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What is a Spanner?

A spanner of a graph G is a subgraph spanning V (G)

a spanning tree

a Hamiltonian cycle

a maximal bipartite subgraph
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Approximate Distance Spanners

There are two “natural” criteria for a spanner of G:

size: its number of edges.

stretch: its maximum distance distortion from G.

Goals:
- find a good skeleton of the graph;
- decrease the size of the graph while preserving distances;
- optimize stretch-size tradeoffs.
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A complete Euclidian graph on 15 nodes



A (minimum cost) spanner with stretch 1.2



A (minimum cost) spanner with stretch 1.7



A (minimum cost) spanner with stretch 2.0



A (minimum cost) spanner with stretch 3.0



Definition

Definition
An (α, β)-spanner S of G is spanner of G satisfying
dS(x, y) 6 α · dG(x, y) + β for all x, y ∈ V (G).

A (2, 0)-spanner of size 11 which is (1, 1)-spanner as well.

stretch(S) = max
(x,y)∈E(S)

stretch(x, y) = (α, β)
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Spanners to do What?

Formally introduced by [Peleg-Ullman ’87]: “An optimal
synchronizer for the Hypercube”

Used for:

communication networks

distributed systems

network design

Synchronizers [Awerbuch JACM ’85]

Links with: Sparse Partition [Awerbuch et al. FOCS’90];
Distance Oracle [Thorup-Zwick STOC’01, Baswana et al.

SODA’04]; Compact Routing [Peleg-Upfal STOC’89,

Thorup-Zwick SPAA’01];

Variant: Geometric Spanners used for TSP
(minimize

∑
e∈E(S) ω(e) of within a given stretch)
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Extremal Graph Theory

(Bollobàs, Bondy, Erdös, Simonovits, ...)

We consider (unweighted) n-node graphs.

Theorem (Folklore)

A graph G without cycle of length 6 2k has 6 1
2
n1+1/k edges.

⇔ If girth(G) > 2k, then |E(G)| 6 1
2
n1+1/k

(where girth(G) is the length of the smallest cycle of G).
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Greedy Algorithm [Althöfer et al. ’93]

Theorem

Every graph has a (2k − 1, 0)-spanner with O(n1+1/k) edges.

1 S := ∅ (the empty graph)

2 While ∃e = (u, v) ∈ E(G) with dS(u, v) > 2k − 1,
S := S ∪ {e}

u v
e

k = 2

Properties

stretch(S) 6 2k − 1

Whenever e = (u, v) is added to S, one cannot create
any cycle of length 6 2k

Theorem [Folk] ⇒ size(S) 6 1
2
n1+1/k
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Erdös-Simonovits Conjecture

Theorem [Folk] is optimal. More precisely,

Conjecture (ES82)

For each integer k > 1, there is a graph of girth > 2k with at
least c0 · n1+1/k edges, 0 < c0 < 1

2
.

[ES82] implies: ∃ (bipartite) graph Bk of girth > 2k + 2 with
1
2
c0 · n1+1/k edges.

B1 = complete bipartite. [ES82] proved only for k = 1, 2, 3, 5.

For all k, ∃ graphs of girth > 2k + 2 with Ω(n1+ 2
3k ) edges.
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Erdös-Simonovits Conjecture

For spanners [ES82] implies:

Corollary

If [ES82] holds, every (α, β)-spanner of Bk such that
α + β < 2k + 1 has size |E(Bk)| = Ω(n1+1/k).

(If we remove an edge (u, v) from Bk, then stretch(u, v) > 2k + 1.
But stretch(u, v) 6 α · dG(u, v) + β = α + β, implies
α + β > 2k + 1: ⊥)

Ex. for k = 2: a (3, 0)-spanner, a (1, 2)-spanner, or a
(4.98, 0.01)-spanner, has Ω(n3/2) edges in the worst-case graph.
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Recent Progress

[Woodruff FOCS’06]

For each k > 1, there is a graph such that every
(1, 2k − 1)-spanner requires Ω( 1

k
n1+1/k) edges.

