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The compactness of adaptive routing tables
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Abstract

The compactness of a routing table is a complexity measure of the memory space needed
the routing table on a network whose nodes have been labelled by a consecutive range of integ
defined as the smallest integerk such that, in every nodeu, every set of labels of destinations havi
the same output in the table ofu can be represented as the union ofk intervals of consecutive label
While many works studied the compactness of deterministic routing tables, few of them tack
adaptive case when the output of the table, for each entry, must contain a fixed numberα of routing
directions. We prove that everyn-node network supports shortest path routing tables of compac
at mostn/α for an adaptiveness parameterα, whereas we show a lower bound ofn/αO(1).
 2003 Elsevier B.V. All rights reserved.

Keywords:Compact routing tables; Adaptive routing; Interval routing

1. Introduction

1.1. Generalities

Given a parallel or distributed system, the interconnection network ensures the co
nication between the processors, the terminal nodes. Each intermediate node has a
dedicated co-processor which forwards the messages between processors through
of the underlying topology. The routers run a distributed algorithm which specifie
way to go from a node of the network to another. This algorithm is described by a ro
function.

Once a router receives a message, it looks at its header and checks the destinatio
message, and finds the output port that will be used to forward the message towards
intermediate node up to its destination. The output port is a number local to each
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and associated to each link between routers. A standard way to implement such algorithms
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is to use arouting table. To find the output port, the router consults a table which is k
in its local memory. For each destination, this table returns the output port number th
which the message can be forwarded.

A simple method to organize this table is to associate to each destination the
port number which can serve it. This method is simple, but it is very memory expens
requires O(n logd) bits to maintain the routing table in each node of degreed , wheren is
the number of nodes of the underlying graph representing the network.

For a large or growing network, this method is not feasible. It is interesting to loo
another method in order to reduce the size of the data structure stored by the route
used for the routing task. In the field of compact routing, several methods and stra
were introduced to reduce the router memory size, as separator-based routing sche
14], hierarchical routing schemes [2,25], prefix routing [3], Boolean routing [9], and i
val routing [27,30]. We focus our work on the latter technique that offers a more com
data structure for routing tables.

1.2. The interval routing schemes

The interval routing was introduced by Santoro and Khatib in [27], and extended in
by van Leeuwen and Tan. It has been intensively studied in recent years, and an ov
can be found in [16]. This method consists of finding a global labelling of the n
with integers taken from{1,2, . . . , n}, and, given a routing table, to group in the sma
est set of intervals the destination labels using the same output port in each no
interval means a set of consecutive integers, the labels 1 andn being considered as con
secutive. If there exists a routing table such that each set of destination labels u
same output port can be grouped with at mostk intervals, we deal with ak-interval
routing scheme for this network,k-IRS for short. Ak-IRS can be implemented wit
O(kd logn) bits per node by storing the interval boundaries of the destinations. Actu
this naive coding can be slightly compressed into O(kd log(n/k)) bits [16]. In a sense
interval routing is a compact implementation of routing tables. One can hope to
only O(k) integers per node for bounded degree networks usingk-IRS, whereas standar
routing tables require O(n) integers. The parameterk is calledcompactnessof a routing
table.

Many works try to determine routing tables with minimum compactness under se
assumptions on the quality of the routing measured in term of length of the routes: sh
path routing [12,17,18,20], stretched routing [4,11,24], routing with bounded dilatio
15,22,24,28], etc. (cf. [16]). Nevertheless, these works have studied only the determ
case: for each source-destination pair, the routing table encodes only one routing p
the routing path is completely determined by giving the intervals. On the contrary,adaptive
routing allows to diversify the routing paths. A destination can belongs to more tha
set of intervals. For interval routing schemes, this extension has been partially sug
in [29].
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1.3. Adaptive routing tables
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More precisely, let us define anα-adaptive routing tableas a routing table in which
every destination can be founded in each router for exactlyα different output ports, fo
some integerα � 1. Similarly, anα-adaptivek-interval labelling scheme, or k-ILSα for
short, is anα-adaptive routing table for which the set of destination labels using the
output port can be grouped into at mostk intervals. An ILSα is termedvalid if for every
source-destination pairu,v, with1 u �= v, there exists inu (and all the other intermedia
nodes)at least oneoutput port among theα possible ones that induces a route tov. A valid
ILSα is called anα-adaptive interval routing scheme, IRSα for short. Therefore, ak-IRSα
is simply anα-adaptive routing table of compactnessk.

The definition captures adaptiveness of a routing, since at each step the router
lect the next edge of the route among2 α. This potentiality provides many routing path
but not necessarily entirely disjoint paths that would require some strong assumpti
the edge-connectivity of the network. In this model some routes may loop. The rout
the guarantee that at least one route connects to the destination. The other paths a
deflecting paths. They can be used depending on the load of the network, or on every
parameters, in order to improved the traffic. The caseα = 1 corresponds to the determin
tic one (no deflecting paths).

