An Overview on Compact Routing

Cyril Gavoille¹

¹University of Bordeaux, France

19 March 2007 Workshop on Peer-to-Peer, Routing in Complex Graphs, and Network Coding Thomson - Paris

The Compact Routing Problem

Input: a network G (an edge-weighted connected graph) Ouput: a **routing scheme** for G

A *routing scheme* is a distributed algorithm that allows **any** source node to route messages to **any** destination node, given the destination's network identifier

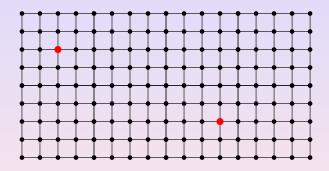
The Compact Routing Problem

Input: a network G (an edge-weighted connected graph) Ouput: a **routing scheme** for G

A *routing scheme* is a distributed algorithm that allows **any** source node to route messages to **any** destination node, given the destination's network identifier

Goal: to minimize the size of the routing tables

Example: Grid with X,Y-coordinates



Routing algorithm: X,Y-routing

Example: Grid with X,Y-coordinates



Routing algorithm: X,Y-routing

Space = size of the largest local routing tables

Space = size of the largest local routing tables (more precisely, size of the smallest local routing algorithm including all constants and data-structures) In the grid example: space = $O(\log n)$ bits

Space = size of the largest local routing tables
(more precisely, size of the smallest local routing
algorithm including all constants and data-structures)

In the grid example: space $= O(\log n)$ bits

Stretch = ratio between length of the route and distance

 $|\text{route}(u, v)| \leq \text{stretch} \cdot \text{dist}(u, v)$

In the grid example: stretch = 1 (shortest path)

Space = size of the largest local routing tables
(more precisely, size of the smallest local routing
algorithm including all constants and data-structures)

In the grid example: space $= O(\log n)$ bits

Stretch = ratio between length of the route and distance

$$|\text{route}(u, v)| \leq \text{stretch} \cdot \text{dist}(u, v)$$

In the grid example: stretch = 1 (shortest path)

Question: for a given family of graphs, find the best space-stretch trade-off

Two variants: Name-independent vs. Labeled

The destination enters the network with its **name**, which is determined by either the designer of the routing scheme (labeled), or an adversary (name-independent).

Labeled: the designer is free to name the nodes according to the topology and the edge weights of the graph

Name-independent: the input is a graph with fixed node manes

Labels are of polylogarithmic size
$$\tilde{O}(f(n)) = f(n) \cdot \operatorname{polylog}(n)$$
 network stretch space/node (bits)
$$\frac{1 + n \log n}{n}$$
 [folk]

Labels are of polylogarithmic size $\tilde{O}(f(n)) = f(n) \cdot \operatorname{polylog}(n)$						
network	stretch	space/noo	de (bits)			
arbitrary	1	$n \log n$	[folk]			
$(2 \leqslant k \in \mathbb{N})$	4k - 5	$\tilde{O}(n^{1/k})$	[Thorup,Zwick]			

Labels are of polylogarithmic size $\tilde{O}(f(n)) = f(n) \cdot \operatorname{polylog}(n)$					
network	stretch	space/no	de (bits)		
arbitrary $(2\leqslant k\in\mathbb{N})$	1 $4k - 5$	$n \log n$ $\tilde{O}(n^{1/k})$	[folk] [Thorup,Zwick]		
tree	1	$\tilde{O}(1)$	[TZ/Fraigniaud,G.]		

Labels are of polylogarithmic size $\tilde{O}(f(n)) = f(n) \cdot \operatorname{polylog}(n)$					
network	stretch	space/no	de (bits)		
arbitrary $(2\leqslant k\in\mathbb{N})$	$1 \\ 4k - 5$	$n \log n$ $\tilde{O}(n^{1/k})$	[folk] [Thorup,Zwick]		
tree	1	$\tilde{O}(1)$	[TZ/Fraigniaud,G.]		
doubling- α dim.	$1 + \varepsilon$	$\log \Delta \ ilde{O}(1)$ [Ch	[Talwar/Slivkins] an et al./Abraham et al.]		

