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Objective: Great Routing SchemeObjective: Great Routing SchemeObjective: Great Routing SchemeObjective: Great Routing SchemeObjective: Great Routing SchemeObjective: Great Routing Scheme

D Good Routes

D Send messages along shortest paths of a network
D Use paths with low congestion
D . . .

D Efficient Routers

D Routers store small routing tables only
D Fast routing decisions
D . . .

Compact Routing on a Graph G = (V ,E )

D Tradeoff of max Table Size vs. Stretch

D route(u, v) 6 α · dG (u, v) + β



Objective: Great Routing SchemeObjective: Great Routing SchemeObjective: Great Routing SchemeObjective: Great Routing SchemeObjective: Great Routing SchemeObjective: Great Routing Scheme

D Routers store small routing tables

 partial information

 focus on important routes

 edges of a “good” subgraph  spanner



SpannersSpannersSpannersSpannersSpannersSpanners

Subgraphs that

D span the graph (cf. spanning tree)

D maintain certain properties
here: approximate distances (others: cuts,. . . )

Stretch

D Graph G = (V ,E ), Spanner H = (V ,E ′), E ′ ⊆ E

D dH(u, v) 6 α · dG (u, v) + β



SpannersSpannersSpannersSpannersSpannersSpanners

|E ′| / |V | α · +β

O(n) 1

[ADD+93] Θ(n1/2) 3

[ADD+93] O(n1/k) 2k − 1

[ACIM99] Θ(n1/2) 2

[EP04] O(ε−1n1/3) 1 + ε 4

[BKMP05] O(n1/3) 6

[BKMP05] O(kn1/k) k k − 1

[Woo06] Ω(n1/k/k) 2k − 1

n := |V |
6 α · dG (u, v) + β



Spanners vs. Routing SchemesSpanners vs. Routing SchemesSpanners vs. Routing SchemesSpanners vs. Routing SchemesSpanners vs. Routing SchemesSpanners vs. Routing Schemes

|E ′| / |V | α · +β |table|
O(n) 1 O(n)

[ADD+93] Θ(n1/2) 3 O(n1/2) [TZ01]

[ADD+93] Θ(n1/k) O(k) O(n1/k) [TZ01]

[ACIM99] Θ(n1/2) 2

[EP04] O(ε−1n1/3) 1 + ε 4

[BKMP05] O(n1/3) 6

[BKMP05] O(kn1/k) k k − 1

[Woo06] Ω(n1/k/k) 2k − 1

n := |V |
6 α · dG (u, v) + β



Spanners vs. Routing SchemesSpanners vs. Routing SchemesSpanners vs. Routing SchemesSpanners vs. Routing SchemesSpanners vs. Routing SchemesSpanners vs. Routing Schemes

|E ′| / |V | α · +β |table|
O(n) 1 O(n)

[ADD+93] Θ(n1/2) 3 O(n1/2) [TZ01]

[ADD+93] Θ(n1/k) O(k) O(n1/k) [TZ01]

[ACIM99] Θ(n1/2) 2 ???

[EP04] O(ε−1n1/3) 1 + ε 4 ???

[BKMP05] O(n1/3) 6 ???

[BKMP05] O(kn1/k) k k − 1

[Woo06] Ω(n1/k/k) 2k − 1

β Õ(n/β) Folklore

n := |V |
6 α · dG (u, v) + β



Õ(n/β) routing tables, additive β
t



Õ(n/β) routing tables, additive β
t

β/2–dominating set (size O(n/β))



Õ(n/β) routing tables, additive β
t

routing scheme for O(n/β) trees



Routing Schemes with Additive StretchRouting Schemes with Additive StretchRouting Schemes with Additive StretchRouting Schemes with Additive StretchRouting Schemes with Additive StretchRouting Schemes with Additive Stretch

Graph Class +β |table|
General β Õ(n/β) Folklore
Diameter ∆ 2∆ none Folklore

`(n)–Labels 6 Õ(`(n)
√

n) [BC06]

