Routing in Distributed Systems

- Lecture 2 -

Cyril Gavoille
University of Bordeaux, France

April 6-9, 2009
Valparaiso, Chile

@ Routing with Succinct Tables
@ Constructing Sparse Spanners

@ Routing v.s. Spanners

- Lecture 2 -

Constructing Sparse Spanners

Outline

Introduction, Examples & Definitions
On the Combinatorial Problem

Tree Cover Algorithms for k = 2

A Distributed Algorithm

Conclusion

Outline

Introduction, Examples & Definitions

What is a Spanner?

A spanner of a graph G is a subgraph spanning V' (G)

What is a Spanner?

A spanner of a graph G is a subgraph spanning V' (G)

@ a spanning tree

What is a Spanner?

A spanner of a graph G is a subgraph spanning V' (G)

@ a spanning tree

@ a Hamiltonian cycle

What is a Spanner?

A spanner of a graph G is a subgraph spanning V' (G)

@ a spanning tree
@ a Hamiltonian cycle
@ a maximal bipartite subgraph

Approximate Distance Spanners

There are two “natural” criteria for a spanner of G:

@ size: its number of edges.

@ stretch: its maximum distance distortion from G.

Approximate Distance Spanners

There are two “natural” criteria for a spanner of G:

@ size: its number of edges.

@ stretch: its maximum distance distortion from G.

- find a good skeleton of the graph;
- decrease the size of the graph while preserving distances;
- optimize stretch-size tradeoffs.

X

=\ \\ e XX
NS %
!

A complete Euclidian graph on 15 nodes

A (minimum cost) spanner with stretch 1.2

A (minimum cost) spanner with stretch 1.7

A (minimum cost) spanner with stretch 2.0

A (minimum cost) spanner with stretch 3.0

Definition

Definition
An (a, 3)-spanner S of G is spanner of G satisfying
ds(z,y) < a-dg(x,y) + B for all z,y € V(G).

A (2,0)-spanner of size 11 which is (1, 1)-spanner as well.

Definition

Definition
An (a, 3)-spanner S of G is spanner of G satisfying
ds(z,y) < a-dg(x,y) + B for all z,y € V(G).

A (2,0)-spanner of size 11 which is (1, 1)-spanner as well.

stretch(S) = max stretch(z,y) = (a,
(5) = max _stretch(z,y) = (a,)

Spanners to do What?

Formally introduced by [Peleg-Ullman '87]:

synchronizer for the Hypercube”

Used for:
@ communication networks
@ distributed systems

@ network design

“An optimal

Spanners to do What?
Formally introduced by [Peleg-Ullman '87]: “An optimal

synchronizer for the Hypercube”
Used for:

@ communication networks

@ distributed systems

@ network design

Synchronizers [Awerbuch JACM '85]

Links with: Sparse Partition [Awerbuch et al. FOCS'90];
Distance Oracle [Thorup-Zwick STOC'01, Baswana et al.
SODA'04]; Compact Routing [Peleg-Upfal STOC'89,
Thorup-Zwick SPAA’'01];

Variant: Geometric Spanners used for TSP
(minimize }_ sy w(e) of within a given stretch)

Outline

On the Combinatorial Problem

Extremal Graph Theory

(Bollobas, Bondy, Erdds, Simonovits, ...)

We consider (unweighted) n-node graphs.

Theorem (Folklore)
A graph G without cycle of length < 2k has < %n”l/ * edges.

Extremal Graph Theory

(Bollobas, Bondy, Erdds, Simonovits, ...)

We consider (unweighted) n-node graphs.

Theorem (Folklore)

A graph G without cycle of length < 2k has < in'™/* edges.

& If girth(G) > 2k, then |E(G)| < sn!T1/k
(where girth(G) is the length of the smallest cycle of G).

Greedy Algorithm [Althofer et al. 93]

Every graph has a (2k — 1,0)-spanner with O(n'*'/*) edges.

Greedy Algorithm [Althofer et al. 93]

Every graph has a (2k — 1,0)-spanner with O(n'*'/*) edges.