Labels are of polylogarithmic size $\tilde{O}(f(n)) = f(n) \cdot \operatorname{polylog}(n)$					
network	stretch space/node (bits)				
arbitrary $(2\leqslant k\in\mathbb{N})$	$1 \\ 4k - 5$	$n \log n \\ \tilde{O}(n^{1/k})$	[folk] [Thorup,Zwick]		
tree	1	$\tilde{O}(1)$	[TZ/Fraigniaud,G.]		
doubling- α dim.	$1 + \varepsilon$	$\begin{split} \log \Delta & \text{[Talwar/Slivkins]} \\ \tilde{O}(1) & \text{[Chan et al./Abraham et al.]} \end{split}$			
planar	$1 + \varepsilon$	$\tilde{O}(1)$	[Thorup]		

 $H\text{-minor-free} \qquad 1+\varepsilon \qquad \tilde{O}(1)$

Labels are of polylogarithmic size $\tilde{O}(f(n)) = f(n) \cdot \operatorname{polylog}(n)$					
network	stretch	space/no	de (bits)		
arbitrary $(2\leqslant k\in\mathbb{N})$	$1 \\ 4k - 5$	$n \log n$ $\tilde{O}(n^{1/k})$	[folk] [Thorup,Zwick]		
tree	1	$\tilde{O}(1)$	[TZ/Fraigniaud,G.]		
doubling- α dim.	$1 + \varepsilon$	~ ~	[Talwar/Slivkins] an et al./Abraham et al.]		
planar	$1 + \varepsilon$	$\tilde{O}(1)$	[Thorup]		

[Abraham, G.]

network	stretch	space/node (bits)	
bounded growth	$1 + \varepsilon$	$\tilde{O}(1)$	[Abraham et al.]

_	network	stretch	space/node (bits)	

bounded growth $1 + \varepsilon$ $\tilde{O}(1)$

[Abraham et al.] doubling- α dim. $9 + \varepsilon$ $\tilde{O}(1)$ [Konjevod et al./Abraham et al.]

network	stretch	space/node (bits)
bounded growth	$1+\varepsilon$	$ ilde{O}(1)$ [Abraham et al.]
doubling- α dim.	$9 + \varepsilon$	$ ilde{O}(1)$ [Konjevod et al./Abraham et al.]
H-minor-free (unweighted)	O(1)	$ ilde{O}(1)$ [Abraham et al.]

network	stretch	space/nod	le (bits)
bounded growth	$1+\varepsilon$	$\tilde{O}(1)$	[Abraham et al.]
$doubling\text{-}\alpha \ dim.$	$9 + \varepsilon$	$ ilde{O}(1)$ [Kon	jevod et al./Abraham et al.]
$H ext{-minor-free}$	O(1)	$\tilde{O}(1)$	[Abraham et al.]

 $2^k - 1 \quad \tilde{O}(n^{1/k})$

(unweighted)

trees

O(1)

[Laing]

network	stretch	space/node (bits)
bounded growth	$1 + \varepsilon$	$ ilde{O}(1)$ [Abraham et al.]
doubling- $lpha$ dim.	$9 + \varepsilon$	$ ilde{O}(1)$ [Konjevod et al./Abraham et al.]

H-minor-free O(1)O(1)

(unweighted)

trees

arbitrary

3

 $2^k - 1 \quad \tilde{O}(n^{1/k})$

 $\tilde{O}(\sqrt{n})$ [A.,G.,Malkhi,Nisan,Thorup]

[Laing]

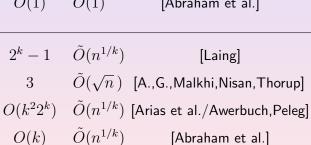
network	stretch	space/node (bits)
bounded growth	$1 + \varepsilon$	$ ilde{O}(1)$ [Abraham et al.]
$doubling\text{-}\alpha \ dim.$	$9 + \varepsilon$	$ ilde{O}(1)$ [Konjevod et al./Abraham et al.]
H-minor-free	O(1)	$ ilde{O}(1)$ [Abraham et al.]