Interval 1 O(lg n) [BC06]
Circular-arc 1 O(lg n) [BC06]
Chordal 2 o(lg3 n) [DG02]
Tree-length δ 6δ − 2 O(δ lg2 n) [Dou04]
δ-Hyperbolic O(δ lg n) O(δ lg2 n) [CDE+11]

6 α · dG (u, v) + β



Spanners vs. Routing SchemesSpanners vs. Routing SchemesSpanners vs. Routing SchemesSpanners vs. Routing SchemesSpanners vs. Routing SchemesSpanners vs. Routing Schemes

|E ′| / |V | α · +β |table|
O(n) 1 O(n)

[ADD+93] Θ(n1/2) 3 O(n1/2) [TZ01]

[ADD+93] Θ(n1/k) O(k) O(n1/k) [TZ01]

[ACIM99] Θ(n1/2) 2 ??? Ω̃(n)

[EP04] O(ε−1n1/3) 1 + ε 4

[BKMP05] O(n1/3) 6 ??? Ω̃(n)

[BKMP05] O(kn1/k) k k − 1

[Woo06] Ω(n1/k/k) 2k − 1 Ω̃(n/k2)

β Õ(n/β) Folklore

β Ω̃(n/β2) NEW
n := |V |

6 α · dG (u, v) + β
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D Motivation and Related Work

D Bad News: Lower Bound

D Good News: Upper Bound

D Conclusion



Lower BoundLower BoundLower BoundLower BoundLower BoundLower Bound

D Assuming polylog addresses

D Additive stretch β implies

D Table size Ω̃(n/β2) (planar:
√

n/β)

Careful! β–neighborhood can help with additional information
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OutlineOutlineOutlineOutlineOutlineOutline

D Motivation and Related Work

D Bad News: Lower Bound

D Good News: Upper Bound

D Conclusion



Upper Bound (for Planar Graphs)Upper Bound (for Planar Graphs)Upper Bound (for Planar Graphs)Upper Bound (for Planar Graphs)Upper Bound (for Planar Graphs)Upper Bound (for Planar Graphs)

D Additive stretch β = Õ(n1/3)

D Table size Õ(n1/3)

Tight with respect to lower bound for general graphs.

Lower bound for planar graphs: table size
√

n/β
(implies β = Ω̃(n1/2) for [Tho04])
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s

t
β–dominating set, β = n1/3



s

t
can’t store routing info for all n2/3 trees



s

t
assume can store n2/3 info at one node



s

t
O(β)

n2/3 regions of size β = n1/3



s

t
store connections between regions



s

t
O(β)

route within regions using local scheme

need stretch zero!



s

t
O(β)

potentially many portals for each region



s

t
O(β)

merge to O(log n) portals per source region
total number of portals: Õ(n2/3)



s

t
O(β)

C

cost: additive stretch O(β)



s

t

C

O(log n) rewirings per target region



s

t

C

O(β)

Summary



SummarySummarySummarySummarySummarySummary

D Table size n1/3

Additive stretch n1/3

D for graphs with linear local tree-width
(needed in local routing scheme)

D Open Problems

D general graphs, make it tight ;-)
D reduce header size
D other points on tradeoff curve
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D Motivation and Related Work

D Bad News: Lower Bound

D Good News: Upper Bound

D Conclusion



ContributionsContributionsContributionsContributionsContributionsContributions

D Proof that Routing is “harder” than Spanning

D Lower Bound: stretch β implies table size n/β2

(trivial upper bound: n/β)

D Upper Bound: routing scheme for planar graphs with
table size n1/3 and additive stretch n1/3



Additional SlidesAdditional SlidesAdditional SlidesAdditional SlidesAdditional SlidesAdditional Slides

D Illustration of lower bound for planar graphs
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Lower Bound (Planar) [AGGM06]Lower Bound (Planar) [AGGM06]Lower Bound (Planar) [AGGM06]Lower Bound (Planar) [AGGM06]Lower Bound (Planar) [AGGM06]Lower Bound (Planar) [AGGM06]
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