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Abstract

We consider the problem of labeling the nodes of a graph in a way that will allow one to
compute the distance between any two nodes diréetiy their labels (without using any additional
information). Our main interest is in the minimal length of labels needed in different cases. We obtain
upper and lower bounds for severaldaresting families of graphs. Iragticular, our main results are
the following. For general graphs, we show that the length neededrig. For trees, we show that
the length needed i@(logzn). For planar graphs, we show an upper boundef/n logn) and a
lower bound of2 (n1/3). For bounded degree graphs, we show a lower bouns2(qfn ).

The upper bounds for planar graphs and for trees follow by a more general upper bound for graphs
with ar(n)-separator. The two lower bounds, however, are obtained by two different arguments that
may be interesting in their own right.

We also show some lower bounds on the length of the labels, even if it is only required that
distances be approximated to a multiplicative fastdfor example, we show that for general graphs
the required length is2 (n) for everys < 3. We also consider the problem of the time complexity
of the distance function once the labels are computed. We show that there are graphs with optimal
labels of length 3log, such that if we use any labels with fewer thatits per label, computing
the distance function requires exponential time. A similar result is obtained for planar and bounded
degree graphs.
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1. Introduction
1.1. Motivation

Most common network representations arebgll in nature, and require users to have
access to data on the entire network structuradento derive useful information, even if
the sought piece of information is very local, and pertains to only few nodes.

In contrast, the notion ofdjacency labeling schememtroduced by Breuer and
Folkman [2,3], involves using motecalizedlabeling schemes for networks. The idea is
to label the nodes in a way that will allow one to infer the adjacency of two ndidestly
from their labels, without usingnyadditional information sources.

Obviously, labels of unrestricted size can be used to encode any desired information.
However, for such a labeling scheme to be useful, it should strive to use relathvety
labels (say, of length poly-logarithmic i), and yet allow efficient (say, poly-logarithmic
time) information deduction. The feasibility of suefficientadjacency labeling schemes
was explored over a decade ago by Kannan, Naor and Rudich [7].

Interest in this natural idea was recently revived by the observation that in addition to
adjacencylabeling schemes, it may be possible ®vide similar schemes for capturing
distanceinformation. This has led to the notion dfstance labeling schemewhich are
schemes possessing the ability to deteertime distance between two nodes efficiently
(say, in poly-logarithmic time again) given their labels [11].

The relevance of distance labeling schenmethe context of communication networks
has been pointed out in [11], and illustrated by presenting an application of such labeling
schemes to distributed connection setup procedures in circuit-switched networks. It seems
very plausible that distance labeling schemes may be useful also in the design of “memory-
free” routing schemes, which are routing sates geared towards supporting architectures
based on very fast and simple switches, allowed to store very little data locally. Some other
problems where distance labeling schemes may play an active role are bounded (“time-to-
live”) broadcast protocols and topology update mechanisms.

1.2. Distance labeling

Let us define the notion of distance &ing schemes more precisely. Given an
undirected connected weighted gra@hand two nodes andv, we denote byis(u, v)
the distance betweenandv in G, i.e., the minimum weight of a path between them. (For
an unweighted graph, consider all edges to have weight 1.)

A node-labelindor the graphG is a functionL that assigns a non-negative integer label
L(u, G) to each node of G.

A distance decodeis a function f responsible for distance computation; given two
labelsi1, A2 (not knowing from which graph they are taken), it retuyi@.1, A2). We say
that (L, f) is adistance labelindor G if f(L(u,G), L(v,G)) = dg(u, v) for any pair
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of nodesu, v € V(G). More generally{L, f) is adistance labeling schenfer the graph
family G if it is a distance labeling for every gragh € G. Hereafter, we denote Ly, the
sub-family containing the-node graphs of.

It is important to note that the functiofi, responsible of the distance computation, is
independent ofG. Thus f can be seen as a method used to compute the distances in a
decentralized fashion, given any two laband knowing that the graph belongs to some
specific family. In particular, it must be possible to defifidy a constant size algorithm
(depending only of the family). In contrast, the labels contain some information that can
be pre-computed by considering the whole graph structure.

Clearly, a distance labeling scheme alwagxkists for any graph family if one allows
arbitrarily large labels. In this paper we are interested in the existence of distance labeling
schemes which use short labels. [letu, G)| denote the length of the binary labielu, G)
associated witly, and denote

Lmax(G) = max |L(u, G)|.
uev(G)
Given a finite graph family; and a distance labeling scherie f) ong, denote

£.1)(G) =maxX{Lmax(G) | G € G},
L(G) = min{E(L,ﬂ(g) | (L, f) is a distance labeling scheme @}.

Instead of considering the maximal label length one can prefetothélabel length.
We denote

Z<L_,f>(g)=max{ > \L(u,G)HGeg},

ueV(G)
€G)=min{€ (G | (L, f) is a distance labeling scheme @}.

We are also interested in the efficiency of the distance computatiorinea distance
labeling, the worst-case time complexity is proportional to the size of the inputs, i.e., to the
length of the longest label.

Distance labelings can also be defined up to multiplicative stretch factohat is,
given a distance decod¢r, a node-labelind. and a reak > 1, we say thatL, f) is an
s-stretched distance labeling fa¥ if for any pair of nodes:, v of G,

dg(u,v) < f(L(u, G), L(v, G)) <5 -dg(u,v).

All the above parameters are extended to this case by adding a superscript
The above definitions are for the general case of weighted graphs. Below, we will work
mainly with classes of unweighted graphs (unless said otherwise).

1.3. Related work

Many on-line problems on static graph collections can be solved efficiently using
preprocessing and auxiliary space. However, here we insist on more localized processing,
namely, answering on-line queries with local information (or labels) associated to the nodes
involved in the query alonéAdjacencylabeling schemes are stedi in [7]. Specifically,
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it is shown how to construcO (logn)-bit adjacency labelingchemes for a number of
graph families, including trees, bounded arbityigraphs (includingin particular, graphs
of bounded degree and graphs of bounded genusptagar graphs), various intersection-
based graphs such as interval and permutation graphs;-dadomposable graphs. It is
also easy to encode ttancestry(or descendangerelation in a tree using interval-based
schemes (cf. [14]).

Concerningdistancequery on generat-node graphs, Graham and Pollak proposed to
label each node by a word gf symbols taken if{0, 1, %} such that the distance between
two nodes corresponds to the Hamming distance of the two words (the distance between
* and any symbol is null) [6]. Referenced as thguashed Cube Conjectyukinkler has
proved thay,, < n — 1 for everyn, implying a scheme with labels aflog 3~ 1.58x bits?
although with a prohibitive? (n) query time to decode the distance [15].

More recently, a distance baling scheme for weighted trees with weights from the
range [0, M) using O((logM + logn)logn) bit labels has been given in [11], and
0 (log?n) distance labeling schemes for interval and permutation graphs were presented
in [8], all with O (logn) query time. The bounds for interval graphs has been later improved
to O(logn) bit labels and constant query time, and extended to circular-arc graphs [4].
Queries concerning the least-common ancestor of two nodes, and related functions, can be
answered with labels of lengifi (log? ) bits with O (logn) query time [10].

1.4. Our contribution

We first present some upper bounds. For the clasd all graphs, Winkler showed
in [15] that £(G,) < 1.58n, however with a® (n) time to decode the distance. We show
thatrn-node graphs can be labeled with labels of size hits so that in timeO (loglogn)
the distance between two nodes can be computed given their labels only. This result is
complemented by the fact that the clagf all n-node graphs requires labels of size
£2(n). Hencel(G,) = O (n).

We also show that classes of graphs with (recursive)-separators support distance
labeling scheme with labels of siz@ (r(n)log?n) (the size reduces t® (r(n)logn)
whenever(n) > n® for constants > 0), such that the distance can be computed in time
O(logn). This general upper bound implies several results. For instance, it implies that for
the family P of planar graphg(P,) = 0 (/nlogn), and for the familyWv of graphs with
bounded tree-widtd(W,) = O (log?n).

Our main results concern establishing some lower bounds on the size of the labels.
(Some of these bounds hold even if it is only required that the distanceppreximated
to a multiplicative stretch factar.) In particular, we prove the following bounds:

1. For the familyG of general graphs, we prowe(G,) > n/2 — O(1) and £°(G,) >
n?/2 — O(nlogn), for anys < 2.

2 Allthe logarithms are in base two.
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2. For the familyB* of bipartite graphs whose smaller partis of sizeve prover* (B5) >
k(n — k) — O(nlogn), for anys < 3, and thus that* (G,) > n?/4 — O(nlogn), for
anys < 3.