$$2^{k} - 1$$

$$3$$

$$O(k^{2}2^{k})$$

$$O(k)$$



Rem: lower bound for labeled \Rightarrow lower bound for name-indep

Rem: lower bound for labeled \Rightarrow lower bound for name-indep				
network	stretch	space/node	(bits)	
arbitrary	< 1.4	$\Omega(n \log n)$	[G.,Pérennès.]	
	< 3	$\Omega(n)$	[G.,Gengler]	
(only $k = 1, 2, 3, 5$)	< 2k + 1	$\Omega(n^{1/k})$	[Thorup,Zwick]	

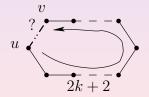
Rem: lower bound for labeled \Rightarrow lower bound for name-indep			
network	stretch	space/node (bits)	
arbitrary	< 1.4	$\Omega(n\log n)$ [G.,Pérennès.]	
	< 3	$\Omega(n)$ [G.,Gengler]	
(only $k = 1, 2, 3, 5$)	< 2k + 1	$\Omega(n^{1/k})$ [Thorup,Zwick]	
trees	€ 3	$\Omega(\sqrt{n})$ [Laing,Rajaraman]	
	$\leq 9 - \varepsilon$	$\Omega(n^{(arepsilon/60)^2})$ [Konjevod et al.]	

Rem: lower bound for labeled \Rightarrow lower bound for name-indep			
network	stretch	space/node (bits)	
arbitrary	< 1.4	$\Omega(n\log n)$ [G.,Pérennès.]	
	< 3	$\Omega(n)$ [G.,Gengler]	
(only $k = 1, 2, 3, 5$)	< 2k + 1	$\Omega(n^{1/k})$ [Thorup,Zwick]	
trees	€ 3	$\Omega(\sqrt{n})$ [Laing,Rajaraman]	
	$\leq 9 - \varepsilon$	$\Omega(n^{(arepsilon/60)^2})$ [Konjevod et al.]	
for all $k \geqslant 1$	< 2k + 1	$\Omega((n\log n)^{1/k})$ [Abraham et al.]	

- Any name-indep. routing scheme using $< (n \log n)^{1/k}$ bits/node has a **max stretch** $\ge 2k + 1$ for some graph.
- ② Any name-indep. routing scheme using $<(n/k)^{1/k}$ bits/node has an **average stretch** $\geqslant k/4$ for some graph.

- Any name-indep. routing scheme using $< (n \log n)^{1/k}$ bits/node has a **max stretch** $\ge 2k + 1$ for some graph.
- ② Any name-indep. routing scheme using $<(n/k)^{1/k}$ bits/node has an **average stretch** $\geqslant k/4$ for some graph.

Rem 1: All previous lower bounds for labeled case (Peleg,Upfal / G.,Pérennès / G.,Gengler / Kranakis,Krizanc / Thorup,Zwick) are based on the construction of **dense large girth** graphs



if stretch< 2k + 1, then u is forced to "know" the edge (u, v)

- Any name-indep. routing scheme using $< (n \log n)^{1/k}$ bits/node has a **max stretch** $\ge 2k + 1$ for some graph.
- ② Any name-indep. routing scheme using $<(n/k)^{1/k}$ bits/node has an **average stretch** $\ge k/4$ for some graph.

Erdös Conjecture: \exists graph of girth 2k+2 with $\Omega(n^{1+1/k})$ edges (proved only for k=1,2,3,5). So, the extra $(\log n)^{1/k}$ term **cannot** be obtained with a girth approach.

- Any name-indep. routing scheme using $< (n \log n)^{1/k}$ bits/node has a **max stretch** $\ge 2k + 1$ for some graph.
- ② Any name-indep. routing scheme using $<(n/k)^{1/k}$ bits/node has an **average stretch** $\geqslant k/4$ for some graph.

Rem 2: It makes a clear separation between labeled and name-independent routing, at least for the average stretch.

