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Abstract

An implicit representation for a given family of graphs is a node labeling scheme
of all the n-node graphs of the family by binary strings of length O(logn) such
that adjacency between any two nodes can be decided from their labels only. In
this note, we design a 3 log n-bit labeling scheme for planar graphs constructible in
O(n) time and with constant time adjacency test, improving by a logn additive
factor the result of Kannan, Naor and Rudich [KNR88]. More generally, we show
that bounded k-arboricity graphs support an asymptotic klogn-bit labeling scheme
with O(k) adjacency test. For large k, we construct a O(klog(n/k))-bit labeling
scheme with constant adjacency test, and show that the label length is asymptotically
optimal.

Keywords: compact graph representation, implicit representation, partial k-trees,
k-decomposable graphs, arboricity, degeneracy

1 Introduction

There are two basic ways of representing an n-node m-edge graph: matrix or edge list
representation. The first one uses O(n?) bits and answers in constant time whether any
two nodes are adjacent or not. The list representation uses O(n + m) memory words?,
whereas such a data-structure does not support in the worst-case constant time adjacency
queries.

So matrix representation is time-efficient but not space-efficient for sparse graphs, like
planar graphs that have at most 3n—6 edges. However, for several graph families, there are
ways to compact the representation of a graph. For instance, Chang, Lin and Lu showed
in [CLLO1] that planar graphs support a 2m + 2n + o(n) bits representation with constant
time queries. Although this representation is rather compact (this is 8n + o(n) bits for
m = 3n — o(n) bits), it does not allow label-based graph representation. A label-based rep-
resentation allows retrieving useful information about arbitrary functions or substructures
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in a graph in a localized manner, i.e., using only local pieces of information available to, or
associated with, the nodes under inspection, and not having to search for additional global
information. It is clearly a desirable property for a graph in the framework of distributing
computing where individual processor element of a network want to communicate with its
neighbors but has no enough local memory resources to store all the underlying topology
of the network (see [GPO01] for an overview).

In this spirit, Kannan, Naor, and Rudich [KNR88] have proposed to label each node
x of a planar graph by a pair (z, P(z)) where P(x) is a set of at most three neighbors of
x such that x and y are adjacent if and only if either y € P(z) or x € P(y). The nodes
being represented by a unique integer taken from {1,...,n}, this yields to a representa-
tion of every planar graph with local labels of 4logn bits and supporting constant time
adjacency queries. A similar 4 log n-bit labeling scheme has been obtained by Chrobak and
Eppstein [EC91]. This naturally leads to the following definition.

Definition 1 A graph family F has a f(n)-adjacency labeling scheme if there exists a
pair (L, A) of functions, called respectively labeling and adjacency decoder, such that for
every n-node graph G of F, and for all nodes x,y of G,

1. L(z, Q) is a binary string of length at most f(n);
2. A(L(x,G), L(y,G)) =1 if and only if x and y are adjacent in G.

As defined in [KNRS88|, a graph family F has an implicit representation if F has an
O(logn)-adjacency labeling scheme?. Several graph families support an implicit represen-
tation: some intersection graph families, like interval graphs, paths graphs (intersection
of paths in a tree), circle graphs (intersection of chords in a circle), permutation graphs,
circular-arc graphs, graphs with bounded interval number ... (see Golumbic for definitions
of these families [Gol80]), but also graphs with bounded arboricity [KNR88]. The arboricity
of a graph G is defined® to be

where H range over all possible induced subgraphs of G containing at least two nodes.
Arboricity is related to degeneracy of graphs. A graph is d-degenerated if it has a node
of degree at most d whose deletion leave the graph d-degenerated. The degeneracy is
the smallest integer d that makes the graph d-degenerated. It is easy to see that every
graph of arboricity £ and degeneracy d satisfies d/2 < k < d. Moreover, k < A/2+1 if the
graph is of maximum degree A. Many families of graphs have bounded arboricity: bounded

2In this paper all the logarithms are in based two.
3Usually, there is no “ceiling” in the definition of arboricity. However, by the Nash-Williams’ Theorem
quoted hereafter, there is no restrictions to define integral arboricity.



degree graphs, bounded genus graphs, bounded tree-width graphs, geometric neighborhood
graphs [MTV91], bounded pagenumber graphs, and bounded degeneracy graphs.

