
Routing in Distributed Systems
- Lecture 1 -

Cyril Gavoille

University of Bordeaux, France

April 6-9, 2009

Valparáıso, Chile

1 Routing with Succinct Tables
2 Constructing Sparse Spanners
3 Routing v.s. Spanners

- Lecture 1 -

Routing with Succinct Tables

An introduction to Compact Routing, and some algorithmic
tools for constructing routing schemes

Outline

Context and Motivations

Models, Definitions and Examples

A First Compact Routing Scheme

A First Universal Compact Routing Scheme

Concluding Remarks

Outline

Context and Motivations

Models, Definitions and Examples

A First Compact Routing Scheme

A First Universal Compact Routing Scheme

Concluding Remarks

Message Routing in the Internet

1969. Arpanet connects n = 4 nodes.

1977. First paper on the Compact Routing, and on
limitation of the Arpanet: Hierarchical Routing for Large
Networks; Performance Evaluation and Optimization by
Kleinrock and Kamoun.

2009. Growth rate for forwarding information base (FIB) size
is 1.3 a year.

175 KB in jan 2006;

300 KB in jan 2009;

1 MB in 2011 (estimate).

Message Routing in the Internet

1969. Arpanet connects n = 4 nodes.

1977. First paper on the Compact Routing, and on
limitation of the Arpanet: Hierarchical Routing for Large
Networks; Performance Evaluation and Optimization by
Kleinrock and Kamoun.

2009. Growth rate for forwarding information base (FIB) size
is 1.3 a year.

175 KB in jan 2006;

300 KB in jan 2009;

1 MB in 2011 (estimate).

Message Routing in the Internet

1969. Arpanet connects n = 4 nodes.

1977. First paper on the Compact Routing, and on
limitation of the Arpanet: Hierarchical Routing for Large
Networks; Performance Evaluation and Optimization by
Kleinrock and Kamoun.

2009. Growth rate for forwarding information base (FIB) size
is 1.3 a year.

175 KB in jan 2006;

300 KB in jan 2009;

1 MB in 2011 (estimate).

Message Routing in the Internet

1969. Arpanet connects n = 4 nodes.

1977. First paper on the Compact Routing, and on
limitation of the Arpanet: Hierarchical Routing for Large
Networks; Performance Evaluation and Optimization by
Kleinrock and Kamoun.

2009. Growth rate for forwarding information base (FIB) size
is 1.3 a year.

175 KB in jan 2006;

300 KB in jan 2009;

1 MB in 2011 (estimate).

Sub-Linear Size Routing Tables

Main router builder compagnies (Alcatel Lucent Bell, Cisco,
Nortel) are studying for new routing data organizations to
lower the growth rate size of FIBs.

Today the size of FIBs generated by routing protocols (or
routing strategy) is linear to n, the number of autonomous
systems (AS).

Outline

Context and Motivations

Models, Definitions and Examples

A First Compact Routing Scheme

A First Universal Compact Routing Scheme

Concluding Remarks

Statement of the Compact Routing Problem

Input: a network G (a weighted connected graph)

Ouput: a routing scheme for G

A routing scheme is a distributed algorithm that allows any
source node to route messages to any destination node, given
the destination’s network identifier

Goal: to minimize the size of the routing tables

Statement of the Compact Routing Problem

Input: a network G (a weighted connected graph)

Ouput: a routing scheme for G

A routing scheme is a distributed algorithm that allows any
source node to route messages to any destination node, given
the destination’s network identifier

Goal: to minimize the size of the routing tables

Model: Rxi
(hi, qi) = (pi, hi+1)

hi+2
xi qi+1

hi pi+1

xi+1

hi+1

qi

pi

addresses

headers

in/outport numbers

Example: Grid with X,Y-coordinates

Routing algorithm: X,Y-routing
(local decision)

Example: Grid with X,Y-coordinates

Routing algorithm: X,Y-routing
(local decision)

Another Example ...

Routing scheme: ???