Q S := I (the empty graph)
@ While Je = (u,v) € E(G) with dg(u,v) > 2k — 1,

Greedy Algorithm [Althofer et al. 93]

Every graph has a (2k — 1,0)-spanner with O(n'*'/*) edges.

Q S := I (the empty graph)
@ While Je = (u,v) € E(G) with dg(u,v) > 2k — 1,

Properties
@ stretch(S) < 2k —1

Greedy Algorithm [Althofer et al. 93]

Every graph has a (2k — 1,0)-spanner with O(n'*'/*) edges.

Q S := I (the empty graph)
@ While Je = (u,v) € E(G) with dg(u,v) > 2k — 1,

Properties

@ stretch(S) < 2k —1

@ Whenever e = (u,v) is added to S, one cannot create
any cycle of length < 2k

Greedy Algorithm [Althofer et al. 93]

Every graph has a (2k — 1,0)-spanner with O(n'*'/*) edges.

Q S := I (the empty graph)
@ While Je = (u,v) € E(G) with dg(u,v) > 2k — 1,

Properties

@ stretch(S) < 2k —1

@ Whenever e = (u,v) is added to S, one cannot create
any cycle of length < 2k

Theorem [Folk] = size(S) < sn!T1/k

Erdos-Simonovits Conjecture

Theorem [Folk] is optimal. More precisely,

Conjecture (ES82)

For each integer k > 1, there is a graph of girth > 2k with at
least co - n' ™% edges, 0 < ¢y < 1.

Erdos-Simonovits Conjecture

Theorem [Folk] is optimal. More precisely,

Conjecture (ES82)

For each integer k > 1, there is a graph of girth > 2k with at
least co - n' ™% edges, 0 < ¢y < 1.

[ES82] implies: 3 (bipartite) graph By, of girth > 2k + 2 with
1o - n' TR edges.

Erdos-Simonovits Conjecture

Theorem [Folk] is optimal. More precisely,

Conjecture (ES82)

For each integer k > 1, there is a graph of girth > 2k with at
least co - n' ™% edges, 0 < ¢y < 1.

[ES82] implies: 3 (bipartite) graph By, of girth > 2k + 2 with
1o - n' TR edges.

By = complete bipartite.

Erdos-Simonovits Conjecture

Theorem [Folk] is optimal. More precisely,

Conjecture (ES82)

For each integer k > 1, there is a graph of girth > 2k with at
least co - n' ™% edges, 0 < ¢y < 1.

[ES82] implies: 3 (bipartite) graph By, of girth > 2k + 2 with
1o - n' TR edges.

By = complete bipartite. [ES82] proved only for k = 1,2,3,5.
For all k, 3 graphs of girth > 2k + 2 with Q(n'"3%) edges.

Erdos-Simonovits Conjecture

For spanners [ES82] implies:

If [ES82] holds, every («, 3)-spanner of By, such that
a+ B < 2k + 1 has size |E(By)| = Q(n'*+1/k),

Erdos-Simonovits Conjecture

For spanners [ES82] implies:

If [ES82] holds, every («, 3)-spanner of By, such that
a+ B < 2k + 1 has size |E(By)| = Q(n'*+1/k),

(If we remove an edge (u,v) from By, then stretch(u,v) > 2k + 1.
But stretch(u,v) < a - dg(u,v) + = a + (3, implies
a+pf>=2k+1: 1)

Erdos-Simonovits Conjecture

For spanners [ES82] implies:

If [ES82] holds, every («, 3)-spanner of By, such that
a+ B < 2k + 1 has size |E(By)| = Q(n'*+1/k),

(If we remove an edge (u,v) from By, then stretch(u,v) > 2k + 1.
But stretch(u,v) < a - dg(u,v) + = a + (3, implies
a+pf>=2k+1: 1)

Ex. for k = 2: a (3,0)-spanner, a (1,2)-spanner, or a
(4.98,0.01)-spanner, has Q(n?/?) edges in the worst-case graph.

Recent Progress

[Woodruff FOCS'06]

For each k > 1, there is a graph such that every
(1,2k — 1)-spanner requires Q(1n'*!/*) edges.

So, “[ES82] is proved for ax = 1".

