algorithm that allows any
source node to route messages to any destination node, given
the destination’s network identifier

Goal: to minimize the size of the routing tables
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Complexity Measures: Space & Stretch

Space =

Stretch =

Question:

size of the largest local routing tables
(more precisely, size of the local routing algorithm
including all constants and data-structures)

In the grid example: space = O(logn) bits

ratio between length of the route and distance
[route(z, y)| < stretch - dist(z, y)

In the grid example: stretch = 1 (shortest path)

for a given family of graphs, find routing schemes
with best space-stretch trade-off



Two variants: Name-independent vs. Labeled

The destination enters the network with its name, which is
determined by either the designer of the routing scheme
(labeled), or an adversary (name-independent).

Labeled: the designer is free to name the nodes according
to the topology and the edge weights of the graph
Name-independent: the input is a graph with fixed node

manes (more realistic IP addresses, cow-path
problem with advice, ...)
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The destination enters the network with its name, which is
determined by either the designer of the routing scheme
(labeled), or an adversary (name-independent).

Labeled: the designer is free to name the nodes according
to the topology and the edge weights of the graph
Name-independent: the input is a graph with fixed node

manes (more realistic IP addresses, cow-path
problem with advice, ...)

Other variants: random labeling, coordinate labeling based
(geometric), ...
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An overview: Labeled Model (1/2)

Labels and headers are of polylogarithmic size

O(f(n)) = f(n) - polylog(n)

network stretch space/node (bits)
arbitrary 1 n [logn]
(2<keN) 4k —5 O(nl/*)
tree 1 0(1)
doubling-a dim. 1+¢e logA

(Euclidian, bounded growth, ...)
planar 1+¢

H-minor-free 1+¢
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An overview: Labeled Model (2/2)

network stretch space/node (bits)
arbitrary 1 nlogn [folk]
(k> 2) 4k -5 1/k) [Thorup,Zwick'01]

O(n
(k = 4) 10.52 O(n'/*log A)  [Chechik'13]
(k=4) 9+¢ O(n1/4 log A) [Roditty, Tov'15]
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An overview: Labeled Model (2/2)

network stretch space/node (bits)

arbitrary 1 nlogn

(k> 2) 4k —5 O(n*/*)

(k = 4) 10.52 O(n'/*log A)

(k = 4) 9+e O(n**log A)

(k> 3) 4k —T+e  O(nY*logA)

(k> 4) 3.68k+0(1) O(n'*logA)
(unweighted) (2x,+1) O(n3/*)
(unweighted) (24 ¢€)x,+1) O(n*?)
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An overview: Name-independent Model

network

space/node (bits)

bounded growth O(1)
doubling-a dim. O(1)
H-minor-free O(1)
(unweighted)
trees O(n'/*)
arbitrary O(v/n)



An overview: Name-independent Model

network stretch  space/node (bits)
bounded growth  1+¢  O(1) [Abraham et al]
doubling-a dim. 9 +¢ O~(1) [Konjevod et a./Abraham,G. et al]
H-minor-free o) O(1) [Abraham,G ]

(unweighted)

trees 2k —1  O(n'/%) [Laing]
arbitrary 3 O(\/ﬁ) [A.,G.,Malkhi,Nisan, Thorup]
O(k%2%¥)  O(n'*) [Arias e a./Awerbuch, Peleg]
O(k) O(nl/k) [Abraham,G. et al]
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Lower Bounds for Name-Independent

Rem: lower bound for labeled = lower bound for name-indep

network stretch space/node (bits)
arbitrary <14 Q(nlogn)
<3 Q(n)

(only k=1,2,3,x,5) <2k+1 Q(n'/*

trees <3 Q(v/n)
<9—¢  Q(nle/60%)
forall £ > 1 <2k+1 Lnlogn)V/k
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graph.
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© Any name-indep. routing scheme using < %(n logn)
bits/node has a max stretch > 2k + 1 for some graph.
1/k

1/k

Q@ Any name-indep. routing scheme using < £(n/k)
bits/node has an average stretch > k/4 for some
graph.

