Routing in Distributed Systems
 - Lecture 3 -

Cyril Gavoille

University of Bordeaux, France

April 6-9, 2009
Valparaíso, Chile

- Routing with Succinct Tables
- Constructing Sparse Spanners
- Routing v.s. Spanners

- Lecture 3 -

Routing v.s. Spanners

Outline

The Question and the Answer

A Naive Approach

The Proof

Outline

The Question and the Answer

A Naive Approach

The Proof

Summary

stretch size

$$
\begin{array}{lll}
2 k-1 & O\left(n^{1+1 / k}\right) & \text { Greedy Algorithm } \\
2 k-1 & O\left(k n^{1+1 / k}\right) & \text { Tree Cover } \\
4 k-5 & \tilde{O}\left(k n^{1 / k}\right) & \text { Routing (using T.C.) } \\
+2 & O\left(n^{3 / 2}\right) & \text { Tree Cover } \\
+6 & O\left(n^{4 / 3}\right) & \text { Spanner (T.C.?) } \\
+f(k) & O\left(n^{1+1 / k}\right) ? ? ? & \text { for } k>3 \\
\hline
\end{array}
$$

Recall: a tree cover has stretch s if, for all nodes x, y of G, there exists a T in the cover such that $d_{T}(x, y) \leqslant s \cdot d_{G}(x, y)$. Its size is the number of edges in the subgraph induces by all its trees.

The Question

Question:

Can we make additively stretched spanners routable?

The Question

Question:

Can we make additively stretched spanners routable?
!!! It might be the wrong question !!!

The Question

Question:

Can we make additively stretched spanners routable?
!!! It might be the wrong question !!!
Question (v2):
Is there a universal routing scheme with sublinear space and additive stretch?

Yes or No?

Yes or No?

PRO: Numerology!
Spanner: stretch-3 for size $O\left(n^{3 / 2}\right)$
Routing: stretch-3 for size $\tilde{O}\left(n^{1 / 2}\right)$
Spanner: stretch- $O(k)$ for size $\underset{\tilde{O}}{O}\left(n^{1+1 / k}\right)$
Routing: stretch- $O(k)$ for size $\tilde{O}\left(n^{1 / k}\right)$
Is it really just a coincidence?

Yes or No?

PRO: Numerology!
Spanner: stretch-3 for size $O\left(n^{3 / 2}\right)$
Routing: stretch-3 for size $\tilde{O}\left(n^{1 / 2}\right)$
Spanner: stretch- $O(k)$ for size $O\left(n^{1+1 / k}\right)$
Routing: stretch- $O(k)$ for size $\tilde{O}\left(n^{1 / k}\right)$
Is it really just a coincidence?

- There exist spanners of size $o\left(n^{2}\right)$ with constant additive stretch (ex: size $n^{3 / 2}$ or $n^{4 / 3}$ for stretch +2 or +6).
- It should exist sublinear compact routing scheme with constant additive stretch!!!

Yes or No?

CON: spanners do not tell us how to route on sparse graphs.
The problem is:

- Spanner: prove \exists a short path
- Routing: construct a short path

An Impossibility Result

Theorem (2009)

Every routing strategy providing, for each unweighted connected n-node graph, a labeled routing scheme with tables and addresses $\leqslant \mu$ bits, produces, for some graph, an additive stretch $\Omega\left(n^{1 / 3} / \mu^{2 / 3}\right)$.

An Impossibility Result

Theorem (2009)

Every routing strategy providing, for each unweighted connected n-node graph, a labeled routing scheme with tables and addresses $\leqslant \mu$ bits, produces, for some graph, an additive stretch $\Omega\left(n^{1 / 3} / \mu^{2 / 3}\right)$.

Corollary: The additive stretch of every universal routing strategy with tables and addresses in $o(\sqrt{n})$ is unbounded. In particular, the stretch-7 routing scheme with $\tilde{O}\left(n^{1 / 3}\right)$-bit tables must have an additive stretch of $n^{\Omega(1)}$.