Outline

Tree Cover Algorithms for k = 2

A (3, O)—spanner of size O(n3/2)

(stretch < 3 implies Q(n?) edges, and stretch < 5 implies Q(n%/2) edges)

B(u,r) = radius-r ball centered at u (in G)
BFS(u, X)) = BFS tree rooted at u spanning X

QS =0

@ While Ju € V(G), deg(u) > /n:
Q@ S :=SUBFS(u,B(u,2))
@ G:= G\ B(u1)

Q@ S:=5UG

Example: n =8, \/n ~ 2.82

Example: n =8, \/n ~ 2.82

Example: n =8, \/n ~ 2.82

Example: n =8, \/n ~ 2.82

Example: n =8, \/n ~ 2.82

Example: n =8, \/n ~ 2.82

Example: n =8, \/n ~ 2.82

Size: /n x (n—1)+n x/n <2nyn

Example: n =8, \/n ~ 2.82

Size: /n x (n—1)+n x/n <2nyn

Stretch: 3

Example: n =8, \/n ~ 2.82

Size: /n x (n—1)+n x/n <2nyn
Stretch: 3
Note: It's a Tree Cover.

A (1,2)-spanners of size O(n3/2)
(Aingworth et al. '99)

Q S =0

@ While Ju € V(G), deg(u) > /n:
0@ S:=SUBFS(u,QG)
o G:=G\ B(u,1)

Q@ S =SUG

A (1,2)-spanners of size O(n3/2)
(Aingworth et al. '99)

QS5 =0

@ While Ju € V(G), deg(u) > /n:
0@ S:=SUBFS(u,QG)
o G:=G\ B(u,1)

Q@ S=5UG

Size: < 2ny/n

A (1,2)-spanners of size O(n3/2)
(Aingworth et al. '99)

Q S =0

@ While Ju € V(G), deg(u) > /n:
® S:= SUBFS(u,G)
o G:=G\ B(u,1)

Q@ S =S5SUG

Size: < 2ny/n

Stretch: if an xy-shortest path does not intersect a neighbor
of any selected node u (or cuts u), then stretch is 1, otherwise
ds(z,y) <dy +dy +2 =dg(z,y) + 2.

Other Results

[Baswana, Pettie et al. SODA '05]

Every graph has a (1, 6)-spanner of size O(n*/?), and a
(k, k — 1)-spanner of size O(kn!'*1/k).

Non-trivial construction & analysis. If the Woodruff's lower
bound is tight, stretch of (1,4) for a size O(n*/?) is possible.

Other Results

[Baswana, Pettie et al. SODA '05]

Every graph has a (1, 6)-spanner of size O(n*/?), and a
(k, k — 1)-spanner of size O(kn!'*1/k).

Non-trivial construction & analysis. If the Woodruff's lower
bound is tight, stretch of (1,4) for a size O(n*/?) is possible.

Open questions
Does exist for every graph:

@ a (1, /3)-spanner of size o(n*/?) for some constant 37
o a (1, f(k))-spanner of size O(n'*'/*) for some f?

Outline

A Distributed Algorithm

The Model

LOCAL model: (a.k.a. Free model, or Linial's model)
@ synchrone
@ unique IDs
@ no size limit messages
@ no failures
@ simultaneous wake-up

@ arbitrary computational power at nodes

Time complexity: number of rounds
(1 round = messages sent/received between all neighbors)

The Question

What is the smallest ¢ such that if each node u of a graph
knows B(u,t), then u can deterministically decide alone

which incident edges to keep to form a (3, 0)-spanner of size
O(n3/?)?

The Question

What is the smallest ¢ such that if each node u of a graph
knows B(u,t), then u can deterministically decide alone

which incident edges to keep to form a (3, 0)-spanner of size
O(n3/?)?

Theorem (Derbel, G., Peleg, Viennot - PODC'08)

There is a determinist distributed algorithm that for every

n-node graph computes a (2k — 1,0)-spanner of size at most
En' /% in time k.

Moreover, if n is unkown, then the algorithm requires time
2k — 1. Also k is the best possible time bound, even
“expected time" for a randomized (Las Vegas) algorithm.

