Routing in Distributed Systems
 - Lecture 2 -

Cyril Gavoille

University of Bordeaux, France

April 6-9, 2009
Valparaíso, Chile

- Routing with Succinct Tables
- Constructing Sparse Spanners
- Routing v.s. Spanners

- Lecture 2 -

Constructing Sparse Spanners

Outline

Introduction, Examples \& Definitions

On the Combinatorial Problem

Tree Cover Algorithms for $k=2$

A Distributed Algorithm

Conclusion

Outline

Introduction, Examples \& Definitions

On the Combinatorial Problem

Tree Cover Algorithms for $k=2$

A Distributed Algorithm

Conclusion

What is a Spanner?

A spanner of a graph G is a subgraph spanning $V(G)$

What is a Spanner?

A spanner of a graph G is a subgraph spanning $V(G)$

- a spanning tree

What is a Spanner?

A spanner of a graph G is a subgraph spanning $V(G)$

- a spanning tree
- a Hamiltonian cycle

What is a Spanner?

A spanner of a graph G is a subgraph spanning $V(G)$

- a spanning tree
- a Hamiltonian cycle
- a maximal bipartite subgraph
- ...

Approximate Distance Spanners

There are two "natural" criteria for a spanner of G :

- size: its number of edges.
- stretch: its maximum distance distortion from G.

Approximate Distance Spanners

There are two "natural" criteria for a spanner of G :

- size: its number of edges.
- stretch: its maximum distance distortion from G.

Goals:

- find a good skeleton of the graph;
- decrease the size of the graph while preserving distances;
- optimize stretch-size tradeoffs.

A complete Euclidian graph on 15 nodes

A (minimum cost) spanner with stretch 1.2

A (minimum cost) spanner with stretch 1.7

A (minimum cost) spanner with stretch 2.0

A (minimum cost) spanner with stretch 3.0

Definition

Definition

An (α, β)-spanner S of G is spanner of G satisfying $d_{S}(x, y) \leqslant \alpha \cdot d_{G}(x, y)+\beta$ for all $x, y \in V(G)$.

A $(2,0)$-spanner of size 11 which is $(1,1)$-spanner as well.

Definition

Definition

An (α, β)-spanner S of G is spanner of G satisfying $d_{S}(x, y) \leqslant \alpha \cdot d_{G}(x, y)+\beta$ for all $x, y \in V(G)$.

A (2,0)-spanner of size 11 which is $(1,1)$-spanner as well.

$$
\operatorname{stretch}(S)=\max _{(x, y) \in E(S)} \operatorname{stretch}(x, y)=(\alpha, \beta)
$$

Spanners to do What?

Formally introduced by [Peleg-Ullman '87]: "An optimal synchronizer for the Hypercube"

Used for:

- communication networks
- distributed systems
- network design

Spanners to do What?

Formally introduced by [Peleg-Ullman '87]: "An optimal synchronizer for the Hypercube"
Used for:

- communication networks
- distributed systems
- network design

Synchronizers [Awerbuch JACM '85]
Links with: Sparse Partition [Awerbuch et al. FOCS'90]; Distance Oracle [Thorup-Zwick STOC'01, Baswana et al. SODA'04]; Compact Routing [Peleg-Upfal STOC'89, Thorup-Zwick SPAA'01];
Variant: Geometric Spanners used for TSP (minimize $\sum_{e \in E(S)} \omega(e)$ of within a given stretch)

Outline

Introduction, Examples \& Definitions

On the Combinatorial Problem

Tree Cover Algorithms for $k=2$

A Distributed Algorithm

Conclusion

Extremal Graph Theory

(Bollobàs, Bondy, Erdös, Simonovits, ...)

We consider (unweighted) n-node graphs

Theorem (Folklore)
A graph G without cycle of length $\leqslant 2 k$ has $\leqslant \frac{1}{2} n^{1+1 / k}$ edges.

Extremal Graph Theory

(Bollobàs, Bondy, Erdös, Simonovits, ...)

