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Abstract

The compactness of a routing table is a complexity measure of the memory space needed to store
the routing table on a network whose nodes have been labelled by a consecutive range of integers. Itis
defined as the smallest intedesuch that, in every node, every set of labels of destinations having
the same output in the table mftan be represented as the unior afitervals of consecutive labels.

While many works studied the compactness of deterministic routing tables, few of them tackled the
adaptive case when the output of the table, for each entry, must contain a fixed ruofyeuting
directions. We prove that evenynode network supports shortest path routing tables of compactness
at mostr /o for an adaptiveness parametemwhereas we show a lower boundrgf .
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1. Introduction
1.1. Generalities

Given a parallel or distributed system, the interconnection network ensures the commu-
nication between the processors, the terminal nodes. Each intermediate node has a router, a
dedicated co-processor which forwards the messages between processors through the links
of the underlying topology. The routers run a distributed algorithm which specifies the
way to go from a node of the network to another. This algorithm is described by a routing
function.

Once a router receives a message, it looks at its header and checks the destination of the
message, and finds the output port that will be used to forward the message towards to next
intermediate node up to its destination. The output port is a number local to each router
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and associated to each link between routers. A standard way to implement such algorithms
is to use aouting table To find the output port, the router consults a table which is kept

in its local memory. For each destination, this table returns the output port number through
which the message can be forwarded.

A simple method to organize this table is to associate to each destination the output
port number which can serve it. This method is simple, but it is very memory expensive. It
requires @n logd) bits to maintain the routing table in each node of degtesheren is
the number of nodes of the underlying graph representing the network.

For a large or growing network, this method is not feasible. It is interesting to look for
another method in order to reduce the size of the data structure stored by the routers, and
used for the routing task. In the field of compact routing, several methods and strategies
were introduced to reduce the router memory size, as separator-based routing schemes [13,
14], hierarchical routing schemes [2,25], prefix routing [3], Boolean routing [9], and inter-
val routing [27,30]. We focus our work on the latter technique that offers a more compact
data structure for routing tables.

1.2. The interval routing schemes

The interval routing was introduced by Santoro and Khatib in [27], and extended in [30]
by van Leeuwen and Tan. It has been intensively studied in recent years, and an overview
can be found in [16]. This method consists of finding a global labelling of the nodes
with integers taken fronfl, 2, ..., n}, and, given a routing table, to group in the small-
est set of intervals the destination labels using the same output port in each node. An
interval means a set of consecutive integers, the labels & dming considered as con-
secutive. If there exists a routing table such that each set of destination labels using a
same output port can be grouped with at mbdntervals, we deal with &-interval
routing scheme for this network-IRS for short. Ak-IRS can be implemented with
O(kdlogn) bits per node by storing the interval boundaries of the destinations. Actually,
this naive coding can be slightly compressed int@&ddog (n/k)) bits [16]. In a sense,
interval routing is a compact implementation of routing tables. One can hope to store
only O(k) integers per node for bounded degree networks UsitRfS, whereas standard
routing tables require @) integers. The parametéris calledcompactnessf a routing
table.

Many works try to determine routing tables with minimum compactness under several
assumptions on the quality of the routing measured in term of length of the routes: shortest
path routing [12,17,18,20], stretched routing [4,11,24], routing with bounded dilation [6,
15,22,24,28], etc. (cf. [16]). Nevertheless, these works have studied only the deterministic
case: for each source-destination pair, the routing table encodes only one routing path. So,
the routing path is completely determined by giving the intervals. On the cordgaptive
routing allows to diversify the routing paths. A destination can belongs to more than one
set of intervals. For interval routing schemes, this extension has been partially suggested
in [29].
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1.3. Adaptive routing tables

More precisely, let us define anradaptive routing tableas a routing table in which
every destination can be founded in each router for exactiijfferent output ports, for
some integerr > 1. Similarly, ane-adaptivek-interval labelling schemeor k-ILS,, for
short, is anx-adaptive routing table for which the set of destination labels using the same
output port can be grouped into at masintervals. An ILS, is termedvalid if for every
source-destination pair, v, with! u = v, there exists in: (and all the other intermediate
nodes)t least oneutput port among the possible ones that induces a route t@ valid
ILS, is called anx-adaptive interval routing scheme, IR®r short. Therefore, &-IRS,
is simply ane-adaptive routing table of compactnéss

The definition captures adaptiveness of a routing, since at each step the router can se-
lect the next edge of the route améng This potentiality provides many routing paths,
but not necessarily entirely disjoint paths that would require some strong assumptions on
the edge-connectivity of the network. In this model some routes may loop. The router has
the guarantee that at least one route connects to the destination. The other paths are called
deflecting pathsThey can be used depending on the load of the network, or on every other
parameters, in order to improved the traffic. The easel corresponds to the determinis-
tic one (no deflecting paths).

