
Routing in Distributed Systems
- Lecture 3 -

Cyril Gavoille

University of Bordeaux, France

April 6-9, 2009

Valparáıso, Chile

1 Routing with Succinct Tables
2 Constructing Sparse Spanners
3 Routing v.s. Spanners

- Lecture 3 -

Routing v.s. Spanners

Outline

The Question and the Answer

A Naive Approach

The Proof

Outline

The Question and the Answer

A Naive Approach

The Proof

Summary

stretch size

2k − 1 O(n1+1/k) Greedy Algorithm

2k − 1 O(kn1+1/k) Tree Cover

4k − 5 Õ(kn1/k) Routing (using T.C.)

+ 2 O(n3/2) Tree Cover

+ 6 O(n4/3) Spanner (T.C.?)

+ f(k) O(n1+1/k)??? for k > 3

Recall: a tree cover has stretch s if, for all nodes x, y of G, there

exists a T in the cover such that dT (x, y) 6 s · dG(x, y). Its size is

the number of edges in the subgraph induces by all its trees.

The Question

Question:

Can we make additively stretched spanners routable?

!!! It might be the wrong question !!!

Question (v2):

Is there a universal routing scheme with sublinear space and
additive stretch?

The Question

Question:

Can we make additively stretched spanners routable?

!!! It might be the wrong question !!!

Question (v2):

Is there a universal routing scheme with sublinear space and
additive stretch?

The Question

Question:

Can we make additively stretched spanners routable?

!!! It might be the wrong question !!!

Question (v2):

Is there a universal routing scheme with sublinear space and
additive stretch?

Yes or No?

PRO: Numerology!

Spanner: stretch-3 for size O(n3/2)
Routing: stretch-3 for size Õ(n1/2)

Spanner: stretch-O(k) for size O(n1+1/k)
Routing: stretch-O(k) for size Õ(n1/k)

Is it really just a coincidence?

There exist spanners of size o(n2) with constant additive
stretch (ex: size n3/2 or n4/3 for stretch +2 or +6).

It should exist sublinear compact routing scheme with
constant additive stretch!!!

Yes or No?

PRO: Numerology!

Spanner: stretch-3 for size O(n3/2)
Routing: stretch-3 for size Õ(n1/2)

Spanner: stretch-O(k) for size O(n1+1/k)
Routing: stretch-O(k) for size Õ(n1/k)

Is it really just a coincidence?

There exist spanners of size o(n2) with constant additive
stretch (ex: size n3/2 or n4/3 for stretch +2 or +6).

It should exist sublinear compact routing scheme with
constant additive stretch!!!

Yes or No?

PRO: Numerology!

Spanner: stretch-3 for size O(n3/2)
Routing: stretch-3 for size Õ(n1/2)

Spanner: stretch-O(k) for size O(n1+1/k)
Routing: stretch-O(k) for size Õ(n1/k)

Is it really just a coincidence?

There exist spanners of size o(n2) with constant additive
stretch (ex: size n3/2 or n4/3 for stretch +2 or +6).

It should exist sublinear compact routing scheme with
constant additive stretch!!!

Yes or No?

CON: spanners do not tell us how to route on sparse graphs.

The problem is:

Spanner: prove ∃ a short path

Routing: construct a short path

An Impossibility Result

Theorem (2009)

Every routing strategy providing, for each unweighted
connected n-node graph, a labeled routing scheme with tables
and addresses 6 µ bits, produces, for some graph, an additive
stretch Ω(n1/3/µ2/3).

Corollary: The additive stretch of every universal routing
strategy with tables and addresses in o(

√
n) is unbounded.

In particular, the stretch-7 routing scheme with Õ(n1/3)-bit
tables must have an additive stretch of nΩ(1).

An Impossibility Result

Theorem (2009)

Every routing strategy providing, for each unweighted
connected n-node graph, a labeled routing scheme with tables
and addresses 6 µ bits, produces, for some graph, an additive
stretch Ω(n1/3/µ2/3).

Corollary: The additive stretch of every universal routing
strategy with tables and addresses in o(

√
n) is unbounded.

In particular, the stretch-7 routing scheme with Õ(n1/3)-bit
tables must have an additive stretch of nΩ(1).

