An Overview on Compact Routing

Cyril Gavoille ${ }^{1}$

${ }^{1}$ University of Bordeaux, France

19 March 2007
Workshop on Peer-to-Peer, Routing in Complex Graphs, and Network Coding
Thomson - Paris

The Compact Routing Problem

Input: a network G (an edge-weighted connected graph)
Ouput: a routing scheme for G
A routing scheme is a distributed algorithm that allows any source node to route messages to any destination node, given the destination's network identifier

The Compact Routing Problem

Input: a network G (an edge-weighted connected graph)
Ouput: a routing scheme for G
A routing scheme is a distributed algorithm that allows any source node to route messages to any destination node, given the destination's network identifier

Goal: to minimize the size of the routing tables

Example: Grid with X,Y-coordinates

Routing algorithm: X,Y-routing

Example: Grid with X,Y-coordinates

Routing algorithm: X,Y-routing

Complexity Measures: Space \& Stretch

Space $=$ size of the largest local routing tables

Complexity Measures: Space \& Stretch

Space $=$ size of the largest local routing tables (more precisely, size of the smallest local routing algorithm including all constants and data-structures) In the grid example: space $=O(\log n)$ bits

Complexity Measures: Space \& Stretch

Space $=$ size of the largest local routing tables (more precisely, size of the smallest local routing algorithm including all constants and data-structures) In the grid example: space $=O(\log n)$ bits
Stretch $=$ ratio between length of the route and distance

$$
\mid \text { route }(u, v) \mid \leqslant \operatorname{stretch} \cdot \operatorname{dist}(u, v)
$$

In the grid example: stretch $=1$ (shortest path)

Complexity Measures: Space \& Stretch

Space $=$ size of the largest local routing tables (more precisely, size of the smallest local routing algorithm including all constants and data-structures)

In the grid example: space $=O(\log n)$ bits
Stretch $=$ ratio between length of the route and distance

$$
\mid \text { route }(u, v) \mid \leqslant \operatorname{stretch} \cdot \operatorname{dist}(u, v)
$$

In the grid example: stretch $=1$ (shortest path)

Question: for a given family of graphs, find the best space-stretch trade-off

Two variants: Name-independent vs. Labeled

The destination enters the network with its name, which is determined by either the designer of the routing scheme (labeled), or an adversary (name-independent).

Labeled: the designer is free to name the nodes according to the topology and the edge weights of the graph Name-independent: the input is a graph with fixed node manes

An overview: Labeled Model

Labels are of polylogarithmic size
$\tilde{O}(f(n))=f(n) \cdot \operatorname{polylog}(n)$
network stretch space/node (bits)
$\begin{array}{lll}\text { arbitrary } & 1 & n \log n\end{array}$ [folk]

An overview: Labeled Model

Labels are of polylogarithmic size
$\tilde{O}(f(n))=f(n) \cdot \operatorname{polylog}(n)$
network stretch space/node (bits)

$$
\begin{array}{cccc}
\text { arbitrary } & 1 & n \log n & \text { [folk] } \\
(2 \leqslant k \in \mathbb{N}) & 4 k-5 & \tilde{O}\left(n^{1 / k}\right) & \text { [Thorup,Zwick] }
\end{array}
$$

An overview: Labeled Model

Labels are of polylogarithmic size
$\tilde{O}(f(n))=f(n) \cdot \operatorname{polylog}(n)$
network stretch space/node (bits)

arbitrary	1	$n \log n$	[folk]
$(2 \leqslant k \in \mathbb{N})$	$4 k-5$	$\tilde{O}\left(n^{1 / k}\right)$	[Thorup,Zwick]
tree	1	$\tilde{O}(1)$	[TZ/Fraigniaud,G.]