We consider (unweighted) n-node graphs

Theorem (Folklore)

A graph G without cycle of length $\leqslant 2 k$ has $\leqslant \frac{1}{2} n^{1+1 / k}$ edges.
\Leftrightarrow If $\operatorname{girth}(G)>2 k$, then $|E(G)| \leqslant \frac{1}{2} n^{1+1 / k}$
(where $\operatorname{girth}(G)$ is the length of the smallest cycle of G).

Greedy Algorithm [Althöfer et al. '93]

Theorem

Every graph has a $(2 k-1,0)$-spanner with $O\left(n^{1+1 / k}\right)$ edges.

Greedy Algorithm [Althöfer et al. '93]

Theorem

Every graph has a $(2 k-1,0)$-spanner with $O\left(n^{1+1 / k}\right)$ edges.
(1) $S:=\varnothing$ (the empty graph)
(2) While $\exists e=(u, v) \in E(G)$ with $d_{S}(u, v)>2 k-1$, $S:=S \cup\{e\}$

$$
k=2
$$

Greedy Algorithm [Althöfer et al. '93]

Theorem

Every graph has a $(2 k-1,0)$-spanner with $O\left(n^{1+1 / k}\right)$ edges.
(1) $S:=\varnothing$ (the empty graph)
(2) While $\exists e=(u, v) \in E(G)$ with $d_{S}(u, v)>2 k-1$, $S:=S \cup\{e\}$

Properties

- $\operatorname{stretch}(S) \leqslant 2 k-1$

Greedy Algorithm [Althöfer et al. '93]

Theorem

Every graph has a $(2 k-1,0)$-spanner with $O\left(n^{1+1 / k}\right)$ edges.
(1) $S:=\varnothing$ (the empty graph)
(2) While $\exists e=(u, v) \in E(G)$ with $d_{S}(u, v)>2 k-1$, $S:=S \cup\{e\}$

Properties

- $\operatorname{stretch}(S) \leqslant 2 k-1$
- Whenever $e=(u, v)$ is added to S, one cannot create any cycle of length $\leqslant 2 k$

Greedy Algorithm [Althöfer et al. '93]

Theorem

Every graph has a $(2 k-1,0)$-spanner with $O\left(n^{1+1 / k}\right)$ edges.
(1) $S:=\varnothing$ (the empty graph)
(2) While $\exists e=(u, v) \in E(G)$ with $d_{S}(u, v)>2 k-1$, $S:=S \cup\{e\}$

Properties

- $\operatorname{stretch}(S) \leqslant 2 k-1$
- Whenever $e=(u, v)$ is added to S, one cannot create any cycle of length $\leqslant 2 k$
Theorem [Folk] $\Rightarrow \operatorname{size}(S) \leqslant \frac{1}{2} n^{1+1 / k}$

Erdös-Simonovits Conjecture

Theorem [Folk] is optimal. More precisely,

Conjecture (ES82)

For each integer $k \geqslant 1$, there is a graph of girth $>2 k$ with at least $c_{0} \cdot n^{1+1 / k}$ edges, $0<c_{0}<\frac{1}{2}$.

Erdös-Simonovits Conjecture

Theorem [Folk] is optimal. More precisely,

Conjecture (ES82)

For each integer $k \geqslant 1$, there is a graph of girth $>2 k$ with at least $c_{0} \cdot n^{1+1 / k}$ edges, $0<c_{0}<\frac{1}{2}$.
[ES82] implies: \exists (bipartite) graph B_{k} of girth $\geqslant 2 k+2$ with $\frac{1}{2} c_{0} \cdot n^{1+1 / k}$ edges.

Erdös-Simonovits Conjecture

Theorem [Folk] is optimal. More precisely,

Conjecture (ES82)

For each integer $k \geqslant 1$, there is a graph of girth $>2 k$ with at least $c_{0} \cdot n^{1+1 / k}$ edges, $0<c_{0}<\frac{1}{2}$.
[ES82] implies: \exists (bipartite) graph B_{k} of girth $\geqslant 2 k+2$ with $\frac{1}{2} c_{0} \cdot n^{1+1 / k}$ edges.
$B_{1}=$ complete bipartite.