Of course, in practice, for a complete implementation of a routing protocaleztion
function must choose one output port among the valid set. The adaptiveness of a rout-
ing table of compactnegsimplies to store in the router a total of(Q/ log(n/k)) + |S|
bits of routing information, wher¢S| represents the number of bits needed to code the
selection functionS encoding the policy of the router. For instance, a kind of routing
policy may consist to choose at random a permutation of the possible paths returned by
the router if severdlmessages come in the router at a same time (this occurs, for in-
stance, when the messages cannot be stored locally due to physical constraints of the
router). In this casésS]| is just the size of a pseudo-random generator. A selection func-
tion may also provide some priority ordering between the routing paths. In this case it
requires to store extra bits, and| might be large. In particula§ must differentiate
routing paths from deflecting paths. In all the cases, our approach consists in splitting
the memory requirements of the router in two parts: one required by the routing tables
(the term Qkdlog(n/k))), and the other part required by the selection function (the
term|S]).

In this paper, we are not interested in the coding of the selecting funétidout
rather in the parametdr, the compactness. This latter parameter depends on the graph
topology only, whereas the coding of the selection function may depend on the strat-
egy to optimize the traffic: the links can be chosen at random, or selected according to

1 In the framework of compact routing a common assumption is that the destination of a message is never
its source. The case= v can be solved by the local processor (assumed having a relatively high computational
level) without any communication with its router. This allows to establish more flexible and deeper results in
particular for space memory lower bounds.

2 As we will see the degree of the node has to be at least

3 No more than.
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some load history tables of the links, or predicted from some other arbitrary policies
(deadlock-free, ...). We observe that a space complexity measure that would combine
both terms suffers of the gener@(nlogd) bit/node lower bound (and af? (n) inter-

vals for the compactness) that applies to shortest path deterministic routing tables [18,
19]. Indeed, as we will see more precisely in Section 4.3, an adaptive routing table and
a selection function encode together at least a deterministic routing table. However, such
a combination does not allow to measure precisely the contribution of each part (for in-
stance, the2 (n)-lower bound on the compactness [18] does not apply for shortest path
a-adaptive routing tables, cf. Section 4). So, our approach allows to measure the balance
between the information needed for the adaptive routing table and the selection func-
tion.

1.4. Related works

Previous works on compact and adaptive routing schemes can be founded in [1,2,9,21]
for general schemes, and in [10,11,23,26] for interval routing schemes and its general-
izations. However, most of theses works try to give a compact representatadhtbé
shortest paths. Although these schemes extend the deterministic case, they suffer by the
fact that many general lower bounds for deterministic routing established in [12,18-21] ap-
ply as well for the adaptive case. Indeed, these lower bounds are based on the uniqueness
of the shortest paths between specific subset of nodes in some worst-case graphs. Thus, on
these graphs all-shortest-path routing would consist to route along one shortest path as in
deterministic routing. In essence, all-shortest-path compact routing schemes are not more
compact than deterministic shortest path routing schemes. For instance, the asymptotic
n/4-lower bound on the compactness for deterministic shortest path IRS applies also for
all-shortest-path IRS [18].

1.5. Our results

As we will see in the following, the situation is better thanks to the definition we propose
for a-adaptive routing tables (IR$, specially wheneves > 1 and becomes larger. All
previously cited lower bounds does not apply in that case, and moreover we shayicthat
intervals per arc suffice for shortest path [RiBat is already better than the deterministic
case whenever > 4.

This paper is organized as follows. Section 2 defines more precisely the magel of
adaptive routing tables. In Section 3 we show that every routing tables can be transformed
on ane-adaptive routing table with the same set of routes and the same compactness. In
particular we show that/« intervals per arc suffice, even if shortest paths are required.
In Section 4 we specifically study more deeply shortest path routing tables, and we show
an existentiah /a©-lower bound for the compactness, that is asymptotically optimal for
constantr. We conclude in Section 5 by some possible extensions and perspectives of this
work.
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2. Preliminaries

In this paper, the network is modeled by a connected g@ph(V, E), whose set of
nodesV represents the routers, and whose set of Artdse communication links between
the routers. We assume that the links are bi-directional, i.éu, if) € E then(v, u) € E;

G is a symmetric digrapf For everyu € V, we denote by deg) the number of neighbors
of u corresponding to the common value of in- and out-degree Bfnally, 5(G) denotes
the minimum degree af7, that is§(G) = min{dequ) | u € V}.

2.1. Definitions

Formally, aninterval labelling schemen ann-nodeG is a pair(L,Z) of functions
where£:V — {1,...,n} is a one-to-one labelling of the nodes, ahdE — 2£) is a
labelling of the arcs such that, for every &G v) € E, L(w) € Z(u, v) if and only if the
route fromu to w uses the arcu, v).