An overview: Labeled Model

Labels are of polylogarithmic size $\tilde{O}(f(n))=f(n) \cdot \operatorname{polylog}(n)$
network stretch space/node (bits)

arbitrary	1	$n \log n$	[folk]
$(2 \leqslant k \in \mathbb{N})$	$4 k-5$	$\tilde{O}\left(n^{1 / k}\right)$	[Thorup,Zwick]
tree	1	$\tilde{O}(1)$	[TZ/Fraigniaud,G.]
doubling- $\alpha \operatorname{dim}$.	$1+\varepsilon$	$\log \Delta$ 	
		[Talwar/Slivkins]	

An overview: Labeled Model

Labels are of polylogarithmic size

$$
\tilde{O}(f(n))=f(n) \cdot \operatorname{polylog}(n)
$$

network stretch space/node (bits)

arbitrary	1	$n \log n$	[folk]
$(2 \leqslant k \in \mathbb{N})$	$4 k-5$	$\tilde{O}\left(n^{1 / k}\right)$	[Thorup,Zwick]
tree	1	$\tilde{O}(1)$	[TZ/Fraigniaud,G.]
doubling- $\alpha \operatorname{dim}$.	$1+\varepsilon$	$\log \Delta$	[Talwar/Slivkins]
		$\tilde{O}(1)$	[Chan et al./Abraham et al.]
planar	$1+\varepsilon$	$\tilde{O}(1)$	[Thorup]

An overview: Labeled Model

Labels are of polylogarithmic size
$\tilde{O}(f(n))=f(n) \cdot \operatorname{polylog}(n)$
network stretch space/node (bits)

arbitrary	1	$n \log n$	[folk]
$(2 \leqslant k \in \mathbb{N})$	$4 k-5$	$\tilde{O}\left(n^{1 / k}\right)$	[Thorup,Zwick]
tree	1	$\tilde{O}(1)$	[TZ/Fraigniaud,G.]
doubling- α dim.	$1+\varepsilon$	$\log \Delta$	[Talwar/Slivkins]
		$\tilde{O}(1)$ [Chan et al./Abraham et al.]	
planar	$1+\varepsilon$	$\tilde{O}(1)$	[Thorup]
H-minor-free	$1+\varepsilon$	$\tilde{O}(1)$	[Abraham,G.]

An overview: Name-independent Model

network stretch space/node (bits)
bounded growth $1+\varepsilon \quad \tilde{O}(1) \quad$ [Abraham et al.]

An overview: Name-independent Model

network stretch space/node (bits)
bounded growth $1+\varepsilon \quad \tilde{O}(1) \quad$ [Abraham et al.]
doubling- α dim. $9+\varepsilon \quad \tilde{O}(1)$ [Konjevod et al./Abraham et al.]

An overview: Name-independent Model

network stretch space/node (bits)
bounded growth $1+\varepsilon \quad \tilde{O}(1) \quad$ [Abraham et al.] doubling- α dim. $9+\varepsilon \quad \tilde{O}(1)$ [Konjevod et al./Abraham et al.]
H-minor-free $\quad O(1) \quad \tilde{O}(1) \quad$ [Abraham et al.]
(unweighted)

An overview: Name-independent Model

network stretch space/node (bits)
bounded growth $1+\varepsilon \quad \tilde{O}(1) \quad$ [Abraham et al.] doubling- α dim. $9+\varepsilon \quad \tilde{O}(1)$ [Konjevod et al./Abraham et al.]
H-minor-free $\quad O(1) \quad \tilde{O}(1) \quad$ [Abraham et al.]
(unweighted)
trees $\quad 2^{k}-1 \quad \tilde{O}\left(n^{1 / k}\right) \quad$ [Laing]

An overview: Name-independent Model

network stretch space/node (bits)
bounded growth $1+\varepsilon \quad \tilde{O}(1) \quad$ [Abraham et al.] doubling- α dim. H-minor-free (unweighted)

trees	$2^{k}-1$	$\tilde{O}\left(n^{1 / k}\right)$	[Laing]
arbitrary	3	$\tilde{O}(\sqrt{n})$	[A.,G.,Malkhi,Nisan, Thorup]

An overview: Name-independent Model

network stretch space/node (bits)
bounded growth $1+\varepsilon \quad \tilde{O}(1) \quad$ [Abraham et al.] doubling- α dim. H-minor-free (unweighted)

trees	$2^{k}-1$	$\tilde{O}\left(n^{1 / k}\right)$	[Laing]
arbitrary	3	$\tilde{O}(\sqrt{n})$	[A., G.,Malkhi,Nisan, Thorup]
	$O\left(k^{2} 2^{k}\right)$	$\tilde{O}\left(n^{1 / k}\right)$	[Arias et al./Awerbuch,Peleg]
	$O(k)$	$\tilde{O}\left(n^{1 / k}\right)$	[Abraham et al.]

