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Abstract. A distance labeling scheme is a distributed graph representation that assigns labels
to the vertices and enables answering distance queries between any pair (x, y) of vertices by using
only the labels of x and y. This paper presents an optimal distance labeling scheme with labels of
O(logn) bits for the n-vertex interval graphs family. It improves by log n factor the best known
upper bound of [M. Katz, N. A. Katz, and D. Peleg, Distance labeling schemes for well-separated
graph classes, in Proceedings of the 17th Annual Symposium on Theoretical Aspects of Computer
Science, Lecture Notes in Comput. Sci. 1770, Springer-Verlag, Berlin, 2000, pp. 516–528]. Moreover,
the scheme supports constant time distance queries, and if the interval representation of the input
graph is given and the intervals are sorted, then the set of labels can be computed in O(n) time.
Our result is tight as we show that the length of any label is at least 3 log n−O(log logn) bits. This
lower bound derives from a new estimator of the number of unlabeled n-vertex interval graphs, that
is, 2Ω(n log n). To our knowledge, interval graphs are thereby the first known nontrivial hereditary
family with 2Ω(nf(n)) unlabeled elements and with a distance labeling scheme with f(n) bit labels.
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1. Introduction. From an efficient graph representation, we could expect a
small amount of memory space and fast elementary routines to answer queries like
adjacency (see, e.g., [30] for an overview). Among the classical type of queries, let
us mention those arising from the field of communication networks and distributed
computing, like routing, connectivity, and distance queries. Peleg [26] introduced the
concept of informative labeling schemes which generalizes the implicit graph repre-
sentation proposed in [19]. Like classical graph representations, informative labeling
schemes have the property of being a distributed data-structure: labels are assigned
to the vertices and queries can be answered using only the labels of the involved
vertices. Schemes providing compact labels play an important role for localized dis-
tributed data-structures (see [14] for a survey).

This paper focuses on the distance labeling scheme [27], which, for a graph family
F , is a pair 〈L, f〉 of functions such that for any graph G = (V,E) ∈ F :

• L(v,G) is a binary label associated with the vertex v in the graph G, and
• for all x, y ∈ V , f(L(x,G), L(y,G)) = distG(x, y), the distance in G between

x and y.

A scheme is an �(n)-distance labeling if, for every n-vertex graph G ∈ F , the
length of the labels is at most �(n) bits. The first results on the distance labeling
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1240 CYRIL GAVOILLE AND CHRISTOPHE PAUL

scheme [15] show that the family of n-vertex graphs requires Θ(n) bit labels while
n-vertex trees need only Θ(log2 n) bit labels.1 The case of dynamic tree networks has
been studied in [23, 22, 24, 21]. The variant of approximated distance labeling schemes
has been considered in [12, 32, 33, 34, 35, 29, 16, 25, 31]. Efficient distance labeling
schemes are known for a number of restricted graph families. O(

√
n log n) bit labels

are enough for planar graphs, which is not tight with respect to the Ω(n1/3) lower
bound [15]. For bounded degree graphs, Ω(

√
n ) is a lower bound on the label length.

Finally, O(log2 n)-distance labeling schemes are known for interval and permutation
graphs [20], for distance hereditary graphs [13], for bounded tree-width graphs, and,
more generally, for bounded clique-width graphs [9].

A trivial observation is that a distance labeling scheme for a family F requires
labels at least as large as labels of an adjacency labeling scheme for F . A first natural
question is: (1) Could it be the same size for a large enough graph family? As shown
in [19], an information-theoretic lower bound coming from the number of n-vertex
graphs in the family plays an important role for the label length. The unsolved implicit
graph representation conjecture of [19] asks whether any hereditary family with 2nf(n)

graphs of n vertices enjoys an O(f(n))-adjacency labeling; Ω(f(n)) is a lower bound.
Moreover, up to now, none of the hereditary graph families is known to support
an o(log2 n)-distance labeling scheme.2 It should be noticed that among the graph
families listed above, the Ω(log2 n) lower bound on label length for n-vertex trees
applies to neither interval nor permutation graphs. So the second question is: (2) Can
we improve the O(log2 n) upper bound [20] for either interval or permutation graphs?
This paper positively answers the above questions by considering the family of interval
graphs. Interestingly, using some ideas from this paper, [2] positively answers the case
of permutation graphs.

A graph G = (V,E) is an interval graph (see, e.g., [4]) iff it is the intersection
graph of a family I of intervals on the real line: vertices of V are in bijection with
the intervals of I and two vertices x and y are adjacent iff their intervals I(x) and
I(y) intersect. I is a realizer of the interval graph G. Obviously storing the bounds
of each interval defines an O(log n)-adjacency labeling scheme, as it can be shown
that all the interval boundaries of I can be chosen in {1, . . . , 2n}. A graph is a proper
interval graph iff it is the intersection graph of an inclusion-free realizer; i.e., none of
the intervals of the realizer is contained in another interval.