Moreover, given an integer > 1, the pair(£,Z) is an«-adaptive interval labelling
schemelLS,, for short, if forallu, w € V, w # u, the set

{(u,v) e E| L(w) EI(u,v)}

is of cardinalitya. A valid ILS,, is called an IR$ («¢-adaptive interval routing scheme or
a-adaptive routing table), if it fulfills the connectivity condition: for allw € V, w # u,
there exists a sequenpéu, w) = (v1, ..., v;) of nodes such that; =« andv;, = w, and
foreveryi e {1,...,t — 1}, L(w) € Z(v;, vi+1). The sequence(u, w) is called arouting
pathor routefrom u to w, and may not form a simple path @.

A shortest pathRS, is an IRS, for which, for any pairu, w, there exists a routing
pathp (1, w) that is a shortest path iéd. This definition easily extends to weighted graphs
considering paths of minimum cost. We insist on the fact that betwesdw there is at
least one routing path(u, w) that is a shortest path, although many routing paths might
be represented by the labelling. As said before in Section 1.4, the main interest of this
condition is to avoid the /4-lower bound of [18] on the compactness.

Remark. A consequence of the previous definition is that only the graphs of minimum
degree at least support an ILg, and thus an IRG A variant of the previous definition to
overcome this problem would consist to impose that

{w,v) € E| L(w) € Z(u,v)}| = min{e, degu)}.
Although all the results we propose in this paper hold for both definitions, for simplicity,

only the former definition is considered in the sequel.

4 However, many of the results presented in this paper are still valid for nonsymmetric and strongly connected
digraphs.
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2.2. Compactness

The compactnes®f an ILS, (£,7) is the smallest integek such that every set
Z(u,v) can be represented as the union of at ntosttervals of consecutive integers of
{1,2,...,n} (1 andn being considered as consecutive). Such,lafd IRS, are denoted
respectively by-ILS, andk-IRS,.

Remark. Fora = 1, all the definitions match with the standard ILS/IRS introduced by [27,
30]. For simplicity, we denote in the sequel IRS for IRShe labellings we consider in this
paper are supposed to bkict, i.e., we impose thaf (u) ¢ Z(u, v), for every(u, v) € E.

3. A general labelling scheme

We show in this section that every graghsupports a 1-IRgfor everya < 8(G), the
routing paths being not necessary shortest paths. This result can be seen as a generalization
of the labelling scheme of [27] (showing that every graph has a 1-IRS), and will be a tool
for the remaining of the paper. We denote[liyr] the set{1, 2, ..., n}.

Theorem 3.1. Let (£, Z4) be anyk-IRS, on ann-node graphG = (V, E) with §(G) >
a + 1, and letY C E such that every € V has at most one neighberso that(x, y) € Y.
Then,(L, Z4) can be transformed in polynomial time int&dRS,+1 on G, (£, Zp), such
that all the routes represented 0, Z,) are preserved iL, Zg), and such that for every
(x,y)€Y,Ip(x,y)=[1,n]\{L(x)}.

Proof. For everyz € [1, n], let us denote su¢g) (respectively pre@)) the successor (re-
spectively predecessor) ofin [1, n] modulon. Formally, suc¢z) = (z modn) + 1, and
predz) = (z + n — 2 modn) + 1. Let us define the following procedure of inpdts Z4)
andY, and of output( L, Zp) satisfying the statement of Theorem 3.1.

For every node: do (possibly in parallel):

(1) Forevery(x,y) € E,setZp(x,y) < Za(x,y).
(2) SetR «[1,n]\ {L(x)}.
(3) Let(x, y) be the unique arc of (if y does not exist go to 4), s&k (x, y) < R, and
updateRr < Za(x, y).
(4) While R # ¢ do:
(a8) Findy andz suchthaix,y) € E, z € R\ Zp(x, y), and either pred) € Zg(x, y)
or sucez) € Zp(x, y).
(b) Findy’ such that(x, y’) € E, andz € Zg(x, y'). Let [a, b] an interval such that
z€la, bl S Ta(x,y).
(c) UpdateR < R\ ([a, b]\ Zp(x, y)).
(d) UpdateZg(x,y) < Zp(x,y)U [a,b].

Intuitively, the procedure consists on finding a labed R such that its predecessor (or
successor) is a boundary of some intervalg gfx, y). Then we appenfiz, b], an interval
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containingz, to Zg (x, y) solving the problem for (at least). The procedure iterates on the
updated version oR.

Let us consider any node Let us show that for every at the beginning of th&h run
of Instruction 4 (at the tesR # 0), the setRr fulfills the following propertyP;: R contains
at mostn — i labels, and if; € R thenz appears inx setsZp, and otherwise = L(x) or
z appears it + 1 setsZp. In other words, at each loof, denotes the set of labels that
remains to treat.

By induction oni: the first time in Instruction 4, if no arg, y) € Y exists,R is the set of
all the labels (except fof (x)), andZp is initialized toZ 4. Hence, if there is no are, y) €
Y, P1 is true. Otherwise, after Instruction 3, all labels remainingiappear exactly i
setsZp (the others appear already in+ 1 sets by settin@p (x, y) = [1,n] \ {L(x)}).
Hence in any caseB is true.