Lower Bounds for Name-Independent

Rem: lower bound for labeled \Rightarrow lower bound for name-indep

Lower Bounds for Name-Independent

Rem: lower bound for labeled \Rightarrow lower bound for name-indep network stretch space/node (bits)

arbitrary	<1.4	$\Omega(n \log n)$	[G.,Pérennès.]
	<3	$\Omega(n)$	[G.,Gengler]

(only $k=1,2,3,5) \quad<2 k+1 \quad \Omega\left(n^{1 / k}\right) \quad$ [Thorup,Zwick]

Lower Bounds for Name-Independent

Rem: lower bound for labeled \Rightarrow lower bound for name-indep network stretch space/node (bits)

arbitrary	<1.4	$\Omega(n \log n)$	[G.,Pérennès.]
	<3	$\Omega(n)$	[G.,Gengler]

(only $k=1,2,3,5) \quad<2 k+1 \quad \Omega\left(n^{1 / k}\right) \quad$ [Thorup,Zwick]

trees	$\leqslant 3$	$\Omega(\sqrt{n})$	[Laing,Rajaraman]
	$\leqslant 9-\varepsilon$	$\Omega\left(n^{(\varepsilon / 60)^{2}}\right)$	[Konjevod et al.]

Lower Bounds for Name-Independent

Rem: lower bound for labeled \Rightarrow lower bound for name-indep network stretch space/node (bits)

arbitrary	<1.4	$\Omega(n \log n)$	[G.,Pérennès.]
	<3	$\Omega(n)$	[G.,Gengler]

(only $k=1,2,3,5) \quad<2 k+1 \quad \Omega\left(n^{1 / k}\right) \quad$ [Thorup,Zwick]

trees	$\leqslant 3$	$\Omega(\sqrt{n})$	[Laing,Rajaraman]
	$\leqslant 9-\varepsilon$	$\Omega\left(n^{(\varepsilon / 60)^{2}}\right)$	[Konjevod et al.]

for all $k \geqslant 1 \quad<2 k+1 \quad \Omega\left((n \log n)^{1 / k}\right)$ [Abraham et al.]

Theorem [Abraham,G.,Malkhi]

(1) Any name-indep. routing scheme using $<(n \log n)^{1 / k}$ bits/node has a max stretch $\geqslant 2 k+1$ for some graph.
(2) Any name-indep. routing scheme using $<(n / k)^{1 / k}$ bits/node has an average stretch $\geqslant k / 4$ for some graph.

Theorem [Abraham,G.,Malkhi]

(1) Any name-indep. routing scheme using $<(n \log n)^{1 / k}$ bits/node has a max stretch $\geqslant 2 k+1$ for some graph.
(2) Any name-indep. routing scheme using $<(n / k)^{1 / k}$ bits/node has an average stretch $\geqslant k / 4$ for some graph.

Rem 1: All previous lower bounds for labeled case (Peleg, Upfal / G.,Pérennès / G.,Gengler / Kranakis,Krizanc / Thorup,Zwick) are based on the construction of dense large girth graphs

if stretch $<2 k+1$, then
u is forced to "know"
the edge (u, v)

Theorem [Abraham,G.,Malkhi]

(1) Any name-indep. routing scheme using $<(n \log n)^{1 / k}$ bits/node has a max stretch $\geqslant 2 k+1$ for some graph.
(2) Any name-indep. routing scheme using $<(n / k)^{1 / k}$ bits/node has an average stretch $\geqslant k / 4$ for some graph.

Erdös Conjecture: \exists graph of girth $2 k+2$ with $\Omega\left(n^{1+1 / k}\right)$ edges (proved only for $k=1,2,3,5$). So, the extra $(\log n)^{1 / k}$ term cannot be obtained with a girth approach.