3. For the familyD of graphs of maximum degree 3, we pra®, ) = 2 (n%/?).

4. For the familyP of bounded degree planar graphs, we pré@@,) = 2 (n*/3). This
answers negatively a question of [11], but leaves an intriguing gap between our upper
and lower bounds.

5. For the familyZ of unweighted binary trees, we pro¢€7,,) > log?n/8 — O (logn).

More generally, for the familf ™™ of binary trees with integral weights from the range
[0, M), M > 2, we provet(Z,M) = ©((logM + logn) logn).

Finally, we consider the problem of the time complexity of the distance function once
the labels are computed. We show that therezane@de graphs with optimal labels of size
3logn such that, if one uses labels with fewer thahits, it requires an exponential time to
compute the distance function. A similar result is obtained for planar graphs, and bounded
degree graphs.

2. Upper bounds
2.1. General graphs

One can easily label every node of a graph with its vector of distances to all other
nodes. Forn-node graphs, this leads to @&n(nlogn) bit node-labeling withO (1) time to
decode the distance. On the other hand, the Squashed Cube Conjecture provides a scheme
assigning shorter labels @b (n) bits but with an® (n) time distance decoding. Using
another approach, namely a family of geometrically sized dominating sets collections, we
propose in this paragraph a scheme usihg) bit labels but with a0 (loglogn) time
distance decoding.

We start with some preliminary claims regarding dominating sets-dlominating set
for a graphG is a setS € V(G) satisfying that for every node € V(G) there is a node
w € S at distance at most from it. It is well known (cf. [12]) that for every:-node
connected grapli; and integerp > 0, there exists @-dominating set of cardinality at
most max|n/(p + 1)/, 1}.

A collectionS = {(S;, pi) | 0 <i < k} such thafp; is a decreasing sequence of integers
(with pr = 0), S; is ap;-dominating set for5 for every 0< i < k andS; = V(G), is called
adominating collectiorfor G. The above discussion implidsa following fact, needed for
later use.

Fact 2.1. For every connected-node graphG andk = [loglogn], there exists a domina-
ting collectionS = {(S;, p;) | 0< i < k} for G, such thatp; = 2~ and |S;| < n/2k~ for
everyi € {0,..., k}.

Let S be ap-dominating set forG. For everyx € V(G), let dony(x) denote the
dominatorof x in S, namely, an arbitrary nodee S minimizingdg(x, v).
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Lemma 2.1. For every two nodes, y € V(G):

1. dg(domg(x), doms(y)) — 2p < dg(x,y) < dg(domg(x), domg(y)) + 2p.
2. Knowing p, dg(x, y) mod(4p + 1), anddg(domg(x), domg(y)), one can compute

dc(x,y).

Proof. The first claim is immediate by the triangle inequality. The second claim follows
from the observation that the first claim defings 4 1 consecutive possible values for
dg(x,y), exactly one of which can be congruen@(x, y) modulo 4p + 1. O

Our main lemma, based on a recursive construction using a dominating collection, is
the following.

Lemma 2.2. There exists a distance labeling schefde f) such that for anyz-node
graph G, and any dominating collectiof = {(S;, p;) | 0<i <k} for G,

k-1
Lmax(G) < ) |Si+1/109(4p; + 1) + [Sol logn + O (klogn).
i=0
Moreover, f can be computed in timé® (k) and each label can be computed in time
O (i ISiD-

Proof. LetI ={0,..., k}. Recall thato; 11 < p; for every 0< i < k (with px = 0), hence
the setsS; are typically progressively larger argl = V(G). We define a sequence of
functions{ f; };c; and of labeling§L'};<; such thatfou, v € S;, f; (L' (u, G), L' (v, G)) =
dg(u,v). The pair(L!, f;) is then said to be-valid. We denote by (i) the maximum time
needed to computg, and leta (i) = max,cs; |Li(u, G)].

The proof is by induction. Starting with= 0 we define an ordering of the nodesYf
The labelL%(x, G) of a nodex in Sp is made of two fields:

[a] its rank ordefu) in the ordering ofSo;
[b] the list{dg (u, v)}ves,, Qiven in the ordering chosen.

The distance decodef is as follows: Given two label&®(x, G), L%(y, G), we use
field [a] of L°(y, G) in order to find ordeiy). Then we use field [b] o£°(x, G), containing
the list{dg (x, v)},es,, Select the ordgp)th item in this list and output this result. Clearly,
the pair (LY, fo) is O-valid. Also note that(0) = |So|logn + logn, and the operation
requires constant timgj.e.,7(0) = O (1).

Now we proceed inductively, assuming th@f, f;) is i-valid and definingLi*1. For
every noder € S;11, we compute its dominator i, «’ = dom, (1), and we also choose
some arbitraryordering of the elements o§;1. Then we assign ta a label Lit1(u, G)
composed of the following fields:

3 Constant meaning involving operations on #olgit words on aRAM.
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[a] the labelLi (u’, G) assigned ta’ (at mosta(i) bits);

[b] the rank ordefu) of u in S;+1 (O(logn) bits);

[c] the list of values{dg (1, v) mod(4p; + D}ves, ;. given according to the ordering
chosen forS; 11 (|Si+1]log(4p; + 1) + O (1) bits).

To computelg (x, y) for x, y € S; 41 fromthe labeld.'*1(x, G), Li*1(y, G) of x andy,
we proceed as follows defining1:

1. Forx’ = domg, (x) andy’ = dom, (y), obtainLi(x’, G) and L (y’, G) from field [a]
of Litl(x, G) andLi*1(y, G) respectively (constant time).

. Determineig (x', y') by computingf; (L (x’, G), L' (y', G)) (time¢(i)).

. Obtain the rank ordéy) of y in S; 1 from field [b] of Li*1(y, G) (constant time).

4. Obtaindg (x, y) mod (4p; + 1), which is the ordeiy)th entry in field [c] of Li+1(x, G)
(constant time as the list is sorted).

5. Computels(x, y) as in Lemma 2.1, relying on the fact thitis a p;-dominating set
(constant time).

w N

Itis easy to verify thatLi*1, fi,1) is (i + 1)-valid. Concerning the resulting label sizes
and computation times, we have

a(i+1) <a@)+|Si+1]109(4p; + 1) + O(logn),
i+ <t@+ 0.

As S, = V(G), these recurrences imply the lemman
We now proceed with the main theorem of this section.

Theorem 2.3. For the clasgj of general graphs, there is a distance labeling schémef’)
with £ ry(Gp) < 11n 4+ O(lognloglogn). Moreover, the distance can be computed in
(sub-linea) time O (loglogn) and the set of labels can be computed in tith@?).

Proof. The theorem is proved by first constructing a dominating collectien{(So, 0o),
., (Sk, pr)}, for k = [loglogn1, as in Fact 2.1, and then applying Lemma 2.2.
Let us now calculate the size of the resulting labels. We have

k-1
Lmax(G) < ) _ ISi41/10g(4p; + 1) + |So| logn + O (klogn).
i=0
Recalling thatp; = 287, |5;| < n/28~" andk = Tloglogn], we get that the second term is
bounded by(n/logn) - logn = n, the third term is bounded b@ (logn loglogn), and the
first term is bounded by

k—1 oo .

e k—i+2 l+3
ngk o log(4-277 + 1) <”Z 2k—(i+1) <"ZO o
1= 1=

Hence overallLmax(G) < 11n + O (logn loglogn).
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Considering the time complexity, in order to obtain the labeling one needs to compute
the dominating collection and then some dominating sets with geometric sizes. As
proposed in [12], any-dominating set can be constructeddxn) time once a BFS has
been performed from an arbitrary node. The dominating collection can be constructed in a
total of O (n2) time, and then the construction of all the labels taks?) steps.

The time analysis for computing the distarkgx, y) from the labeld.(x, G), L(y, G)
using the distance decodg(L (x, G), L(y, G)), follows directly from Lemma 2.2, and the
fact that heré& = [loglogn]. O

2.2. Distance labeling and separators

It is known [7] that planar graphs supportlogn) bit adjacency labeling scheme.
In contrast, we show later on (in Section Btbat one cannot solve the general distance
labeling problem for planar graphs using labels shorter faam'/3) bits. Conversely, we
now show that using the recursiv®(,/n )-separator property, the problem can be solved
using O (/nlogn) bit labels.