Outline

The Question and the Answer

A Naive Approach

The Proof

Idea: Amplify Detours

1 Consider a graph G for which every stretch-s routing
scheme requires tables of size > µ.
[if |tables| < µ, then the additive stretch is > s− 1]

2 Construct G′ from G by replacing each edge by a path of
length δ.

Our Guess: Every stretch-s routing scheme on G′ with tables
of size < µ must have an additive stretch > δ(s− 1).

Idea: Amplify Detours

1 Consider a graph G for which every stretch-s routing
scheme requires tables of size > µ.
[if |tables| < µ, then the additive stretch is > s− 1]

2 Construct G′ from G by replacing each edge by a path of
length δ.

Our Guess: Every stretch-s routing scheme on G′ with tables
of size < µ must have an additive stretch > δ(s− 1).

Idea: Amplify Detours

1 Consider a graph G for which every stretch-s routing
scheme requires tables of size > µ.
[if |tables| < µ, then the additive stretch is > s− 1]

2 Construct G′ from G by replacing each edge by a path of
length δ.

Our Guess: Every stretch-s routing scheme on G′ with tables
of size < µ must have an additive stretch > δ(s− 1).

Example: Lower Bound for Stars

Restriction: addresses are fixed by an adversary, and cannot be

changed/optimized by the designer of the routing scheme

(name-independent).

n

π(n)π(i)π(3)π(2)π(1)

i

root

1 2 3

Proof: if stretch < +2, then the number of distinct routing
tables at the root must be > n!. ⇒ a star needs at its root
µ > log(n!) ∼ n log n.

Example: Lower Bound for Stars

Restriction: addresses are fixed by an adversary, and cannot be

changed/optimized by the designer of the routing scheme

(name-independent).

Claim: if µ < n log n,
then stretch > +2.

n

π(n)π(i)π(3)π(2)π(1)

i

root

1 2 3

Proof: if stretch < +2, then the number of distinct routing
tables at the root must be > n!. ⇒ a star needs at its root
µ > log(n!) ∼ n log n.

Example: Lower Bound for Stars

Restriction: addresses are fixed by an adversary, and cannot be

changed/optimized by the designer of the routing scheme

(name-independent).

Claim: if µ < n log n,
then stretch > +2.

n

π(n)π(i)π(3)π(2)π(1)

i

root

1 2 3

Proof: if stretch < +2, then the number of distinct routing
tables at the root must be > n!. ⇒ a star needs at its root
µ > log(n!) ∼ n log n.

Longer Detour

Let us show that for some small enough constant c > 0:
if µ < cn log n, then stretch > +2.

wi

i

root

1 2

π(1) π(2) π(i) π(n/2)

n/2

Proof #1: Consider routing from root to any leaf y = π(i).
If µ < log((n/2)!) ∼ 1

2
n log n, then stretch > +4???

No! because we traverse new nodes (possibly two) before

selecting the right branch. These nodes have µ bits of information

and might change the decision at the root.

Longer Detour

Let us show that for some small enough constant c > 0:
if µ < cn log n, then stretch > +2.

wi

i

root

1 2

π(1) π(2) π(i) π(n/2)

n/2

Proof #1: Consider routing from root to any leaf y = π(i).
If µ < log((n/2)!) ∼ 1

2
n log n, then stretch > +4???

No! because we traverse new nodes (possibly two) before

selecting the right branch. These nodes have µ bits of information

and might change the decision at the root.

Longer Detour

wi

i

root

1 2

π(1) π(2) π(i) π(n/2)

n/2

Proof #2: Set µ low enough: 2µ < log((n/2)!), or
µ ∼ 1

4
n log n. If stretch 6 +2 for all y, then the route to y

has to traverse a new node w not on the y’s branch. By the
choice of µ,

µ(w) + µ(root) 6 2µ < log((n/2)!)

We know that, after a detour of +2, the root has not enough
information yet to correctly route to all y. So, the route
requires a second detour of +2.

⇒ If µ < 1
4
n log n−O(n), then stretch > +4.

WRONG! WRONG! WRONG! WRONG! WRONG!

wi

i

root

1 2

π(1) π(2) π(i) π(n/2)

n/2

Routing scheme with O(log n)-bit tables and stretch +2:

Middle node wi in the branch of π(i) stores integer p such that
π(p) = i. If we arrive at wi, it means we want to route to the leaf
named “i”.