Theorem [Abraham,G.,Malkhi]

(1) Any name-indep. routing scheme using $<(n \log n)^{1 / k}$ bits/node has a max stretch $\geqslant 2 k+1$ for some graph.
(2) Any name-indep. routing scheme using $<(n / k)^{1 / k}$ bits/node has an average stretch $\geqslant k / 4$ for some graph.

Rem 2: It makes a clear separation between labeled and nameindependent routing, at least for the average stretch.

In the labelel model, O (polylog $(n))$ space and $O(1)$ average stretch exsits for every graph! [Abraham, Bartal, Chan, Gupta, Kleinberg et al. (FOCS05)]

In the name-indep model, if space is O (polylog $(n))$, then the average stretch must be $\Omega(\log n / \log \log n)$ for some graphs.

The Metric Model

A weaker model, but conceptually easier
Input: a metric space (V, d)
Ouput: an overlay network $G=(V, E)$, and a routing scheme for G

The Metric Model

A weaker model, but conceptually easier
Input: a metric space (V, d)
Ouput: an overlay network $G=(V, E)$, and a routing scheme for G

An extra complexity measure: the size $|E|$ of the overlay

The Metric Model

A weaker model, but conceptually easier
Input: a metric space (V, d)
Ouput: an overlay network $G=(V, E)$, and a routing scheme for G

An extra complexity measure: the size $|E|$ of the overlay

Goal: to minimize the size of G, (and to balance $=$ the space for each node must be \approx the average degree of G) while keeping low stretch

Example: Stretch-3 for Arbitrary Metric

Example: Stretch-3 for Arbitrary Metric

$B_{u}=$ the set of $\sqrt{n \ln n}$ closest nodes from u

Example: Stretch-3 for Arbitrary Metric

$B_{u}=$ the set of $\sqrt{n \ln n}$ closest nodes from u $L=$ a hitting of $\left\{B_{u} \mid u \in V\right\}$ of size $\leqslant \sqrt{n \ln n}$

Example: Stretch-3 for Arbitrary Metric

$B_{u}=$ the set of $\sqrt{n \ln n}$ closest nodes from u
$L=$ a hitting of $\left\{B_{u} \mid u \in V\right\}$ of size $\leqslant \sqrt{n \ln n}$
Overlay: $u \rightarrow w, \forall w \in B_{u}$ and $u \rightarrow \ell, \forall \ell \in L$

Example: Stretch-3 for Arbitrary Metric

$B_{u}=$ the set of $\sqrt{n \ln n}$ closest nodes from u
$L=$ a hitting of $\left\{B_{u} \mid u \in V\right\}$ of size $\leqslant \sqrt{n \ln n}$
Overlay: $u \rightarrow w, \forall w \in B_{u}$ and $u \rightarrow \ell, \forall \ell \in L$ $\Rightarrow|E| \leqslant \sum_{u}\left(\left|B_{u}\right|+|L|\right)=\tilde{O}\left(n^{3 / 2}\right)$

Example: Stretch-3 for Arbitrary Metric

$B_{u}=$ the set of $\sqrt{n \ln n}$ closest nodes from u
$L=$ a hitting of $\left\{B_{u} \mid u \in V\right\}$ of size $\leqslant \sqrt{n \ln n}$
Overlay: $u \rightarrow w, \forall w \in B_{u}$ and $u \rightarrow \ell, \forall \ell \in L$ $\Rightarrow|E| \leqslant \sum_{u}\left(\left|B_{u}\right|+|L|\right)=\tilde{O}\left(n^{3 / 2}\right)$
Routing: If $v \in B_{u}$, ROUTE $u \rightarrow v$, ELSE $u \rightarrow \ell_{u} \rightarrow v$

Example: Stretch-3 for Arbitrary Metric

$B_{u}=$ the set of $\sqrt{n \ln n}$ closest nodes from u
$L=$ a hitting of $\left\{B_{u} \mid u \in V\right\}$ of size $\leqslant \sqrt{n \ln n}$
Overlay: $u \rightarrow w, \forall w \in B_{u}$ and $u \rightarrow \ell, \forall \ell \in L$ $\Rightarrow|E| \leqslant \sum_{u}\left(\left|B_{u}\right|+|L|\right)=\tilde{O}\left(n^{3 / 2}\right)$
Routing: If $v \in B_{u}$, ROUTE $u \rightarrow v$, ELSE $u \rightarrow \ell_{u} \rightarrow v$