4

Rem 1: All previous lower bounds for labeled case (Peleg,Upfal
/ G.,Pérennés / G.,Gengler / Kranakis,Krizanc / Thorup,Zwick)
are based on the construction of dense large girth graphs

v
[ nalining if stretch< 2k + 1, then

U D u 1s forced to "know"
\ the edge (u,v)

2k + 2



Theorem [Abraham,G.,Malkhi

Q Any name-indep. routing scheme using < £(nlog n)t/k
bits/node has a max stretch > 2k + 1 for some graph.

Q@ Any name-indep. routing scheme using < %(n/k)"/*
bits/node has an average stretch > k/4 for some
graph.

4

Erdds-Simonovits Conjecture: 3 graph of girth 2k + 2 with
Q(n'*1/k) edges (proved only for k = 1,2,3,5). So, the extra
(logn)* term cannot be obtained with a girth approach.



Theorem [Abraham,G.,Malkhi

© Any name-indep. routing scheme using < %(n log n)'/k
bits/node has a max stretch > 2k + 1 for some graph.

Q@ Any name-indep. routing scheme using < %(n/k)"/*
bits/node has an average stretch > k/4 for some
graph.

4

Rem 2: It makes a clear separation between labeled and name-
independent routing, at least for the average stretch.

In the labelel model, schemes with polylog(n) space and con-
stant average stretch do exsit for every graph!

In the name-indep model, if space is polylog(n), then the
average stretch must be Q(logn/loglogn) for some graphs.
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The Metric Model

A weaker model, but conceptually easier

Input: a metric space (V,d)
Ouput: an overlay network G = (V, E'), and a routing
scheme for G

An extra complexity measure: the size |E| of the overlay

Goal: to minimize the size of (G, and the space for each
node must be ~ the average degree of G



Example: Stretch-3 for Arbitrary Metric

o
o oo o o , o .
o o o
o o o ° ° o
o o . o ° o
o o o U
o U o o o
°, o o
o o o
o
o o o o



Example: Stretch-3 for Arbitrary Metric

o

B, = the set of vnlnn closest nodes from



Example: Stretch-3 for Arbitrary Metric

o

B, = the set of vnlnn closest nodes from
L = hitting set of {B, | u € V'} of size < vVnlnn



Example: Stretch-3 for Arbitrary Metric

o

B, = the set of vnlnn closest nodes from
L = hitting set of {B, | u € V'} of size < vVnlnn

Overlay: v — w, YVw € B, and u — {,V{ € L



Example: Stretch-3 for Arbitrary Metric

o

B, = the set of vnlnn closest nodes from
L = hitting set of {B, | u € V'} of size < vVnlnn

Overlay: v — w, YVw € B, and u — {,V{ € L
= |E| < X, (I1Bul + |L]) < n*2vInn



Example: Stretch-3 for Arbitrary Metric

o

B, = the set of vnlnn closest nodes from
L = hitting set of {B, | u € V'} of size < vVnlnn

Overlay: v — w, YVw € B, and u — {,V{ € L
= |E| < X, (I1Bul + |L]) < n*2vInn

Routing: ‘If v € B,, route u ~ v, else u ~ £, ~ v‘




Example: Stretch-3 for Arbitrary Metric

o

B, = the set of vnlnn closest nodes from
L = hitting set of {B, | u € V'} of size < vVnlnn

Overlay: v — w, YVw € B, and u — {,V{ € L
= |E| < X, (I1Bul + |L]) < n*2vInn

Routing: ‘If v € B,, route u ~ v, else u ~ £, ~ v‘




Example: Stretch-3 for Arbitrary Metric

[e]

B, = the set of vnlnn closest nodes from
L = hitting set of {B, | u € V'} of size < vVnlnn

Overlay: v — w, YVw € B, and u — {,V{ € L
= |E| < X, (I1Bul + |L]) < n*2vInn

Routing: ‘If v € B,, route u ~ v, else u ~ £, ~ v‘

Rem: ¢, — v is not easy to implement in the graph model
(usually simulated with some tree routings)
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Both labeled and name-independent variants exist ...

metric stretch average degree
Euclidian R?
(d=2) o) 0O1)
(name-indep.) o) 0Q1)
1+e O(1)
doubling-a dim.