Now, assume the property holds up to ttle loop. To show thatP;; is true, let us
first show that Instruction 4(a) is doable, that is the gairz) can be founded: first, if
i =1, then it suffices to choose amysuch that(x, y) ¢ Y andZ4 (x, y) # R (it must exist
otherwise every labe¥ £(x) would appear in at least(G) > « + 1 setsZ,). Then, we
can choose any¢ Z4 (x, y) (thusz € R) so that pre¢t) € Z4(x, y) or suc€z) € Z4(x, y).

Fori > 1, a pair(y, z) exists otherwisez and predz) (or sucgz)) would appear in the
same number of se®;. By PropertyP;, z € R implies predz) or succz) € R (otherwise
they would not appear in the same number of §8i This implies thatR = [1, n] \
{L(x)}, which is not possible sinceR| <n —i <n —1 (i > 1). So, Instruction 4(a) is
doable. Instruction 4(b) is doable singe R and by PropertyP; z appears inx > 1 sets
Zg. Instructions 4(c) and 4(d) are doable as well. We remark, that in Instruction 4(c),
|R| decreases by at least one elemémip] contains at least. We check that all labels
removed fromR appears in exactly + 1 setsZz. ThereforeP;1 holds.

So, at the end of the last lodp R is empty and by Propert®,, all the labels appear in
a + 1 setsZp. Taking a union in Instruction 4(d), we guarantee thatx, y) C Zp(x, y),
and thus it preserves the routes. It follows thatZp) is a valid ILS,+1. Moreover, in In-
struction 4(d), because pred andz are consecutive modulg and becausee Z4 (x, y)
and predz) € Zs(x,y), we have that the minimum number of intervals to represent
Zp(x,y) never increase and thus is at most the on&€ ofx, y). So, (£, Zg) has com-
pactness at mo&t and by Instruction 3, all the arcs @fhave the intervall, n] \ {L(x)}.
This completes the proof.O

Remark. We do not precise the time complexity of the previous algorithm because it may
depend on the data structure used to code the input IRS (the one achieving the lowest time
complexity is not necessary the most compact one). Anyway, using naive interval coding
representation of IRS, this time is less tham®), but can easily be reduced tq|@ |k«)

with more efficient data structures.

Using a spanning treg of G, a DFS-based 1-IR®n T (cf. [27]), and applying induc-
tively on« in Theorem 3.1 we have:
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Corollary 3.2. Every graphG such thats(G) > «, supports d-IRS,.

Whereas fore = 1 every graph has &-IRS with k < n/2, for « > 1 we show that
k < n/a. More precisely:

Theorem 3.3. Let (£, 7) be anyk-IRS; on ann-node graphG, and leta < §(G). Then,
G supports ak’-IRS, such that all the routes afZ, 7) are preserved, and such thit<
min{k, (n — 1)/a}.

Proof. The statement is obvious for= 1. Assumeg > 2. We build a setr composed
of the arcs assigned with the largest number of intervals, for each node. After the first
application of Theorem 3.1, we obtainkalRS; for G, with the same set of routes, and
where the arc with the largest number of intervals (for each node) is now reduced to one.
We can re-apply Theorem 3.1 with a new &estill composed of the arcs assigned with
the largest number of intervals, which is hence at most the second largest E8\eZin
Finally, after a total ofr — 1 applications of Theorem 3.1 (this is feasible sinc€ §(G)),
we obtain ak’-IRS, with the same set of routes where the maximum number of intervals
assigned on an arg¢;, is bounded by and also by therth largest number of intervals
assigned on an arc i€, 7).

Let x be any node o6. Letd = degx), and letks, ..., k; be the number of intervals
of the setsZ (x, y) (thek-IRS; defined onG) for all neighborsy of x. Moreover assume
ki>--- > kg We haveX % ki < Y% ki <n—1 (¢ <d and the label ofc is not
assigned). Thuk, < (n — 1)/a. As said beforet’ < min{k, k,} completing the proof.

Remark. Theorem 3.1 can be slightly improved to
K <minfk, (n —1-8(G))/a + 1}

if all the incident arcs of each node are labelled with non-empty labels (in this case we have
Y i ki <n—1-(8(G) — a)). This assumption occurs, for instance, for shortest paths
routing tables.

4. Shortest path labelling

In this section we are interested in IR®r which there exists at least one shortest path
(represented by the labelling schemes) for all pairs of nodes. Thanks to Theorem 3.1, many
graphs can be identified to support shortest gatRS,. For instance, grid, hypercube,
complete graph, cycle, trees, outerplanar graphs, interval graphs, etc., have shortest path 1-
IRS, and thus also shortest path 1-}JREamilies of graphs having shortest patfil®IRS
include torusk-trees with constanit, planar graphs with a constant number of faces, etc.
(see [16] for a complete state of the art).

