Dynamic Algorithms via Forbidden-Set Labeling

Cyril Gavoille

(LaBRI, University of Bordeaux)

Contents

- 1. Generalities on dynamic algorithms
- 2. Forbidden-set data-structures
- 3. Forbidden-set routing schemes

Contents

- 1. Generalities on dynamic algorithms
- 2. Forbidden-set data-structures
- 3. Forbidden-set routing schemes

Queries in Dynamic Graphs

Maintaining data-structures for dynamic graphs (node/edge addition/deletion) supporting queries like:

- Connectivity: Find_G(u)?
- Approximate distances: d_G(s,t)?
- Near-shortest path routing: Next-Hop_G(s,t)?

***** ...

Query (s,t), Update, Query(s',t'), Update, ...

Goals for a Dynamic Scenario

 Fast query time (must be << time to answer the query in G without pre-processing)

Ex: $d_G(s,t)$. Instead of O(m+nlogn) time for Dijkstra, prefer O(n^{ε}) or even polylog(n) query time

Fast update time (must be << pre-processing time)

Ex: instead of $O(n^3)$ time for an All-Shortest-Path-Pair algorithm, prefer $O(n^{\varepsilon})$ or polylog(n) update time

Observation

Fast update time → Small data-structure

If the space is S(n), then amortized update time must be $\geq S(n)/n$ (starting for $G=\emptyset$ and adding n nodes)

A dynamic scenario with low update time requires a "compact" data-structure solution in the static scenario.

Here compact does not means to store with gzip, but to only store what you need (possibly in a clever way).

An Algorithmic Challenge

- Optimal solutions exist ... for trees [Tarjan, Cole,...]
- Connectivity is still open for dynamic general graphs
- Widely open for distance & routing queries

In general, node deletion is the most costly operation. In this talk focus on scenario:

Q(s,t), Delete x, Q(s',t), Delete x', ...

Contents

- 1. Generalities on dynamic algorithms
- 2. Forbidden-set data-structures
- 3. Forbidden-set routing schemes

Forbidden-Set Queries

Consider available a data-structure supporting query $Q^*(s,t,X)$, the query Q(s,t) in the graph $G\setminus X$, for a static graph G and for any $\{s,t\}\cup X\subseteq V(G)$

We can solve the dynamic scenario using Q* as follows:

- If node x is deleted, then just update the set X of forbidden nodes
- If ask for Q(s,t) in G\X, then use Q*(s,t,X) on G
- If query time is too big, then recompute a static datastructure for Q* for the new static graph G'=G\X

Low Amortized Updates

Assume G is a sparse graph, has n nodes, and:

- Pre-processing time for Q* in G is nlogn
- query time of Q*(s,t,X) is |X|-logn

Then, recompute Q* whenever $|X| \ge \sqrt{(2n)}$

- Query time is ≤ V(2n)·logn
- Amortized update time for n operations:
 ((1+2+...+|X|)·logn + nlogn)/|X| ≈ √(2n)·logn
 Sublinear!

Contents

- 1. Generalities on dynamic algorithms
- 2. Forbidden-set data-structures
- 3. Forbidden-set routing schemes

The Compact Routing Problem

Input: a network G (a connected graph)

Output: a routing scheme for G

A routing scheme allows any source node to route messages to any destination node, given the destination's network identifier.

Node identifiers can be chosen by the designer of the scheme as a routing label whose length is a parameter.

Ex: Grid with X,Y-coordinates

Routes are constructed in a distributed manner

... according to some local routing tables (or routing algorithms)

... and subgraphs of the grid?

(x,y)-coordinates no longer sufficient; routing in planar graphs...

Routes are constructed in a distributed manner

... according to some local routing tables (or routing algorithms)

Quality & Complexity Measures

- Near-shortest paths: |route(s,t)| ≤ stretch · d_G(s,t)
- Size of the labels and routing tables
- Goal: constant stretch & compact (polylog) tables/labels

Trivial upper bound: O(nlogn) bits, each node stores the neighbour on the next-hop towards each destination

Routing in Static Planar Graphs

Stretch-1 [G. et al., J. Algorithms' 04]

Shortest-path routing on weighted planar graphs requires labels of $\Omega(\sqrt{n})$ bits. Treewidth-k graphs have stretch-1 routing schemes with $O(k \log^2 n)$ -bit labels. For planar, $k=\sqrt{n}$.

Stretch > 1 [Thorup, JACM' 04]

Weighted planar graphs have $(1+\varepsilon)$ -stretch routing schemes with $(1/\varepsilon)$. O($\log^2 n$)-bit labels.

Forbidden-Set Routing

Forbidden-Set Routing

Input: a network G

Output: a forbidden-set routing scheme for G

A forbidden-set routing scheme allows any source node s to route messages to any destination node t, avoiding any set X of forbidden nodes or edges, given the local table of s, the identifier of t and the identifiers of nodes/edges in X.

Motivations

Routing around failures

- Routing schemes are generally static; recomputation of labels/routing tables is costly.
- The set X can be a set of failed nodes/edges
- Best known techniques only handle single failures e.g. "fast reroute", Cisco not-via

Internet routing

- ASes want control over where their packets travel; shortest-path routing not expressive enough
- BGP allows AS i to specify that its packets avoid AS j

Forbidden-Set Routing

[Upper bounds]

O(nlogn) no longer trivial!

The trivial upper bound is to store the entire graph at each node \rightarrow O(n²) bits/node.

[Lower bounds]

Static scenario applies (take X= \emptyset), i.e., $\Omega(n)$ for general graphs, and $\Omega(\forall n)$ for planar.

Known Results on Forbidden-Set Labeling

[Courcelle-Twigg, STACS' 07]

Stretch-1 forbidden-set distance and routing in treewidth-k graphs with O(k² log²n)-bit labels.

[Chechik-G.-Peleg, PODC' 10]

Stretch-(1+ ϵ) forbidden-set distance and routing in unweighted graphs of doubling dimension with labels of (1/ ϵ) polylog(n)-bit labels.

New Results

[Abraham-Chechik-G., 2011]

Stretch-(1+ ϵ) forbidden-set distance and routing in weighted planar graphs with (1/ ϵ) polylog(n)-bit labels.

→ Corollary: \forall n · polylog(n) worst-case query and update time for (1+ ϵ)-approximated distance oracle in dynamic planar graphs.

Previous bound: n^{2/3} [Klein et al., Algorithmica'98]

Conclusion

A proof of concept:

Forbidden-Set Labeling Schemes with short labels (i.e., local & compact data-structures) indeed do help for the design of efficient data-structures in dynamic graphs.

Thank you!