Complexity Measures: Space & Stretch

Space = size of the largest local routing tables

(more precisely, size of the smallest local routing

algorithm including all constants and data-structures)

In the grid example: space = O(log n) bits

Stretch = ratio between length of the route and distance

|route(x, y)| 6 stretch · dist(x, y)

In the grid example: stretch = 1 (shortest path)

Question: for a given family of graphs, find the best
space-stretch trade-off

Complexity Measures: Space & Stretch

Space = size of the largest local routing tables
(more precisely, size of the smallest local routing

algorithm including all constants and data-structures)

In the grid example: space = O(log n) bits

Stretch = ratio between length of the route and distance

|route(x, y)| 6 stretch · dist(x, y)

In the grid example: stretch = 1 (shortest path)

Question: for a given family of graphs, find the best
space-stretch trade-off

Complexity Measures: Space & Stretch

Space = size of the largest local routing tables
(more precisely, size of the smallest local routing

algorithm including all constants and data-structures)

In the grid example: space = O(log n) bits

Stretch = ratio between length of the route and distance

|route(x, y)| 6 stretch · dist(x, y)

In the grid example: stretch = 1 (shortest path)

Question: for a given family of graphs, find the best
space-stretch trade-off

Complexity Measures: Space & Stretch

Space = size of the largest local routing tables
(more precisely, size of the smallest local routing

algorithm including all constants and data-structures)

In the grid example: space = O(log n) bits

Stretch = ratio between length of the route and distance

|route(x, y)| 6 stretch · dist(x, y)

In the grid example: stretch = 1 (shortest path)

Question: for a given family of graphs, find the best
space-stretch trade-off

Routing Tables: A Universal Routing Strategy

2

3

d
d-1

1

 −1n

1

2

3 2

1

3

 integersn

n

4

d−1

message towards node 3
message towards node 1

Space = O(n log d) bits, d = degree
Stretch = 1

Outline

Context and Motivations

Models, Definitions and Examples

A First Compact Routing Scheme

A First Universal Compact Routing Scheme

Concluding Remarks

Routing in a Tree (attempt #1)

2

[5,6][7,9]

[10,3]

43

1
2

16

15

14

13

12

11

10

9
8

7

6

5

3

1

in total!
O(n log n) bits

Interval Routing

DFS numbering

4: [5,6]:1 [7,9]:2 [10,3]:3

Space = O(d log n) bits, d = degree, Stretch = 1

Problem: Space Ω(n) whenever d = Ω(n/ log n)

Routing in a Tree (attempt #1)

2

[5,6][7,9]

[10,3]

43

1
2

16

15

14

13

12

11

10

9
8

7

6

5

3

1

in total!
O(n log n) bits

Interval Routing

DFS numbering

4: [5,6]:1 [7,9]:2 [10,3]:3

Space = O(d log n) bits, d = degree, Stretch = 1

Problem: Space Ω(n) whenever d = Ω(n/ log n)

Routing in a Tree (attempt #1)

2

[5,6][7,9]

[10,3]

43

1
2

16

15

14

13

12

11

10

9
8

7

6

5

3

1

in total!
O(n log n) bits

Interval Routing

DFS numbering

4: [5,6]:1 [7,9]:2 [10,3]:3

Space = O(d log n) bits, d = degree, Stretch = 1

Problem: Space Ω(n) whenever d = Ω(n/ log n)

Routing in a Tree (attempt #2)

Idea: enlarge addresses to reduce tables

id(u) is a DFS numbering of u in the tree. The weight of
a node is the number of its descendants.

table(u) is composed of a partial interval routing of u:
only for its parent and its t heaviest children.

address(u) = (id(u), hpath(u)), where hpath(u) is the
sequence of ports encountered when going from the root
to u, but we remove ports leading to a child of rank < t
(so with a large weight), a parameter fixed later.

