Routing v.s. Spanners

Spanner et routage compact : similarités et différences

Cyril Gavoille

Université de Bordeaux

AlgoTel '09 - Carry-Le-Rouet June 16-19, 2009

Outline

Spanners

Routing

The Question and the Answer

Outline

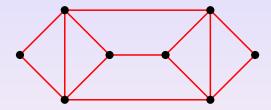
Spanners

Routing

The Question and the Answer

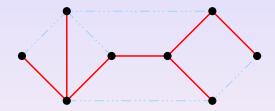
What is a Spanner?

A spanner of a graph G is a subgraph spanning V(G)



What is a Spanner?

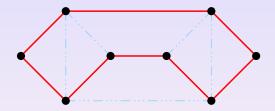
A spanner of a graph G is a subgraph spanning V(G)



• a spanning tree

What is a Spanner?

A spanner of a graph G is a subgraph spanning V(G)



- a spanning tree
- a Hamiltonian cycle
- ...

Approximate Distance Spanners

There are two "natural" criteria for a spanner of G:

- size: its number of edges.
- stretch: its maximum distance distortion from G.

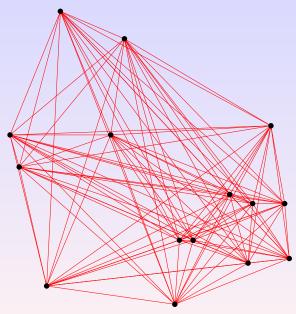
Approximate Distance Spanners

There are two "natural" criteria for a spanner of G:

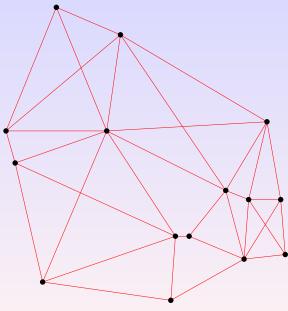
- size: its number of edges.
- stretch: its maximum distance distortion from G.

Goals:

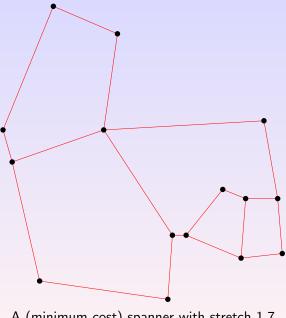
- find a good skeleton of the graph;
- decrease the size of the graph while preserving distances;
- optimize stretch-size tradeoffs.



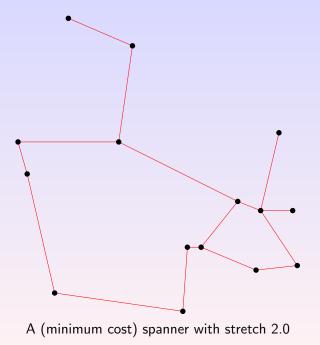
A complete Euclidian graph on $15 \ {\rm nodes}$

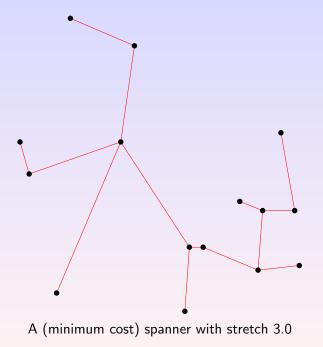


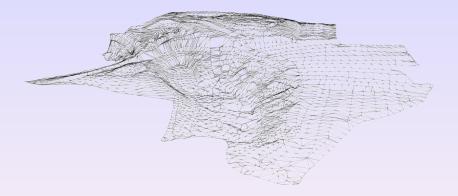
A (minimum cost) spanner with stretch 1.2



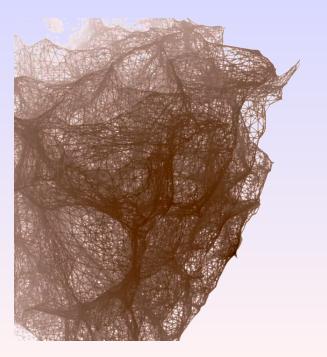
A (minimum cost) spanner with stretch 1.7







Delaunay triangulation



Spanner: Some Results (1/3)

For specific metrics, geometric spaces ...