More generally, in this section we deal with recursiye)-separators. For am-node
graph G, a subset of nodes$ is a separatorif its deletion splitsG into connected
components of size at most 23.

Given a clasg of graphs and a positive non-decreasing function, we say thag has
arecursiver (n)-separator(or simplyr(n)-separato} if for every connected grapti € G,
there exists a separat8rof size at most (n) such that every connected component of the
graphG \ S, obtained fromG by removing all the nodes o, belongs tag. In particular
this component has a separator of size at m@at/3).

Itis well known that planar graphs have ér./n )-separator. More generally, graphs of
genusy have anO (,/yn )-separator [5], and graphs wiy minors excluded (a complete
graph withk nodes) have a® (k/nTogn )-separator [13] or @ (v/k3n )-separator [1], and
are conjectured to have an(k./n)-separator. Trees, series-parallel graphs, and bounded

tree-width graphs, all have am(1)-separator.

. | . -
For a functionr(n), let R(n) = ifg/znr(n(2/3)’). Note that for positive non-

decreasing-(n), R(n) < r(n) Iog3/2n, and R(n) = O(r(n)) wheneverr(n) > n® for
constant > 0. The following is a generalization of the result of [11] for trees.

Theorem 2.4. For a family G of graphs with a (n)-separator,
€(Gn) < O(R(n)logn + log?n).

Moreover the distance can be computedifiogn) time.

Proof. Let us describe a distance labeling schefie f) for the classG. Given a
graphG € G,, we choose a separatSrof size at most(r) for G. For any connected
componentA of V(G) \ S, let G4 be the graph induced by the nodesAf Let ¢ be
the number of components. Mark each componehy a unique identified (A) from the
range of integers,d, 2, ..., c —1. The separatdf itself is assigned the identifiérS) = c.
We also fix an ordering of the nodes ®f
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For each componeldt 4, we apply the distance labeling schefiie f) recursively. Let
£(n) =L, ry(Gn). Now we define the labels for nodesGt
A nodex belonging to a componentreceives a label composed of the following fields:

[a] the list of its distances to the nodes 8f given according to their fixed ordering
(0(|S|logn) bits);

[b] the identifier/ (A) marking the componem (O (logn) bits);

[c] the labelL(x, G 4) (at most¢(|A]) bits).

A node x € S is assigned a label composed of only the first two fields (where the
identifier in the second field i&(S) = ¢).
For any two nodes, y € V(G), denote theidistance viaS by

d(x,y)= min{dg (x, 5) +dg s, )}

To compute the distance betweemndy in G, we must consider two situations.dfand
y belong to the same componehtthendg (x, y) = min{dg, (x, y) | dix, v)}. Otherwise,
dg(x,y)=d(x,y). .

Consequently, in order to compufe (x, y), we first computel(x, y) using field [a] of
L(x,G) andL(y, G). Next we compare the component identifi€) of x andy from
field [b] of L(x, G) andL(y, G). If they are equal and different fromthen we use field
[c] of L(x,G) and L(y, G) and getL(x, G4) and L(y, G 4), which allows to compute
dg ,(x,y). Hence we can computg; (x, y).

Now, as|A| < 2rn/3 and|S| < r(n), it follows that the label length satisfies

L(n) <L(2n/3) + O(r(n) logn + |Ogn),

solving tof(n) = O(R(n)logn) + O(log?n). O
Corollary 2.5.

1. For the familyP of planar graphs{(P,) = O(/nlogn).
2. For the familyyV of bounded tree-width graph&(V,)) = 0(|ngn).

3. Lower bounds

Observe that for any grapfi with V(G) = {1, ..., n} and having a distance labeling
(L, f), the tuple of label$L(1, G), ..., L(n, G)) suffices to reconstruct itself; we need
only to test each pair of nodes in the graph to determine if they are at distance 1 (and
therefore are adjacent) or mattean 1. As such, for any familg of 2¢ labeled graphs,
under any labeling the tuple of labels must at ldabtts long, lest two distinct graphs be
assigned the same labeling. Therefore, we can conclude that

€(Gy) + O(nlogk) >k,
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as delimiting the fields of the tuple can take at mogu logk) bits. In particular, there
exists somer-node graptG with Lmax(G) > €(G,)/n > n/2 — O(logn), since there are
22 labeled graphs.

In this section we present lower bounds on the maximum label length and the total label
length, for the following graph classes:

(1) general graphs with small stretched distance labeling;

(2) graphs with a(n)-separator and small stretched distance labeling;
(3) sparse and bounded degree graphs;

(4) planar graphs;

(5) trees.

The first four lower bounds use the same technique, which is formalized in the next
subsection.

3.1. The main lower-bound theorem

LetACV,=1{1,...,n}, and letk > 1 be a real numberk(can be a function of).
Consider a familyF of labeled graphs on the set of nodés Two graphsG, H € F are
said toexhibit ak-gap overA if there existx, y € A such thatdg(x,y) > k - dy(x, y)
ordy(x,y) > k-dg(x,y). The graph familyF is an (A, k)-family if every two distinct
graphsG, H € F exhibit ak-gap overA. The family F is an A-familyif there exists a real
k > 1 such thatF is a(A, k)-family. For such a family, we define

Lsum(A, G) =) |L(a, G)

acA
Cr. (A, F)=max{Lsun(A, G) | G € F},
LA, F)y=min{l (A, F)| (L, f)is adistance labeling scheme &1,
and similarly fors-stretched distance labeling schemes.

’

Theorem 3.1. Let F be an(A, k)-family, fork > 1. Then for any stretch < k:

1. 05(F) > ﬁ -log|F| —1.

2. I°(A, F) > log|F| — |A|loglog|F]|.

Proof. Let(L, f) be any g-stretched) distarclabeling scheme af with s < k. Assume
that A = {a1,...,aq}. For every graphG € F, let L(G) = (L(a1, G), ..., L(aq, G)),
and letL = {L(G) | G € F}. First, let us show that for every two distin&, H € F,
L(G)# L(H),i.e.,|L|=|F|.

Assume, by way of contradiction, th@t(G) = L(H) for someG, H € F, namely,
L(a;, G) = L(a;, H) for everya; € A. By definition of 7, there exists a pair, y € A such
thatdg(x,y) > k-dg(x, y)ordy(x,y) >k -dg(x, y). Without loss of generality assume
the former. Hence as< k, we have

dg(x,y) >s-dg(x,y). (1)
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Since(L, f) is s-stretched, we have
de(x,y) < f(L(x,G),L(y,G)) and f(L(x,H),L(y, H))<s-du(x,y).
However, sincd.(a;, G) = L(a;, H) for everya; € A, we have in particular that
f(Lx,G). L(y.G)) = f(L(x, H), L(y, H)).

Hencedg (x, y) < s - dg(x, y), contradicting inequality (1).

Now we simply evaluate the cardinality gfaccording to a given restriction on the label
length. Assume thakmax(G) < [ for every G € F. Recalling thatj A| = «, this implies
that£ € {1,...,2!*1 — 1} as there are!21 — 1 binary labels of length at most So,
|F| = |L£] < 2U+De and thud > (log|F|)/a — 1. The first claim holds considering an
s-stretched distance labeling schetie f) for F with ¢5(F) =1.

A slightly more complex argument implies the second claim as well. Assume
Lsum(A, G) <t for everyG € F. As there are(“;r’) ways to divide a total of bits among
a nodes, this implies that

|ﬂ=wgczvﬁgw+wzﬁ (2)

If @ +¢>log|F|thent > log|F| —a >log|F| — «aloglog|F|. If « +t < log|F|. Then
inequality (2) implies thatF| < (log|F)* - 2, hence logF| < aloglog|F| + ¢. In all

the cases; > log|F| — e loglog|F|. The second claim holds considering astretched
distance labeling schemé, f) for F with £5(A, F)=t. O

Let us remark that the theorem applies, in particular, to exact (non-approximate)
schemes. This requires us to interpret such a scheme over a classode graphgj,
as ans-stretched scheme with= 1, and take&k =1+ 1/n.