Outline

The Question and the Answer

A Naive Approach

The Proof

Idea: Amplify Detours

(1) Consider a graph G for which every stretch- s routing scheme requires tables of size $\geqslant \mu$. [if \mid tables $\mid<\mu$, then the additive stretch is $>s-1$]

Idea: Amplify Detours

(1) Consider a graph G for which every stretch- s routing scheme requires tables of size $\geqslant \mu$. [if \mid tables $\mid<\mu$, then the additive stretch is $>s-1$]
(2) Construct G^{\prime} from G by replacing each edge by a path of length δ.

Idea: Amplify Detours

(1) Consider a graph G for which every stretch- s routing scheme requires tables of size $\geqslant \mu$. [if \mid tables $\mid<\mu$, then the additive stretch is $>s-1$]
(2) Construct G^{\prime} from G by replacing each edge by a path of length δ.

Our Guess: Every stretch-s routing scheme on G^{\prime} with tables of size $<\mu$ must have an additive stretch $>\delta(s-1)$.

Example: Lower Bound for Stars

Restriction: addresses are fixed by an adversary, and cannot be changed/optimized by the designer of the routing scheme (name-independent).

Example: Lower Bound for Stars

Restriction: addresses are fixed by an adversary, and cannot be changed/optimized by the designer of the routing scheme (name-independent).

Claim: if $\mu<n \log n$, then stretch $\geqslant+2$.

Example: Lower Bound for Stars

Restriction: addresses are fixed by an adversary, and cannot be changed/optimized by the designer of the routing scheme (name-independent).

Claim: if $\mu<n \log n$, then stretch $\geqslant+2$.

Proof: if stretch $<+2$, then the number of distinct routing tables at the root must be $\geqslant n!. \Rightarrow$ a star needs at its root $\mu \geqslant \log (n!) \sim n \log n$.

Longer Detour

Let us show that for some small enough constant $c>0$: if $\mu<c n \log n$, then stretch $>+2$.

Proof \#1: Consider routing from root to any leaf $y=\pi(i)$. If $\mu<\log ((n / 2)!) \sim \frac{1}{2} n \log n$, then stretch $\geqslant+4$???

Longer Detour

Let us show that for some small enough constant $c>0$: if $\mu<c n \log n$, then stretch $>+2$.

Proof \#1: Consider routing from root to any leaf $y=\pi(i)$. If $\mu<\log ((n / 2)!) \sim \frac{1}{2} n \log n$, then stretch $\geqslant+4$???
No! because we traverse new nodes (possibly two) before selecting the right branch. These nodes have μ bits of information and might change the decision at the root.

Longer Detour

Proof \#2: Set μ low enough: $2 \mu<\log ((n / 2)$! $)$, or $\mu \sim \frac{1}{4} n \log n$. If stretch $\leqslant+2$ for all y, then the route to y has to traverse a new node w not on the y 's branch. By the choice of μ,

$$
\mu(w)+\mu(\text { root }) \leqslant 2 \mu<\log ((n / 2)!)
$$

We know that, after a detour of +2 , the root has not enough information yet to correctly route to all y. So, the route requires a second detour of +2 .

$$
\Rightarrow \text { If } \mu<\frac{1}{4} n \log n-O(n), \text { then stretch } \geqslant+4
$$

WRONG! WRONG! WRONG! WRONG! WRONG!

Routing scheme with $O(\log n)$-bit tables and stretch +2 : Middle node w_{i} in the branch of $\pi(i)$ stores integer p such that $\pi(p)=i$. If we arrive at w_{i}, it means we want to route to the leaf named " i ".

Routing from root $\rightarrow i \in[1, n / 2]$: 1) Route to port i; 2) Read p at w_{i}; 3) Come back to the root; 4) use port p. Stretch is +2 .

Conclusion of this Story

One cannot design lower bounds on Information Theory based on arguments like:
"I know that node x does not know information I, so it has to store it.
Thus node x must store $|I|$ bits."

Proving that x stores at least $|I|$ bits requires a proof.

