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Input: a network G (a weighted connected graph)
Ouput: a routing scheme for G

A routing scheme is a distributed algorithm that allows any
source node to route messages to any destination node, given
the destination’s network identifier

Goal: to minimize the size of the routing tables
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Complexity Measures: Space & Stretch

Space = size of the largest local routing tables
(more precisely, size of the smallest local routing
algorithm including all constants and data-structures)

In the grid example: space = O(logn) bits

Stretch = ratio between length of the route and distance
[route(z, y)| < stretch - dist(z, y)

In the grid example: stretch = 1 (shortest path)

Question: for a given family of graphs, find the best
space-stretch trade-off



Two variants: Name-independent vs. Labeled

The destination enters the network with its name, which is
determined by either the designer of the routing scheme
(labeled), or an advesary (name-independent).

Labeled: the designer is free to name the nodes according
to the topology and the edge weights of the graph

Name-independent: the input is a graph with fixed node
manes
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An overview: Labeled Model

Labels are of polylogarithmic size
O(f(n)) = f(n) - polylog(n)

network stretch space/node (bits)

arbitrary 1 nlogn [folk]
(2<keN) 4k—5 O(n'/*) [Thorup, Zwick]
tree 1 O(1) [TZ/Fraigniaud,G.]
doubling-av dim.  1+¢ logA [Talwar/Slivkins]

O(1) [Chan et al./Abraham et al.]
planar 1+e O(1) [Thorup]
H-minor-free ~ 14+¢  O(1) [Abraham,G.]
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An overview: Name-independent Model

network stretch  space/node (bits)
bounded growth 1+¢  O(1) [Abraham et al.]
doubling-a dim. 9+  O(1) [Konjevod et al./Abraham et al ]
H-minor-free 0@1) 0(1) [Abraham et al.]
(unweighted)
trees 2k —1  O(n'/%) [Laing]
arbitrary 3 O(y/n) [A.,G.,Malkhi,Nisan, Thorup]
O(k?2%)  O(n'/*) [Arias et al./Awerbuch,Peleg]
O(k)  O(n'*) [Abraham et al ]
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Lower Bounds for Name-Independent

Rem: lower bound for labeled = lower bound for name-indep

network stretch space/node (bits)
arbitrary <14 Q(nlogn)  [G.,Pérennés.]
<3 Q(n) [G.,Gengler]

(only k =1,2,3,5) <2k+1 Q(n'/*) [Thorup, Zwick]

trees <3 Q(y/n)  [Laing,Rajaraman]
<9—¢c  QnE/%%)  [Konjevod et al ]
forall k > 1 <2k+1 Q((nlogn)*) [Abraham et al.]
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Q Any name-indep. routing scheme using < (n/k)/*
bits/node has an average stretch > k /4 for some graph.
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bits/node has a max stretch > 2k + 1 for some graph.

Q Any name-indep. routing scheme using < (n/k)/*
bits/node has an average stretch > k /4 for some graph.

Rem 1: All previous lower bounds for labeled case (Peleg,Upfal
/ G.,Pérennes / G.,Gengler / Kranakis,Krizanc / Thorup,Zwick)
are based on the construction of dense large girth graphs
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bits/node has a max stretch > 2k + 1 for some graph.

Q Any name-indep. routing scheme using < (n/k)/*
bits/node has an average stretch > k /4 for some graph.

Erdos Conjecture: 3 graph of girth 2k +2 with Q(n'*1/%) edges
(proved only for k = 1,2,3,5). So, the extra (logn)'/* term
cannot be obtained with a girth approach.



Theorem [Abraham,G.,Malkhi]

@ Any name-indep. routing scheme using < (nlogn)/*
bits/node has a max stretch > 2k + 1 for some graph.

Q Any name-indep. routing scheme using < (n/k)/*
bits/node has an average stretch > k /4 for some graph.

Rem 2: It makes a clear separation between labeled and name-
independent routing, at least for the average stretch.