While we have shown that the total label length may be large for a subset of the nodes
in a graph (the seta discussed above), we can in fact amplify this result in the following
manner: We dangle copies of a ftkgraph from each of the nodes i and we will see
that the dangled copies must have average label length roughly thaffte proof idea is
simple: If many of the dangled copies have short labels, we can actually use that labeling
to create a shorter labeling for the nodesiof

More formally, we define 88, §)-graph as a graph with a node, calledbot, at distance
at mosts > 0 from g8 other nodes. Given 63, §)-graphT and anA-family F, we create
for eachG € F a graph¥;(G) composed o6 in which one join a copy of” to each node
a € A such thatz and the root of the copy df coincide. Denote byF o T the family of
graphs{¥r(G) | G € F}.

Lemma 3.2. Let F be anA-family, letT be a(8, §)-graph, and let L, ) be any distance
labeling scheme on the family o 7. Then
. p(FoT)>=B-LA,F)—|A|B[logs + 1)].

Proof. Consider a graphlr(G) € F o T. Let A = {a1,...,aq}, and for everyi €
{1,....a}, let B; = {b], ..., bjg} be a subset of nodes of the copy Bfassociated with
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a; that are at distance at mastrom the roots; . PartitionZ = | J{_, B’ into g disjoint sets
A, = (b}, ...,b%}, 1<t < B, each of cardinality.

The idea is to construct a labelidg for each node ofd;, based on the labeling in
¥7(G), so that if anyA, has small average label length, the labelitigcan be used to
shrink the labeling fod in G.

For every 1<t < B, define the distance labeling schefdé, f*) on F as follows. For
everyG € F, andu € V(G),

(L(u, ¥ (G)),0), ifugA,
(LB, (G)),dr(by, 1)), fu=a; €A

and f*((r1,d1), (A2, d2)) = f(A1, A2) — (d1+d2). Clearly, f* returns the correct distance
between any two nodes df (G) \ A (as the fieldsd1 and d, are null, andV(G) C
V(@r(G))). Foranodey; € A, we note that; is a cut-vertex in?r (G). Thusdg (a;, u) =
dyr(G)(b;, u) — dy, (6D}, a;), for everyu € V(G). Moreoverdy, ) (b}, a;) =dr(b;, ).
So, f* is a distance decoder fdr. Note thatf* does not depend an

Foreveryr andi, |L!(a;, G)| < |L(b, ¥7(G))|+ [log(s +1)], because the second field
of L' labels has + 1 possible values (namely, the code 0, dadb,, r) € [1, §]).

We now define a labeling af using the labelind.” which minimizesy_;_; L’ (a;, G)|.
Let L* be the restriction of this minimal labeling 16(G). Since f* is a distance decoder
for everyL’, we conclude thar* is a distance decoder far.

Since (L*, f*) is a distance labeling scheme dn there existsGg € F such that
Li,m(A, Go) = £(A, F) and hence for every & ¢ < 8, we haveLl (A, Go) > £(A, F).
DenoteHp = ¥r(Go). It follows that for every I ¢t < 8,

L'(u,G) = {

o

> (|L(b}. Ho)| + [log(s + 1)]) > £(A, F).
i=1

Sinced 7 ; |L(b!, Ho)| = Lsum(A;, Ho), the above inequality can be rewritten as
Lsum(A;, Ho) > €(A, F) —«a [Iog(a + 1)}.

And since the setd, are disjoint,

B
Lsur(Z, Ho) = Y Lsur(Ar, Ho) > B - £(A, F) — ap[log(s + 1) .
=1

We complete the proof by noting thé(g,ﬂ (FoT)> Lsum(Z, Hp). O

Hence we can hope to amplify the lower bound of Theorem 3.1 by a multiplicative factor
of 8. The familyF o T contains graphs of size larger thabut smaller tham + |A||V (T)|.
This remainsO (n) for (8, 8)-graphsT with |V(T)| = O(n/|A]) and then we can also
haveg = O(n/|Al). Thus, for suitable families, G, and a grapif’ so that* € G, and
FoT C G, we can have

U(Gn) = £2(n - £(Gn)) — O(nlogn).

Lemma 3.2 is used to prove Theorems 3.7 and 3.8.
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3.2. Alower bound for general graphs
Ouir first application of the main lower-bound theorem is the following.

Theorem 3.3. Let G be the family of general graphs, and kek 2. Then

2
@G > % —0@1) and &(G,) > ”3 — O(nlogn).

Proof. Let F be the family of all labeled graphs of diameter 2 ¥n={1,...,n}. F is
a (Vv,, 2)-family, because for any two distinct graplis H of F there always exists a
pair (x, y) of V, for which eitherds(x, y) =1 anddy(x,y) = 2, ordg(x,y) = 2 and
du(x,y)=1.

To apply the main lower bound theorem we need to estinfatel et G be the set of all
(connected or disconnected) graphsfnClearly 7 c G and|G| = 2(2) . Let us bound the
probability that a graplis taken uniformly at random fror§ is in . One possible way for
taking a graphG randomly and uniformly frong; consists of setting all the possible edges
with probability p = 1/2. Note thatG ¢ F if and only if there is a pair, y € V,, such
thatx andy are not adjacent, and such that there isxroV,, \ {x, y} adjacent to bothx
andy. This occurs, for a given paji, y}, with probability p(1— p?)"~2 =1/2-(3/4)" 2.
Hence, it occurs for at least one pair with probability of at most

<';) 12 (3/4)""2 < 1/2
for every sufficiently large:. Therefore, logF| > n(n — 1)/2 — 1. Both claims of the
theorem now follow by Theorem 3.1 (noting, for the second claim, that|&isec 2% and
hence loglog7| < 2logn). O

3.3. Alower bound for graphs with(n)-separator

Let B* denote the set of bipartite graphs whose smaller part is oksigéearly, B¢ has
a k-separator. We next bound the total label length required by distance labeling schemes
for BX.

For every bipartite graph i8%, let X andY denote the two parts of nodes, wjtki| = ,
and|Y| = n — k. Consider the subset of grapfsc B* whose diameter is bounded by 3.
Note thatF is a (V,, 3)-family, because for every two distin€, H € F, there exists a
pair (x, y) € X x Y such thatlg(x, y) = 1 anddy (x, y) # 1 (or the reverse). SincH is
of diameter 3, the fact that there is no edge betweandy necessitategy (x, y) = 3.

Lemma 3.4. For sufficiently largen and for2logn < k <n/2, | F| > 2k—0-1,

Proof. Clearly,|B%| = 2¢(»=k) et G be a random graph i¥. This can be taken by fixing
an edge between each péir, y) € X x Y with probability p = 1/2.

To count the number of graphs i (relative to B,’;), it suffices to calculate the
probability thatG is of diameter 3. Letx, y) € X x Y. Let £ denote the event “for every
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u,v € X, dg(u,v) =2". The probability that/; (x, y) < 3 is at least the probability that
has a neighbor iX, sayx’, and that the everst holds (since in this casé; (x, x’) = 2 and
dg(x', y) = 1). The probability thay has a neighbor iX is 1— (1 — p)*. By the union
bound, the probality that everyy € ¥ has a member i is at least 1- (n — k) - (1 — p)*.
The probability that given a palu, v} of X, there is some node € Y connecting: and
vis 1— (1 — p?"*. Thus (by the union bound) evefitoccurs with probability of at
least 1— (’5) - (1— p?)"—*. Therefore, the grapts is of diameter< 3 with probabilityI3
satisfying

~ k n—

P21-(—k-1-p) - (2) (-9
Hence, forp = 1/2, this probability is at least

P>1-(mn—k-27%— <l;> -(3/4)"*.

Thus for sufficiently large and forn/2 > k > 2logn, the probabilityﬁ is larger than 12
and the lemma follows. O

Theorem 3.5. Let s < 3. Then for every sufficiently large and for eachk such that
2logn <k <n/2,

¢ (BY) = k(n — k) — 2nlogn.

Proof. BecauseF is a (V,, 3)-family, by part 2 of Theorem 3.1, ngstretched distance
labeling schemes(< 3) with total label length less than I¢g| — rnloglog|F| — 1 exists
for the classF, thus also for the clag8t. By Lemma 3.4, log/F| > k(n — k) — 1. One can
upper boundF| by |F| < |BE| = 26— < 21*/4 yielding loglog| F| < 2logn — 2. The
theorem follows. O

SinceB* has ak-separator, from 3.5 there are graphs witmérseparator (for constant
¢ < 1) that require distance labelings with labels of $i2€:°). The extremal case=n/2
yields an alternative proof for the (n) lower bound for general graphs, which in fact holds
for larger stretch values, albeit with a slightly weaker constant in the leading term.