Of course, in practice, for a complete implementation of a routing protocol, aselection
function must choose one output port among the valid set. The adaptiveness of
ing table of compactnessk implies to store in the router a total of O(kd log(n/k)) + |S|
bits of routing information, where|S| represents the number of bits needed to code
selection functionS encoding the policy of the router. For instance, a kind of rou
policy may consist to choose at random a permutation of the possible paths retur
the router if several3 messages come in the router at a same time (this occurs, fo
stance, when the messages cannot be stored locally due to physical constraints
router). In this case|S| is just the size of a pseudo-random generator. A selection f
tion may also provide some priority ordering between the routing paths. In this c
requires to store extra bits, and|S| might be large. In particularS must differentiate
routing paths from deflecting paths. In all the cases, our approach consists in sp
the memory requirements of the router in two parts: one required by the routing
(the term O(kd log(n/k))), and the other part required by the selection function
term |S|).

In this paper, we are not interested in the coding of the selecting functionS, but
rather in the parameterk, the compactness. This latter parameter depends on the
topology only, whereas the coding of the selection function may depend on the
egy to optimize the traffic: the links can be chosen at random, or selected accord

1 In the framework of compact routing a common assumption is that the destination of a message
its source. The caseu= v can be solved by the local processor (assumed having a relatively high computa
level) without any communication with its router. This allows to establish more flexible and deeper res
particular for space memory lower bounds.

2 As we will see the degree of the node has to be at leastα.
3 No more thanα.
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some load history tables of the links, or predicted from some other arbitrary policies
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(deadlock-free, . . . ). We observe that a space complexity measure that would co
both terms suffers of the generalΩ(n logd) bit/node lower bound (and anΩ(n) inter-
vals for the compactness) that applies to shortest path deterministic routing table
19]. Indeed, as we will see more precisely in Section 4.3, an adaptive routing tab
a selection function encode together at least a deterministic routing table. Howeve
a combination does not allow to measure precisely the contribution of each part (
stance, theΩ(n)-lower bound on the compactness [18] does not apply for shortest
α-adaptive routing tables, cf. Section 4). So, our approach allows to measure the b
between the information needed for the adaptive routing table and the selection
tion.

1.4. Related works

Previous works on compact and adaptive routing schemes can be founded in [1,
for general schemes, and in [10,11,23,26] for interval routing schemes and its ge
izations. However, most of theses works try to give a compact representation ofall the
shortest paths. Although these schemes extend the deterministic case, they suffe
fact that many general lower bounds for deterministic routing established in [12,18–2
ply as well for the adaptive case. Indeed, these lower bounds are based on the uni
of the shortest paths between specific subset of nodes in some worst-case graphs.
these graphs all-shortest-path routing would consist to route along one shortest pa
deterministic routing. In essence, all-shortest-path compact routing schemes are n
compact than deterministic shortest path routing schemes. For instance, the asy
n/4-lower bound on the compactness for deterministic shortest path IRS applies a
all-shortest-path IRS [18].

1.5. Our results

As we will see in the following, the situation is better thanks to the definition we pro
for α-adaptive routing tables (IRSα), specially wheneverα > 1 and becomes larger. A
previously cited lower bounds does not apply in that case, and moreover we show thn/α

intervals per arc suffice for shortest path IRSα that is already better than the determinis
case wheneverα � 4.

This paper is organized as follows. Section 2 defines more precisely the modeα-
adaptive routing tables. In Section 3 we show that every routing tables can be trans
on anα-adaptive routing table with the same set of routes and the same compactn
particular we show thatn/α intervals per arc suffice, even if shortest paths are requ
In Section 4 we specifically study more deeply shortest path routing tables, and we
an existentialn/αO(1)-lower bound for the compactness, that is asymptotically optima
constantα. We conclude in Section 5 by some possible extensions and perspectives
work.
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2. Preliminaries
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In this paper, the network is modeled by a connected graphG= (V ,E), whose set o
nodesV represents the routers, and whose set of arcsE the communication links betwee
the routers. We assume that the links are bi-directional, i.e., if(u, v) ∈ E then(v,u) ∈ E;
G is a symmetric digraph.4 For everyu ∈ V , we denote by deg(u) the number of neighbor
of u corresponding to the common value of in- and out-degree ofu. Finally, δ(G) denotes
the minimum degree ofG, that isδ(G)=min{deg(u) | u ∈ V }.

2.1. Definitions

Formally, aninterval labelling schemeon ann-nodeG is a pair(L,I ) of functions
whereL :V → {1, . . . , n} is a one-to-one labelling of the nodes, andI :E→ 2L(V ) is a
labelling of the arcs such that, for every arc(u, v) ∈ E, L(w) ∈ I(u, v) if and only if the
route fromu tow uses the arc(u, v).

Moreover, given an integerα � 1, the pair(L,I) is anα-adaptive interval labelling
scheme, ILSα for short, if for allu,w ∈ V , w �= u, the set

{
(u, v) ∈E | L(w) ∈ I(u, v)}

is of cardinalityα. A valid ILSα is called an IRSα (α-adaptive interval routing scheme
α-adaptive routing table), if it fulfills the connectivity condition: for allu,w ∈ V , w �= u,
there exists a sequenceρ(u,w)= (v1, . . . , vt ) of nodes such thatv1 = u andvt =w, and
for everyi ∈ {1, . . . , t − 1}, L(w) ∈ I(vi , vi+1). The sequenceρ(u,w) is called arouting
pathor routefrom u tow, and may not form a simple path inG.