Routing in a Tree (attempt #2)

Idea: enlarge addresses to reduce tables

id(u) is a DFS numbering of u in the tree. The weight of
a node is the number of its descendants.

table(u) is composed of a partial interval routing of u:
only for its parent and its t heaviest children.

address(u) = (id(u), hpath(u)), where hpath(u) is the
sequence of ports encountered when going from the root
to u, but we remove ports leading to a child of rank < t
(so with a large weight), a parameter fixed later.

Routing in a Tree (attempt #2)

Idea: enlarge addresses to reduce tables

id(u) is a DFS numbering of u in the tree. The weight of
a node is the number of its descendants.

table(u) is composed of a partial interval routing of u:
only for its parent and its t heaviest children.

address(u) = (id(u), hpath(u)), where hpath(u) is the
sequence of ports encountered when going from the root
to u, but we remove ports leading to a child of rank < t
(so with a large weight), a parameter fixed later.

Routing in a Tree (attempt #2)

Idea: enlarge addresses to reduce tables

id(u) is a DFS numbering of u in the tree. The weight of
a node is the number of its descendants.

table(u) is composed of a partial interval routing of u:
only for its parent and its t heaviest children.

address(u) = (id(u), hpath(u)), where hpath(u) is the
sequence of ports encountered when going from the root
to u, but we remove ports leading to a child of rank < t
(so with a large weight), a parameter fixed later.

The Routing Algorithm: x 7→ y

Given table(x) and address(y)

If id(x) = id(y), then STOP.

If id(y) belongs to some intervals of table(x), then route
with this table.

Otherwise, route to port hpath(y)[1 + |hpath(x)|].

Hint: If the two first tests fail, hpath(x) is a proper prefix of
hpath(y).

The Routing Algorithm: x 7→ y

Given table(x) and address(y)

If id(x) = id(y), then STOP.

If id(y) belongs to some intervals of table(x), then route
with this table.

Otherwise, route to port hpath(y)[1 + |hpath(x)|].

Hint: If the two first tests fail, hpath(x) is a proper prefix of
hpath(y).

Space Analysis

table(u) is O(t log n) bits

address(u) is O(|hpath(u)| · log n) bits

If port(a, b) is in hpath(u), then b has rank > t for a.
So, w(b) 6 w(a)/t, and thus |hpath(u)| 6 logt n.

⇒ adresses and tables have size O(log2 n/ log log n) with
t = log n/ log log n.

Note 1: Any stretch-1 routing scheme on trees requires
|table(u)|+ |address(u)| = Ω(log2 n/ log log n) bits for some
u in some tree.

Note 2: Any stretch-1 routing scheme on trees requires
|table(u)| = Ω(

√
n) bits for some u in some graph, if

|address(u)| = dlog ne.

Space Analysis

table(u) is O(t log n) bits

address(u) is O(|hpath(u)| · log n) bits

If port(a, b) is in hpath(u), then b has rank > t for a.
So, w(b) 6 w(a)/t, and thus |hpath(u)| 6 logt n.

⇒ adresses and tables have size O(log2 n/ log log n) with
t = log n/ log log n.

Note 1: Any stretch-1 routing scheme on trees requires
|table(u)|+ |address(u)| = Ω(log2 n/ log log n) bits for some
u in some tree.

Note 2: Any stretch-1 routing scheme on trees requires
|table(u)| = Ω(

√
n) bits for some u in some graph, if

|address(u)| = dlog ne.

Space Analysis

table(u) is O(t log n) bits

address(u) is O(|hpath(u)| · log n) bits

If port(a, b) is in hpath(u), then b has rank > t for a.
So, w(b) 6 w(a)/t, and thus |hpath(u)| 6 logt n.

⇒ adresses and tables have size O(log2 n/ log log n) with
t = log n/ log log n.

Note 1: Any stretch-1 routing scheme on trees requires
|table(u)|+ |address(u)| = Ω(log2 n/ log log n) bits for some
u in some tree.

Note 2: Any stretch-1 routing scheme on trees requires
|table(u)| = Ω(

√
n) bits for some u in some graph, if

|address(u)| = dlog ne.