For every graplG, we define

IRSy(G) = min{k | G has a shortest pathIRS,}.
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Note that the computation of IRE) (for « = 1) already involves several difficult op-
timizations. The decision problems “is IRS) = 1?” and “is IR§G) = 2?” are NP-
complete [5,7]. Hereafter, the value IR®) is termedcompactnessof G.

4.1. Comparison between compactnessd compactnegs

By Theorem 3.1, we have IR$1(G) < IRS,(G) < --- < IRS(G). Itis not a difficult
exercise to check that there are graphs that support shortest path, wiRSeas they do
not support shortest path 1-IR%or instance, consider the Petersen graph [17], or the
wheel-graph [8]). The next result shows that the difference between the compactness of 1-
anda-adaptive routing of a graph can be exponentially large.

Theorem 4.1. For every integes > 0, there exists a graplé on 2°*3 nodes such that
IRS1(G) > 2% andIRS(G) < 25 + 4.

Proof. We use the construction given in [17] that shows that®S > n/8 for some
n-node graphs witlh a power of two. Here we recall their construction.
For ap x g Boolean matrixM = (M; ;), let Gy = (Vu, Ey) be the graph such that:

(1) Vu={v1,...,vp}U{as,...,aq}Ui{bs, ..., by};
(2) {x,y}e Ey ifandonly if (x =a; andy =b;), (x =b; andy = v; andM; ; = 1), or
(x =aj andy =v; andMl-yj =0).

We haven = |Vy| = p + 2¢q. Roughly speakingi s is a two-level graph. The first level
consists of edges of type;, »;}, and the second one consistsvgg (a stable) which are
connected ta; or b; depending on whetheW; ; = 0 or 1. See Fig. 1 for an example.

For every Boolean matriy/, we denote byM the matrixM with every bit comple-
mented. Moreover, i = (XY), whereX andY are two matrices of same dimensions,
we sety (M) = (Y X), which is the matrix obtained fromy by exchanging the columns
of X with those ofY. We consider a specific matri¥s, § > 0, defined by induction. The

1Y 2 3 %
0 0O
0 1 1
M= 1 0 1
1 10
N A A

Fig. 1. A graphG ;.
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construction ofM; is summarized by Eq. (4.1).

00 0 0
o 1 B 0 (M5 M
10 0 1

(4.1)

It is shown in [17] that IREG ;) > 2° (roughly speaking, whatever the labelling of
thev;s, the seff(a;, b;) must contain only a particular subset of the which is made to
be hard to represent with intervals). In this case 2°+2 andg = 2°+1. Thusn = 29+3,
proving the first part of Theorem 4.1.

Let us show that IR8G ;) < 25 + 4 for every$ > 0. For this purpose, it suf-
fices to define a shortest path IR8Bn Gy, (£,Z), such that for all the arcée, v) ¢
{(aj,bj), (bj,aj)}, |T(u,v)| <25+ 4, thus composed of at most 2 4 intervals. Indeed,
by Theorem 3.1, such a labelling can be transformed into an IR® the same set of
routes such that the edggs;, b;} consist of one interval. Therefore it would prove that
IRS2(G p;) < 28 + 4.

In this proof, we do not optimize the node-labelling, leaving a small space to improve the
bound on IRS(G ;). Let us choose an arbitrary labelliy Since we do not care about
the number of intervals on the eddes, b;}, let us defineBy,;, be the grapl@ ;, where the
all the edgesa;, b;} have been removed. First, remark tiBgf; is a 2+1.regular bipartite
graph. ClearlyB), is isomorphic to every grapB,,,, whereM’ is obtained by comple-
menting some columns d¥ (this morphism exchanges the roles playing by serpe
andb;s), or by permuting some columns (this morphism permutes some ¢agés}).
So, for the sake of simplicity, let us s8f to be the common graph isomorphic By,

B, (m;5), €tC. LetV1(Bs) to be the set of the first partition of nodesBy, thea;s andb;s,
andV»(B;s) as the nodes; s of Bs.

Let us define by induction o8, (£,Z) on B;s. Bs11 consists of two copies aBs, By
and B2, with some extra edges connectilig(B1) to V2(B2), and some edges connecting
V1(B2) to Vo(B1). Let ¢ be the morphism betweei(B1) andV (B2), and lety; be the
morphism betweel; (B1) andV;(B2) fori =1, 2. Foré = 0, we check that one can firid
such thatZ(u, v)| < 4 for all arcs(u, v) of Bg. Letk = max|Z(u, v)|, over all arcqu, v)
of Bs. Since we do not care abodt we considefZ (u, v) as a subset of nodes rather than
a subset of labels.