A shortest pathIRSα is an IRSα for which, for any pairu,w, there exists a routin
pathρ(u,w) that is a shortest path inG. This definition easily extends to weighted grap
considering paths of minimum cost. We insist on the fact that betweenu andw there is at
least one routing pathρ(u,w) that is a shortest path, although many routing paths m
be represented by the labelling. As said before in Section 1.4, the main interest
condition is to avoid then/4-lower bound of [18] on the compactness.

Remark. A consequence of the previous definition is that only the graphs of minim
degree at leastα support an ILSα , and thus an IRSα . A variant of the previous definition t
overcome this problem would consist to impose that

∣∣{(u, v) ∈E | L(w) ∈ I(u, v)}∣∣=min
{
α,deg(u)

}
.

Although all the results we propose in this paper hold for both definitions, for simpl
only the former definition is considered in the sequel.

4 However, many of the results presented in this paper are still valid for nonsymmetric and strongly con
digraphs.
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2.2. Compactness
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The compactnessof an ILSα (L,I) is the smallest integerk such that every se
I(u, v) can be represented as the union of at mostk intervals of consecutive integers
{1,2, . . . , n} (1 andn being considered as consecutive). Such ILSα and IRSα are denoted
respectively byk-ILSα andk-IRSα .

Remark. Forα = 1, all the definitions match with the standard ILS/IRS introduced by
30]. For simplicity, we denote in the sequel IRS for IRS1. The labellings we consider in th
paper are supposed to bestrict, i.e., we impose thatL(u) /∈ I(u, v), for every(u, v) ∈E.

3. A general labelling scheme

We show in this section that every graphG supports a 1-IRSα for everyα � δ(G), the
routing paths being not necessary shortest paths. This result can be seen as a gene
of the labelling scheme of [27] (showing that every graph has a 1-IRS), and will be
for the remaining of the paper. We denote by[1, n] the set{1,2, . . . , n}.

Theorem 3.1. Let (L,IA) be anyk-IRSα on ann-node graphG = (V ,E) with δ(G) �
α+ 1, and letY ⊆E such that everyx ∈ V has at most one neighbory so that(x, y) ∈ Y .
Then,(L,IA) can be transformed in polynomial time into ak-IRSα+1 onG, (L,IB), such
that all the routes represented by(L,IA) are preserved in(L,IB), and such that for ever
(x, y) ∈ Y , IB(x, y)= [1, n] \ {L(x)}.

Proof. For everyz ∈ [1, n], let us denote succ(z) (respectively pred(z)) the successor (re
spectively predecessor) ofz in [1, n] modulon. Formally, succ(z) = (z modn) + 1, and
pred(z)= (z+ n− 2 modn)+ 1. Let us define the following procedure of inputs(L,IA)
andY , and of output(L,IB) satisfying the statement of Theorem 3.1.

For every nodex do (possibly in parallel):

(1) For every(x, y) ∈E, setIB(x, y)← IA(x, y).
(2) SetR←[1, n] \ {L(x)}.
(3) Let (x, y) be the unique arc ofY (if y does not exist go to 4), setIB(x, y)← R, and

updateR← IA(x, y).
(4) WhileR �= ∅ do:

(a) Findy andz such that(x, y) ∈E, z ∈R \ IB(x, y), and either pred(z) ∈ IB(x, y)
or succ(z) ∈ IB(x, y).

(b) Find y ′ such that(x, y ′) ∈ E, andz ∈ IB(x, y ′). Let [a, b] an interval such tha
z ∈ [a, b] ⊆ IA(x, y ′).

(c) UpdateR←R \ ([a, b] \ IB(x, y)).
(d) UpdateIB(x, y)← IB(x, y)∪ [a, b].

Intuitively, the procedure consists on finding a labelz ∈ R such that its predecessor (
successor) is a boundary of some intervals ofIB(x, y). Then we append[a, b], an interval
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containingz, toIB(x, y) solving the problem forz (at least). The procedure iterates on the
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Let us consider any nodex. Let us show that for everyi, at the beginning of theith run

of Instruction 4 (at the testR �= ∅), the setR fulfills the following propertyPi : R contains
at mostn− i labels, and ifz ∈ R thenz appears inα setsIB , and otherwisez= L(x) or
z appears inα + 1 setsIB . In other words, at each loop,R denotes the set of labels th
remains to treat.

By induction oni: the first time in Instruction 4, if no arc(x, y) ∈ Y exists,R is the set of
all the labels (except forL(x)), andIB is initialized toIA. Hence, if there is no arc(x, y) ∈
Y , P1 is true. Otherwise, after Instruction 3, all labels remaining inR appear exactly inα
setsIB (the others appear already inα + 1 sets by settingIB(x, y) = [1, n] \ {L(x)}).
Hence in any casesP1 is true.

Now, assume the property holds up to theith loop. To show thatPi+1 is true, let us
first show that Instruction 4(a) is doable, that is the pair(y, z) can be founded: first, i
i = 1, then it suffices to choose anyy such that(x, y) /∈ Y andIA(x, y) �=R (it must exist
otherwise every label�= L(x) would appear in at leastδ(G) � α + 1 setsIA). Then, we
can choose anyz /∈ IA(x, y) (thusz ∈ R) so that pred(z) ∈ IA(x, y) or succ(z) ∈ IA(x, y).