Corollary 3.6. Let G be the family of general graphs, and let< 3. Then for every
sufficiently largen, €°(G,) > n?/4 — 2nlogn.

3.4. Alower bound for sparse graphs

Our next question is whether there existdistance labeling scheme with short labels,
say of lengthO (n®) for constant < 1, for the class ofi-node graphs withO (rn) edges.
The following theorem answers this question negatively for eyeryl/2. Let D be the
class of graphs of maximum degree three.

Theorem 3.7. For everyn, £(D,) = 22 (n%?).
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Fig. 1. A possible graph oft for h = 2.

Proof. Let X = {x1,...,x} andY = {y1, ..., yo}. We construct a family{ of graphs
defined as follows. With each node= X UY we associate a cof, of a complete binary

tree of height:. We assume that the leaves of the trees are numbered 1 thréughe
union of these 22" trees forms the set of nodes and a part of the edge-set of all the graphs
of H. In addition, for every(x;, y;) € X x Y, a graphH € ‘'H may or may not contain a
cross edge; ; connecting thejth leaf of 7y, with theith leaf of 7). Thus the clas${
consists of all the graphs generated by considering all possible such choices:

1H) = 22"

Alternatively, H can be viewed as the class of all bipartite graphs with pgrédY, in
which every node is replaced by a complete binary tree of haig{8ee Fig. 1.)

The maximum degree of each graph7gfis three (as in particular, there is at most
one cross edge touching any leaf). By the above definition, every two g@pkise H
differ on some cross edgeg ;, and subsequently, exhibit a gapdasix;, y;) # du (xi, y;).
HenceH is an A-family. Let A = X U Y. By part 2 of Theorem 3.1, any distance labeling
schemgL, f) onH requires

€(A,H) >log|H| — |A|loglog|H| = 22" — 2"+1. 2p.

Consider now a complete binary tréeof heighti with a noder of degree one attached
to its root. The 2 leaves ofl" are at distancé + 1 fromr. SoT is a (2", h + 1)-graph,
andH o T C D. Thus, by Lemma 3.2, the famili{ o T satisfies

EHoT)>2" 1A H)—|A]- 2" [log(h +2)]
> 2h (22h _ 2h+1 . Zh) _ 22h+1|'log(h + 2)'|
> 2% — 22121 + log(h +2)))
> 2% — 0(h2?").
The node set of every graph ®fo T is composed of [A| trees isomorphic to a complete

binary tree of height. As each tree hag’2® — 1 nodes, the total number of nodes of every
graphinH o T isn =221 (21 _ 1) < 22"+3 |t follows that
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{HoT)=2%" — 0(h2?") = (n/8)%2 — O(nlogn).

Clearly fromH o T one can form a subfamily dd with exactlyn nodes by adding some
path of suitable length to some leaf Bif trees. This does not affect any distance of the
original graph, and shows that, for every?(D,) = 22 (n%/?) as claimed. O

3.5. Alower bound for planar graphs

In this subsection we provide a lower bound for planar graphs. Note that a graph with
a O(4/n)-separator is not necessarily planar. In particular, almost all the subgraphs of the
complete bipartite grapIKﬁ)n,\/,—l are not planar (because they cont#igs), and yet

they have a/n-separator. So the lower bound of Theorem 3.5 cannot be applied.

Theorem 3.8. There exists a graph famili consisting of bounded degree planar graphs,
such that for every, £(P,) = £2(n*/3).

Proof. We first construct a clagg of planarrn-node graphs of bounded degree, which is
an S-family for a node sef of size|S| = O (n1/3), and such that log| = £2(n%/3). Since
the size of any family ofi-node bounded-degree graphs is at md&t®97 it follows

by part 2 of Theorem 3.1 that every distance labeling schemé cequirest(S, G) >
£2(n?%/3). Then it remains to consider the famiy= G o T, whereT is a complete binary
tree with® (n?/3) leavesP is composed of plana® (n)-node bounded degree graphs, and
by Lemma 3.2 every distance labeling Brrequirest (G o T) = 2 (n*/3).

Description of anS-family G

Consider the upper-left half of a grid @fcolumns andc rows (see Fig. 2). The node
with coordinategi, j), i.e., residing on theéth column andjth row of the grid, is named
z;,j. The set of nodes we consider in the griddis= {z; ; | 2<i + j < k + 1} (drawn in
gray in Fig. 2). At every node; 1, for 1< i < k, we attach a node; of degree one, and at
every nodey 1, j, for 1 < j <k, we attach a node; of degree one. To lighten notations
u; is also named; o andv; namedz,4o—;, ;. For everyz; ; € Z, the edgdz; j, zi j—1) IS
subdivided into two edgeg&;,;, x;, ;) and (x; ;, z;, j—1), adding the node; ;. Moreover
the edgdz; ;, zi+1, ;) is subdivided into the edg€s; ;, y; ;) and(y;,j, zi+1,;), adding the
nodey; ;. Finally we add the edge ; = (x;,;, y;, ;) forall i, j.

We will use weights on the edges. Specifically, we assign the weight = 1 for
every edgee, except for the edge¢; ;, z; j—1) which are assigned the weight 2 1,
and the edgesy; ;, zi+1,;) which are assigned the weighj 2- 1, for all i, j such that
2< i+ j <k+ 1. The resulting labeled graph is denoteddy It is planar and of degree
bounded by 4. It is depicted on Fig. 2 with= 6.

It should be clear that the grafh, can be transformed back into an unweighted graph,
by replacing each edgeof weightw(e) with a simple chain ofv(e) edges. Since an edge
with weightw contributesw — 1 new nodes, the total number of nodes in the unweighted
version ofGy is

n= Y (24+2j+0Q)+0(K)=2/3) -k+0(K).
2<i+j<k+1
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Fig. 2. The graplGy, defininggG.

For convenience, we henceforth discuss the graph in its weighted form.

LetS ={u1,...,ux,v1,...,vk}. The familyG is composed of all graphS;. in which
we decide to remove or not each edgg. The number of edges ; in Gy is |Z] =
k(k 4+ 1)/2, thus|G| = 2Kk+D/2 We need to show that is anS-family. Towards proving
this, we establish the following two lemmas.

Lemma 3.9. Any shortest path irG; from u; to any of the nodesx; ;, i j,z.;}, for
everyj, must go through the nodes of tita column only.

Proof. By induction oni. The lemma holds for = 1, since the weights of each edge
along the first column are lower than those of corresponding edges in any other column.
Now assume that the lemma holds for evéry i, and let us verify that it holds far.
Towards deriving a contradiction, assume the shortest pattarting fromu; to some
nodeg € {x; ;, i, j» zi,j} does not follow theéth column. Note that a minor diversion, say,
from some node; ; to y; ; and back ta; ;, does not pay. So let us first consider the case
that P “strays to the right,” and uses some nodes of the 1)st column. Letz; ;1 j, be
the first node of columi + 1 on P, and letP’ be a maximal segment df starting at
Zi+1,j, and restricted entirely to columms> i. Let z; 11 ;, be the last node o®’. Then
the sub-pathw; jy, zi+1,jo, P'. zi+1,j;» wi,j; Of P, wherew € {x, z}, can be replaced by the
direct pathP” going fromw; j, to w;, j;, on theith column.P” is clearly shorter tha®’, as
P’ uses vertical edges of weight at leagt2 1) whereasP” uses vertical edges of weight
2i; contradiction.
Now assume thaP “strays to the left,” and uses some nodes of(the 1)st column. So
P departs théth column at some nodg ;,, going througty; 1 j,, to continue on columns
i’ < i until later returning through some noge.1 j, to z; ;, (where again we assume that



102 C. Gavoille et al. / Journal of Algorithms 53 (2004) 85-112

P’, the segment oP betweery; j, andz; j,, is constrained entirely to columns to the left
of i). The length ofP” betweer; j, andz; j, is 2jo + dg, (zi-1, jo. Xi—1,j;) + 2j1, Which
by the inductive hypothesis is at least

(j1—Jjo)2@ — 1 —1+2(jo+ j1) = (j1— jo)2i +4jo— 1.

However, the direct path fromy j, to z; ;, on theith column is of length(ji — jo)2i, a
contradiction becausg > 1. Therefore the lemma holdso

The following lemma states that the shortest patiinfrom u; to v; is precisely the
one highlighted in Fig. 2.