Erdös-Simonovits Conjecture

Theorem [Folk] is optimal. More precisely,

Conjecture (ES82)

For each integer $k \geqslant 1$, there is a graph of girth $>2 k$ with at least $c_{0} \cdot n^{1+1 / k}$ edges, $0<c_{0}<\frac{1}{2}$.
[ES82] implies: \exists (bipartite) graph B_{k} of girth $\geqslant 2 k+2$ with $\frac{1}{2} c_{0} \cdot n^{1+1 / k}$ edges.
$B_{1}=$ complete bipartite. [ES82] proved only for $k=1,2,3,5$.
For all k, \exists graphs of girth $\geqslant 2 k+2$ with $\Omega\left(n^{1+\frac{2}{3 k}}\right)$ edges.

Erdös-Simonovits Conjecture

For spanners [ES82] implies:

Corollary

If [ES82] holds, every (α, β)-spanner of B_{k} such that $\alpha+\beta<2 k+1$ has size $\left|E\left(B_{k}\right)\right|=\Omega\left(n^{1+1 / k}\right)$.

Erdös-Simonovits Conjecture

For spanners [ES82] implies:

Corollary

If [ES82] holds, every (α, β)-spanner of B_{k} such that $\alpha+\beta<2 k+1$ has size $\left|E\left(B_{k}\right)\right|=\Omega\left(n^{1+1 / k}\right)$.
(If we remove an edge (u, v) from B_{k}, then $\operatorname{stretch}(u, v) \geqslant 2 k+1$. But $\operatorname{stretch}(u, v) \leqslant \alpha \cdot d_{G}(u, v)+\beta=\alpha+\beta$, implies $\alpha+\beta \geqslant 2 k+1: \perp)$

Erdös-Simonovits Conjecture

For spanners [ES82] implies:

Corollary

If [ES82] holds, every (α, β)-spanner of B_{k} such that $\alpha+\beta<2 k+1$ has size $\left|E\left(B_{k}\right)\right|=\Omega\left(n^{1+1 / k}\right)$.
(If we remove an edge (u, v) from B_{k}, then $\operatorname{stretch}(u, v) \geqslant 2 k+1$. But $\operatorname{stretch}(u, v) \leqslant \alpha \cdot d_{G}(u, v)+\beta=\alpha+\beta$, implies $\alpha+\beta \geqslant 2 k+1: \perp)$

Ex. for $k=2$: a (3, 0)-spanner, a (1,2)-spanner, or a (4.98, 0.01)-spanner, has $\Omega\left(n^{3 / 2}\right)$ edges in the worst-case graph.

Recent Progress

[Woodruff FOCS'06]

For each $k \geqslant 1$, there is a graph such that every $(1,2 k-1)$-spanner requires $\Omega\left(\frac{1}{k} n^{1+1 / k}\right)$ edges.

So, "[ES82] is proved for $\alpha=1$ ".

Outline

Introduction, Examples \& Definitions

On the Combinatorial Problem

Tree Cover Algorithms for $k=2$

A Distributed Algorithm

Conclusion

A $(3,0)$-spanner of size $O\left(n^{3 / 2}\right)$

(stretch <3 implies $\Omega\left(n^{2}\right)$ edges, and stretch <5 implies $\Omega\left(n^{3 / 2}\right)$ edges)
$B(u, r)=$ radius- r ball centered at u (in G)
$\operatorname{BFS}(u, X)=\mathrm{BFS}$ tree rooted at u spanning X
(1) $S:=\varnothing$
(2) While $\exists u \in V(G), \operatorname{deg}(u) \geqslant \sqrt{n}$:
(1) $S:=S \cup \operatorname{BFS}(u, B(u, 2))$
(2) $G:=G \backslash B(u, 1)$
(3) $S:=S \cup G$