The Nash-Williams’ Theorem [CMW*94] states that the edges of a k-arboricity graph
can be decomposed into k forests. Finding a decomposition in exactly k forests is non-
trivial. There is an O(nmlogn) algorithm [GW92] using matroid technique, that is an
O(kn?*logn) time algorithm since the number of edges m is at most k(n — 1). A simple
O(kn) algorithm exists for decomposition into 2k — 1 forests [AMZ97].

In [KNR88] it is shown that graphs of arboricity bounded by k have a (k + 1)logn-
adjacency labeling scheme. Combining several recent results we improve in this note im-
plicit representations based on arboricity.

In Section 2 we show that graphs with large arboricity k& support a klog(n/k)-bit
labeling scheme with constant time queries, and we show that the bound on the label
length is tight. In Section 3 we show a labeling with klogn-bit labels and supporting
O(k) adjacency queries, providing a 3logn-bit labeling for planar graphs and a 2logn-
bit labeling for series-parallel graphs. Finally, in section 4, we show that k-decomposable
graphs (or partial k-trees) have a klogn-bit labeling scheme and that for this family we
prove a Q(k + logn) lower bound on the label length. We leave in Section 5 as an open
problem the design of a 31og n-bit labeling scheme for all genus 1 graphs, i.e., all the graphs
having an embedding on the torus.

2 A Scheme for Large Arboricity Graphs

In this section we consider the family of n-node graphs whose arboricity is bounded by
some function k(n).

Let G be such a graph, and w.l.o.g. assume that the node set is {1,...,n}. By the
Nash-Williams” Theorem, the edges of G can be decomposed into k = k(n) forests. Let
assume that the forest decomposition is given, namely Fi,..., Fj. Clearly, two nodes z
and y are adjacent in G if and only if there is a forest F; in which z is adjacent to y. We
assume that each tree of each F; is rooted at some arbitrary node.

As done in the scheme of Kannan, Naor and Rudich [KNR88] presented previously,
we associate to each node z of G the set P(z) = Ule {y parent of z in F;}. The label
of x is set to L(x,G) = (x, P(x)). The adjacency decoder is defined by the following two
membership queries: A((z, P(x)), (y, P(y))) =1 if and only if y € P(z) or x € P(y).

Observe that P(z) C {1,...,n} and that |P(z)| < k. Let B = [log (})] be the number
of bits for coding a k-element subset of {1,...,n}. The label L(z,G) = (z, P(z)) might
be coded by a binary string of [logn| + B bits.

In [BM99], Brodnik and Munro have showed that every k-element subset of {1,....n}
can be encoded into a data-structure (polynomially-time constructible) of B+O(B/log® n)
bits supporting constant time membership queries under a standard word-RAM computa-



tional model. So, the label of = can be encoded with logn + B + o(B) bits such that the
adjacency decoder A can be computed in constant time. We have (n/k)* < (}) < (ne/k)*,
thus B = klog(n/k) + O(k). On the other hand B > logn for every k ¢ {0,n}, thus the

label length for = is at most klog(n/k) + O(k + logn) + o(klog(n/k).

Disregarding the o(klog(n/k) term when n is large enough, we have:

Theorem 1 The family of bounded k-arboricity graphs have an asymptotic klog(n/k) +
O(k+logn)-adjacency labeling scheme with constant time decoder. Moreover, all the labels
are polynomially-time constructible.

Actually the label length upper bound given in Theorem 1 is tight since:

Theorem 2 For all n and k, every f(n,k)-adjacency labeling scheme on the family of
bounded k-arboricity graphs requires f(n,k) > tklog(n/k) — 3k — 1.

Proof. As seen in the introduction, since every graph is of maximum degree n — 1, one
can restrict our attention to arboricity £ < |(n —1)/2] +1 = [n/2]. Let p = |n/2] and
g = [n/2]. We consider the family F of labeled graphs defined as follows. The node set
is XUY with X ={1,....p}and Y ={p+1,...,p+¢q}. We have | XUY|=p+q=n,
and k£ < g < [n/2]. The edges link the nodes of X to the nodes of Y only (so the graphs
of F are bipartite) such a way that the degree of every node in X is exactly k.