Lemma 3.10. For everyi, j, 2<i+ j <k + 1, every shortest path it fromu; to v;
goes through the sequence of nodes

Xily Zids Xi,2s Zi,2s -+s Zij—1, Xijs Vi,j» Zi+1,j» Vil js ---s ZTktd—ijs Yk+1—i, j-

Proof. Fixingi, the lemmais proved by induction gnThe claim holds foj = 1 because
the weights on the first row are minimal.

Now assume the claim holds for evejy< j. Let P denote a shortest path from
to v;. P cannot use any node of théh column withi” < i because otherwisB has to go
through at least one more nogg;: of theith column on its way ta;, and then the prefix
of P fromu; to z; j is not shortest, by Lemma 3.9.

So assume thaP uses some nodes of th{e+ 1)st column and rows’ > j. In this
case, we observe, by an argument similar to that of the previous proof, that the weights of
the edges used by this segmentfoiveight at least 2/ + 1) each, making it cheaper to
continue along thgth row, leading to a contradiction.

It remains to consider the case wheaPeuses nodes of th@ + 1)st column and of
rows j' < j. Assume that a part aP departs theth column at some nodg j,, jo < Jj,
and reaches thgth column at some nodg,, ;, io > i. Without loss of generalityjo is
maximal, andip is minimal. NecessarilyP goes through thé; — 1)st row at a node
Zig,j—1. The length ofP from y; j, 10 z;y j—1 IS d (Vi jo. 2iy.j—1) + 2i0. By the inductive
hypothesis, any shortest path uses nodes ofttheolumn and nodes of thg — 1)st row
only. It follows thatjo = j. So P follows nodes of théth column, uses the edgg;, then
leaves thejth row at some node;, ;, io < i1, to go throughg;,, ;—1 andz;;, j—1, and to
reach finallyy;, ;. The length ofP from z;, ; to y;, ; is thus

2i0 + d(zig, j—1, iy, j—1) + 2i1=2(io + i1) + (i1 — i0)2(j — D)
= (i1 —i0)2j + 4io.
However, using only thgth row, the distance would b@; — ip)2j + 1 which is smaller

than the corresponding part #ffor everyig > 1, contradiction. This completes the proof
of the lemma. O

It follows from Lemma 3.10 that any shortest path frefto v; must use the edgs ;,
so removing this edge from the graph increases the distance by at least 1. Moreover, this
shortest path does not go through any other egge, showing thatig (u;, v;) depends
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only on whethee; ; exists or not. So, given two graplds H € G that differs by the edge
e; j we havedg (u;, vj) # du(u;, v;j).

Application of the lower-bound theorem

Becauseg is an S-family, we have by part 3 of Theorem 3.1 that every distance
labeling scheme o requirest(S, G) > k(k + 1)/2 — O(|S|logk). We have|S| = 2k,
n=(2/3)-k%+ 0(k?), thusk > n'/3 — 0 (n?°), and finally

£(S.6) > %n2/3 - 0(n*?),

completing the proof. O
We also trivially have a/n-lower bound for non-uniform weighted planar graphs.

Corollary 3.11. There exists a graph famitp™ consisting of bounded degree weighted
planar graphs whose weights are non negative integer8 (iy/» ), such that for every,
LPY) = 2((n¥?).

3.6. Alower bound on trees

When applying the general approach for trees, considering ttf€ séall labeled trees
on the setV, = {1,...,n} as a(V,, 1)-family, one get§F| = n"~2 (known as Cayley's
formula). Unfortunately, this implies only the trivial laglower bound on the average or
maximum label length.

In this section we prove a stronger lower bound, namely, that for the faffifyof
weighted trees with integral weights from the ran@eM) for M > 2, any distance
labeling scheme requira@ﬂ;’”) = 2((logM + logn)logn). This bound is tight given
the O((logM + logn) logn) distance labeling scheme given for this class in [11]. Note
that for unweighted trees we obtain a lower boundifog? ).

3.6.1. The class of trees

For the lower bound proof we focus on a special class of binary weighted trees called
(h, M)-trees M > 2, defined as follows. Fdr=1, a(1, M)-treeT is composed of a root
with a single child and two grandchildren. An integral weighd [0, M) is associated with
each of the two edges connecting the chilthie two grandchildren, and the weightt— x
is associated with the edge connecting the root to the child.

Forh > 2, a(h, M)-tree is constructed by taking(@, M)-tree and attaching to each
of its two leaves an(h — 1, M)-tree. Hence arih, M)-tree contains ‘2 leaves, denoted
ai,...,ax. LetC(h, M) denote the class of afk, M)-trees. Note that all of those trees
have the same structure, and they differ only in their weight assignment. Figure 3 depicts
a(3, M)-tree.

Note that a(kz, M)-tree T is completely defined by the tripl& = (T, T1, x), where
x is the weight associated with the two edges of the tbp\)-tree, andTy and T1
are the two(h — 1, M)-trees attached to the leaves of the top tree. The subclass of
C(h, M) consisting of(k, M)-trees with topmost weight is denoted’(k, M, x). Hence
Ch, M) =Mt e, M, x).
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Fig. 3. A(3, M)-tree.

By the definition of these binary trees we have
Lemma 3.12. For every two leaves, a’ of atreeT € C(h, M, x):

1. If a e To anda’ € Ty thendr(a,a’) =2(h — 1) M + 2x.
2. Ifa,a’ eT; (fori € {0, 1}) thendr (a, a’) = dr;(a, a’).

This implies the following lemma.

Lemma 3.13. Consider two(h, M)-treesT = (To, T1, x) and T’ = (T, T;, x'). For any
leavesag € To, a1 € T, ay € Ty anday € T},

dr(ao,a1) =dri(ag,a;) & x=x".

3.6.2. The proof

For a distance labeling schertie, f) onC(h, M), let W(L, h, M) denote the set of all
labels assigned by to nodes in trees af (k, M), and letg(h, M) denote the minimum
cardinality|W (L, h, M)| over all distance labeling schemes®fk, M).

Hereafter, we fix(L, f) to be some distance labeling scheme attainitig M), i.e.,
such tha{W (L, h, M)| = g(h, M).

Let W(x) denote the set of possible pairs of labéls, v1) assigned byL to some
leavesa; € To anda, € T1 respectively, for some tre€ = (To, 71, x) € C(h, M, x). Let

W =M Wx). ASW S W(L, h, M) x W(L, h, M) we have

Lemma 3.14. |W| < g(h, M)?.
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Lemma 3.15. For every0 < x # x’ < M, the setd (x) and W (x') are disjoint.

Proof. If there is a pair of labels in common gh the distances between each pair of nodes
must be the same, which by Lemma 3.13 impkes x’. O

The crux of the analysis lies in the following lemma.
Lemma 3.16. Forevery0 < x < M, |W(x)| > g(h — 1, M?).

Proof. In any (h — 1, M?)-tree, a weightw € [0, M?) can be represented by the pair of
weightswo = w mod M, w1 = |w/M |, such thatwg, w1 € [0, M) andw = wg + Mw1.
Consequently, one can associate with &hy- 1, M?)-tree T’ a pair of (h — 1, M)-
treesTp and Ty as follows. For any edge of T’ with weightw = wo + M - w1, let the
corresponding weight of in Tp (respectively,T1) be wg (respectivelywi). These two
trees define also @, M)-treeT = (Ty, T1, x) inC(h, M, x).
Every leafa; of T’ is now associated with two homologous leaveg ginamely, the
Ieafa? =a; (occurring in the left part of’, i.e., Tp), and the Ieaizjl. =a ;-1 (O0Ccurring
in T1). For every two leaves;, a; of 7' we now have

dri(aj,a;) =dr, (a a, ) + M- dTl(a ) dr (a ,0) + M -dr (a}, a,l). €))

We use this observation to derive a labeling scheme fahall 1, M?)-trees using at most
|W(x)| labels. Given anh — 1, M?)-tree T’, consider the pair oth — 1, M)-treesTy,
T1 defined above, and use the labelibgo label the treel’ = (Tp, T1, x). Now use the
resulting labeling to define a labeling functidn for the nodes off”’ as follows. A leaf
a;j € T' receives as its label the pdif(a;, T') = (L(a?, 1), L(a]l, T)). Note that this pair
belongs tow (x).