Space Analysis

table(u) is O(t log n) bits

address(u) is O(|hpath(u)| · log n) bits

If port(a, b) is in hpath(u), then b has rank > t for a.
So, w(b) 6 w(a)/t, and thus |hpath(u)| 6 logt n.

⇒ adresses and tables have size O(log2 n/ log log n) with
t = log n/ log log n.

Note 1: Any stretch-1 routing scheme on trees requires
|table(u)|+ |address(u)| = Ω(log2 n/ log log n) bits for some
u in some tree.

Note 2: Any stretch-1 routing scheme on trees requires
|table(u)| = Ω(

√
n) bits for some u in some graph, if

|address(u)| = dlog ne.

Outline

Context and Motivations

Models, Definitions and Examples

A First Compact Routing Scheme

A First Universal Compact Routing Scheme

Concluding Remarks

Sub-Linear Routing Table?

Bad news: Any stretch-1 routing scheme on general graphs
requires |address(u)|+ |table(u)| = Ω(n) bits for some u in
some graph.

Idea: Use a stretch s > 1 to make wrong the previous
statement.

Hints: Use sparse tree covers, and compact routing in trees.

Sub-Linear Routing Table?

Bad news: Any stretch-1 routing scheme on general graphs
requires |address(u)|+ |table(u)| = Ω(n) bits for some u in
some graph.

Idea: Use a stretch s > 1 to make wrong the previous
statement.

Hints: Use sparse tree covers, and compact routing in trees.

Sub-Linear Routing Table?

Bad news: Any stretch-1 routing scheme on general graphs
requires |address(u)|+ |table(u)| = Ω(n) bits for some u in
some graph.

Idea: Use a stretch s > 1 to make wrong the previous
statement.

Hints: Use sparse tree covers, and compact routing in trees.

Sub-Linear Routing Table?

Bad news: Any stretch-1 routing scheme on general graphs
requires |address(u)|+ |table(u)| = Ω(n) bits for some u in
some graph.

Idea: Use a stretch s > 1 to make wrong the previous
statement.

Hints: Use sparse tree covers, and compact routing in trees.

Step #1: vincinity balls

x 7→ B(x) be the t closest nodes around x, ties are broken
consistently.

3 3

2

2

2

11

1

1

2

5

2

5 4

4

1

1

1

n = 16, t = 4

Step #1: vincinity balls

x 7→ B(x) be the t closest nodes around x, ties are broken
consistently.

3 3

2

2

2

11

1

1

2

5

2

5 4

4

1

1

1

n = 16, t = 4

Step #1: vincinity balls

x 7→ B(x) be the t closest nodes around x, ties are broken
consistently.

3 3

2

2

2

11

1

1

2

5

2

5 4

4

1

1

1

n = 16, t = 4

Step #1: vincinity balls

x 7→ B(x) be the t closest nodes around x, ties are broken
consistently.

3 3

2

2

2

11

1

1

2

5

2

5 4

4

1

1

1

n = 16, t = 4

Step #1: vincinity balls

x 7→ B(x) be the t closest nodes around x, ties are broken
consistently.

3 3

2

2

2

11

1

1

2

5

2

5 4

4

1

1

1

n = 16, t = 4

Step #1: vincinity balls

x 7→ B(x) be the t closest nodes around x, ties are broken
consistently.

3 3

2

2

2

11

1

1

2

5

2

5 4

4

1

1

1

n = 16, t = 4

Step #1: vincinity balls

x 7→ B(x) be the t closest nodes around x, ties are broken
consistently.

3 3

2

2

2

11

1

1

2

5

2

5 4

4

1

1

1

n = 16, t = 4

Step #1: vincinity balls

x 7→ B(x) be the t closest nodes around x, ties are broken
consistently.

3 3

2

2

2

11

1

1

2

5

2

5 4

4

1

1

1

n = 16, t = 4

Step #1: vincinity balls

x 7→ B(x) be the t closest nodes around x, ties are broken
consistently.