Example: $n=8, \sqrt{n} \approx 2.82$

Size: $\sqrt{n} \times(n-1)+n \times \sqrt{n}<2 n \sqrt{n}$

Example: $n=8, \sqrt{n} \approx 2.82$

Size: $\sqrt{n} \times(n-1)+n \times \sqrt{n}<2 n \sqrt{n}$ Stretch: 3

Example: $n=8, \sqrt{n} \approx 2.82$

Size: $\sqrt{n} \times(n-1)+n \times \sqrt{n}<2 n \sqrt{n}$
Stretch: 3
Note: It's a Tree Cover.

A $(1,2)$-spanners of size $O\left(n^{3 / 2}\right)$

(Aingworth et al. '99)
(1) $S:=\varnothing$
(2) While $\exists u \in V(G), \operatorname{deg}(u) \geqslant \sqrt{n}$:
(1) $S:=S \cup \operatorname{BFS}(u, G)$
(2) $G:=G \backslash B(u, 1)$
(3) $S:=S \cup G$

A $(1,2)$-spanners of size $O\left(n^{3 / 2}\right)$

(Aingworth et al. '99)
(1) $S:=\varnothing$
(2) While $\exists u \in V(G), \operatorname{deg}(u) \geqslant \sqrt{n}$:

> (1) $S:=S \cup \operatorname{BFS}(u, G)$
> (2) $G:=G \backslash B(u, 1)$
(3) $S:=S \cup G$

Size: $\leqslant 2 n \sqrt{n}$

A $(1,2)$-spanners of size $O\left(n^{3 / 2}\right)$

(Aingworth et al. '99)
(1) $S:=\varnothing$
(2) While $\exists u \in V(G), \operatorname{deg}(u) \geqslant \sqrt{n}$:
(1) $S:=S \cup \operatorname{BFS}(u, G)$
(2) $G:=G \backslash B(u, 1)$
(3) $S:=S \cup G$

Size: $\leqslant 2 n \sqrt{n}$
Stretch: if an $x y$-shortest path does not intersect a neighbor of any selected node u (or cuts u), then stretch is 1 , otherwise $d_{S}(x, y) \leqslant d_{1}+d_{2}+2=d_{G}(x, y)+2$.

Other Results

[Baswana, Pettie et al. SODA '05]

Every graph has a $(1,6)$-spanner of size $O\left(n^{4 / 3}\right)$, and a $(k, k-1)$-spanner of size $O\left(k n^{1+1 / k}\right)$.

Non-trivial construction \& analysis. If the Woodruff's lower bound is tight, stretch of $(1,4)$ for a size $O\left(n^{4 / 3}\right)$ is possible.

Other Results

[Baswana, Pettie et al. SODA '05]

Every graph has a $(1,6)$-spanner of size $O\left(n^{4 / 3}\right)$, and a $(k, k-1)$-spanner of size $O\left(k n^{1+1 / k}\right)$.

Non-trivial construction \& analysis. If the Woodruff's lower bound is tight, stretch of $(1,4)$ for a size $O\left(n^{4 / 3}\right)$ is possible.

Open questions

Does exist for every graph:

- a $(1, \beta)$-spanner of size $o\left(n^{4 / 3}\right)$ for some constant β ?
- a $(1, f(k))$-spanner of size $O\left(n^{1+1 / k}\right)$ for some f ?

Outline

Introduction, Examples \& Definitions
 On the Combinatorial Problem
 Tree Cover Algorithms for $k=2$

A Distributed Algorithm

Conclusion

The Model

LOCAL model: (a.k.a. Free model, or Linial's model)

- synchrone
- unique IDs
- no size limit messages
- no failures
- simultaneous wake-up
- arbitrary computational power at nodes

Time complexity: number of rounds
(1 round $=$ messages sent/received between all neighbors)

The Question

What is the smallest t such that if each node u of a graph knows $B(u, t)$, then u can deterministically decide alone which incident edges to keep to form a $(3,0)$-spanner of size $O\left(n^{3 / 2}\right)$?