In the labelel model, O(polylog(n)) space and O(1) average
stretch exsits for every graph! [Abraham, Bartal, Chan, Gupta,
Kleinberg et al. (FOCS05)]

In the name-indep model, if space is O(polylog(n)), then the
average stretch must be Q(logn/loglogn) for some graphs.
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The Metric Model

A weaker model, but conceptually easier

Input: a metric space (V,d)
Ouput: an overlay network G = (V, E), and a routing
scheme for G

An extra complexity measure: the size |E| of the overlay

Goal: to minimize the size of (G, and the space for each
node must be ~ the average degree of G



Example: Stretch-3 for Arbitrary Metric
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Example: Stretch-3 for Arbitrary Metric

o

B,, = the set of vVnlnn closest nodes from w
L = a hitting of {B,, | u € V'} of size < vVnlnn

Overlay: u — w, Vw € B, and u — {, V{ € L
= |B| < X,(|Bul + |L]) = O(n*?)

RovuTING: IF v € B,, ROUTE u — v, ELSE u — {, — v

Rem: ¢, — v is not necessarily easy to implement in the graph
model (usually simulated with some tree routings)
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Some Results in the Metric Model

Both labeled and name-independent variants exist ...

metric stretch average degree

Euclidian O(1) O(1) [Abraham,Malkhi/Hassin,Peleg]

doubling-a dim. 14+  O(log A) [Talwar/Chan et al./Slivkins]
1+ O(1) [Abraham et al.]
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Undirected vs. Directed

(graph model only!)

Problem: there is no stretch-space trade-off for routing in
directed graphs! The stretch maybe not bounded if o(n) bits
of memory are used, even in strongly connected digraphs
[Thorup,Zwick]

New measure: roundtrip stretch factor

[route(u, v)| + |route(v, u)|

tretch =
SHeRe dist(u, v) + dist(v, u)

Rem: dist(u, v) + dist(v,u) is now a distance function



Some Results for Arbitrary Digraphs

Labeled: [Roditty, Thorup,Zwick - SODA '02]

stretch=4k + ¢ stretch=3
space=0 (e~ 'kn'/*log A)  space=0O(y/n)
labels=o(c 'k log? nlog A) labels=o(log”n)

Name-independent: [Arias,Cowen,Laing - PODC '03]

stretch=0(k?) stretch=6
space=0 (e 'kn'/*log A)  space=0(y/n)
labels=0(¢"'k%log® nlog A) labels=o(log® n)

Lower bound: if stretch < 2, then 2(n) bits is required



Open Questions: For Arbitrary Networks

Q1: Labeled: stretch < 4k — 5 for O(n'/*) memory.
Optimal only for £ = 1,2. The lower bound on
the stretch is < 2k — 1. For &k = 4, the lower
bound is not known to be 2k — 1 (the Erdds
conjecture is proved only for k = 1,2,3,5)
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Open Questions: For Arbitrary Networks

Q1: Labeled: stretch < 4k — 5 for O(n'/*) memory.
Optimal only for £ = 1,2. The lower bound on
the stretch is < 2k — 1. For &k = 4, the lower
bound is not known to be 2k — 1 (the Erdds
conjecture is proved only for k = 1,2,3,5)

Q2: Name-independent = labeled 777
For £ = 1,2, the same bounds hold.

Q3: Directed = Undirected???
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Open Questions: For Specific Networks

Q4: Trees unweighted name-indep: what’s the best

Q5:

Qe6:

stretch with O(1) memory? Currently stretch

~ 17.

Labeled treewidth-k & shortest path:

o(klog® n)-bit labels? True for trees k = 1
[Fraigniaud,G.] and weighted outerplanar k = 2
[Dieng, G.]: ©(log® n/loglogn) bits are enough
and necessary.

Shortest path in planar with O(1) labels:
Q(n'/3) ... O(n) (currently 7.18n bits [Lu '02])
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Future Works (1/2)

W1:
W2:

W3:

O(deg(u)) with stretch O(1) for general graphs?

Bounded degree?

(sparse graphs are known to be non-compact.

Bounded degree nodes “increase” distances, so
stretch tends to 1. No lower bounds is known.
Bounded degree includes expanders ...)

Routing with additive stretch?

(initial works in random power law networks
[Brady,Cowen '06]. The addtive stretch and the
polylog labels depend on the graph parameter only.
Works well in practice. Connection with distance
labeling)
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Future Works (2/2)

W4: Average stretch? e-slack routing?

W5:

W6:

(labeled and name-indep differ. Average stretch &
additive stretch are interesting in practice)

Dynamic routing: Yes [Korman,Peleg] but not yet
compact ...

Distributed algorithms for constructing tables?
Yes [Frederickson’'90] for some speficic graphs
(planar). Distributed implementation is possible
but ... complicated!



Thank you!