We first look at any node € V»(B1). By induction, assume thaf (v, a)| < k for all
(v,a) € E(B1). We remark that if(v, a) € E(B1), then (v, ¢1(a)) € E(Bs+1) \ E(B1).
SettingZ (v, ¢1(a)) = ¥ (Z(v,a)) for all (v,a) € E(B1), we are able to route from e
Va(B1) to all the nodes o (Bs11) \ {¢2(v)}. We addp2(v) to any arc incident ob leading
to ¢2(v) by a shortest path. One can check that the routes are still the shortest, and since
the edgesv, a) and(v, ¢1(a)) are distinct|Z (v, a)| <k + 1 forall (v, a) € E(Bs+1).-

Then, let us look at any node € Vi(B1). With a similar argument, we can set
Z(a, p2(v)) = ¥ (Z(a,v)) for all (v,a) € E(B1). We are able to route from € V1(B1)
to V(Bs+1) \ {#1(v), p1(a)}, wherea is the unique node o¥1(B1) such thatia, a} is an
edge ofE (G ;). We addp1(a) and¢(a) to any arc incident of allowing shortest route
froma. So,|Z(a,v)| <k + 2forall (a,v) € E(Bs+1).
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The routing from anw € V2(B2) and any fromV1(B) is defined similarly since the
graph Bs11 is the same ifB; and B, are exchanged. In total, for every afe, v) €
E(Bs+1), we haveZ(u, v)| < k + 2, that is at most 2+ 4 for Bs.

We complete the proof by Theorem 3.1 applied on the eflges;}. O

4.2. An upper bound for compactngss

In this section we show that compactngss$ a generak-node graph is not bounded
for « > 1. Note that fore = 1, a tight lower bound exists. It has been shown in [18] that
for every graphG, IRS(G) < n/4+ o(n), whereas there exists a worst-case gr@plwith
IRS(Go) > n/4 — o(n). We first present a general upper bound:

Theorem 4.2. For everyn-node graphG and every < §(G),

IRS,(G) < (n —1-38(G)) + 1.

Proof. It suffices to consider any shortest pathRS; for G (for instance, choosing <
n/4+ o(n)), and to apply Theorem 3.3 remarking that all the arcs have non-empty labels.

4.3. Alower bound for compactngss

We will show that there exists some worst-case graphs with compagtaédeast
n/a®® . Therefore this shows an asymptotic optimal lower bound for the compactness
of shortest path IRSwith constantx. It is quite complicated to build “by hand” small
counter-exampl& with, for instance, IR®(G) > 1. Indeed, we need to argue for such
G, that whatever is the node-labelling, whatever are the shortest paths, and mainly, what-
ever are the deflecting paths, one cannot code the routing table with one interval. The first
counter-example with IR®G) > 1 that we are able to build (we will not draw it here) has
roughly 1 nodes. That is why we present in this paper an existential lower bound only,
holding also for unboundead We will mainly use the fact that any shortest pathdaptive
routing table combined with a suitable selection functfamplements a standard routing
table ¢ = 1). So, up to an additive term ¢f| one can lower bound the compactness of
thea-adaptive routing table thanks to tli&(n logd) bit/node lower bound of [19].

For this purpose, let us present the grapk; introduced by [19], and defined induc-
tively on p for all integersp > 1 andé > 2. Let T}, ; be a completé-ary tree of height
h whose all its leaves are labelledFor 2z = 0, we setT’ as a tree composed of a sin-
gle node labelled. For everym > 2, we defineT), s as the tree composed of trees

_15, 150 ---» 1,14 @ll connected by their root to a single node of degredhis
node is ISbeIIer + 1 and forms the root of’, 5,m. Note that form =6, aT, s s treeis
isomorphic to a completé&-ary tree of heighp, and thus has” leaves.

H, 5 has two distinguished subsets of nodés:= {1, ..., p} andB, = {1, ..., 6}” the
set of all the words of length on the alphabdtl, . . ., §}. Hy s isisomorphictak s, where
A1 = {1} is reduced to the unique node of degéeie K1 s, and whereB, = {1,...,48} is
the set of nodes of degree 1. Thg 1 5 graph is composed of a copy &f, 5, a copy of
Tp,5,5, and of the set of nodeB, 1, connected as follows:
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(1) Every node: € B, is connected to the nodas < B, 1, for everyi € {1,..., §};

(2) Every leaf ofT, s 5 labelledi is connected to exactl§ nodesui € B,1 such that
no two leaves are connected to the same nodg,qh (leaving some freedom in the
connections).

The setd ;1 is composed of the set,, of H, 5, and of the root of}, 5 5. See Fig. 2.

For every integem such that 2 m < §, let us define theé, s ,, graph composed of
aH,s graph, al, 5, tree, and a set ofi6” nodes,B[’g’ ={1,...,8}’ x{1,...,m}. The
connections betweefi,, By', and the leaves df}, 5 ,, are similar to the connections in
a Hp115 graph excepted that may be smaller thaé (everyu € B, is connected to
ui € By foreveryi € {1,...,m}). The H, 5 » graph is an induced subgraph &, 11 ;.
Let us denote by&’;} the set of modes composed#f, and of the root of thd', 5 ,, tree.