The Question

What is the smallest t such that if each node u of a graph knows $B(u, t)$, then u can deterministically decide alone which incident edges to keep to form a (3, 0)-spanner of size $O\left(n^{3 / 2}\right)$?

Theorem (Derbel, G., Peleg, Viennot - PODC'08)

There is a determinist distributed algorithm that for every n-node graph computes a $(2 k-1,0)$-spanner of size at most $k n^{1+1 / k}$ in time k.

Moreover, if n is unkown, then the algorithm requires time $2 k-1$. Also k is the best possible time bound, even "expected time" for a randomized (Las Vegas) algorithm.

Second result

Theorem (2)

For every $\varepsilon \in(0,2]$, there is a determinist distributed algorithm that for every n-node graph (where n is unkown to the nodes) computes a $(1+\varepsilon, 2)$-spanner of size $O\left(\varepsilon^{-1} n^{3 / 2}\right)$ in $O\left(\varepsilon^{-1}\right)$ time.

We can also show that $(1+\varepsilon, 2)$-spanner of size $O\left(n^{3 / 2}\right)$ cannot be computed in less than $\Omega\left(\varepsilon^{-1}\right)$ expected time.

The Algorithm (for $k=2$)

For every node u do:
(1) $R_{u}:=\{u\} \cup\{$ any selection of $\lfloor\sqrt{|B(u, 3)|}\rfloor$ neighbors $\}$
(2) send R_{u} and receive R_{v} to/from its neighbors
(3) $W:=B(u, 1) \backslash\left\{v \mid u \in R_{v}\right\} \backslash R_{u}$ and $C_{u}:=\varnothing$
(4) while $\exists w \in W$:
(1) $C_{u}:=C_{u} \cup\{w\}$
(2) $W:=W \backslash\left\{v \in W \mid R_{v} \cap R_{w} \neq \varnothing\right\}$
(6) Add edges from u to $R_{u} \cup C_{u}$

The Algorithm (for $k=2$)

For every node u do:
(1) $R_{u}:=\{u\} \cup\{$ any selection of $\lfloor\sqrt{|B(u, 3)|}\rfloor$ neighbors $\}$
(2) send R_{u} and receive R_{v} to/from its neighbors
(3) $W:=B(u, 1) \backslash\left\{v \mid u \in R_{v}\right\} \backslash R_{u}$ and $C_{u}:=\varnothing$
(4) while $\exists w \in W$:

$$
\begin{aligned}
& \text { (1) } C_{u}:=C_{u} \cup\{w\} \\
& \text { (2) } W:=W \backslash\left\{v \in W \mid R_{v} \cap R_{w} \neq \varnothing\right\}
\end{aligned}
$$

(5) Add edges from u to $R_{u} \cup C_{u}$

Stretch: if $(u, v) \notin S$, then v removed from W in 4.2.

The Algorithm (for $k=2$)

For every node u do:
(1) $R_{u}:=\{u\} \cup\{$ any selection of $\lfloor\sqrt{|B(u, 3)|}\rfloor$ neighbors $\}$
(2) send R_{u} and receive R_{v} to/from its neighbors
(3) $W:=B(u, 1) \backslash\left\{v \mid u \in R_{v}\right\} \backslash R_{u}$ and $C_{u}:=\varnothing$
(4) while $\exists w \in W$:

$$
\begin{aligned}
& \text { (1) } C_{u}:=C_{u} \cup\{w\} \\
& \text { (2) } W:=W \backslash\left\{v \in W \mid R_{v} \cap R_{w} \neq \varnothing\right\}
\end{aligned}
$$

(6) Add edges from u to $R_{u} \cup C_{u}$

Stretch: if $(u, v) \notin S$, then v removed from W in 4.2. Thus $\exists w \in C_{u}$ with $R_{v} \cap R_{w} \neq \varnothing$. Hence, stretch 3.