1+¢ (:)(logA)
14 O
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Problem: there is no stretch-space trade-off for routing in
directed graphs! The stretch maybe not bounded
if o(n) bits of memory are used, even in strongly
connected digraphs [Thorup,Zwick]



Undirected vs. Directed

(graph model only!)

Problem: there is no stretch-space trade-off for routing in
directed graphs! The stretch maybe not bounded
if o(n) bits of memory are used, even in strongly
connected digraphs [Thorup,Zwick]

New measure: roundtrip stretch factor

[route(u, v)| + |route(v, u)|

tretch =
SHeRe dist(u, v) + dist(v, u)

Rem: dist(u,v) + dist(v, u) is now a distance function



Some Results for Arbitrary Digraphs

Labeled: [Roditty, Thorup,Zwick - SODA '02]

stretch=4k + ¢ stretch=3
space=0 (e~ 'kn'/*log A)  space=O(y/nlogA)
labels=o0(c 'k log* nlog A) labels=0(log” nlog A)

Name-independent: [Arias,Cowen,Laing - PODC '03]

stretch=0(k?) stretch=6
space=0 (e~ 'kn'/*log A)  space=0(y/nlogA)
labels=0(¢"'k%log” nlog A) labels=o(log” nlog A)

Lower bound: if stretch < 2, then £2(n) bits is required



Open Questions: Arbitrary Networks

Q1: Labeled: stretch < 4k — O(1) for O(n'/*) space.
Optimal only for k = 1,2. The lower bound on
the stretch is < 2k — 1.
For &k = 4, the lower bound is even not known to be
2k — 1 because the Erdds-Simonovits conjecture is
proved only for k = 1,2, 3, x, 5.
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Open Questions: Arbitrary Networks

Q1: Labeled: stretch < 4k — O(1) for O(n'/*) space.
Optimal only for k = 1,2. The lower bound on
the stretch is < 2k — 1.
For &k = 4, the lower bound is even not known to be
2k — 1 because the Erdds-Simonovits conjecture is
proved only for k = 1,2, 3, x, 5.

Q2: Name-independent = labeled 777
For £k = 1,2, the same bounds hold.

Q3: Directed = Undirected???
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Open Questions: Specific Networks

Q4: Name-indep. scheme for unweighted trees:
What's the best stretch if using polylog space?
Current best stretch: 17.

Q5: Labeled scheme for weighted treewidth-k: Can we
do shortest path with o(klog® n)-bit table &
labels?

True for trees and weighted outerplanar (and even
K3 4-minor free graphs): ©(log®n/loglogn) bits are
enough and necessary [Dieng,G.]. What about
weighted series-parallel graphs?

Q6: Shortest path in planar with polylog labels: space

ranges between Q(n'/?) ... O(n).
Current best bound: 7.18n bits [Lu'02].
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Q7: O(deg(u)) with constant stretch for general
graphs? What about bounded degree graphs?
Sparse graphs are known to be non-compact. But,
bounded degree nodes “increase” distances, so stretch
tends to 1. No lower bounds are known. Bounded
degree includes expanders ...
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Open Questions: Misc

Q7: O(deg(u)) with constant stretch for general
graphs? What about bounded degree graphs?
Sparse graphs are known to be non-compact. But,
bounded degree nodes “increase” distances, so stretch
tends to 1. No lower bounds are known. Bounded
degree includes expanders ...

Q8: Average stretch? e-slack routing?
Labeled and name-indep. differ. Average stretch &
additive stretch are interesting in practice.

Q9: Distributed algorithms for constructing tables?
Known for some speficic graphs (planar,
[Frederickson'90]). Best o(n?®)-message distributed
implementation of stretch-3 space-y/n name-indep.
Abraham et al.’s scheme has stretch ... only 5.



Thank youl!