For i > 1, a pair(y, z) exists otherwise,z and pred(z) (or succ(z)) would appear in the
same number of setsIB . By PropertyPi , z ∈ R implies pred(z) or succ(z) ∈R (otherwise
they would not appear in the same number of setsIB ). This implies thatR = [1, n] \
{L(x)}, which is not possible since|R| � n − i < n − 1 (i > 1). So, Instruction 4(a) is
doable. Instruction 4(b) is doable sincez ∈ R and by PropertyPi z appears inα � 1 sets
IB . Instructions 4(c) and 4(d) are doable as well. We remark, that in Instruction
|R| decreases by at least one element:[a, b] contains at leastz. We check that all label
removed fromR appears in exactlyα+ 1 setsIB . Therefore,Pi+1 holds.

So, at the end of the last loop", R is empty and by PropertyP", all the labels appear i
α + 1 setsIB . Taking a union in Instruction 4(d), we guarantee thatIA(x, y)⊆ IB(x, y),
and thus it preserves the routes. It follows that(L,IB) is a valid ILSα+1. Moreover, in In-
struction 4(d), because pred(z) andz are consecutive modulon, and becausez ∈ IA(x, y)
and pred(z) ∈ IA(x, y), we have that the minimum number of intervals to repres
IB(x, y) never increase and thus is at most the one ofIA(x, y). So, (L,IB) has com-
pactness at mostk, and by Instruction 3, all the arcs ofY have the interval[1, n] \ {L(x)}.
This completes the proof.✷

Remark. We do not precise the time complexity of the previous algorithm because it
depend on the data structure used to code the input IRS (the one achieving the lowe
complexity is not necessary the most compact one). Anyway, using naive interval c
representation of IRS, this time is less than O(n4), but can easily be reduced to O(|E|kα)
with more efficient data structures.

Using a spanning treeT of G, a DFS-based 1-IRS1 onT (cf. [27]), and applying induc
tively onα in Theorem 3.1 we have:
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Corollary 3.2. Every graphG such thatδ(G)� α, supports a1-IRSα .
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Whereas forα = 1 every graph has ak-IRS with k � n/2, for α > 1 we show that
k � n/α. More precisely:

Theorem 3.3. Let (L,I) be anyk-IRS1 on ann-node graphG, and letα � δ(G). Then,
G supports ak′-IRSα such that all the routes of(L,I) are preserved, and such thatk′ �
min{k, (n− 1)/α}.

Proof. The statement is obvious forα = 1. Assume,α � 2. We build a setY composed
of the arcs assigned with the largest number of intervals, for each node. After th
application of Theorem 3.1, we obtain ak-IRS2 for G, with the same set of routes, an
where the arc with the largest number of intervals (for each node) is now reduced t
We can re-apply Theorem 3.1 with a new setY still composed of the arcs assigned w
the largest number of intervals, which is hence at most the second largest one in(L,I).
Finally, after a total ofα− 1 applications of Theorem 3.1 (this is feasible sinceα � δ(G)),
we obtain ak′-IRSα with the same set of routes where the maximum number of inte
assigned on an arc,k′, is bounded byk and also by theαth largest number of interva
assigned on an arc in(L,I).

Let x be any node ofG. Let d = deg(x), and letk1, . . . , kd be the number of interval
of the setsI(x, y) (thek-IRS1 defined onG) for all neighborsy of x. Moreover assum
k1 � · · · � kd . We have

∑α
i=1 ki �

∑d
i=1 ki � n − 1 (α � d and the label ofx is not

assigned). Thuskα � (n− 1)/α. As said before,k′ � min{k, kα} completing the proof.

Remark. Theorem 3.1 can be slightly improved to

k′ � min
{
k,

(
n− 1− δ(G))/α+ 1

}
if all the incident arcs of each node are labelled with non-empty labels (in this case w∑α

i=1 ki � n− 1− (δ(G)− α)). This assumption occurs, for instance, for shortest p
routing tables.

4. Shortest path labelling

In this section we are interested in IRSα for which there exists at least one shortest p
(represented by the labelling schemes) for all pairs of nodes. Thanks to Theorem 3.1
graphs can be identified to support shortest pathk-IRSα . For instance, grid, hypercub
complete graph, cycle, trees, outerplanar graphs, interval graphs, etc., have shortes
IRS, and thus also shortest path 1-IRSα . Families of graphs having shortest path O(1)-IRS
include torus,k-trees with constantk, planar graphs with a constant number of faces,
(see [16] for a complete state of the art).

For every graphG, we define

IRSα(G)=min{k |G has a shortest pathk-IRSα}.
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Note that the computation of IRS(G) (for α = 1) already involves several difficult op-
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timizations. The decision problems “is IRS(G) = 1?” and “is IRS(G) = 2?” are NP-
complete [5,7]. Hereafter, the value IRSα(G) is termedcompactnessα of G.