The distance decodgf for (h — 1, M?)-trees is now obtained by setting

(L, ), L (ar, 7)) = £(L(a], 7). L{aj. 7)), (L4, T), L(af, T)))
= f(L(a}, 7). L(a), T)) + M f(L(a], T), L(a7, T)).

As L is a distance Iabellng scheme for, M) -trees we havq‘(L(a T), L(a T)) =
dT(a )andf(L(a T), L(at,T))—dT(a al), so by Eq. (3),

f’(L'(aj,T’),L/(a,,T’))=dT(a )+M dT(a ) dri(aj,ar).

So we have obtained a labeling schethé f') labeling any(h — 1, M?)-tree with labels
taken fromW (x). It follows that|W (x)| > g(h — 1, M?). O

Corollary 3.17. g(h, M) > VM - /g(h — 1, M?).
Proof. By Lemmas 3.15, 3.14 and 3.16(h, M)2 > |W| > M - g(h — 1, M?). O

Lemma3.18. g(h, M) > M"/2,
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Proof. By induction onk. Forh =1, we havd W (x)| > 1, and sgW| > M. On the other
hand, by Lemma 3.14 we hay®| < g(1, M)2. Henceg(1, M) > +/M, as claimed.
Assuming the claim fokh — 1, we get by Corollary 3.17 and the inductive hypothesis,

g(h, M) >~ M\[g(h —1, M2) > /M, (M2)h=D/2 = /M [/ Mh—1
O

= M"?,
This allows us to conclude with the lower bound.

Theorem 3.19. For the familyZ™ of binary trees with weights from the range, M),
M=2,

(M) > %(Iogn —2)logM.

Proof. By Lemma 3.18, for the clagd(h, M) we havel(C(h, M)) > (h/2) - logM. The
number of nodes of the an unweight@d M)-tree isn = 3-2" —2. This yields the theorem,
as

1 2 1
E(,];lM) > E.|og(%> .|ogM>§(|ogn—2)|OgM. O

Coroallary 3.20. For the familyZ of unweighted binary trees,

1
o°T) > 5 log?n — O (logn).

Proof. A (h, M)-tree can be transformed into anweighted tree byeplacing each edge
of weightw with a path ofw (unweighted) edges. Letk, M) be the maximal number of
nodes of the unweighted tree corresponding to the construction(bf ®)-tree. Then
t(h, M) < 3-2". M. Fixing n and takingh = log+/n/3 andM = /n/3, and applying
Lemma 3.18, we obtain

e(h, M) > 2% log M > 2% log? (n/3)

for sufficiently largen. Moreover, we obtain an unweighted tree with at ma@st M) < n
nodes. Note that the depth is at mosi2 < /n logn. So for unweighted binary trees with
n nodes and deptt (/nlogn), at least logn/8 — O (logn) bits may be necessaryo

Corollary 3.21. For the familyT™ of binary trees with weights from the rang@ M),
M > 2,

¢(T,M) = ©((log M + logn) logn).

Proof. If M is bounded by some polynomial in we can apply Corollary 3.20 and show
thatZ(?;M) = Q(Iogzn). If M is super-polynomial im, then by Theorem 3.19(7;,’”) =
2(logM logn). So £(TM) = 2(maxlog?n, logM logn}) = $2((logM + logn)logn).
The upper bound follows from [11]. O
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4. Time complexity

The time complexity for computing the distance function is sometimes crucial. For
instance, a distance labeling for Cayley graphs can be built uSifiggn) bit labels
(by giving the full description of the generators, and labeling the nodes by a unique
identifier taken from the sdfl, ..., n}). However, there is no known efficient algorithm
for computing the distance knowing the generators only. For instance, it is still an open
problem to find a closed formula for the maximal distance between two nodes (namely, the
diameter) for the Pancake graph, which is a Cayley graph.
In this section we show, in particular, that for evarthere exists an-node graphG for
which there exists a distance labeling scheme for the class of all graphs gidpgnr)
bit labels. However, for every distance labeling schdihgef) that uses total label length
less thans2 (n?) for G, the time complexity of the distance functighmust be larger than
any (constant size) stack of exponentials. The result holds evén ff) has a stretchk: 3.
Given a binary sequencg let C*™ (S|n) be the bounded time Kolmogorov complexity
of S givenn, i.e., the length of the smallest program that prisitsn inputz., and halts
in time at most (n), wheret is atotal recursivefunction (namely, a function computable
by a Turing Machine and defined everywhere). For every integee denotes; theith
bit of S. A recursivesequence is a sequen&dor which there exists a Turing Machine
that computess; for every inputi. For an infinite sequencg, and every integer > 0,
let [S], be the sequence composed of the firsiits of S, i.e.,[S], = S152...S,. Using a
construction of a binary sequence by diagaretion (see for instance Theorem 7.4, p. 384
of [9] for a proof), it is possible to show the following.

Lemma 4.1. For any unbounded total recursive functionand g there exists an infinite
recursive binary sequencesuch thatC! ™ ([S],|n) > n — g(n), for infinitely manyn.

Paraphrasing Lemma 4.1, there is a binary sequérafdengthn compressible up to a
constant number of bits (knowing for which the time to decompress any representation
of S with less tham — g(n) bits has arbitrarily large complexity, sagn).

For every integef > 0, let &,(n) be the total recursive function defined by(n) =
25-10 andgo(n) = n. This defines a stack of exponentials of fixed gize.qg.,&(n) =
22" The functiong, is used later for concreteness as the functiofiLemma 4.1, but it
could be replace by any sufficiently large total recursive function.

Given a total recursive function, a family of graphsF is called t (n)-recognizable
if there exists an algorithm that answers in time at maaf) whetherG € F or not for
everyn-node graplG. E.g., planar and bipartite graphs are respectigsly)- and O (n2)-
recognizable families of graphs.

For everyA C V,,, we denote by 4 thecharacteristic sequena# A, that is the binary
sequence such thatS; = 1 if and only ifi € A.

Theorem 4.2. Let F, be at(n)-recognizable(A, k)-family of n-node graphs such that
there exists a constang such that,,(|F,|) > n. Then, for infinitely many, there exists
G € F, with the following two properties
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1. There exists a distance labeling schethe f) of stretchl on F,, such thatl nax(G) <
3logn + O (loglogn).

2. For every distance labeling schemd., /) of stretchs < k on F, such that
Lsum(A, G) <log|F,| —|Alloglog|F,| — C*™ (x4|n) — O(logn), the space and the
time complexities of are greater tharg, (n) — = (n) for any large enough constaht

Proof. Let G1,Go, ..., G;,... be an enumeration of all graphs &f; it can be defined
by generating all &) possiblern-node labeled graphs di, (say, in lexicographic order
of their adjacency matrices) and testing whether ttte general graph belongs 8,
or not. Clearly, this yields also a procedugen(i) for generating theth graphG; in
this enumeration ofF,. Let S be a sequence satisfying Lemma 4.1 (fpg that will be
specified later on), and let Tivbe a Turing Machine computing for every inputi. Let
m = [log|F,|1, and letig be the integer whose binary representation is the sequéige
We will prove the two claims for the graphi;, € F,.

Short labels foiG,,
Let us build a distance labeling schertig f) on 7, for which Lmax(Gi,) < 3logn +
O (loglogn). L is defined as follows. For evely; € F,, and for every: € V,,, we set

(O, u,i) if i # i,

L(u,G;) = _
u ) {(1,u,m,TM5) if i =ip.

Given two labels.1 = L(u, G) andi2 = L(v, G), the distance betweenandv in G, i.e.,
f (A1, 12), is obtained as follows.

1. Extract the second field @f andiz, providing the nodes, v € V,,.

2. If the first bit ofA1 is 0, extract fromi1 the third field,:.

3. If the first bit of 11 is 1, extractn and TMg, and computésS],,, = S1... S, . Compute
the integet whose binary representation corresponds to the sequifhge

4. Invoking procedur&en(i), construct the grapty;.

5. Computelg, (4, v) with any shortest path algorithm, like Dijkstra’s algorithm.

This defines a distance labeling of stretch 1Jgn Let us boundL(u, G;,)|. The coding
of an integerz € {1,..., Z} into a binary sequence is said to beself-delimitingif z
can be recovered froma without any knowledge of. In particular, ifc ando’ are,
respectively, two self-delimiting codings efe {1,...,Z} andz’ € {1, ..., Z’}, then the
binary sequences’ composed of the concatenation of the bitsand ofc’ represents a
coding of the pairz, 7). Everyz € {1, ..., Z} supports a self-delimiting coding of length
logz + O(loglogZ).