Hp+l, 3
A¢/p Bp Bp+l
p { H,s P
Al’+1 8p+l
2P
p+l Tpss )
M connections
H3,2

Fig. 2. The recursive construction of t#i#, 1 5 graph, ands ».
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Fig. 3. A graphG € H1 32, and its modificationHy: the dashed sets induced a cliqueHp and are missing
fromGy.

Lemma 4.3. For all integersp > 1, andé, m > 2, H,, 5, has at mosR(m + 2)6” nodes,
anddegx) =2if x € B, degx) =m if x is the root ofT, ;5 ,,, anddegx) > é otherwise.

Given a permutatiorr of B}, let us denote bys,, the graph composed of two copies
of Hy 5.m whoseBl’;' sets are connected by the perfect matching defined tsee Fig. 3,
for an example). Let, 5 ,, denote the family composed of all th@, graphs, for all
permutationsr of B} For eachG € H, 5,m, we denote byA(G) (respectivelyB(G)) the
set of nodes composed of both sat$ (respectivelyB;') of each copy of), 5 ,» forming
G. The nodes ofA(G) are drawn in black on Fig. 3.

In [19], it is shown the following important lemma:

Lemma 4.4 (Gavoille and Perennes [19For all integersp,§,m > 2, m < §, and such
that 67 — 400, there exists a graplig € H s, Such that every shortest path routing
table onGy has a size oM bits® for a node ofA (Go) such that

méP méP

- pP) _ -
M>2(p+1) log(ms?) O( 5 )

This result is based on the uniqueness of the shortest paths between the nogdeg)of
and the nodes oB(Go). In order to prove our result, one transfoGy into a new graph
Hp such thats (Hp) > 8, and such that Lemma 4.4 holds féi as well. It consists on
connecting all the nodes (E;’,’ by a clique in each copy dff, 5, (S0 making the degree
of the nodes oBB(Go) larger thard in Hp). Then, for the root of botff, s ,, trees, we add
a clique ofs + 1 nodes and select from theiw- m nodes that we connect to the root (so
making the degree of nodes at ledstind exactlys for all the nodes ofA(Gg) in Hp).
See Fig. 3. InHp, the shortest paths betwediiGop) and B(Go) are not modified, and has
2(8 +1) more nodes thatr.

We are now ready to prove a lower bound on compactnefss-node graphs.

5 We assume that all logarithms are in base two.



250 C. Gavoille, A. Zemmari / Journal of Discrete Algorithms 1 (2003) 237-254

Theorem 4.5. There exist a constant< 31 such that for every: large enough, and for
every integerr < (n/18)1/(29)  there exists a graplifo with at most: nodes such that

1 n
IRS, (Ho) > —— - .
Su(Ho) > 5250 &

Proof. From Theorem 4.1, for eveny, there exists a grap& with 2+3 < »n nodes and
such that IRS(G) > 2 > n/16 fort = [logn| — 3. Thus the result is true fer = 1.
Assumex > 2. Letusfixc = 31, and le = «“. We consider the grapHy, the modified
graphGo € H, 5,m, for some parameteys, §, m > 2 such thain < § andé” — 4-o00. Let
N denote the number of nodes Hf. We will fix later the values op, §, m as a function
of n in order to prove tha¥ < n. Letx € A(Go) be a node ofHy for which the size of any
shortest path routing table is of size at lesés{(bound given by Lemma 4.4). Note that by
construction ofHp, degx) =§.
Consider onHp any shortest path-IRS,, (£, 7). Thisa-adaptive IRS is an implemen-
tation inx of a particular shortest patiradaptive routing table. This implementation can
be done inv with at most[§log (Qf{)] bits. Indeed, for thé output ports ofx it suffices to

store at most intervals of labels. There is at mo@’,{) ways to choosé sub-intervals of

[1, N]. So, a total off§ log (g{ﬂ bits for x, remarking that a sequence pfintegers taken
from {1, ..., g} can be coded oflog(g?)] bits since there arg? such sequences.

Now, it is easy to transform any shortest pattadaptive routing tables into a shortest
path 1-adaptive routing table, i.e., a standard routing table, addingga] extra bits per
node: for each destination label we specify the output port leading to a shortest path, and
there are exactly possible output ports. Thuglp has a shortest path routing tablevimof
size at most

[8 log (g{ﬂ + [Nloga]

using an implementation of the deterministic versior©6fZ). From Lemma 4.4, it turns
out forx that:

8Iog<§]k> +Nloge+2> M. 4.2)

We have to prove thakly has at mosk nodes and that > n/a®®. Let us fix now
p, 8, m, and let us prove that:

N <n <4(m+3+0(1))s". (4.3)

Let p be the largest integer such that> 1657 + 2(§ + 1). Clearly, §? — +oc0 as
n— 4oo.Letm=|(n—2(8+1)/(457)] — 2. Let us show thap, §, andm are all greater
than 2.