4.1. Comparison between compactness1 and compactnessα

By Theorem 3.1, we have IRSα+1(G)� IRSα(G)� · · ·� IRS(G). It is not a difficult
exercise to check that there are graphs that support shortest path 1-IRS2, whereas they do
not support shortest path 1-IRS1 (for instance, consider the Petersen graph [17], or
wheel-graph [8]). The next result shows that the difference between the compactne
andα-adaptive routing of a graph can be exponentially large.

Theorem 4.1. For every integerδ � 0, there exists a graphG on 2δ+3 nodes such tha
IRS1(G)� 2δ and IRS2(G)� 2δ+ 4.

Proof. We use the construction given in [17] that shows that IRS1(G) � n/8 for some
n-node graphs withn a power of two. Here we recall their construction.

For ap× q Boolean matrixM = (Mi,j ), letGM = (VM,EM) be the graph such that:

(1) VM = {v1, . . . , vp} ∪ {a1, . . . , aq} ∪ {b1, . . . , bq};
(2) {x, y} ∈ EM if and only if (x = aj andy = bj ), (x = bj andy = vi andMi,j = 1), or

(x = aj andy = vi andMi,j = 0).

We haven= |VM | = p + 2q . Roughly speaking,GM is a two-level graph. The first leve
consists of edges of type{aj , bj }, and the second one consists ofvis (a stable) which ar
connected toaj or bj depending on whetherMi,j = 0 or 1. See Fig. 1 for an example.

For every Boolean matrixM, we denote byM the matrixM with every bit comple-
mented. Moreover, ifM = (XY ), whereX andY are two matrices of same dimension
we setχ(M) = (YX), which is the matrix obtained fromM by exchanging the column
of X with those ofY . We consider a specific matrixMδ , δ � 0, defined by induction. Th

M =



0 0 0
0 1 1
1 0 1
1 1 0




Fig. 1. A graphGM .
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construction ofMδ is summarized by Eq. (4.1).
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(4.1)

M0=



0 0
0 1
1 1
1 0


 , χ(M0)=




0 0
1 0
1 1
0 1


 , Mδ+1=

(
Mδ Mδ

χ(Mδ) χ(Mδ)

)
.

It is shown in [17] that IRS(GMδ ) � 2δ (roughly speaking, whatever the labelling
thevis, the setI(aj , bj ) must contain only a particular subset of thevis which is made to
be hard to represent with intervals). In this casep = 2δ+2 andq = 2δ+1. Thusn = 2δ+3,
proving the first part of Theorem 4.1.

Let us show that IRS2(GMδ ) � 2δ + 4 for every δ � 0. For this purpose, it suf
fices to define a shortest path IRS2 on GMδ , (L,I), such that for all the arcs(u, v) /∈
{(aj , bj ), (bj , aj )}, |I(u, v)|� 2δ+ 4, thus composed of at most 2δ+ 4 intervals. Indeed
by Theorem 3.1, such a labelling can be transformed into an IRS2 with the same set o
routes such that the edges{aj , bj } consist of one interval. Therefore it would prove th
IRS2(GMδ)� 2δ+ 4.

In this proof, we do not optimize the node-labelling, leaving a small space to improv
bound on IRS2(GMδ ). Let us choose an arbitrary labellingL. Since we do not care abo
the number of intervals on the edges{aj , bj }, let us defineBMδ be the graphGMδ where the
all the edges{aj , bj } have been removed. First, remark thatBMδ is a 2δ+1-regular bipartite
graph. Clearly,BM is isomorphic to every graphBM ′ , whereM ′ is obtained by comple
menting some columns ofM (this morphism exchanges the roles playing by someajs
andbjs), or by permuting some columns (this morphism permutes some edges{aj , bj }).
So, for the sake of simplicity, let us setBδ to be the common graph isomorphic toBMδ ,
Bχ(Mδ), etc. LetV1(Bδ) to be the set of the first partition of nodes ofBδ , theajs andbjs,
andV2(Bδ) as the nodesvis ofBδ .

Let us define by induction onδ, (L,I) onBδ . Bδ+1 consists of two copies ofBδ , B1
andB2, with some extra edges connectingV1(B1) to V2(B2), and some edges connecti
V1(B2) to V2(B1). Let ψ be the morphism betweenV (B1) andV (B2), and letφi be the
morphism betweenVi(B1) andVi(B2) for i = 1,2. Forδ = 0, we check that one can findI
such that|I(u, v)|� 4 for all arcs(u, v) of B0. Let k =max|I(u, v)|, over all arcs(u, v)
of Bδ . Since we do not care aboutL, we considerI(u, v) as a subset of nodes rather th
a subset of labels.

We first look at any nodev ∈ V2(B1). By induction, assume that|I(v, a)| � k for all
(v, a) ∈ E(B1). We remark that if(v, a) ∈ E(B1), then (v,φ1(a)) ∈ E(Bδ+1) \ E(B1).
SettingI(v,φ1(a)) = ψ(I(v, a)) for all (v, a) ∈ E(B1), we are able to route fromv ∈
V2(B1) to all the nodes ofV (Bδ+1)\{φ2(v)}. We addφ2(v) to any arc incident ofv leading
to φ2(v) by a shortest path. One can check that the routes are still the shortest, an
the edges(v, a) and(v,φ1(a)) are distinct,|I(v, a)|� k + 1 for all (v, a) ∈E(Bδ+1).