Outline

The Question and the Answer

A Naive Approach

The Proof

Preliminaries

Let R be a routing scheme on G, i.e.,

$$
R:\left(x_{i}, h_{i}, q_{i}\right) \mapsto\left(p_{i}, h_{i+1}\right)
$$

Preliminaries

Let R be a routing scheme on G, i.e.,

$$
R:\left(x_{i}, h_{i}, q_{i}\right) \mapsto\left(p_{i}, h_{i+1}\right)
$$

Definition

The "memory requirements" of R at x is the size in bits of the smallest program (say in C) implementing function $R(x, \cdot, \cdot)$.

The Graph Family $\mathcal{F}=\mathcal{F}(p, \delta)$

Graphs of \mathcal{F} are constructed from all $p \times p$ boolean matrices. Sets of p nodes: $S=\left\{s_{i}\right\}, A=\left\{a_{i}\right\}, B=\left\{b_{i}\right\}$, and $T=\left\{t_{j}\right\}$.

$$
M=\left[\begin{array}{lll}
0 & 0 & 1 \\
1 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

Connect a path of length δ between: $s_{i} \rightsquigarrow a_{i}, s_{i} \rightsquigarrow b_{i}$, and $t_{j} \rightsquigarrow a_{i}$ if $M[i, j]=1$, and $t_{j} \rightsquigarrow b_{i}$ if $M[i, j]=0$.

Properties

Consider any $G=G(M) \in \mathcal{F}$.

Property

Every walk in G from s_{i} to t_{j} of length $\rho<d_{G}\left(s_{i}, t_{j}\right)+2 \delta$ contains node a_{i} if and only if $M[i, j]=1$.

$$
M=\left[\begin{array}{lll}
0 & 0 & 1 \\
1 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

Consider any routing strategy for \mathcal{F} producing, for each $G \in \mathcal{F}$, a routing scheme R with addresses and tables of size $\leqslant \mu$ and additive stretch $\beta<2 \delta$.
Observation: Property applies to the route length of R from s_{i} to t_{j}.

Consider any routing strategy for \mathcal{F} producing, for each $G \in \mathcal{F}$, a routing scheme R with addresses and tables of size $\leqslant \mu$ and additive stretch $\beta<2 \delta$.
Observation: Property applies to the route length of R from s_{i} to t_{j}.

Let $K(M)$ be the length of the shortest program that outputs M and that stops (Kolmogorov Complexity).
There must exist M with $K(M) \geqslant p^{2}$.

Consider the program P that simulates, for all $\left(s_{i}, t_{j}\right)$, the first routing decisions from s_{i} to t_{j} until a_{i} or b_{i} is left for ever.

Consider the program P that simulates, for all $\left(s_{i}, t_{j}\right)$, the first routing decisions from s_{i} to t_{j} until a_{i} or b_{i} is left for ever.
(1) P outputs M [because of the Property, as $\beta<2 \delta$]
(2) $|P| \leqslant 3 \delta p \mu$ [because P uses addresses of t_{j} 's, algorithms $R(x, \cdot, \cdot)$ for all x of the paths from s_{i} to a_{i} and b_{i}.]

Since P outputs M, we must have $|P| \geqslant K(M)$. Choose M such that $K(M)$ is maximal, $K(M) \geqslant p^{2}$. So,

$$
3 \delta p \mu \geqslant|P| \geqslant K(M) \geqslant p^{2} .
$$

So, if $\beta<2 \delta$ (i.e., Property holds), then $3 \delta \mu \geqslant p$.

Choose, $\delta=\frac{1}{4} p / \mu$.
Then, $3 \delta \mu<p$, and thus we have that $\beta \geqslant 2 \delta=\frac{1}{2} p / \mu$.
Number of nodes in G :
$n=\delta\left(2 p+p^{2}\right) \leqslant 3 \delta p^{2} \leqslant \frac{3}{4} p^{3} / \mu$.
And thus $p \geqslant(\mu n)^{1 / 3}$.
We have therefore proved that:

$$
\beta \geqslant \frac{1}{2}(\mu n)^{1 / 3} / \mu=\frac{1}{2} n^{1 / 3} / \mu^{2 / 3}
$$

QED

THANK YOU!