3 3

2

2

2

11

1

1

2

5

2

5 4

4

1

1

1

n = 16, t = 4

Step #2: Hitting Set

Select a small hitting set P for the family {B(x)}x

(P ∩B(x) for every x ∈ V). There exists P such that
|P | 6 (n ln n)/t + 1.

3 3

2

2

2

11

1

1

2

5

2

5 4

4

1

1

1

Step #2: Hitting Set

Select a small hitting set P for the family {B(x)}x

(P ∩B(x) for every x ∈ V). There exists P such that
|P | 6 (n ln n)/t + 1.

3 3

2

2

2

11

1

1

2

5

2

5 4

4

1

1

1

Step #2: Hitting Set (cont’d)

Greedy Algorithm:

1 P := ∅ and F := {B(x) | x ∈ V }.
Let F (x) := {B ∈ F | x ∈ B}

2 While F 6= ∅ do:

pick p ∈ V such that |F (p)| est maximum
P := P ∪ {p}, F := F \ F (p)

Analysis: Define fi as |F| at the end of step i.
There must ∃p ∈ V such that |F (p)| > fi · t/n. Indeed,∑

v∈V

|F (v)| =
∑
B∈F

|B| > fi · t .

Thus, ∃p ∈ V whose F (p) has size larger than the average,

i.e., fi · t/n.

Step #2: Hitting Set (cont’d)

Greedy Algorithm:

1 P := ∅ and F := {B(x) | x ∈ V }.
Let F (x) := {B ∈ F | x ∈ B}

2 While F 6= ∅ do:

pick p ∈ V such that |F (p)| est maximum
P := P ∪ {p}, F := F \ F (p)

Analysis: Define fi as |F| at the end of step i.
There must ∃p ∈ V such that |F (p)| > fi · t/n. Indeed,∑

v∈V

|F (v)| =
∑
B∈F

|B| > fi · t .

Thus, ∃p ∈ V whose F (p) has size larger than the average,

i.e., fi · t/n.

Step #2: Hitting Set (cont’d)

f1 = f0 − f0 · t/n = f0 · (1− t/n)

f2 = f1 − f1 · t/n = f1 · (1− t/n) = f0 · (1− t/n)2

... = ...

fi = f0 · (1− t/n)i ∀i > 0

Algorithm stops at the first i0 such that fi0 < 1, and then
|P | = i0. For all 0 < α 6 1/2 and β > 0, (1− α)β < e−αβ:

(1− t/n)i0 < e−t·i0/n ⇒ f0 · (1− t/n)i0 < f0/e
t·i0/n

So fi0 < 1 implies f0/e
t·i0/n < 1 implies i0 > (n ln f0)/t.

Algorithm has finished at the end of step i0 = b(n ln n)/tc+ 1.

Step #3: Tree Cover

Small trees: Associate with every x ∈ V \ P :
a shortest-path tree Tx spanning B(x)

Big trees: Associate with every p ∈ P :
a shortest-path tree Tp spanning G

Denote by C the family of these trees.

Claim: For every x, y, ∃TC such that dT (x, y) 6 3d(x, y).

p(x)

yx

6 2d

d = d(x, y)

6 d

Step #3: Tree Cover

Small trees: Associate with every x ∈ V \ P :
a shortest-path tree Tx spanning B(x)

Big trees: Associate with every p ∈ P :
a shortest-path tree Tp spanning G

Denote by C the family of these trees.

Claim: For every x, y, ∃TC such that dT (x, y) 6 3d(x, y).

p(x)

yx

6 2d

d = d(x, y)

6 d

Step #3: Tree Cover

Small trees: Associate with every x ∈ V \ P :
a shortest-path tree Tx spanning B(x)

Big trees: Associate with every p ∈ P :
a shortest-path tree Tp spanning G

Denote by C the family of these trees.

Claim: For every x, y, ∃TC such that dT (x, y) 6 3d(x, y).

p(x)

yx

6 2d

d = d(x, y)

6 d

Step #3: Tree Cover (cont’d)

Choose t :=
√

n ln n, so that:
|P | 6 (n ln n)/t + 1 =

√
n ln n + 1.