Then, let us look at any nodea ∈ V1(B1). With a similar argument, we can s
I(a,φ2(v)) = ψ(I(a, v)) for all (v, a) ∈ E(B1). We are able to route froma ∈ V1(B1)

to V (Bδ+1) \ {φ1(v),φ1(a)}, wherea is the unique node ofV1(B1) such that{a,a} is an
edge ofE(GMδ ). We addφ1(a) andφ1(a) to any arc incident ofa allowing shortest route
from a. So,|I(a, v)|� k + 2 for all (a, v) ∈E(Bδ+1).
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The routing from anyv ∈ V2(B2) and any fromV1(B2) is defined similarly since the
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graphBδ+1 is the same ifB1 and B2 are exchanged. In total, for every arc(u, v) ∈
E(Bδ+1), we have|I(u, v)|� k + 2, that is at most 2δ+ 4 forBδ .

We complete the proof by Theorem 3.1 applied on the edges{aj , bj }. ✷
4.2. An upper bound for compactnessα

In this section we show that compactnessα of a generaln-node graph is not bounde
for α > 1. Note that forα = 1, a tight lower bound exists. It has been shown in [18] t
for every graphG, IRS(G)� n/4+o(n), whereas there exists a worst-case graphG0 with
IRS(G0)� n/4− o(n). We first present a general upper bound:

Theorem 4.2. For everyn-node graphG and everyα � δ(G),

IRSα(G)� 1

α

(
n− 1− δ(G))+ 1.

Proof. It suffices to consider any shortest pathk-IRS1 for G (for instance, choosingk �
n/4+ o(n)), and to apply Theorem 3.3 remarking that all the arcs have non-empty la

4.3. A lower bound for compactnessα

We will show that there exists some worst-case graphs with compactnessα at least
n/αO(1). Therefore this shows an asymptotic optimal lower bound for the compac
of shortest path IRSα with constantα. It is quite complicated to build “by hand” sma
counter-exampleG with, for instance, IRS2(G) > 1. Indeed, we need to argue for su
G, that whatever is the node-labelling, whatever are the shortest paths, and mainly
ever are the deflecting paths, one cannot code the routing table with one interval. T
counter-example with IRS2(G) > 1 that we are able to build (we will not draw it here) h
roughly 105 nodes. That is why we present in this paper an existential lower bound
holding also for unboundedα. We will mainly use the fact that any shortest pathα-adaptive
routing table combined with a suitable selection functionS implements a standard routin
table (α = 1). So, up to an additive term of|S| one can lower bound the compactness
theα-adaptive routing table thanks to theΩ(n logd) bit/node lower bound of [19].

For this purpose, let us present the graphHp,δ introduced by [19], and defined indu
tively on p for all integersp � 1 andδ � 2. Let T ih,δ be a completeδ-ary tree of height

h whose all its leaves are labelledi. For h = 0, we setT i0,δ as a tree composed of a si
gle node labelledi. For everym � 2, we defineTp,δ,m as the tree composed ofm trees
T 1
p−1,δ, T

2
p−1,δ, . . . , T

m
p−1,δ, all connected by their root to a single node of degreem. This

node is labelledp + 1 and forms the root ofTp,δ,m. Note that form = δ, a Tp,δ,δ tree is
isomorphic to a completeδ-ary tree of heightp, and thus hasδp leaves.
Hp,δ has two distinguished subsets of nodes:Ap = {1, . . . , p} andBp = {1, . . . , δ}p the

set of all the words of lengthp on the alphabet{1, . . . , δ}.H1,δ is isomorphic toK1,δ, where
A1= {1} is reduced to the unique node of degreeδ in K1,δ , and whereB1 = {1, . . . , δ} is
the set of nodes of degree 1. TheHp+1,δ graph is composed of a copy ofHp,δ, a copy of
Tp,δ,δ, and of the set of nodesBp+1, connected as follows:
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(1) Every nodeu ∈ Bp is connected to the nodesu i ∈ Bp+1, for everyi ∈ {1, . . . , δ};

e

f

in
(2) Every leaf ofTp,δ,δ labelledi is connected to exactlyδ nodesu i ∈ Bp+1 such that
no two leaves are connected to the same node ofBp+1 (leaving some freedom in th
connections).

The setAp+1 is composed of the setAp of Hp,δ, and of the root ofTp,δ,δ. See Fig. 2.
For every integerm such that 2� m � δ, let us define theHp,δ,m graph composed o

aHp,δ graph, aTp,δ,m tree, and a set ofmδp nodes,Bmp = {1, . . . , δ}p × {1, . . . ,m}. The
connections betweenBp , Bmp , and the leaves ofTp,δ,m are similar to the connections
a Hp+1,δ graph excepted thatm may be smaller thanδ (everyu ∈ Bp is connected to
u i ∈ Bmp for everyi ∈ {1, . . . ,m}). TheHp,δ,m graph is an induced subgraph ofHp+1,δ.
Let us denote byAmp the set of modes composed ofAp and of the root of theTp,δ,m tree.

