Routing v.s. Spanners

Spanner et routage compact : similarités et différences

Cyril Gavoille

Université de Bordeaux

AlgoTel '09-Carry-Le-Rouet
June 16-19, 2009

Outline

Spanners

Routing

The Question and the Answer

Outline

Spanners

Routing

The Question and the Answer

What is a Spanner?

A spanner of a graph G is a subgraph spanning $V(G)$

What is a Spanner?

A spanner of a graph G is a subgraph spanning $V(G)$

- a spanning tree

What is a Spanner?

A spanner of a graph G is a subgraph spanning $V(G)$

- a spanning tree
- a Hamiltonian cycle
- ...

Approximate Distance Spanners

There are two "natural" criteria for a spanner of G :

- size: its number of edges.
- stretch: its maximum distance distortion from G.

Approximate Distance Spanners

There are two "natural" criteria for a spanner of G :

- size: its number of edges.
- stretch: its maximum distance distortion from G.

Goals:

- find a good skeleton of the graph;
- decrease the size of the graph while preserving distances;
- optimize stretch-size tradeoffs.

A complete Euclidian graph on 15 nodes

A (minimum cost) spanner with stretch 1.2

A (minimum cost) spanner with stretch 1.7

A (minimum cost) spanner with stretch 2.0

A (minimum cost) spanner with stretch 3.0

Delaunay triangulation

Spanner: Some Results $(1 / 3)$

For specific metrics, geometric spaces ...

- Every 2D Euclidean graph has a stretch-2 spanner of size $3 n-6$ [STOC '86] - Delaunay triangulations get stretch-2.42 (conjectured stretch-1.57)
- Every 2D Euclidean graph has a stretch- $(1+\varepsilon)$ spanner of size $O\left(\varepsilon^{-1} n\right)$ [Yao- \& Θ-Graphs]
- Generalization to doubling dimension and higher dimension spaces, also to hyperbolic spaces ...

Spanner: Some Results (2/3)

For general (connected) graphs ...

- Every weighted graph has a stretch- $(2 k-1)$ spanner of size $O\left(n^{1+1 / k}\right)$ [Greedy algorithm (Kruskal)]
- Every unweighted graph has a stretch +2 spanner of size $O\left(n^{1+1 / 2}\right)$ [SICOMP'09], and a stretch +6 spanner of size $O\left(n^{1+1 / 3}\right)$ [SODA'05]

Spanner: Some Results (3/3)

Recently ...

- Every unweighted stretch $+(2 k-1)$ spanner must have $\Omega\left(\frac{1}{k} n^{1+1 / k}\right)$ edges in the worst-case [FOCS'06]
- Every unweighted graph has a f-fault-tolerant stretch- $(2 k-1)$ spanner of size $k^{3} f^{k+3} \cdot \tilde{O}\left(n^{1+1 / k}\right)$ [STOC'09]
[a spanner for $G \backslash F$ for all subgraphs F with $|F| \leqslant f$]

Outline

Spanners

Routing

The Question and the Answer

Routing with Compact Tables

Compact Routing Schemes

Two "natural" criteria for designing a routing scheme for G :

- size: routing table size (and also address/header size)
- stretch: maximum route length distortion from distances in G.

Compact Routing Schemes

Two "natural" criteria for designing a routing scheme for G :

- size: routing table size (and also address/header size)
- stretch: maximum route length distortion from distances in G.

Goals:

- find an efficient routing scheme for G;
- compress routing table size while preserving near-shortest routes;
- optimize stretch-size tradeoffs.

Routing: Some Results $(1 / 3)$

For metrics ...

- Every 2D Euclidean graph has a stretch-14.0 labeled routing scheme with $8 \log D$-bit tables [Yao-Graph $Y_{7}+$ greedy routing]
- Every 2D Euclidean graph has a stretch- $(1+\varepsilon)$ labeled routing scheme with $O\left(\varepsilon^{-1} \log D\right)$-bit tables [cf. Abraham-Malkhi: PODC'04]
- Extension to 3D and more ...

Routing: Some Results $(2 / 3)$

For specific (connected) graphs ...

- Every weighted planar graph has a stretch- $(1+\varepsilon)$ labeled routing scheme with $\tilde{O}\left(\varepsilon^{-1}\right)$-bit tables, addresses and headers [Thorup: J. ACM'05]

Routing: Some Results $(2 / 3)$

For specific (connected) graphs ...

- Every weighted planar graph has a stretch- $(1+\varepsilon)$ labeled routing scheme with $\tilde{O}\left(\varepsilon^{-1}\right)$-bit tables, addresses and headers [Thorup: J. ACM'05]
- Similar bounds for weighted H-minor free graphs [Abraham-G.: PODC'06]

planar

minor-free

Routing: Some Results $(3 / 3)$

For general (connected) graphs ...

