Routing in Distributed Systems - Lecture 3 -

Cyril Gavoille

University of Bordeaux, France

April 6-9, 2009 Valparaíso, Chile

- Routing with Succinct Tables
- Constructing Sparse Spanners
- Outing v.s. Spanners

- Lecture 3 -

Routing v.s. Spanners

Outline

The Question and the Answer

A Naive Approach

The Proof

Outline

The Question and the Answer

A Naive Approach

The Proof

Summary

stretch size

2k - 1	$O(n^{1+1/k})$	Greedy Algorithm
2k - 1	$O(kn^{1+1/k})$	Tree Cover
4k-5	$ ilde{O}(kn^{1/k})$	Routing (using T.C.)
+ 2	$O(n^{3/2})$	Tree Cover
+ 6	$O(n^{4/3})$	Spanner (T.C.?)
+ f(k)	$O(n^{1+1/k})???$	for $k > 3$

Recall: a tree cover has stretch s if, for all nodes x, y of G, there exists a T in the cover such that $d_T(x, y) \leq s \cdot d_G(x, y)$. Its size is the number of edges in the subgraph induces by all its trees.

The Question

Question:

Can we make additively stretched spanners routable?

The Question

Question:

Can we make additively stretched spanners routable?

!!! It might be the wrong question !!!

The Question

Question:

Can we make additively stretched spanners routable?

!!! It might be the wrong question !!!

Question (v2):

Is there a universal routing scheme with sublinear space and additive stretch?

PRO: Numerology!

Spanner: stretch-3 for size $O(n^{3/2})$ Routing: stretch-3 for size $\tilde{O}(n^{1/2})$

Spanner: stretch-O(k) for size $O(n^{1+1/k})$ Routing: stretch-O(k) for size $\tilde{O}(n^{1/k})$

Is it really just a coincidence?

PRO: Numerology!

Spanner: stretch-3 for size $O(n^{3/2})$ Routing: stretch-3 for size $\tilde{O}(n^{1/2})$

Spanner: stretch-O(k) for size $O(n^{1+1/k})$ Routing: stretch-O(k) for size $\tilde{O}(n^{1/k})$

Is it really just a coincidence?

- There exist spanners of size $o(n^2)$ with constant additive stretch (ex: size $n^{3/2}$ or $n^{4/3}$ for stretch +2 or +6).
- It should exist sublinear compact routing scheme with constant additive stretch!!!

CON: spanners do not tell us how to route on sparse graphs.

The problem is:

- Spanner: prove \exists a short path
- Routing: construct a short path

An Impossibility Result

Theorem (2009)

Every routing strategy providing, for each unweighted connected *n*-node graph, a labeled routing scheme with tables and addresses $\leq \mu$ bits, produces, for some graph, an additive stretch $\Omega(n^{1/3}/\mu^{2/3})$.

An Impossibility Result

Theorem (2009)

Every routing strategy providing, for each unweighted connected *n*-node graph, a labeled routing scheme with tables and addresses $\leq \mu$ bits, produces, for some graph, an additive stretch $\Omega(n^{1/3}/\mu^{2/3})$.

Corollary: The additive stretch of every universal routing strategy with tables and addresses in $o(\sqrt{n})$ is unbounded.

In particular, the stretch-7 routing scheme with $\tilde{O}(n^{1/3})$ -bit tables must have an additive stretch of $n^{\Omega(1)}$.

Outline

The Question and the Answer

A Naive Approach

The Proof

Idea: Amplify Detours

Consider a graph G for which every stretch-s routing scheme requires tables of size ≥ µ.
 [if |tables| < µ, then the additive stretch is > s − 1]

Idea: Amplify Detours

- Consider a graph G for which every stretch-s routing scheme requires tables of size ≥ µ.
 [if |tables| < µ, then the additive stretch is > s − 1]
- **2** Construct G' from G by replacing each edge by a path of length δ .

Idea: Amplify Detours

- Consider a graph G for which every stretch-s routing scheme requires tables of size ≥ µ.
 [if |tables| < µ, then the additive stretch is > s − 1]
- **2** Construct G' from G by replacing each edge by a path of length δ .

Our Guess: Every stretch-s routing scheme on G' with tables of size $< \mu$ must have an additive stretch $> \delta(s - 1)$.

Example: Lower Bound for Stars

Restriction: addresses are fixed by an adversary, and cannot be changed/optimized by the designer of the routing scheme (name-independent).

Example: Lower Bound for Stars

Restriction: addresses are fixed by an adversary, and cannot be changed/optimized by the designer of the routing scheme (name-independent).

Claim: if $\mu < n \log n$, then stretch $\ge +2$.

Example: Lower Bound for Stars

Restriction: addresses are fixed by an adversary, and cannot be changed/optimized by the designer of the routing scheme (name-independent).

Claim: if $\mu < n \log n$, then stretch $\ge +2$.

Proof: if stretch < +2, then the number of distinct routing tables at the root must be $\ge n!$. \Rightarrow a star needs at its root $\mu \ge \log(n!) \sim n \log n$.

Longer Detour

Let us show that for some small enough constant c > 0: if $\mu < cn \log n$, then stretch > +2.

Proof #1: Consider routing from root to any leaf $y = \pi(i)$. If $\mu < \log((n/2)!) \sim \frac{1}{2}n \log n$, then stretch $\ge +4???$

Longer Detour

Let us show that for some small enough constant c > 0: if $\mu < cn \log n$, then stretch > +2.