Fig. 2. The recursive construction of theHp+1,δ graph, andH3,2.
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Fig. 3. A graphGπ ∈H1,3,2, and its modificationH0: the dashed sets induced a clique inH0 and are missing
fromGπ .

Lemma 4.3. For all integersp � 1, andδ,m� 2, Hp,δ,m has at most2(m+ 2)δp nodes,
anddeg(x)= 2 if x ∈ Bmp , deg(x)=m if x is the root ofTp,δ,m, anddeg(x)� δ otherwise.

Given a permutationπ of Bmp , let us denote byGπ the graph composed of two copi
of Hp,δ,m whoseBmp sets are connected by the perfect matching defined byπ (see Fig. 3,
for an example). LetHp,δ,m denote the family composed of all theGπ graphs, for all
permutationsπ of Bmp . For eachG ∈Hp,δ,m, we denote byA(G) (respectivelyB(G)) the
set of nodes composed of both setsAmp (respectivelyBmp ) of each copy ofHp,δ,m forming
G. The nodes ofA(G) are drawn in black on Fig. 3.

In [19], it is shown the following important lemma:

Lemma 4.4 (Gavoille and Perennes [19]).For all integersp, δ,m � 2, m � δ, and such
that δp→+∞, there exists a graphG0 ∈Hp,δ,m such that every shortest path routin
table onG0 has a size ofM bits5 for a node ofA(G0) such that

M � mδp

2(p+ 1)
log

(
mδp

)−O

(
mδp

p

)
.

This result is based on the uniqueness of the shortest paths between the nodes oA(G0)

and the nodes ofB(G0). In order to prove our result, one transformG0 into a new graph
H0 such thatδ(H0) � δ, and such that Lemma 4.4 holds forH0 as well. It consists on
connecting all the nodes ofBmp by a clique in each copy ofHp,δ,m (so making the degre
of the nodes ofB(G0) larger thanδ in H0). Then, for the root of bothTp,δ,m trees, we add
a clique ofδ + 1 nodes and select from themδ −m nodes that we connect to the root (
making the degree of nodes at leastδ, and exactlyδ for all the nodes ofA(G0) in H0).
See Fig. 3. InH0, the shortest paths betweenA(G0) andB(G0) are not modified, and ha
2(δ+ 1) more nodes thanG0.

We are now ready to prove a lower bound on compactnessα of n-node graphs.

5 We assume that all logarithms are in base two.
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Theorem 4.5. There exist a constantc � 31 such that for everyn large enough, and for

y

-
an

st

th, and

s

every integerα � (n/18)1/(2c), there exists a graphH0 with at mostn nodes such that

IRSα(H0) >
1

2790
· n
αc
.

Proof. From Theorem 4.1, for everyn, there exists a graphG with 2t+3 � n nodes and
such that IRS1(G)� 2t > n/16 for t = �logn� − 3. Thus the result is true forα = 1.

Assumeα � 2. Let us fixc= 31, and letδ = αc . We consider the graphH0, the modified
graphG0 ∈Hp,δ,m, for some parametersp, δ,m� 2 such thatm� δ andδp→+∞. Let
N denote the number of nodes ofH0. We will fix later the values ofp, δ,m as a function
of n in order to prove thatN � n. Let x ∈A(G0) be a node ofH0 for which the size of any
shortest path routing table is of size at leastM (bound given by Lemma 4.4). Note that b
construction ofH0, deg(x)= δ.

Consider onH0 any shortest pathk-IRSα , (L,I). Thisα-adaptive IRS is an implemen
tation inx of a particular shortest pathα-adaptive routing table. This implementation c
be done inx with at most�δ log

(
N
2k

)� bits. Indeed, for theδ output ports ofx it suffices to

store at mostk intervals of labels. There is at most
(
N
2k

)
ways to choosek sub-intervals of

[1,N]. So, a total of�δ log
(
N
2k

)� bits for x, remarking that a sequence ofp integers taken
from {1, . . . , q} can be coded on� log(qp)� bits since there areqp such sequences.

Now, it is easy to transform any shortest pathα-adaptive routing tables into a shorte
path 1-adaptive routing table, i.e., a standard routing table, adding�N logα� extra bits per
node: for each destination label we specify the output port leading to a shortest pa
there are exactlyα possible output ports. Thus,H0 has a shortest path routing table inx of
size at most⌈

δ log

(
N

2k

)⌉
+�N logα�

using an implementation of the deterministic version of(L,I). From Lemma 4.4, it turn
out forx that:

(4.2)δ log

(
N

2k

)
+N logα + 2>M.

We have to prove thatH0 has at mostn nodes and thatk � n/αO(1). Let us fix now
p, δ,m, and let us prove that:

(4.3)N � n < 4
(
m+ 3+ o(1)

)
δp.

Let p be the largest integer such thatn � 16δp + 2(δ + 1). Clearly, δp → +∞ as
n→+∞. Letm= �(n− 2(δ+ 1)/(4δp)�−2. Let us show thatp, δ, andm are all greater
than 2.