- Every weighted graph has a stretch- $(4 k-5)$ labeled routing scheme with $\tilde{O}\left(n^{1 / k}\right)$-bit tables and polylog addresses and headers [Thorup-Zwick: SPAA'01]
- Every weighted graph has a stretch- $O(k)$ name-independent routing scheme with $\tilde{O}\left(n^{1 / k}\right)$-bit tables and polylog headers [Abraham et al.: SPAA'06]

Outline

Spanners

Routing

The Question and the Answer

Summary

stretch size

$$
\begin{array}{ccl}
2 k-1 & O\left(n^{1+1 / k}\right) & \text { Spanner: Greedy Algorithm } \\
2 k-1 & O\left(k n^{1+1 / k}\right) & \text { Spanner: Tree Cover } \\
4 k-5 & \tilde{O}\left(k n^{1 / k}\right) & \text { Routing: Tree Cover }++
\end{array}
$$

$$
\begin{array}{cll}
+2 & O\left(n^{1+1 / 2}\right) & \text { Spanner: Tree Cover } \\
+6 & O\left(n^{1+1 / 3}\right) & \text { Spanner: ad-hoc } \\
+f(k) & O\left(n^{1+1 / k}\right) & \text { Open for every } k>3
\end{array}
$$

Fact: Spanner and Routing problems use similar techniques, and get similar bounds

Question(s)

Can we make additively stretched spanners routable?
[Baswana, Elkin, Pettie, ...]

Is there a routing scheme with sublinear space and additive stretch for all graphs?

Yes or No?

Yes or No?

PRO: Numerology!
Spanner: stretch-3 for size $O\left(n^{1+1 / 2}\right)$
Routing: stretch-3 for size $\tilde{O}\left(n^{1 / 2}\right)$
Spanner: stretch- $O(k)$ for size $\underset{\sim}{O}\left(n^{1+1 / k}\right)$
Routing: stretch- $O(k)$ for size $\tilde{O}\left(n^{1 / k}\right)$

Just a coincidence?

Yes or No?

PRO: Numerology!
Spanner: stretch-3 for size $O\left(n^{1+1 / 2}\right)$
Routing: stretch-3 for size $\tilde{O}\left(n^{1 / 2}\right)$
Spanner: stretch- $O(k)$ for size $\underset{\sim}{O}\left(n^{1+1 / k}\right)$
Routing: stretch- $O(k)$ for size $\tilde{O}\left(n^{1 / k}\right)$

Just a coincidence?

- There exist spanners of size $o\left(n^{2}\right)$ with constant additive stretch (ex: size $n^{1+1 / 2}$ or $n^{1+1 / 3}$ for stretch +2 or +6).
- It should exist sublinear compact routing scheme with constant additive stretch!!!

Yes or No?

CON: Spanners do not tell us how to route on sparse graphs.
The problem is:

- Spanner: prove \exists a near-shortest path
- Routing: construct a near-shortest path

An Impossibility Result

There are graphs with sparse additive spanners but no additive compact routing schemes

Theorem (2009)

Every routing strategy providing, for each unweighted connected n-node graph, a labeled routing scheme with tables and addresses $\leqslant \mu$ bits, produces, for some graph of less than $2 n$ edges, an additive stretch $\Omega\left(n^{1 / 3} / \mu^{2 / 3}\right)$.

An Impossibility Result

There are graphs with sparse additive spanners but no additive compact routing schemes

Theorem (2009)

Every routing strategy providing, for each unweighted connected n-node graph, a labeled routing scheme with tables and addresses $\leqslant \mu$ bits, produces, for some graph of less than $2 n$ edges, an additive stretch $\Omega\left(n^{1 / 3} / \mu^{2 / 3}\right)$.

Corollary: The additive stretch of every universal routing strategy with tables and addresses in $o(\sqrt{n})$ is unbounded.

In particular, the stretch-7 routing scheme of [TZ] $(k=3)$ with $\tilde{O}\left(n^{1 / 3}\right)$-bit tables must have an additive stretch of $n^{1 / 9-o(1)}$.

THANK YOU!

The Graph Family $\mathcal{F}=\mathcal{F}(p, \delta)$

Graphs of \mathcal{F} are constructed from $p \times p$ boolean matrices.
Sets of p nodes: $S=\left\{s_{i}\right\}, A=\left\{a_{i}\right\}, B=\left\{b_{i}\right\}, T=\left\{t_{j}\right\}$.

$$
M=\left[\begin{array}{lll}
0 & 0 & 1 \\
1 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

Connect a path of length δ between: $s_{i} \rightsquigarrow a_{i}, s_{i} \rightsquigarrow b_{i}$, and $t_{j} \rightsquigarrow a_{i}$ if $M[i, j]=1$, and $t_{j} \rightsquigarrow b_{i}$ if $M[i, j]=0$.

