Routing in Distributed Systems - Lecture 2 -

Cyril Gavoille

University of Bordeaux, France

April 6-9, 2009 Valparaíso, Chile

- Routing with Succinct Tables
- Constructing Sparse Spanners
- Routing v.s. Spanners

- Lecture 2 -

Constructing Sparse Spanners

Outline

Introduction, Examples & Definitions

On the Combinatorial Problem

Tree Cover Algorithms for k = 2

A Distributed Algorithm

Conclusion

Outline

Introduction, Examples & Definitions

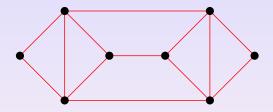
On the Combinatorial Problem

Tree Cover Algorithms for k = 2

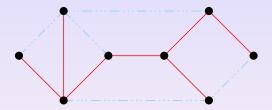
A Distributed Algorithm

Conclusion

A spanner of a graph G is a subgraph spanning V(G)

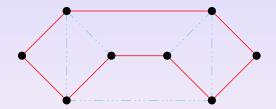


A spanner of a graph G is a subgraph spanning V(G)



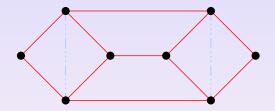
• a spanning tree

A spanner of a graph G is a subgraph spanning V(G)



- a spanning tree
- a Hamiltonian cycle

A spanner of a graph G is a subgraph spanning V(G)



- a spanning tree
- a Hamiltonian cycle
- a maximal bipartite subgraph
- ...

Approximate Distance Spanners

There are two "natural" criteria for a spanner of G:

- size: its number of edges.
- stretch: its maximum distance distortion from G.

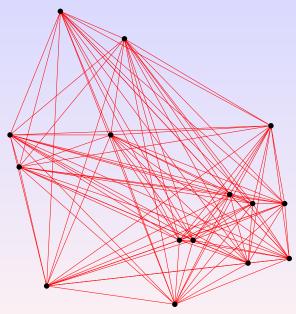
Approximate Distance Spanners

There are two "natural" criteria for a spanner of G:

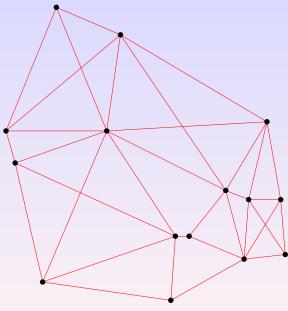
- size: its number of edges.
- stretch: its maximum distance distortion from G.

Goals:

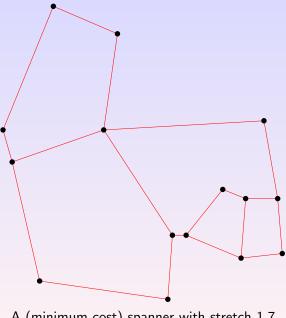
- find a good skeleton of the graph;
- decrease the size of the graph while preserving distances;
- optimize stretch-size tradeoffs.



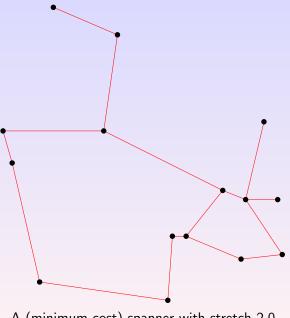
A complete Euclidian graph on $15 \ {\rm nodes}$



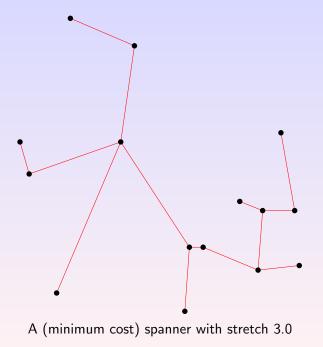
A (minimum cost) spanner with stretch 1.2



A (minimum cost) spanner with stretch 1.7



A (minimum cost) spanner with stretch 2.0

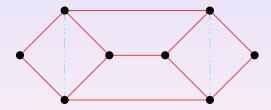


Definition

Definition

An (α, β) -spanner S of G is spanner of G satisfying $d_S(x, y) \leq \alpha \cdot d_G(x, y) + \beta$ for all $x, y \in V(G)$.

A (2,0)-spanner of size 11 which is (1,1)-spanner as well.

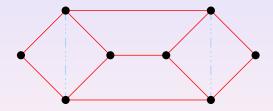


Definition

Definition

An (α, β) -spanner S of G is spanner of G satisfying $d_S(x, y) \leq \alpha \cdot d_G(x, y) + \beta$ for all $x, y \in V(G)$.