Example: Stretch-3 for Arbitrary Metric

$B_{u}=$ the set of $\sqrt{n \ln n}$ closest nodes from u
$L=$ a hitting of $\left\{B_{u} \mid u \in V\right\}$ of size $\leqslant \sqrt{n \ln n}$
Overlay: $u \rightarrow w, \forall w \in B_{u}$ and $u \rightarrow \ell, \forall \ell \in L$

$$
\Rightarrow|E| \leqslant \sum_{u}\left(\left|B_{u}\right|+|L|\right)=\tilde{O}\left(n^{3 / 2}\right)
$$

Routing: If $v \in B_{u}$, ROUTE $u \rightarrow v$, ELSE $u \rightarrow \ell_{u} \rightarrow v$
Rem: $\ell_{u} \rightarrow v$ is not necessarily easy to implement in the graph model (usually simulated with some tree routings)

Some Results in the Metric Model

Both labeled and name-independent variants exist ... metric stretch average degree

Euclidian $\quad O(1) \quad O(1)$ [Abraham,Malkhi/Hassin,Peleg]

Some Results in the Metric Model

Both labeled and name-independent variants exist ... metric stretch average degree

Euclidian $\quad O(1) \quad \underset{\sim}{O}(1)$ [Abraham,Malkhi/Hassin,Peleg]
doubling- $\alpha \operatorname{dim} . \quad 1+\varepsilon \quad \tilde{O}(\log \Delta)$ [Talwar/Chan et al./Slivkins]
$1+\varepsilon \quad \tilde{O}(1) \quad$ [Abraham et al.]

Undirected vs. Directed

(graph model only!)

Problem: there is no stretch-space trade-off for routing in directed graphs! The stretch maybe not bounded if $o(n)$ bits of memory are used, even in strongly connected digraphs [Thorup,Zwick]

Undirected vs. Directed

(graph model only!)

Problem: there is no stretch-space trade-off for routing in directed graphs! The stretch maybe not bounded if $o(n)$ bits of memory are used, even in strongly connected digraphs [Thorup,Zwick]

New measure: roundtrip stretch factor

$$
\text { stretch }=\frac{|\operatorname{route}(u, v)|+|\operatorname{route}(v, u)|}{\operatorname{dist}(u, v)+\operatorname{dist}(v, u)}
$$

Rem: $\operatorname{dist}(u, v)+\operatorname{dist}(v, u)$ is now a distance function

Some Results for Arbitrary Digraphs

Labeled:

[Roditty,Thorup,Zwick - SODA '02]

$$
\begin{array}{ll}
\text { stretch }=4 k+\varepsilon & \text { stretch }=3 \\
\text { space }=\tilde{O}\left(\varepsilon^{-1} k n^{1 / k} \log \Delta\right) & \text { space }=\tilde{O}(\sqrt{n}) \\
\text { labels }=o\left(\varepsilon^{-1} k \log ^{2} n \log \Delta\right) & \text { labels }=o\left(\log ^{2} n\right) \\
\hline
\end{array}
$$

Name-independent:
[Arias, Cowen,Laing - PODC '03]

stretch $=O\left(k^{2}\right)$	stretch $=6$
space $=\tilde{O}\left(\varepsilon^{-1} k n^{1 / k} \log \Delta\right)$	space $=\tilde{O}(\sqrt{n})$
labels $=o\left(\varepsilon^{-1} k^{2} \log ^{2} n \log \Delta\right)$	labels $=o\left(\log ^{2} n\right)$

Lower bound: if stretch <2, then $\Omega(n)$ bits is required

Open Questions: For Arbitrary Networks

Q1: Labeled: stretch $\leqslant 4 k-5$ for $\tilde{O}\left(n^{1 / k}\right)$ memory. Optimal only for $k=1,2$. The lower bound on the stretch is $\leqslant 2 k-1$. For $k=4$, the lower bound is not known to be $2 k-1$ (the Erdös conjecture is proved only for $k=1,2,3,5)$

Open Questions: For Arbitrary Networks

Q1: Labeled: stretch $\leqslant 4 k-5$ for $\tilde{O}\left(n^{1 / k}\right)$ memory. Optimal only for $k=1,2$. The lower bound on the stretch is $\leqslant 2 k-1$. For $k=4$, the lower bound is not known to be $2 k-1$ (the Erdös conjecture is proved only for $k=1,2,3,5$)
Q2: Name-independent = labeled ???
For $k=1,2$, the same bounds hold.