In the **labelel** model, $O(\operatorname{polylog}(n))$ space and O(1) average stretch exsits for every graph! [Abraham, Bartal, Chan, Gupta, Kleinberg et al. (FOCS05)]

In the name-indep model, if space is $O(\operatorname{polylog}(n))$, then the average stretch must be $\Omega(\log n/\log\log n)$ for some graphs.

The Metric Model

A weaker model, but conceptually easier

Input: a metric space (V, d)

Ouput: an overlay network G=(V,E), and a routing

 $\ \, \text{scheme for } G$

The Metric Model

A weaker model, but conceptually easier

Input: a metric space (V, d)

Ouput: an overlay network G = (V, E), and a routing

scheme for G

An extra complexity measure: the size |E| of the overlay

The Metric Model

A weaker model, but conceptually easier

Input: a metric space (V, d)

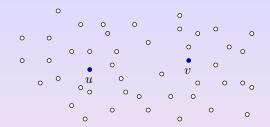
Ouput: an overlay network G = (V, E), and a routing

scheme for G

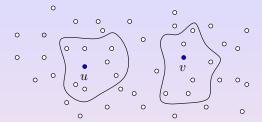
An extra complexity measure: the size |E| of the overlay

Goal: to minimize the size of G, (and to balance = the space for each node must be \approx the average degree of G) while keeping low stretch

Example: Stretch-3 for Arbitrary Metric

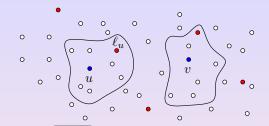


Example: Stretch-3 for Arbitrary Metric

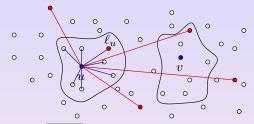


 $B_u =$ the set of $\sqrt{n \ln n}$ closest nodes from u

Example: Stretch-3 for Arbitrary Metric

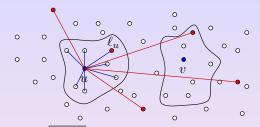


 $B_u = \text{the set of } \sqrt{n \ln n} \text{ closest nodes from } u$ $L = \text{a hitting of } \{B_u \mid u \in V\} \text{ of size } \leqslant \sqrt{n \ln n}$



 $B_u=$ the set of $\sqrt{n\ln n}$ closest nodes from u L= a hitting of $\{B_u\mid u\in V\}$ of size $\leqslant \sqrt{n\ln n}$

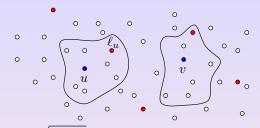
Overlay: $u \to w$, $\forall w \in B_u$ and $u \to \ell$, $\forall \ell \in L$



$$B_u = \text{the set of } \sqrt{n \ln n} \text{ closest nodes from } u$$

 $L = \text{a hitting of } \{B_u \mid u \in V\} \text{ of size } \leqslant \sqrt{n \ln n}$

Overlay:
$$u \to w$$
, $\forall w \in B_u$ and $u \to \ell$, $\forall \ell \in L$
 $\Rightarrow |E| \leq \sum_{u} (|B_u| + |L|) = \tilde{O}(n^{3/2})$

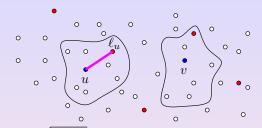


 $B_u = \text{the set of } \sqrt{n \ln n} \text{ closest nodes from } u$ $L = \text{a hitting of } \{B_u \mid u \in V\} \text{ of size } \leqslant \sqrt{n \ln n}$

Overlay: $u \to w$, $\forall w \in B_u$ and $u \to \ell$, $\forall \ell \in L$

$$\Rightarrow |E| \leqslant \sum_{u} (|B_u| + |L|) = \tilde{O}(n^{3/2})$$

Routing: If $v \in B_u$, route $u \to v$, else $u \to \ell_u \to v$

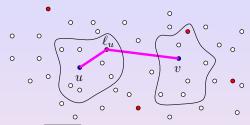


 $B_u = \text{the set of } \sqrt{n \ln n} \text{ closest nodes from } u$ $L = \text{a hitting of } \{B_u \mid u \in V\} \text{ of size } \leqslant \sqrt{n \ln n}$