- Every 2D Euclidean graph has a stretch-2 spanner of size 3n - 6 [STOC '86] - Delaunay triangulations get stretch-2.42 (conjectured stretch-1.57)
- Every 2D Euclidean graph has a stretch- $(1 + \varepsilon)$ spanner of size $O(\varepsilon^{-1}n)$ [Yao- & Θ -Graphs]
- Generalization to doubling dimension and higher dimension spaces, also to hyperbolic spaces ...

Spanner: Some Results (2/3)

For general (connected) graphs ...

- Every weighted graph has a stretch-(2k 1) spanner of size $O(n^{1+1/k})$ [Greedy algorithm (Kruskal)]
- Every unweighted graph has a stretch +2 spanner of size $O(n^{1+1/2})$ [SICOMP'99], and a stretch +6 spanner of size $O(n^{1+1/3})$ [SODA'05]

Spanner: Some Results (3/3)

Recently ...

- Every unweighted stretch +(2k-1) spanner must have $\Omega(\frac{1}{k}n^{1+1/k})$ edges in the worst-case [FOCS'06]
- Every unweighted graph has a *f*-fault-tolerant stretch-(2k − 1) spanner of size k³f^{k+3} · Õ(n^{1+1/k}) [STOC'09]
 [a spanner for C) E for all subgraphs E with |E| ≤
 - [a spanner for $G \setminus F$ for all subgraphs F with $|F| \leq f$]

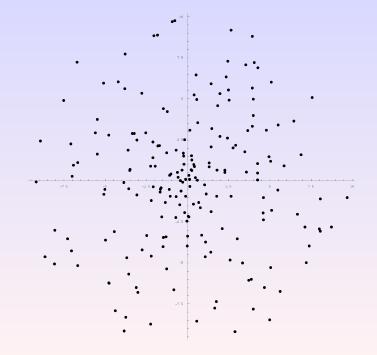
Outline

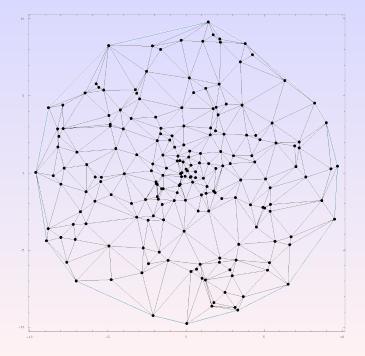
Spanners

Routing

The Question and the Answer

Routing with Compact Tables





Compact Routing Schemes

Two "natural" criteria for designing a routing scheme for G:

- size: routing table size (and also address/header size)
- **stretch:** maximum route length distortion from distances in *G*.

Compact Routing Schemes

Two "natural" criteria for designing a routing scheme for G:

- size: routing table size (and also address/header size)
- **stretch:** maximum route length distortion from distances in *G*.

Goals:

- find an efficient routing scheme for G;
- compress routing table size while preserving near-shortest routes;
- optimize stretch-size tradeoffs.

Routing: Some Results (1/3)

For metrics ...

- Every 2D Euclidean graph has a stretch-14.0 labeled routing scheme with $8 \log D$ -bit tables [Yao-Graph Y_7 + greedy routing]
- Every 2D Euclidean graph has a stretch- $(1 + \varepsilon)$ labeled routing scheme with $O(\varepsilon^{-1} \log D)$ -bit tables [cf. Abraham-Malkhi: PODC'04]
- Extension to 3D and more ...



Routing: Some Results (2/3)

For specific (connected) graphs ...

• Every weighted planar graph has a stretch- $(1 + \varepsilon)$ labeled routing scheme with $\tilde{O}(\varepsilon^{-1})$ -bit tables, addresses and headers [Thorup: J. ACM'05]

planar

Routing: Some Results (2/3)

For specific (connected) graphs ...

- Every weighted planar graph has a stretch- $(1 + \varepsilon)$ labeled routing scheme with $\tilde{O}(\varepsilon^{-1})$ -bit tables, addresses and headers [Thorup: J. ACM'05]
- Similar bounds for weighted *H*-minor free graphs [Abraham-G.: PODC'06]

planar

minor-free

Routing: Some Results (3/3)

For general (connected) graphs ...