So, “[ES82] is proved for α = 1”.
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A (3, 0)-spanner of size O(n3/2)

(stretch < 3 implies Ω(n2) edges, and stretch < 5 implies Ω(n3/2) edges)

B(u, r) = radius-r ball centered at u (in G)
BFS(u, X) = BFS tree rooted at u spanning X

1 S := ∅
2 While ∃u ∈ V (G), deg(u) >

√
n:

1 S := S ∪ BFS(u, B(u, 2))
2 G := G \B(u, 1)

3 S := S ∪G



Example: n = 8,
√

n ≈ 2.82

Size:
√

n× (n− 1) + n×
√

n < 2n
√

n
Stretch: 3
Note: It’s a Tree Cover.
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A (1, 2)-spanners of size O(n3/2)

(Aingworth et al. ’99)

1 S := ∅
2 While ∃u ∈ V (G), deg(u) >

√
n:

1 S := S ∪ BFS(u, G)
2 G := G \B(u, 1)

3 S := S ∪G

Size: 6 2n
√

n

Stretch: if an xy-shortest path does not intersect a neighbor
of any selected node u (or cuts u), then stretch is 1, otherwise
dS(x, y) 6 d1 + d2 + 2 = dG(x, y) + 2.

u6 d1 + 1

d2d1

x
6 d2 + 1

y
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Other Results

[Baswana, Pettie et al. SODA ’05]

Every graph has a (1, 6)-spanner of size O(n4/3), and a
(k, k − 1)-spanner of size O(kn1+1/k).

Non-trivial construction & analysis. If the Woodruff’s lower
bound is tight, stretch of (1, 4) for a size O(n4/3) is possible.

Open questions
Does exist for every graph:

a (1, β)-spanner of size o(n4/3) for some constant β?

a (1, f(k))-spanner of size O(n1+1/k) for some f?
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The Model

LOCAL model: (a.k.a. Free model, or Linial’s model)

synchrone

unique IDs

no size limit messages

no failures

simultaneous wake-up

arbitrary computational power at nodes

Time complexity: number of rounds
(1 round = messages sent/received between all neighbors)



The Question

What is the smallest t such that if each node u of a graph
knows B(u, t), then u can deterministically decide alone
which incident edges to keep to form a (3, 0)-spanner of size
O(n3/2)?

Theorem (Derbel, G., Peleg, Viennot - PODC’08)

There is a determinist distributed algorithm that for every
n-node graph computes a (2k − 1, 0)-spanner of size at most
kn1+1/k in time k.

Moreover, if n is unkown, then the algorithm requires time
2k − 1. Also k is the best possible time bound, even
“expected time” for a randomized (Las Vegas) algorithm.
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Second result

Theorem (2)

For every ε ∈ (0, 2], there is a determinist distributed
algorithm that for every n-node graph (where n is unkown to
the nodes) computes a (1 + ε, 2)-spanner of size O(ε−1n3/2)
in O(ε−1) time.

We can also show that (1 + ε, 2)-spanner of size O(n3/2)
cannot be computed in less than Ω(ε−1) expected time.



The Algorithm (for k = 2)

For every node u do:

1 Ru := {u} ∪ { any selection of b
√
|B(u, 3)|c neighbors }

2 send Ru and receive Rv to/from its neighbors

3 W := B(u, 1) \ {v | u ∈ Rv} \Ru and Cu := ∅
4 while ∃w ∈ W :

1 Cu := Cu ∪ {w}
2 W := W \ {v ∈ W | Rv ∩Rw 6= ∅}

5 Add edges from u to Ru ∪ Cu
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Hence, stretch 3.
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Conclusion

The computation of “optimal” sparse spanners is LOCAL

How to reduce message size? (lower bound?)

Does exist (1, β)-spanner of size o(n4/3)?
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