The Algorithm (for $k=2$)

For every node u do:
(1) $R_{u}:=\{u\} \cup\{$ any selection of $\lfloor\sqrt{|B(u, 3)|}\rfloor$ neighbors $\}$
(2) send R_{u} and receive R_{v} to/from its neighbors
(3) $W:=B(u, 1) \backslash\left\{v \mid u \in R_{v}\right\} \backslash R_{u}$ and $C_{u}:=\varnothing$
(4) while $\exists w \in W$:

$$
\begin{aligned}
& \text { (1) } C_{u}:=C_{u} \cup\{w\} \\
& \text { (2) } W:=W \backslash\left\{v \in W \mid R_{v} \cap R_{w} \neq \varnothing\right\}
\end{aligned}
$$

(5) Add edges from u to $R_{u} \cup C_{u}$

Stretch: if $(u, v) \notin S$, then v removed from W in 4.2. Thus $\exists w \in C_{u}$ with $R_{v} \cap R_{w} \neq \varnothing$. Hence, stretch 3.

The Algorithm (for $k=2$)

For every node u do:
(1) $R_{u}:=\{u\} \cup\{$ any selection of $\lfloor\sqrt{|B(u, 3)|}\rfloor$ neighbors $\}$
(2) send R_{u} and receive R_{v} to/from its neighbors
(3) $W:=B(u, 1) \backslash\left\{v \mid u \in R_{v}\right\} \backslash R_{u}$ and $C_{u}:=\varnothing$
(4) while $\exists w \in W$:

$$
\begin{aligned}
& \text { (1) } C_{u}:=C_{u} \cup\{w\} \\
& \text { (2) } W:=W \backslash\left\{v \in W \mid R_{v} \cap R_{w} \neq \varnothing\right\}
\end{aligned}
$$

(5) Add edges from u to $R_{u} \cup C_{u}$

Size: $w \in W$ after 3 has degree \geqslant $|B(w, 3)|^{1 / 2}$. Thus, $\operatorname{deg}(w) \geqslant|B(u, 2)|^{1 / 2}$ since $B(u, 2) \subseteq B(w, 3)$.

The Algorithm (for $k=2$)

For every node u do:
(1) $R_{u}:=\{u\} \cup\{$ any selection of $\lfloor\sqrt{|B(u, 3)|}\rfloor$ neighbors $\}$
(2) send R_{u} and receive R_{v} to/from its neighbors
(3) $W:=B(u, 1) \backslash\left\{v \mid u \in R_{v}\right\} \backslash R_{u}$ and $C_{u}:=\varnothing$
(4) while $\exists w \in W$:

$$
\begin{aligned}
& \text { (1) } C_{u}:=C_{u} \cup\{w\} \\
& \text { (2) } W:=W \backslash\left\{v \in W \mid R_{v} \cap R_{w} \neq \varnothing\right\}
\end{aligned}
$$

(6) Add edges from u to $R_{u} \cup C_{u}$

Size: $w \in W$ after 3 has degree \geqslant $|B(w, 3)|^{1 / 2}$. Thus, $\operatorname{deg}(w) \geqslant|B(u, 2)|^{1 / 2}$ since $B(u, 2) \subseteq B(w, 3) . \quad R_{w}$ taken in C_{u} are disjoint. \#loops is $\left|C_{u}\right| \leqslant$ $|B(u, 2)| /|B(u, 2)|^{1 / 2} \leqslant \sqrt{n}$. Size: $n \times 2 \sqrt{n}$.

Outline

Introduction, Examples \& Definitions

On the Combinatorial Problem

Tree Cover Algorithms for $k=2$

A Distributed Algorithm

Conclusion

Conclusion

- The computation of "optimal" sparse spanners is LOCAL
- How to reduce message size? (lower bound?)
- Does exist $(1, \beta)$-spanner of size $o\left(n^{4 / 3}\right)$?