Open Questions: For Arbitrary Networks

Q1: Labeled: stretch $\leqslant 4 k-5$ for $\tilde{O}\left(n^{1 / k}\right)$ memory. Optimal only for $k=1,2$. The lower bound on the stretch is $\leqslant 2 k-1$. For $k=4$, the lower bound is not known to be $2 k-1$ (the Erdös conjecture is proved only for $k=1,2,3,5$)
Q2: Name-independent = labeled ???
For $k=1,2$, the same bounds hold.
Q3: Directed = Undirected???

Open Questions: For Specific Networks

Q4: Trees unweighted name-indep: what's the best stretch with $\tilde{O}(1)$ memory? Currently stretch ≈ 17.

Open Questions: For Specific Networks

Q4: Trees unweighted name-indep: what's the best stretch with $\tilde{O}(1)$ memory? Currently stretch ≈ 17.
Q5: Labeled treewidth- k \& shortest path:
$o\left(k \log ^{2} n\right)$-bit labels? True for trees $k=1$ [Fraigniaud,G.] and weighted outerplanar $k=2$ [Dieng, G.]: $\Theta\left(\log ^{2} n / \log \log n\right)$ bits are enough and necessary.

Open Questions: For Specific Networks

Q4: Trees unweighted name-indep: what's the best stretch with $\tilde{O}(1)$ memory? Currently stretch ≈ 17.
Q5: Labeled treewidth- k \& shortest path:
$o\left(k \log ^{2} n\right)$-bit labels? True for trees $k=1$ [Fraigniaud,G.] and weighted outerplanar $k=2$ [Dieng, G.]: $\Theta\left(\log ^{2} n / \log \log n\right)$ bits are enough and necessary.
Q6: Shortest path in planar with $\tilde{O}(1)$ labels: $\Omega\left(n^{1 / 3}\right) \ldots O(n)$ (currently $7.18 n$ bits [Lu '02])

Future Works (1/2)

W1: $\tilde{O}(\operatorname{deg}(u))$ with stretch $O(1)$ for general graphs?

Future Works (1/2)

W1: $\tilde{O}(\operatorname{deg}(u))$ with stretch $O(1)$ for general graphs?
W2: Bounded degree?
(sparse graphs are known to be non-compact. Bounded degree nodes "increase" distances, so stretch tends to 1 . No lower bounds is known. Bounded degree includes expanders ...)

Future Works (1/2)

W1: $\tilde{O}(\operatorname{deg}(u))$ with stretch $O(1)$ for general graphs?
W2: Bounded degree?
(sparse graphs are known to be non-compact. Bounded degree nodes "increase" distances, so stretch tends to 1 . No lower bounds is known. Bounded degree includes expanders ...)
W3: Routing with additive stretch? (initial works in random power law networks [Brady, Cowen '06]. The addtive stretch and the polylog labels depend on the graph parameter only. Works well in practice. Connection with distance labeling)

Future Works (2/2)

W4: Average stretch? ε-slack routing?
(labeled and name-indep differ. Average stretch \& additive stretch are interesting in practice)

Future Works $(2 / 2)$

W4: Average stretch? ε-slack routing?
(labeled and name-indep differ. Average stretch \& additive stretch are interesting in practice)
W5: Dynamic routing: Yes for trees only [Korman,Peleg] ...

Future Works $(2 / 2)$

W4: Average stretch? ε-slack routing? (labeled and name-indep differ. Average stretch \& additive stretch are interesting in practice)
W5: Dynamic routing: Yes for trees only [Korman,Peleg] ...
W6: Distributed algorithms for constructing tables? Yes [Frederickson'90/Slivkins'07] for some speficic graphs (planar/bounded growth). Distributed implementation is possible but ... complicated!

Thank you!