A (2,0)-spanner of size 11 which is (1,1)-spanner as well.



$$\operatorname{stretch}(S) = \max_{(x,y) \in E(S)} \operatorname{stretch}(x,y) = (\alpha,\beta)$$

Spanners to do What?

Formally introduced by [Peleg-Ullman '87]: *"An optimal synchronizer for the Hypercube"*

Used for:

- communication networks
- distributed systems
- network design

Spanners to do What?

Formally introduced by [Peleg-Ullman '87]: *"An optimal synchronizer for the Hypercube"*

Used for:

- communication networks
- distributed systems
- network design

Synchronizers [Awerbuch JACM '85]

Links with: Sparse Partition [Awerbuch et al. FOCS'90]; Distance Oracle [Thorup-Zwick STOC'01, Baswana et al. SODA'04]; Compact Routing [Peleg-Upfal STOC'89, Thorup-Zwick SPAA'01];

Variant: Geometric Spanners used for TSP (minimize $\sum_{e \in E(S)} \omega(e)$ of within a given stretch)

Outline

Introduction, Examples & Definitions

On the Combinatorial Problem

Tree Cover Algorithms for k = 2

A Distributed Algorithm

Conclusion

Extremal Graph Theory (Bollobàs, Bondy, Erdös, Simonovits, ...)

We consider (unweighted) *n*-node graphs.

Theorem (Folklore)

A graph G without cycle of length $\leq 2k$ has $\leq \frac{1}{2}n^{1+1/k}$ edges.

```
Extremal Graph Theory
(Bollobàs, Bondy, Erdös, Simonovits, ...)
```

We consider (unweighted) *n*-node graphs.

Theorem (Folklore)

A graph G without cycle of length $\leq 2k$ has $\leq \frac{1}{2}n^{1+1/k}$ edges.

 \Leftrightarrow If girth(G) > 2k, then $|E(G)| \leq \frac{1}{2}n^{1+1/k}$ (where girth(G) is the length of the smallest cycle of G).

Theorem

Every graph has a (2k - 1, 0)-spanner with $O(n^{1+1/k})$ edges.

Theorem

Every graph has a (2k - 1, 0)-spanner with $O(n^{1+1/k})$ edges.



Theorem

Every graph has a (2k - 1, 0)-spanner with $O(n^{1+1/k})$ edges.

 S := Ø (the empty graph)
 While ∃e = (u, v) ∈ E(G) with d_S(u, v) > 2k - 1, S := S ∪ {e}
 k = 2

Properties

• stretch(S)
$$\leq 2k - 1$$

Theorem

Every graph has a (2k - 1, 0)-spanner with $O(n^{1+1/k})$ edges.

 S := Ø (the empty graph)
 While ∃e = (u, v) ∈ E(G) with d_S(u, v) > 2k - 1, S := S ∪ {e}
 k = 2

Properties

- stretch(S) $\leq 2k 1$
- Whenever e=(u,v) is added to S, one cannot create any cycle of length $\leqslant 2k$

Theorem

Every graph has a (2k - 1, 0)-spanner with $O(n^{1+1/k})$ edges.

 S := Ø (the empty graph)
 While ∃e = (u, v) ∈ E(G) with d_S(u, v) > 2k - 1, S := S ∪ {e}
 k = 2

Properties

- stretch(S) $\leq 2k 1$
- Whenever e = (u, v) is added to S, one cannot create any cycle of length $\leq 2k$ Theorem [Folk] \Rightarrow size $(S) \leq \frac{1}{2}n^{1+1/k}$

Theorem [Folk] is optimal. More precisely,

Conjecture (ES82)

For each integer $k \ge 1$, there is a graph of girth > 2k with at least $c_0 \cdot n^{1+1/k}$ edges, $0 < c_0 < \frac{1}{2}$.

Theorem [Folk] is optimal. More precisely,

Conjecture (ES82)

For each integer $k \ge 1$, there is a graph of girth > 2k with at least $c_0 \cdot n^{1+1/k}$ edges, $0 < c_0 < \frac{1}{2}$.

[ES82] implies: \exists (bipartite) graph B_k of girth $\geq 2k + 2$ with $\frac{1}{2}c_0 \cdot n^{1+1/k}$ edges.

Theorem [Folk] is optimal. More precisely,

Conjecture (ES82)

For each integer $k \ge 1$, there is a graph of girth > 2k with at least $c_0 \cdot n^{1+1/k}$ edges, $0 < c_0 < \frac{1}{2}$.