First,s > 2 becausé = «¢, anda, ¢ > 2. Forp, o < (n/18)Y/2%) implies 18«)2 < n,
i.e.,n > 1852, But 1872 > 1682+ 2(5 + 1) for § > 2, hence the equation> 1657 + 2(5 +
1) has a solution fop > 2. Form, sincen > 1657 4+ 2(5 + 1), then(n — 2(§ + 1)) /(48?) >
4,and thug (n — 2(6§ + 1)/(487)| — 2 > 2, provingm > 2.
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LetX =4(m+2)6? +2(5+1),andletY =n—2(5§+1). Note thatn +2=|Y/(457)].
We have:
X = 48P Y 26+1
= m + ( + )
=Y — (Y mod #7) +2(5 + 1)
=n— (Y mod &7).
Therefore,
X<n<X+45". (4.4)

From Lemma 4.3, the number of nodega§is at most 22(m + 2)87, and thus the number
of nodes ofHp is N < 4(m + 2)§” +2(§ + 1), i.e., N < X. By Eq. (4.4) we have proved
that Hp has at most nodes, and more precisely that:

N <n<4(m-+2)8P +457 +2(6 +1)
< 4(m + 3+ 0(1))81’

remarking that & + 1) = o(8”), and proving therefore Eq. (4.3).
In Eq. (4.2), we bound

2k
N < n < @ < ten/t
2k 2k 2k ’

wheret = en/(2k). Eq. (4.2) becomes (usirfg= ¢, N <n, andM — +o0)

8log(r"/") + nloge > M (4.5)
I
= aceng +nloga > M (4.6)
el
n<“ etog’ n Ioga) >M 4.7)

where 8 = (a¢“elogt)/t + loge. From Lemma 4.4 we have a lower bound #h and
plugging in Eq. (4.8) the upper bound erof Eq. (4.3), we obtain that:

mé&P méP
4(m +3+0(1))5"B > 200 11 log(ms?) — O<7>
B mlog(més?)
8(p+1(m+3+0(1))

neglecting the second order ternt&3” / p). We remark thap, m > 2, thus

m log(méP) S 2log(257) - plogs
8(p+1D(m+3+01)~ 8p+1(5B+old)  4p+1(5+od)
2logé logs

> > .
4.3(5+0(1)) 30+0(1)



252 C. Gavoille, A. Zemmari / Journal of Discrete Algorithms 1 (2003) 237-254

Replacings andé, we obtain:

aelogt cloga
| > 4.
109 35 o) (4.9)
a‘logr _ 1 c
> — -1)I 4.10
- e<30+0(1) ) oga (4.10)
|
@097 - ) loga, (4.11)

wherey = (¢/(30+ 0o(1)) — 1)/e. Because: = 31, we havey > 0 (for n large enough),
and since log > 1, it follows that:
yt

logt

— cloga > log(yt) — loglogz. (4.13)
Note thatk > en/(21). We consider two cases. 4t 235, thenk > en/2%6. Since 3%/¢ >
279x¢ for ¢ =31 andx > 2, it follows in this case that:

n

279

If + > 235, then we check that (38— 0.001226 .. asn — +00):

(4.11) = of > (4.12)

k>

2
log(yt) — loglogt > 3 logt
thus by Eq. (4.13} loga > % logz. Bounding log < (3clogw)/2, Eq. (4.11) becomes:
a“3cloga >y loga

3c .
— < —a
2y

ks ey . c/(30+0(1))—1.i .
~ Beac 3c af
1
> 90car -n (asn — +00)
1 n
> —_— .
2790 «f

that completes the proof.0

5. Conclusion

We showed thatr-adaptive routing tables om-node graphs, that are routing tables
mapping each destination on exac#lydirections, have compactness at moagt (i.e.,
requiren/« intervals of destination labels per link), computable in polynomial time. We
proved also that, if at least one shortest path must be represented, theneaate graphs
for which everyx-adaptive routing table has compactness larger tha®®.
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In the other side, it is known that @l the shortest paths must be represented, then such
routing tables require compactnesg} for some worst-case graphs. Therefore, it would
be interesting to study the compactnessgeshortest pathv-adaptive routing tables, a
natural extension of shortest patkadaptive routing tables, that map each destination on
a directions and whose at leggtmust be on a shortest path. The present paper concerns

B=1.

We stress also that our/a®P-lower bound is not a serious obstacle for the study of
graphs having small compactness, everofes 2. Indeed, due to some large constants in
this existential lower bound, the smallest example of graphs we can prove by Theorem 4.5
to have a compactness greater than 1 must have more thao@es. It suggests that the
class of graphs supporting shortest path 2-adaptive routing tables is rather large, and it
would be interesting to develop this study to various class of concrete networks.
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