Overlay: $u \to w$, $\forall w \in B_u$ and $u \to \ell$, $\forall \ell \in L$

$$\Rightarrow |E| \leqslant \sum_{u} (|B_u| + |L|) = \tilde{O}(n^{3/2})$$

Routing: If $v \in B_u$, route $u \to v$, else $u \to \ell_u \to v$



 $B_u = \text{the set of } \sqrt{n \ln n} \text{ closest nodes from } u$ $L = \text{a hitting of } \{B_u \mid u \in V\} \text{ of size } \leqslant \sqrt{n \ln n}$

Overlay: $u \to w$, $\forall w \in B_u$ and $u \to \ell$, $\forall \ell \in L$ $\Rightarrow |E| \leqslant \sum_{u} (|B_u| + |L|) = \tilde{O}(n^{3/2})$

Routing: If $v \in B_u$, route $u \to v$, else $u \to \ell_u \to v$

Rem: $\ell_u \to v$ is not necessarily easy to implement in the **graph** model (usually simulated with some tree routings)

Some Results in the Metric Model

Both labeled and	th labeled and name-independent variants exist			
metric	stretch	average degree		
Euclidian	O(1)	O(1) [Abraham, Malkhi/Hassin, Peleg]		

Some Results in the Metric Model

Both labeled and name-independent variants exist				
metric	stretch	average degree		
Euclidian doubling- $lpha$ dim	\ /	$O(1)$ [Abraham,Malkhi/Hassin,Peleg] $\tilde{O}(\log \Delta)$ [Talwar/Chan et al./Slivkins]		
	$1 + \varepsilon$	$ ilde{O}(1)$ [Abraham et al.]		

Undirected vs. Directed

(graph model only!)

Problem: there is no stretch-space trade-off for routing in directed graphs! The stretch maybe not bounded if o(n) bits of memory are used, even in strongly connected digraphs [Thorup,Zwick]

Undirected vs. Directed

(graph model only!)

Problem: there is no stretch-space trade-off for routing in directed graphs! The stretch maybe not bounded if o(n) bits of memory are used, even in strongly connected digraphs [Thorup,Zwick]

New measure: roundtrip stretch factor

stretch =
$$\frac{|\text{route}(u, v)| + |\text{route}(v, u)|}{\text{dist}(u, v) + \text{dist}(v, u)}$$

Rem: dist(u, v) + dist(v, u) is now a distance function

Some Results for Arbitrary Digraphs

Labeled:

[Roditty, Thorup, Zwick - SODA '02]

$- \frac{1}{\text{stretch}} = 4k + \varepsilon$	stretch=3
extstyle ext	$\operatorname{space} = \tilde{O}(\sqrt{n})$
$labels {=} o(\varepsilon^{-1} k \log^2 n \log \Delta)$	$labels = o(\log^2 n)$

Name-independent:

[Arias, Cowen, Laing - PODC '03]

```
\begin{array}{ll} \mathsf{stretch} {=} O(k^2) & \mathsf{stretch} {=} \mathsf{6} \\ \mathsf{space} {=} \tilde{O}(\varepsilon^{-1} k n^{1/k} \log \Delta) & \mathsf{space} {=} \tilde{O}(\sqrt{n} \,) \\ \mathsf{labels} {=} o(\varepsilon^{-1} k^2 \log^2 n \log \Delta) & \mathsf{labels} {=} o(\log^2 n) \end{array}
```

Lower bound: if stretch < 2, then $\Omega(n)$ bits is required

Open Questions: For Arbitrary Networks

Q1: Labeled: stretch $\leqslant 4k-5$ for $O(n^{1/k})$ memory. Optimal only for k=1,2. The lower bound on the stretch is $\leqslant 2k-1$. For k=4, the lower bound is not known to be 2k-1 (the Erdös conjecture is proved only for k=1,2,3,5)

Open Questions: For Arbitrary Networks

- Q1: Labeled: stretch $\leqslant 4k-5$ for $O(n^{1/k})$ memory. Optimal only for k=1,2. The lower bound on the stretch is $\leqslant 2k-1$. For k=4, the lower bound is not known to be 2k-1 (the Erdös conjecture is proved only for k=1,2,3,5)
- Q2: Name-independent = labeled ??? For k = 1, 2, the same bounds hold.