Consider any G € F. We can partition the edges of G such that, for each x € X, the
k edges incident to x belong to a distinct forest. Since G is bipartite, every cycle in some
forest would implies that two edges incident to a certain xqg € X belongs to this cycle,
contradicting the edge assignment of xy’s edges. It follows that G is of arboricity bounded
by k.

Every graph in F has n nodes, and the number of graphs in F is |F| = (Z)p. Let
(L, A) be any f(n, k)-adjacency labeling scheme on F, for some function f(n, k). Consider
the set £ = {(L(1,G),...,L(n,G)) | G € F}. We have, |L| > |F|. Indeed, if |£] < |F|
then there exists two distinct graphs G, H € F such that L(v,G) = L(v, H) for all node
v € {1,...,n}, that is impossible. On the other hand, if all the labels are binary strings
of length at most f(n, k) bits, then |£] < S™ where § = S/k 9i — of (k)1 _ 1 j5 the
number of binary strings of length at most f(n, k). Thus we have

p
q n n
Fl = <k> < |g] < Uk 0

Because ({) > (¢/k)*, we have

on (2 = 3o (") > s (3

This implies that f(n, k) > $klog(n/k) — 1k — 1, that completes the proof. O



3 An Improved Labeling Scheme

In this section we consider the family of n-node graphs whose arboricity is bounded by
some constant k. The next result is more compact than Theorem 1.

Theorem 3 The family of bounded k-arboricity graphs have an asymptotic k log n-adjacency
labeling scheme with a O(k) time decoder. Moreover, all the labels can be constructed in

O(kn*logn) time, and in the case of planar graphs (k = 3) the time can be reduced to
O(n).

Proof. Let G be a graph of arboricity at most k. By the Nash-Williams’ Theorem,
the edges of G can be decomposed into k forests. Firstly, let assume that the forest
decomposition is given, and let Fi, ..., Fj be these forests, each one spanning the nodes of
G (so eventually F;’s may contain zero degree node). Clearly, = and y are adjacent in G if
and only if there is a forest F; in which = and y are adjacent. For each i € {1,...,k}, we
apply the following construction: For each connected component of F; pick an arbitrary
node 27 and form a tree T} rooted at a new node linked to all the 27’s node of E.

In [ARO1, KMO1], it is showed that n-node trees have an logn + O(y/logn )-adjacency
labeling scheme with constant time decoder (under a standard word-RAM computational
model). Moreover the time to construct the n labels is O(n). So, we associate such a binary
label ¢(x,T;) to each node z of T; as done in [AR01, KMO01]. The length of the label is
log |V (T;)|+0O(y/log |V (T;] ) that is logn+O(y/log n) bits since T; has n+1 nodes. Finally,
to each node = of G we associate the k-tuple L(z,G) = ({(z,T}),...,0(x,T})) of length
klogn+ O(k+y/logn). To test adjacency it suffices to test adjacency in each component of
the labels. Observe that once the forests have been constructed it takes O(kn) time to set
all the labels, and O(k) time to decode adjacency.

There is an O(kn?log n) time algorithm to find a decomposition of G into k forests [GW92].
For planar graphs (k = 3) there is an O(nlogn) time algorithm [GL98]. We can improved
this result by the use of realizer of plane triangulation?, notion introduced by [Sch90]
for grid embedding of planar graphs (a similar linear time algorithm can be founded
in [Epp94]). A realizer of a plane triangulation is a particular partition of the interior
edges in three sets of directed edges: 71,73, T3. The three sets are computable in O(n)
time [Epp94], and [Sch90] proved that each T} is a directed tree including all interior nodes
and exactly one exterior node distinct for each ¢. So, three edge-disjoint forests can be
constructed in O(n) time for every plane triangulation. Since in linear time one can tri-
angulate and embed on the plane any planar graph G, it follows that the partition of the
edges of G into three forests can be done in O(n). This completes the proof. O

4A plane triangulation is a planar graph embedded on the plane whose all its faces are triangles.