Proof #1: Consider routing from root to any leaf $y = \pi(i)$. If $\mu < \log((n/2)!) \sim \frac{1}{2}n \log n$, then stretch $\ge +4???$ **No!** because we traverse new nodes (possibly two) before selecting the right branch. These nodes have μ bits of information and might change the decision at the root.

Longer Detour

Proof #2: Set μ low enough: $2\mu < \log((n/2)!)$, or $\mu \sim \frac{1}{4}n \log n$. If stretch $\leq +2$ for all y, then the route to y has to traverse a new node w not on the y's branch. By the choice of μ ,

$$\mu(w) + \mu(\mathsf{root}) \leqslant 2\mu \ < \ \mathsf{log}((n/2)!)$$

We know that, after a detour of +2, the root has not enough information yet to correctly route to all y. So, the route requires a second detour of +2.

$$\Rightarrow$$
 If $\mu < \frac{1}{4}n \log n - O(n)$, then stretch $\ge +4$.

WRONG! WRONG! WRONG! WRONG! WRONG!

Routing scheme with $O(\log n)$ -bit tables and stretch +2:

Middle node w_i in the branch of $\pi(i)$ stores integer p such that $\pi(p) = i$. If we arrive at w_i , it means we want to route to the leaf named "i".

Routing from root $\rightarrow i \in [1, n/2]$: 1) Route to port *i*; 2) Read *p* at w_i ; 3) Come back to the root; 4) use port *p*. Stretch is +2.

One cannot design lower bounds on Information Theory based on arguments like:

"I know that node x does not know information I, so it has to store it. Thus node x must store |I| bits."

Proving that x stores at least |I| bits requires a proof.

Outline

The Question and the Answer

A Naive Approach

The Proof

Preliminaries

Let R be a routing scheme on G, i.e.,

 h_i

 $R: (x_i, h_i, q_i) \mapsto (p_i, h_{i+1})$ h_{i+1} h_{i+1} h_{i+1} h_{i+2}

Preliminaries

Let R be a routing scheme on G, i.e.,

 $R: (x_i, h_i, q_i) \mapsto (p_i, h_{i+1})$

Definition

The "memory requirements" of R at x is the size in bits of the smallest program (say in C) implementing function $R(x, \cdot, \cdot)$.

The Graph Family $\mathcal{F} = \mathcal{F}(p, \delta)$

Graphs of \mathcal{F} are constructed from all $p \times p$ boolean matrices. Sets of p nodes: $S = \{s_i\}$, $A = \{a_i\}$, $B = \{b_i\}$, and $T = \{t_j\}$.

Connect a path of length δ between: $s_i \rightsquigarrow a_i$, $s_i \rightsquigarrow b_i$, and $t_j \rightsquigarrow a_i$ if M[i, j] = 1, and $t_j \rightsquigarrow b_i$ if M[i, j] = 0.

Properties

Consider any
$$G = G(M) \in \mathfrak{F}$$
.

Property

Every walk in G from s_i to t_j of length $\rho < d_G(s_i, t_j) + 2\delta$ contains node a_i if and only if M[i, j] = 1.

$$M = \left[\begin{array}{rrrr} 0 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{array} \right]$$

Consider any routing strategy for \mathcal{F} producing, for each $G \in \mathcal{F}$, a routing scheme R with addresses and tables of size $\leqslant \mu$ and additive stretch $\beta < 2\delta$.

Observation: Property applies to the route length of R from s_i to t_j .

Consider any routing strategy for \mathcal{F} producing, for each $G \in \mathcal{F}$, a routing scheme R with addresses and tables of size $\leqslant \mu$ and additive stretch $\beta < 2\delta$.

Observation: Property applies to the route length of R from s_i to t_j .

Let K(M) be the length of the shortest program that outputs M and that stops (Kolmogorov Complexity).

There must exist M with $K(M) \ge p^2$.

Consider the program P that simulates, for all (s_i, t_j) , the first routing decisions from s_i to t_j until a_i or b_i is left for ever.

Consider the program P that simulates, for all (s_i, t_j) , the first routing decisions from s_i to t_j until a_i or b_i is left for ever.

- $\label{eq:point} {\rm O} \ \ P \ {\rm outputs} \ M \quad [{\rm because \ of \ the \ Property, \ as} \ \beta < 2\delta]$
- ② $|P| ≤ 3\delta p \mu$ [because P uses addresses of t_j 's, algorithms $R(x, \cdot, \cdot)$ for all x of the paths from s_i to a_i and b_i .]

Since P outputs M, we must have $|P| \ge K(M)$. Choose M such that K(M) is maximal, $K(M) \ge p^2$. So,

 $3\delta p \mu \ge |P| \ge K(M) \ge p^2$.

So, if $\beta < 2\delta$ (i.e., Property holds), then $3\delta \mu \ge p$.

Choose, $\delta = \frac{1}{4}p/\mu$. Then, $3\delta\mu < p$, and thus we have that $\beta \ge 2\delta = \frac{1}{2}p/\mu$.

Number of nodes in G: $n = \delta(2p + p^2) \leq 3\delta p^2 \leq \frac{3}{4}p^3/\mu$. And thus $p \geq (\mu n)^{1/3}$.

We have therefore proved that:

$$\beta \ge \frac{1}{2}(\mu n)^{1/3}/\mu = \frac{1}{2}n^{1/3}/\mu^{2/3}$$

QED

THANK YOU!