[ES82] implies: \exists (bipartite) graph B_k of girth $\geq 2k + 2$ with $\frac{1}{2}c_0 \cdot n^{1+1/k}$ edges.

 $B_1 =$ complete bipartite.

Theorem [Folk] is optimal. More precisely,

Conjecture (ES82)

For each integer $k \ge 1$, there is a graph of girth > 2k with at least $c_0 \cdot n^{1+1/k}$ edges, $0 < c_0 < \frac{1}{2}$.

[ES82] implies: \exists (bipartite) graph B_k of girth $\geq 2k + 2$ with $\frac{1}{2}c_0 \cdot n^{1+1/k}$ edges.

 $B_1 = \text{complete bipartite.}$ [ES82] proved only for k = 1, 2, 3, 5.

For all k, \exists graphs of girth $\geq 2k + 2$ with $\Omega(n^{1+\frac{2}{3k}})$ edges.

For spanners [ES82] implies:

Corollary

If [ES82] holds, every (α, β) -spanner of B_k such that $\alpha + \beta < 2k + 1$ has size $|E(B_k)| = \Omega(n^{1+1/k})$.

For spanners [ES82] implies:

Corollary

If [ES82] holds, every (α, β) -spanner of B_k such that $\alpha + \beta < 2k + 1$ has size $|E(B_k)| = \Omega(n^{1+1/k})$.

(If we remove an edge (u, v) from B_k , then $\operatorname{stretch}(u, v) \ge 2k + 1$. But $\operatorname{stretch}(u, v) \le \alpha \cdot d_G(u, v) + \beta = \alpha + \beta$, implies $\alpha + \beta \ge 2k + 1$: \perp)

For spanners [ES82] implies:

Corollary

If [ES82] holds, every (α, β) -spanner of B_k such that $\alpha + \beta < 2k + 1$ has size $|E(B_k)| = \Omega(n^{1+1/k})$.

(If we remove an edge (u, v) from B_k , then $\operatorname{stretch}(u, v) \ge 2k + 1$. But $\operatorname{stretch}(u, v) \le \alpha \cdot d_G(u, v) + \beta = \alpha + \beta$, implies $\alpha + \beta \ge 2k + 1$: \bot)

Ex. for k = 2: a (3,0)-spanner, a (1,2)-spanner, or a (4.98, 0.01)-spanner, has $\Omega(n^{3/2})$ edges in the worst-case graph.

[Woodruff FOCS'06]

For each $k \ge 1$, there is a graph such that every (1, 2k - 1)-spanner requires $\Omega(\frac{1}{k}n^{1+1/k})$ edges.

So, "[ES82] is proved for $\alpha = 1$ ".

Outline

Introduction, Examples & Definitions

On the Combinatorial Problem

Tree Cover Algorithms for k=2

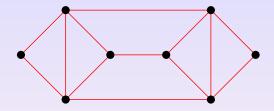
A Distributed Algorithm

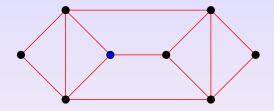
Conclusion

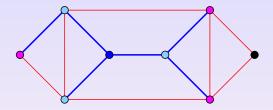
A (3,0)-spanner of size $O(n^{3/2})$

(stretch < 3 implies $\Omega(n^2)$ edges, and stretch < 5 implies $\Omega(n^{3/2})$ edges)

B(u,r) =radius-r ball centered at u (in G) BFS(u, X) =BFS tree rooted at u spanning X



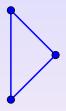


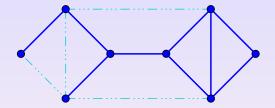


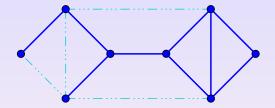
0



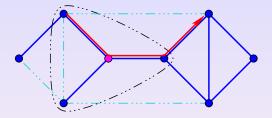
•



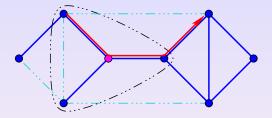




Size: $\sqrt{n} \times (n-1) + n \times \sqrt{n} < 2n\sqrt{n}$



Size: $\sqrt{n} \times (n-1) + n \times \sqrt{n} < 2n\sqrt{n}$ Stretch: 3



Size: $\sqrt{n} \times (n-1) + n \times \sqrt{n} < 2n\sqrt{n}$ Stretch: 3 Note: It's a Tree Cover.