4 An Improved Scheme for k-Decomposable Graphs

A graph G is k-decomposable if either G has k + 1 or fewer nodes or there is a subgraph
S of G with at most k£ nodes such that G — .S augmented by S with completely connected
nodes is k-decomposable [AP87]. In [KNRS88], it was showed that k-decomposable graphs
have an asymptotic klogs,, n ~ 1.7klogn-bit labeling scheme, observing that S can be
chosen such that G — S can be partitioned in two sets of nodes, A and B, with no edges
linking A to B and with |A|, |B| < 2|V(G)|/3. The scheme we proposed here is based on a
characterization of k-decomposable graphs in terms of partial k-trees and uses klog n-bit
labels.

The family of k-trees is the set of all the graphs obtained as follows: a complete
graph with k nodes is a k-tree, and a k-tree with n + 1 nodes is obtained by adding a
node connected with & nodes of a complete subgraph of an n-node k-tree [BP69]. This
definition clearly implies that k-trees are k-degenerated, and thus have arboricity bounded
by k. Actually, this bound is exact for every k-tree with n nodes and n large enough, since
the number of edges is m = kn — k(k + 1)/2, and thus the arboricity must be at least
m/(n—1)>k—O(k?/n).

Arnborg and Proskurowski showed in [AP87] that k-decomposable graphs are exactly
the families of partial k-trees, i.e., a subgraph of a k-tree with the same number of nodes.
Thus if we are able to find in ¢ time a k-tree H whose G is a partial k-tree then one can apply
Theorem 3, and one can construct in O(kn + t) time a klogn-adjacency labeling scheme
for G. Unfortunately, the embedding of G into a k-tree is NP-complete in general [ACP87],
even for graphs of degree bounded by 9 [BT97]. However Bodlaender has constructed a
linear time algorithm to embed, if possible, G into a k-tree [Bod96]. His algorithm has a
hidden constant at least exponential in k. An alternative solution is to use the algorithm
of Arnborg, Corneil, and Proskurowski [ACP87] that runs in O(n**2) time. The smallest &
such that G is a partial k-tree is also called the tree-width of G (see [Bod98] for a survey).

Theorem 4 For every constant k, the family of partial k-trees (or the family of tree-width
at most k graphs) has an asymptotic klog n-adjacency labeling scheme computable in linear
time and supporting constant time queries. Moreover, for every k < n/2, every f(n,k)-
adjacency labeling scheme on the family of partial k-trees requires f(n, k) = Q(k + logn).

Proof. The upper bound holds from the above discussion. Let us prove the lower bound.
Consider the family /C of all subgraphs of a complete graphs of £ 4+ 1 nodes. Every graph
of K is a partial k-tree, and its arboricity is at most k. By Theorem 2, every fi(ny,k1)-
adjacency labeling scheme on K requires fi(ni, ki) = Q(kilog(ni/ki1)) that is Q(k) for
ny = k+ 1 and k; = k. Consider now the family 7 of labeled n-node trees, a sub-family
of partial k-trees. By the Cayley’s formula, |7| = n" 2. Using Eq. 1 in the proof of
Theorem 2, for every fo(n, k)-adjacency labeling scheme on 7", we must have:

1T| =n""2 < 2Wtuh)+bn  — £y k) = Q(logn) .



Therefore, every f(n, k)-adjacency labeling scheme on the family of n-node k-trees requires
f(n, k) = min{f, fo} = Q(k + logn) completing the proof. a

An application of Theorem 4 is that series-parallel graphs (that are partial 2-trees),
have a 2logn-adjacency labeling scheme computable in linear time.

5 Open Problem

We show in this note how to construct in linear time a 3 log n-adjacency labeling scheme for
planar graphs, and more generally a klogn-bit labeling for bounded k-arboricity graphs.
To conclude we leave as an open problem the problem to prove or disprove that the family
of graphs having an embedding on a torus (genus 1 graphs) support an asymptotic 3 logn-
adjacency labeling scheme. Theorem 3 gives only a 6logn-bit labeling since bounded g¢
genus graphs are |6 + 12(g — 1)/n|-degenerated (they have at most 3n + 6(g — 1) edges).
Thus, genus 1 graphs are 6-degenerated and of arboricity at most 6.

Acknowledgments: The author is thankful to André Raspaud for fruitful discussions
about arboricity.
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