Second result

For every € € (0,2], there is a determinist distributed
algorithm that for every n-node graph (where n is unkown to
the nodes) computes a (1 + ¢,2)-spanner of size O(c~'n?/?)
in O(e™1) time.

We can also show that (1 + ¢, 2)-spanner of size O(n*/?)
cannot be computed in less than Q(c7!) expected time.

The Algorithm (for k = 2)

For every node u do:

Q R, := {u} U { any selection of |\/|B(u,3)|] neighbors }
@ send R, and receive R, to/from its neighbors
Q@ W:=Bu,1)\{v|lue R,}\R,and C, : =2
Q while Jw € W:
o C,:=C,U{w}
0 W =W\{veW]|R,NR, # 2}
© Add edges from u to R, U C,

The Algorithm (for k = 2)

For every node u do:

Q R, := {u} U { any selection of |\/|B(u,3)|] neighbors }
@ send R, and receive R, to/from its neighbors
Q@ W:=Bu,1)\{v|lue R,}\R,and C, : =2
Q while Jw € W:
o C,:=C,U{w}
0 W =W\{veW]|R,NR, # 2}
© Add edges from u to R, U C,

Stretch: if (u,v) ¢ S, then v removed from U
W in 4.2.

The Algorithm (for k = 2)

For every node u do:

Q R, := {u} U { any selection of |\/|B(u,3)|] neighbors }
@ send R, and receive R, to/from its neighbors
Q@ W:=Bu,1)\{v|lue R,}\R,and C, : =2
Q while Jw € W:
o C,:=C,U{w}
0 W =W\{veW]|R,NR, # 2}
© Add edges from u to R, U C,

Stretch: if (u,v) ¢ S, then v removed from

v
Win 4.2. Thus Jw € Cy, with R,NR,, # <. ’ ‘
"\

Hence, stretch 3.

The Algorithm (for k = 2)

For every node u do:

Q R, := {u} U { any selection of |\/|B(u,3)|] neighbors }
@ send R, and receive R, to/from its neighbors
Q@ W:=Bu,1)\{v|lue R,}\R,and C, : =2
Q while Jw € W:
o C,:=C,U{w}
0 W =W\{veW]|R,NR, # 2}
© Add edges from u to R, U C,

Stretch: if (u,v) ¢ S, then v removed from
Win 4.2. Thus Jw € Cy, with R,NR,, # <.
Hence, stretch 3.

The Algorithm (for k = 2)

For every node u do:

Q R, := {u} U { any selection of |\/|B(u,3)|] neighbors }
@ send R, and receive R, to/from its neighbors
Q@ W:=Bu,1)\{v|lue R,}\R,and C, : =2
Q while Jw € W:
o C,:=C,U{w}
0 W =W\{veW]|R,NR, # 2}
© Add edges from u to R, U C,

Size: w € W after 3 has degree >
|B(w,3)|"/*. Thus, deg(w) > |B(u,2)"/
since B(u,2) < B(w,3).

The Algorithm (for k = 2)

For every node u do:

Q R, := {u} U { any selection of |\/|B(u,3)|] neighbors }
@ send R, and receive R, to/from its neighbors
Q@ W:=Bu,1)\{v|lue R,}\R,and C, : =2
Q while Jw € W:
o C,:=C,U{w}
0 W =W\{veW]|R,NR, # 2}
© Add edges from u to R, U C,

Size: w € W after 3 has degree >
|B(w,3)|"2. Thus, deg(w) > |B(u,2)|"/?
since B(u,2) € B(w,3). Ry, taken ¢/
in C, are disjoint. #loops is |Cy] <
|B(u,2)|/|B(u,2)|"? < \/n. Size: nx2y/n.

Outline

Conclusion

Conclusion

@ The computation of “optimal” sparse spanners is LOCAL
@ How to reduce message size? (lower bound?)

o Does exist (1, 3)-spanner of size o(n/?)?

	Introduction, Examples & Definitions
	On the Combinatorial Problem
	Tree Cover Algorithms for k=2
	A Distributed Algorithm
	Conclusion