A (1, 2)-spanners of size $O(n^{3/2})$ (Aingworth et al. '99) a $S := \emptyset$ b While $\exists u \in V(G), \deg(u) \ge \sqrt{n}$: b $S := S \cup BFS(u, G)$ c $G := G \setminus B(u, 1)$ c $S := S \cup G$

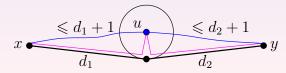
A (1, 2)-spanners of size $O(n^{3/2})$ (Aingworth et al. '99) S := Ø While $\exists u \in V(G), \deg(u) \ge \sqrt{n}$: S := $S \cup BFS(u, G)$ G := $G \setminus B(u, 1)$ S := $S \cup G$

Size: $\leq 2n\sqrt{n}$

A (1, 2)-spanners of size $O(n^{3/2})$ (Aingworth et al. '99) a $S := \emptyset$ b While $\exists u \in V(G), \deg(u) \ge \sqrt{n}$: b $S := S \cup BFS(u, G)$ c $G := G \setminus B(u, 1)$ b $S := S \cup G$

Size: $\leq 2n\sqrt{n}$

Stretch: if an *xy*-shortest path does not intersect a neighbor of any selected node u (or cuts u), then stretch is 1, otherwise $d_S(x,y) \leq d_1 + d_2 + 2 = d_G(x,y) + 2$.



Other Results

[Baswana, Pettie et al. SODA '05]

Every graph has a (1, 6)-spanner of size $O(n^{4/3})$, and a (k, k - 1)-spanner of size $O(kn^{1+1/k})$.

Non-trivial construction & analysis. If the Woodruff's lower bound is tight, stretch of (1, 4) for a size $O(n^{4/3})$ is possible.

Other Results

[Baswana, Pettie et al. SODA '05]

Every graph has a (1, 6)-spanner of size $O(n^{4/3})$, and a (k, k - 1)-spanner of size $O(kn^{1+1/k})$.

Non-trivial construction & analysis. If the Woodruff's lower bound is tight, stretch of (1,4) for a size $O(n^{4/3})$ is possible.

Open questions

Does exist for every graph:

- a $(1,\beta)$ -spanner of size $o(n^{4/3})$ for some constant β ?
- a (1, f(k))-spanner of size $O(n^{1+1/k})$ for some f?

Outline

Introduction, Examples & Definitions

On the Combinatorial Problem

Tree Cover Algorithms for k = 2

A Distributed Algorithm

Conclusion

The Model

LOCAL model: (a.k.a. Free model, or Linial's model)

- synchrone
- unique IDs
- no size limit messages
- no failures
- simultaneous wake-up
- arbitrary computational power at nodes

Time complexity: number of rounds

(1 round = messages sent/received between all neighbors)

The Question

What is the smallest t such that if each node u of a graph knows B(u,t), then u can **deterministically** decide alone which incident edges to keep to form a (3,0)-spanner of size $O(n^{3/2})$?

The Question

What is the smallest t such that if each node u of a graph knows B(u,t), then u can **deterministically** decide alone which incident edges to keep to form a (3,0)-spanner of size $O(n^{3/2})$?

Theorem (Derbel, G., Peleg, Viennot - PODC'08)

There is a determinist distributed algorithm that for every n-node graph computes a (2k - 1, 0)-spanner of size at most $kn^{1+1/k}$ in time k.

Moreover, if n is unkown, then the algorithm requires time 2k - 1. Also k is the best possible time bound, even "expected time" for a randomized (Las Vegas) algorithm.

Second result

Theorem (2)

For every $\varepsilon \in (0,2]$, there is a determinist distributed algorithm that for every *n*-node graph (where *n* is unkown to the nodes) computes a $(1 + \varepsilon, 2)$ -spanner of size $O(\varepsilon^{-1}n^{3/2})$ in $O(\varepsilon^{-1})$ time.

We can also show that $(1 + \varepsilon, 2)$ -spanner of size $O(n^{3/2})$ cannot be computed in less than $\Omega(\varepsilon^{-1})$ expected time.