To code each labdl (i, G;) we use a binary string consisting of the concatenation of
one bit and of the self-delimiting code of each field of the label. Therefor&; fpwe have

|L(u, Gig)| < 1+ logu + O(loglogu) + logm + O(loglogm) + O(1),
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noting that TMy depends on the recursive functiong@nd ¢ only and is independent
of n. Thus TMsy can be coded by a constant number of bits. BecauseV,, and
me{l,...,(5)}, it follows that

Lmax(Giy) < 3logn + O(loglogn).

Exponential complexity for any distance function@g

Consider now any distance labeling schefhef) of stretchs < k onF,. Letz;(n) be
the time complexity of the distance functigh

In order to prove the second claim we will build a constant size progpatimat, from
a suitable input of sizép bits, and in time at mosty, outputs[S],,. As S was chosen in
accordance with Lemma 4.1, it must be the case than eithisrlarger than any constant
stack of exponentials, dip is of size larger thamn — o(m). Thus, expressingr as a
function ofz, andlp as a function of.max(A, F,,), we will conclude that ifLmax(A, F)
is too small, therry must be very large. More precisely, we will constricsuch that
andzp verifies:

1. Ip = Lsum(A, Gjg) + |Allogm + C*™ (x4|n) + O (logn).
2. tp=n*1;(n) + T(n)2- 22"

Assume that such a programexists. FromP and its suitable input of lengtp, one
can outpufS],, in time at mosttp. ThusC'? ([S],,|m) < Ip + O(1). From Lemma 4.1
we conclude that: eithe€’? ([S],,|m) > m — O(logm) (choosingg(m) = clogm for
some suitable computable constaptor the functioryp is larger than any total recursive
function inm, in particulartp > &, (m) for every constank.

Assume thatL, f) satisfiesLsum(A, Giy) <m — |Allogm — CT™ (x4|n) — O (logn),
i.e., the assumption of the second claim. It follows t&t ([S],|m) <Ip + O(1) <
m — O(logm) (recall thatm < n?). From the above discussion, it turns out that

tp=n-1;(n) +1(n)?- 22% S g,(m) forallm,n, and every constart (4)
Becausen > log|F,| and&,,(|F,|) > n, we have for everyt > ho,

&n(m) = & (1091 Fnl) = En—1(1Fnl) = En1-no (Eno(1Fnl)) > En—1-no ().

Inequality (4) implies thats(n) > &, (n) — t(n) for every constank > ho + 3. Note that
any program that halts aftef (n) steps requires space at leastdp@:).

Therefore, for such program, the time and the space complexitiesfomust be larger
than any stack of power of two of constant size. It remains to build such a pragram

Description of the progranP

We are going to use the set of labels to determine the distances between the nbdes of
and then using procedu@en for F we determine the unique graph which complies with
these distances (up to the stretch faster k). This graph isG;,, and we outpuip, which
is equal ta[S],;,.

W.I.0.g. A ={a1,...,as} €V, is ordered so that; < --- < a,. Letg = (3). Let us
consider a functionu that maps every integes € {1, ..., ¢} to any pair of integers of
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{1,...,a}. Moreover assume that(p) = {i, j} can be computed in time at moét(q).
The choice ofu is not important, and clearly every “reasonablé™ N2 mapping has
such time requirement (for instance the program consisting in enumerating of possible
pairs of{1,...,a}). For everyG € F, and everyp € {1, ..., q}, letdg(p) =dg(a;,a;)
where{i, j} = u(p). Let Ly = (L(a1, Giy), . . ., L(ag, Giy)).

Consider the following prograr® on inputs(L 4, x4, q,n,k, f):

1. Foreveryp € {1,...,q}, computen(p) = {i, j}, and extrach;, 1; respectively the
ith andjth field of L 4. Computer, = f(%;, ;).

2. For everyG; in the enumeration of-,, check whetheég, (p) < x, <k - g, (p) for
all pe{l,...,q}. If the test succeeds for ghl then setip =i and go to Step 3. This
computation can be done involvir@en(i), and using Dijkstra’s algorithm applied on
the pair of nodes oft indexed byu (p) extracted fromV,, with y 4.

3. Writeig in binary, yielding the sequen¢§],,,.

Let us show thatP outputs[S],,. By the definition of an(A, k)-family, for every two
distinct graphsG, H € F,, there exists a pair of nodes df whose distances differ by a
factor at leask. Because in Step BGI.O (p) <xp<s- 5G,-0 (p) for everyp, it follows that
the sequences of,’s uniquely identifiesG,, in F,. Hence Step 2 find&, and Step 3
writes[S],,.

The length of the inputs is bounded by

Lsum(A, Gjp) + alogm + C™™ (x4|n) + O(logn) =1p as claimed,

noting thatg, n, k € {1, ..., n?} (so representable ofi (logn) bits), and thal.sym(A, Giy)

+ o logm bits are enough to describe the sequehgein an easy way to extract all the
labels. Note also thaf depends or¥,, only (andF, is 7(n)-recognizable, so given it
has a constant size proced@en). Thereforef can be stored with a constant number of
bits knowingn.

Let us compute the time complexity &. In Step 1, there arg calls to the functiong
and f. Thus it cost0 (g (g + t7(n))) = omn*+ I’lztf (n)). In Step 2, there are™calls to
procedurésen (each one costs? - 7(n)), and for each one there agecalls tou, x4, and
to Dijkstra’s algorithm. Thus it cost® (2" - 2(2) . z(n) - (2 + (n) + nZlogn)). In total,
for n large enough and bounding< (3), the time is bounded by

O(n*-1;m) + 0(x(n)- 2" . (P + 1)) <n*- 17 (0) + T ()2 22" = 1p

as required. O

For all the(A, k)-families we constructed in Section 3.1, we h&V/& x4|n) = O(1).
Therefore, denoting b¥.sym(G) = ZueV(G) |L(u, G)|, we have the following corollaries:

Corollary 4.3. Let G be the family of all graphs. For infinitely mamythere exists some
graphG € G, with the following two properties

1. There exists a distance labeling scheiie f) of stretchl satisfying Lmax(G) <
3logn + o(logn).
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2. For every distance labeling schenié, f) of stretchs < 2 satisfying Lsym(G) <
n?/2 — O(nlogn), the time and space complexities of the distance funcficare
larger than any(constant sizestack of exponentials.

Corollary 4.4. Let B* be the family of graphs havingiaseparator. For infinitely many
there exists some graph € BX with the following two properties

1. There exists a distance labeling scheide f) of stretch1 satisfying Lmax(G) <
3logn + o(logn).

2. For every distance labeling schenté, f) of stretchs < 3 satisfying Lsym(G) <
k(n — k) — O(nlogn), the time and space complexities of the distance funcfion
are larger than any(constant sizestack of exponentials.

Corollary 4.5. Let D be the family of maximum degree three graphs. For infinitely many
there exists some gragh € D,, with the following two properties

1. There exists a distance labeling scheie f) of stretchl satisfying Lmax(G) <
3logn + o(logn).

2. For every distance labeling schenig, f) satisfyingLsum(G) < © (n%2), the time
and space complexities of the distance functfoare larger than anyconstant size
stack of exponentials.

Corollary 4.6. Let P be the family of bounded degree planar graphs. For infinitely many
n there exists some graph € P,, with the following two properties

1. There exists a distance labeling scherle f) satisfying Lmax(G) < 3logn +
o(logn).

2. For every distance labeling schenig, f) satisfyingLsum(A, G) < ©(n?/3) for a
subset4 of 0 (n1/3) nodes, the time and space complexities of the distance funttion
are larger than any(constant sizestack of exponentials.

4.1. Conclusion

We have proved several upper and lower bounds on the label length required to compute
distances between pair of nodes ivanode graph for different classes. This paper leaves
some open questions.

o Find the smallest constantsuch that there is a distantabeling scheme on arbitrary
graphs with labels of length at most + o(n) bits. The current range for is
ce[1/2,log3].

e Find the complexity of the maximum label length for unweighted planar graphs, the
current complexity ranging betweean(n1/3) and 0 (/n logn).

e Find the complexity of the maximum label length for bounded degree graphs, the
current complexity ranging between(/n ) and O (n).
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