- Every weighted graph has a stretch-(4k 5) labeled routing scheme with $\tilde{O}(n^{1/k})$ -bit tables and polylog addresses and headers [Thorup-Zwick: SPAA'01]
- Every weighted graph has a stretch-O(k)name-independent routing scheme with $\tilde{O}(n^{1/k})$ -bit tables and polylog headers [Abraham et al.: SPAA'06]

Outline

Spanners

Routing

The Question and the Answer

Summary

stretch	size	
2k - 1 $2k - 1$ $4k - 5$	$\begin{array}{c} O(n^{1+1/k}) \\ O(kn^{1+1/k}) \\ \tilde{O}(kn^{1/k}) \end{array}$	Spanner: Greedy Algorithm Spanner: Tree Cover Routing: Tree Cover ++
+2 +6 +f(k)	$O(n^{1+1/2}) \\ O(n^{1+1/3}) \\ O(n^{1+1/k})$	Spanner: Tree Cover Spanner: ad-hoc Open for every $k > 3$

Fact: Spanner and Routing problems use similar techniques, and get similar bounds

Can we make additively stretched spanners routable? [Baswana, Elkin, Pettie, ...]

Is there a routing scheme with sublinear space and additive stretch for all graphs?

PRO: Numerology!

Spanner: stretch-3 for size $O(n^{1+1/2})$ Routing: stretch-3 for size $\tilde{O}(n^{1/2})$

Spanner: stretch-O(k) for size $O(n^{1+1/k})$ Routing: stretch-O(k) for size $\tilde{O}(n^{1/k})$

Just a coincidence?

PRO: Numerology!

Spanner: stretch-3 for size $O(n^{1+1/2})$ Routing: stretch-3 for size $\tilde{O}(n^{1/2})$

Spanner: stretch-O(k) for size $O(n^{1+1/k})$ Routing: stretch-O(k) for size $\tilde{O}(n^{1/k})$

Just a coincidence?

- There exist spanners of size $o(n^2)$ with constant additive stretch (ex: size $n^{1+1/2}$ or $n^{1+1/3}$ for stretch +2 or +6).
- It should exist sublinear compact routing scheme with constant additive stretch!!!

CON: Spanners do not tell us how to route on sparse graphs.

The problem is:

- Spanner: prove \exists a near-shortest path
- Routing: construct a near-shortest path

An Impossibility Result

There are graphs with sparse additive spanners but no additive compact routing schemes

Theorem (2009)

Every routing strategy providing, for each unweighted connected *n*-node graph, a labeled routing scheme with tables and addresses $\leq \mu$ bits, produces, for some graph of less than 2n edges, an additive stretch $\Omega(n^{1/3}/\mu^{2/3})$.

An Impossibility Result

There are graphs with sparse additive spanners but no additive compact routing schemes

Theorem (2009)

Every routing strategy providing, for each unweighted connected *n*-node graph, a labeled routing scheme with tables and addresses $\leq \mu$ bits, produces, for some graph of less than 2n edges, an additive stretch $\Omega(n^{1/3}/\mu^{2/3})$.

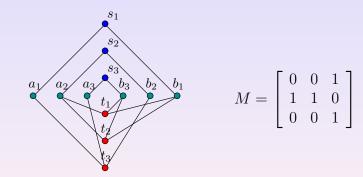
Corollary: The additive stretch of *every* universal routing strategy with tables and addresses in $o(\sqrt{n})$ is unbounded.

In particular, the stretch-7 routing scheme of [TZ] (k = 3) with $\tilde{O}(n^{1/3})$ -bit tables *must have* an additive stretch of $n^{1/9-o(1)}$.

THANK YOU!

The Graph Family $\mathfrak{F} = \mathfrak{F}(p, \delta)$

Graphs of \mathcal{F} are constructed from $p \times p$ boolean matrices. Sets of p nodes: $S = \{s_i\}$, $A = \{a_i\}$, $B = \{b_i\}$, $T = \{t_j\}$.



Connect a path of length δ between: $s_i \rightsquigarrow a_i$, $s_i \rightsquigarrow b_i$, and $t_j \rightsquigarrow a_i$ if M[i, j] = 1, and $t_j \rightsquigarrow b_i$ if M[i, j] = 0.