For every node u do:

- $R_u := \{u\} \cup \{ \text{ any selection of } \lfloor \sqrt{|B(u,3)|} \rfloor \text{ neighbors } \}$
- **2** send R_u and receive R_v to/from its neighbors
- while $\exists w \in W$:
 - $O C_u := C_u \cup \{w\}$
 - $W := W \setminus \{ v \in W \mid R_v \cap R_w \neq \emptyset \}$

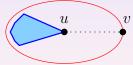
 $\textbf{ o Add edges from } u \text{ to } R_u \cup C_u$

For every node u do:

- $R_u := \{u\} \cup \{ \text{ any selection of } \lfloor \sqrt{|B(u,3)|} \rfloor \text{ neighbors } \}$
- **2** send R_u and receive R_v to/from its neighbors
- while $\exists w \in W$:
 - $C_u := C_u \cup \{w\}$
 - $W := W \setminus \{ v \in W \mid R_v \cap R_w \neq \emptyset \}$

③ Add edges from u to $R_u \cup C_u$

Stretch: if $(u, v) \notin S$, then v removed from W in 4.2.



For every node u do:

•
$$R_u := \{u\} \cup \{ \text{ any selection of } \lfloor \sqrt{|B(u,3)|} \rfloor \text{ neighbors } \}$$

2 send R_u and receive R_v to/from its neighbors

$$W := B(u,1) \setminus \{ v \mid u \in R_v \} \setminus R_u \text{ and } C_u := \emptyset$$

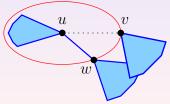
• while
$$\exists w \in W$$
:

$$C_u := C_u \cup \{w\}$$

$$W := W \setminus \{ v \in W \mid R_v \cap R_w \neq \emptyset \}$$

③ Add edges from u to $R_u \cup C_u$

Stretch: if $(u, v) \notin S$, then v removed from W in 4.2. Thus $\exists w \in C_u$ with $R_v \cap R_w \neq \emptyset$. Hence, stretch 3.



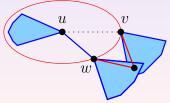
For every node u do:

- $R_u := \{u\} \cup \{ \text{ any selection of } \lfloor \sqrt{|B(u,3)|} \rfloor \text{ neighbors } \}$
- **2** send R_u and receive R_v to/from its neighbors
- while $\exists w \in W$:

$$C_u := C_u \cup \{w\}$$

③ Add edges from u to $R_u \cup C_u$

Stretch: if $(u, v) \notin S$, then v removed from W in 4.2. Thus $\exists w \in C_u$ with $R_v \cap R_w \neq \emptyset$. Hence, stretch 3.

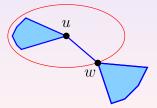


For every node \boldsymbol{u} do:

- $R_u := \{u\} \cup \{ \text{ any selection of } \lfloor \sqrt{|B(u,3)|} \rfloor \text{ neighbors } \}$
- **2** send R_u and receive R_v to/from its neighbors
- while $\exists w \in W$:
 - $O C_u := C_u \cup \{w\}$
 - $W := W \setminus \{ v \in W \mid R_v \cap R_w \neq \emptyset \}$

③ Add edges from u to $R_u \cup C_u$

Size:
$$w \in W$$
 after 3 has degree $\geq |B(w,3)|^{1/2}$. Thus, $\deg(w) \geq |B(u,2)|^{1/2}$
since $B(u,2) \subseteq B(w,3)$.



For every node \boldsymbol{u} do:

•
$$R_u := \{u\} \cup \{ \text{ any selection of } \lfloor \sqrt{|B(u,3)|} \rfloor \text{ neighbors } \}$$

2 send R_u and receive R_v to/from its neighbors

$$W := B(u,1) \setminus \{ v \mid u \in R_v \} \setminus R_u \text{ and } C_u := \emptyset$$

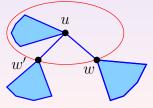
• while
$$\exists w \in W$$
:

$$C_u := C_u \cup \{w\}$$

$$W := W \setminus \{ v \in W \mid R_v \cap R_w \neq \emptyset \}$$

③ Add edges from u to $R_u \cup C_u$

Size:
$$w \in W$$
 after 3 has degree $\geq |B(w,3)|^{1/2}$. Thus, $\deg(w) \geq |B(u,2)|^{1/2}$
since $B(u,2) \subseteq B(w,3)$. R_w taken
in C_u are disjoint. #loops is $|C_u| \leq |B(u,2)|/|B(u,2)|^{1/2} \leq \sqrt{n}$. Size: $n \times 2\sqrt{n}$.



Outline

Introduction, Examples & Definitions

On the Combinatorial Problem

Tree Cover Algorithms for k = 2

A Distributed Algorithm

Conclusion

Conclusion

- The computation of "optimal" sparse spanners is LOCAL
- How to reduce message size? (lower bound?)
- Does exist $(1, \beta)$ -spanner of size $o(n^{4/3})$?