Routing from root → i ∈ [1, n/2]: 1) Route to port i; 2) Read p at

wi; 3) Come back to the root; 4) use port p. Stretch is +2.

Conclusion of this Story

One cannot design lower bounds on Information Theory based
on arguments like:

“I know that node x does not know information I,
so it has to store it.

Thus node x must store |I| bits.”

Proving that x stores at least |I| bits requires a proof.

Outline

The Question and the Answer

A Naive Approach

The Proof

Preliminaries

Let R be a routing scheme on G, i.e.,

R : (xi, hi, qi) 7→ (pi, hi+1)

hi+2
xi qi+1

hi pi+1

xi+1

hi+1

qi

pi

Definition
The “memory requirements” of R at x is the size in bits of the
smallest program (say in C) implementing function R(x, ·, ·).

Preliminaries

Let R be a routing scheme on G, i.e.,

R : (xi, hi, qi) 7→ (pi, hi+1)

hi+2
xi qi+1

hi pi+1

xi+1

hi+1

qi

pi

Definition
The “memory requirements” of R at x is the size in bits of the
smallest program (say in C) implementing function R(x, ·, ·).

The Graph Family F = F(p, δ)

Graphs of F are constructed from all p× p boolean matrices.
Sets of p nodes: S = {si}, A = {ai}, B = {bi}, and
T = {tj}.

b1b2b3a3a2a1

t3

t2

t1

s3

s2

s1

M =

 0 0 1
1 1 0
0 0 1



Connect a path of length δ between: si ai, si bi, and
tj ai if M [i, j] = 1, and tj bi if M [i, j] = 0.

Properties

Consider any G = G(M) ∈ F.

Property

Every walk in G from si to tj of length ρ < dG(si, tj) + 2δ
contains node ai if and only if M [i, j] = 1.

b1b2b3a3a2a1

t3

t2

t1

s3

s2

s1

M =

 0 0 1
1 1 0
0 0 1



Consider any routing strategy for F producing, for each
G ∈ F, a routing scheme R with addresses and tables of size
6 µ and additive stretch β < 2δ.

Observation: Property applies to the route length of R from
si to tj.

Let K(M) be the length of the shortest program that outputs
M and that stops (Kolmogorov Complexity).

There must exist M with K(M) > p2.

Consider any routing strategy for F producing, for each
G ∈ F, a routing scheme R with addresses and tables of size
6 µ and additive stretch β < 2δ.

Observation: Property applies to the route length of R from
si to tj.

Let K(M) be the length of the shortest program that outputs
M and that stops (Kolmogorov Complexity).

There must exist M with K(M) > p2.

b1b2b3a3a2a1

t3

t2

t1

s3

s2

s1

Consider the program P that simulates, for all (si, tj), the first
routing decisions from si to tj until ai or bi is left for ever.

1 P outputs M [because of the Property, as β < 2δ]

2 |P | 6 3δ p µ [because P uses addresses of tj ’s, algorithms

R(x, ·, ·) for all x of the paths from si to ai and bi.]

b1b2b3a3a2a1

t3

t2

t1

s3

s2

s1

Consider the program P that simulates, for all (si, tj), the first
routing decisions from si to tj until ai or bi is left for ever.

1 P outputs M [because of the Property, as β < 2δ]

2 |P | 6 3δ p µ [because P uses addresses of tj ’s, algorithms

R(x, ·, ·) for all x of the paths from si to ai and bi.]

Since P outputs M , we must have |P | > K(M). Choose M
such that K(M) is maximal, K(M) > p2. So,

3δ p µ > |P | > K(M) > p2 .

So, if β < 2δ (i.e., Property holds), then 3δµ > p.

Choose, δ = 1
4
p/µ.

Then, 3δµ < p, and thus we have that β > 2δ = 1
2
p/µ.

Number of nodes in G:
n = δ(2p + p2) 6 3δp2 6 3

4
p3/µ.

And thus p > (µn)1/3.

We have therefore proved that:

β > 1
2
(µn)1/3/µ = 1

2
n1/3/µ2/3

QED

THANK YOU!

	The Question and the Answer
	A Naive Approach
	The Proof