Observation: The graph H :=
⋃

T∈C T is a spanning
subgraph of G and its number of edges is at most:

(n− |P |) · (t− 1) + |P | · (n− 1) < 2n
√

n ln n = Õ(n3/2)

Our Goal: Design a stretch-3 routing scheme with routing
tables of Õ(n1/2) bits per node and polylog addresses.

Step #3: Tree Cover (cont’d)

Choose t :=
√

n ln n, so that:
|P | 6 (n ln n)/t + 1 =

√
n ln n + 1.

Observation: The graph H :=
⋃

T∈C T is a spanning
subgraph of G and its number of edges is at most:

(n− |P |) · (t− 1) + |P | · (n− 1) < 2n
√

n ln n = Õ(n3/2)

Our Goal: Design a stretch-3 routing scheme with routing
tables of Õ(n1/2) bits per node and polylog addresses.

How to Route from x to y?

p(x)

yx

6 2d

d = d(x, y)

6 d

Easy case: y ∈ B(x).
Node x can store B(x) and the port to each v ∈ B(x). This is
Õ(t) = Õ(n1/2) bits of information.

Claim: if w is on a shortest-path from x to v, then v ∈ B(w).

How to Route from x to y?

p(x)

yx

6 2d

d = d(x, y)

6 d

Otherwise: y /∈ B(x). Then, route to p(x), and then try to
reach y along Tp(x).

Each node z can store tableTp(z) for each big tree Tp (there
are only |P | such trees). But, neither x neither p(x) can store
addressTp(x)

(y) for all possible y. If we want polylog(n) ad-
dresses, y cannot store addressTp(x)

(y) in its address.

Another Solution
Hints: if y /∈ B(x), route along Tp(y) and store addressTp(y)

(y)
in the y’s address.

p(y)p(x)
6 3d

d yx

6 d

6 2d

6 2d

x

t = 4

6

5
p(y)

1

2

4

y

3

Another Solution
Hints: if y /∈ B(x), route along Tp(y) and store addressTp(y)

(y)
in the y’s address.

p(y)p(x)
6 3d

d yx

6 d

6 2d

6 2d

x

t = 4

6

5
p(y)

1

2

4

y

3

Another Solution
Hints: if y /∈ B(x), route along Tp(y) and store addressTp(y)

(y)
in the y’s address.

p(y)p(x)
6 3d

d yx

6 d

6 2d

6 2d

x

t = 4

6

5
p(y)

1

2

4

y

3

Outline

Context and Motivations

Models, Definitions and Examples

A First Compact Routing Scheme

A First Universal Compact Routing Scheme

Concluding Remarks

Best Known Universal Routing Schemes

[addresses are polylog, space is up to polylog]

stretch (LB) stretch (UB) space scheme
1 1 n name-indep.
3 3

√
n name-indep.

5 7 n1/3 labeled
...

1.5k − 1 4k − 5 n1/k labeled
2k − 1 ≈ 100k n1/k name-indep.

Observations: Only the two first lines of the table are known
to be optimal. For n1/3 space, there is a lower bound of 5 on
the stretch. For general k, the conjecture is stretch 2k − 1,
but neither the current lower or upper bounds reach this
bound when k > 5.

Best Known Universal Routing Schemes

[addresses are polylog, space is up to polylog]

stretch (LB) stretch (UB) space scheme
1 1 n name-indep.
3 3

√
n name-indep.

5 7 n1/3 labeled
...

1.5k − 1 4k − 5 n1/k labeled
2k − 1 ≈ 100k n1/k name-indep.

Observations: Only the two first lines of the table are known
to be optimal. For n1/3 space, there is a lower bound of 5 on
the stretch. For general k, the conjecture is stretch 2k − 1,
but neither the current lower or upper bounds reach this
bound when k > 5.

	Context and Motivations
	Models, Definitions and Examples
	A First Compact Routing Scheme
	A First Universal Compact Routing Scheme
	Concluding Remarks