Open Questions: For Arbitrary Networks

- Q1: Labeled: stretch $\leqslant 4k-5$ for $O(n^{1/k})$ memory. Optimal only for k=1,2. The lower bound on the stretch is $\leqslant 2k-1$. For k=4, the lower bound is not known to be 2k-1 (the Erdös conjecture is proved only for k=1,2,3,5)
- Q2: Name-independent = labeled ??? For k = 1, 2, the same bounds hold.
- **Q3:** Directed = Undirected???

Open Questions: For Specific Networks

Q4: Trees unweighted name-indep: what's the best stretch with $\tilde{O}(1)$ memory? Currently stretch ≈ 17 .

Open Questions: For Specific Networks

- Q4: Trees unweighted name-indep: what's the best stretch with $\tilde{O}(1)$ memory? Currently stretch ≈ 17 .
- **Q5:** Labeled treewidth-k & shortest path: $o(k \log^2 n)$ -bit labels? True for trees k=1 [Fraigniaud,G.] and weighted outerplanar k=2 [Dieng, G.]: $\Theta(\log^2 n/\log\log n)$ bits are enough and necessary.

Open Questions: For Specific Networks

- Q4: Trees unweighted name-indep: what's the best stretch with $\tilde{O}(1)$ memory? Currently stretch ≈ 17 .
- **Q5:** Labeled treewidth-k & shortest path: $o(k \log^2 n)$ -bit labels? True for trees k=1 [Fraigniaud,G.] and weighted outerplanar k=2 [Dieng, G.]: $\Theta(\log^2 n/\log\log n)$ bits are enough and necessary.
- **Q6:** Shortest path in planar with $\tilde{O}(1)$ labels: $\Omega(n^{1/3})$... O(n) (currently 7.18n bits [Lu '02])

Future Works (1/2)

W1: $\tilde{O}(\deg(u))$ with stretch O(1) for general graphs?

Future Works (1/2)

W1: $O(\deg(u))$ with stretch O(1) for general graphs?

W2: Bounded degree?
(sparse graphs are known to be non-compact.
Bounded degree nodes "increase" distances, so
stretch tends to 1. No lower bounds is known.

Bounded degree includes expanders ...)

Future Works (1/2)

W1: $O(\deg(u))$ with stretch O(1) for general graphs?

W2: Bounded degree?
(sparse graphs are known to be non-compact.
Bounded degree nodes "increase" distances, so stretch tends to 1. No lower bounds is known.
Bounded degree includes expanders ...)

W3: Routing with additive stretch?

(initial works in random power law networks

[Brady, Cowen '06]. The additive stretch and the
polylog labels depend on the graph parameter only.

Works well in practice. Connection with distance
labeling)

Future Works (2/2)

W4: Average stretch? ε -slack routing? (labeled and name-indep differ. Average stretch & additive stretch are interesting in practice)

Future Works (2/2)

W4: Average stretch? ε -slack routing? (labeled and name-indep differ. Average stretch & additive stretch are interesting in practice)

W5: Dynamic routing: Yes for trees only [Korman,Peleg] ...

Future Works (2/2)

- **W4:** Average stretch? ε -slack routing? (labeled and name-indep differ. Average stretch & additive stretch are interesting in practice)
- **W5:** Dynamic routing: Yes for trees only [Korman,Peleg] ...
- W6: Distributed algorithms for constructing tables? Yes [Frederickson'90/Slivkins'07] for some speficic graphs (planar/bounded growth). Distributed implementation is possible but ... complicated!

Thank you!