First,δ � 2 becauseδ = αc , andα, c� 2. Forp, α � (n/18)1/(2c) implies 18(αc)2 � n,
i.e.,n� 18δ2. But 18δ2 � 16δ2+2(δ+1) for δ � 2, hence the equationn� 16δp+2(δ+
1) has a solution forp � 2. Form, sincen� 16δp+2(δ+1), then(n−2(δ+1))/(4δp)�
4, and thus�(n− 2(δ+ 1)/(4δp)� − 2 � 2, provingm� 2.
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LetX= 4(m+2)δp+2(δ+1), and letY = n−2(δ+1). Note thatm+2= �Y/(4δp)�.

r
d

We have:

X = 4δp
⌊
Y

4δp

⌋
+ 2(δ+ 1)

= Y − (
Y mod 4δp

)+ 2(δ+ 1)

= n− (
Y mod 4δp

)
.

Therefore,

(4.4)X � n < X+ 4δp.

From Lemma 4.3, the number of nodes ofG0 is at most 2·2(m+2)δp, and thus the numbe
of nodes ofH0 is N � 4(m+ 2)δp + 2(δ + 1), i.e.,N �X. By Eq. (4.4) we have prove
thatH0 has at mostn nodes, and more precisely that:

N � n < 4(m+ 2)δp + 4δp + 2(δ+ 1)

< 4
(
m+ 3+ o(1)

)
δp

remarking that 2(δ+ 1)= o(δp), and proving therefore Eq. (4.3).
In Eq. (4.2), we bound

(
N

2k

)
�

(
n

2k

)
�

(
en

2k

)2k

� ten/t ,

wheret = en/(2k). Eq. (4.2) becomes (usingδ = αc , N � n, andM→+∞)

(4.5)δ log
(
ten/t

)+ n logα �M

(4.6)�⇒ αcen
logt

t
+ n logα �M

(4.7)�⇒ n

(
αce logt

t
+ logα

)
�M

(4.8)�⇒ nβ �M,

whereβ = (αce logt)/t + logα. From Lemma 4.4 we have a lower bound onM, and
plugging in Eq. (4.8) the upper bound onn of Eq. (4.3), we obtain that:

4
(
m+ 3+ o(1)

)
δpβ >

mδp

2(p+ 1)
log

(
mδp

)−O

(
mδp

p

)

�⇒ β >
m log(mδp)

8(p+ 1)(m+ 3+ o(1))

neglecting the second order term O(mδp/p). We remark thatp,m� 2, thus

m log(mδp)

8(p+ 1)(m+ 3+ o(1))
� 2 log(2δp)

8(p+ 1)(5+ o(1))
>

p logδ

4(p+ 1)(5+ o(1))

>
2 logδ

4 · 3(5+ o(1))
>

logδ

30+ o(1)
.
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Replacingβ andδ, we obtain:

,

les

We
(4.9)
αce logt

t
+ logα � c logα

30+ o(1)

(4.10)�⇒ αc logt

t
� 1

e

(
c

30+ o(1)
− 1

)
logα

(4.11)�⇒ αc logt

t
� γ logα,

whereγ = (c/(30+ o(1))− 1)/e. Becausec = 31, we haveγ > 0 (for n large enough)
and since logα � 1, it follows that:

(4.12)(4.11)�⇒ αc � γ t

logt
(4.13)�⇒ c logα � log(γ t)− log logt .

Note thatk � en/(2t). We consider two cases. Ift � 235, thenk � en/236. Since 236/e >

2790αc for c= 31 andα � 2, it follows in this case that:

k >
n

2790αc
.

If t > 235, then we check that (asγ → 0.001226. . . asn→+∞):

log(γ t)− log logt >
2

3
logt

thus by Eq. (4.13)c logα > 2
3 logt . Bounding logt < (3c logα)/2, Eq. (4.11) becomes:

αc3c logα

2t
� γ logα

�⇒ t � 3c

2γ
αc

�⇒ k � eγ

3cαc
n=

(
c/(30+ o(1))− 1

3c
· 1

αc

)
n

>
1

90cαc
· n (asn→+∞)

>
1

2790
· n
αc

that completes the proof.✷

5. Conclusion

We showed thatα-adaptive routing tables onn-node graphs, that are routing tab
mapping each destination on exactlyα directions, have compactness at mostn/α (i.e.,
requiren/α intervals of destination labels per link), computable in polynomial time.
proved also that, if at least one shortest path must be represented, there aren-node graphs
for which everyα-adaptive routing table has compactness larger thann/αO(1).
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In the other side, it is known that ifall the shortest paths must be represented, then such
uld
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routing tables require compactnessn/4 for some worst-case graphs. Therefore, it wo
be interesting to study the compactness ofβ-shortest pathα-adaptive routing tables,
natural extension of shortest pathα-adaptive routing tables, that map each destination
α directions and whose at leastβ must be on a shortest path. The present paper con
β = 1.

We stress also that ourn/αO(1)-lower bound is not a serious obstacle for the study
graphs having small compactness, even forα = 2. Indeed, due to some large constant
this existential lower bound, the smallest example of graphs we can prove by Theor
to have a compactness greater than 1 must have more than 242 nodes. It suggests that th
class of graphs supporting shortest path 2-adaptive routing tables is rather large
would be interesting to develop this study to various class of concrete networks.
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