We show that any �(n)-distance labeling on the n-vertex interval graph family re-
quires labels of length �(n) � 3 log n−O(log log n) bits. This lower bound derives from
a new estimator on the number of interval graphs. We also obtain an asymptotically
tight upper bound of 5 logn+ 3 bits for the label length. To that aim, we reduce any
interval graph G to a proper interval graph G′ such that the distance in G between
any two vertices x, y can be retrieved from the distance in G′ and the adjacency in G
between x and y. It surprisingly follows that the core of the distance labeling prob-
lem of interval graphs consists in the design of a 2 �log n�-distance labeling scheme
for proper interval graphs. We also prove that the bound for proper interval graphs
is asymptotically tight. Moreover, once the labels have been assigned, the distance
computation from the labels takes a constant number of additions and comparisons
on O(log n)-bit integers. Even more interestingly, if the list of intervals of the graph is

1In this paper all the logarithms are in base two.
2It is not difficult to construct a family of diameter two graphs whose adjacency can be decided

with O(logn) bit labels (some bipartite graphs, for instance), so supporting an O(logn) distance
labeling scheme. However, “diameter two” is not a hereditary property.
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given sorted, then the preprocessing step to set all the labels runs optimally in O(n)
time. Our scheme extends to circular-arc graphs.

At this step, it is worth remarking that any �(n)-distance labeling scheme on a
family F converts trivially to a nondistributed data-structure for F of O(�(n)n/ log n)
space. The time complexity of distance queries remains unchanged, assuming that a
cell of space can store Ω(log n) bits of data. Therefore, as a byproduct we can compute
in O(n) time an O(n) space data-structure for interval graphs supporting constant
time distance queries. This latter formulation implies the result of [5]. However, both
approaches differ in essence. The technique of [5] consists in building a one-to-one
mapping from the vertices of the input graph to the nodes of a rooted tree, say, T .
Then, distances are computed as follows. Let l(v) be the level of v in T (i.e., the
distance from the root), and let A(i, v) be the ith ancestor of v (i.e., the ith node on
the path from v to the root). If l(x) > l(y)+1, then dist(x, y) = l(x)−l(y)−1+d1(z, x),
where z = A(l(x)− l(y)− 1, x), and where d1(z, x) is the distance between two nodes
whose levels differ by at most 1. The distance d1 is 1, 2, or 3 depending on the interval
representation of the involved vertices. Answering a query is mainly based on the
efficient parallel implementation of level ancestor queries on trees (to compute z) of [3].
However, this clever scheme cannot be converted into a distributed data-structure as
ours can be for the following reason. As the tree has to support level ancestor queries,
it implies that any node, if represented with a local label, can extract any of its
ancestors with its label. In particular, x and y can extract from their label their
nearest common ancestor and its level, so x and y can compute their distance in T .
By the lower bound of [15], this cannot be done in less than Ω(log2 n) bit labels. So,
access to a global data-structure is inherent in the approach of [5].

Section 2 deals with lower bounds. We first show that the number I(n) of n-vertex
labeled interval graphs is at least 22n logn−o(n logn), which is asymptotically tight. This
first bound is then used to prove the lower bound on the length label for any distance
labeling scheme of n-vertex interval graphs. A lower bound for proper interval graphs
is also given. Section 3 describes a (5 log n + 3)-distance labeling scheme for interval
graphs and its extension to circular-arc graphs. Section 4 deals with the relationship
between distance labeling schemes and the notion of universal distance matrix.

2. Lower bounds. This section establishes lower bounds on the label length
required to get an exact distance labeling scheme for interval graphs and proper
interval graphs. We first prove a lower bound on the number of interval graphs from
which, using the technical composition tool of an α-linkable subfamily (introduced in
subsection 2.2), we derive the announced lower bounds on distance labeling schemes.

2.1. On the number of interval graphs. Let I(n) be the number of labeled
interval graphs with n vertices. Computing I(n) is an unsolved graph-enumeration
problem. Cohen, Komlós, and Muller [7] gave the probability p(n,m) that a labeled
n-vertex m-edge random graph is an interval graph under conditions on m. They
computed p(n,m) for m < 4 and showed, more generally, that

p(n,m) = exp

(
−32c6

3

)
, where lim

n→+∞

m

n5/6
= c.

As the total number of labeled n-vertex m-edge graphs is
((n2)

m

)
, a formula of p(n,m) ·((n2)

m

)
follows for the number of labeled interval graphs with m = Θ(n5/6) edges.

Unfortunately, using this formula results in I(n) � 2Ω(n5/6 logn) = 2o(n), which is a



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1242 CYRIL GAVOILLE AND CHRISTOPHE PAUL

lower bound too weak for our needs. The exact number of interval graphs is given
up to 30 vertices in [17]. Actually, the generating functions for interval and proper
interval graphs (labeled and unlabeled) are known [17], but only an asymptotic of
22n+o(n) for unlabeled n-vertex proper interval graphs can be estimated from these
equations. In conclusion, Hanlon [17] left open whether the asymptotic on the number
of unlabeled interval graphs is 2O(n) or 2Ω(n logn).

As the number of labeled interval graphs is clearly at least n! = 2(1−o(1))n logn (just
consider a labeled path), the open question of Hanlon is whether I(n) = 2(c−o(1))n logn

for some constant c > 1. Hereafter we show that c = 2, which is optimal.
Theorem 1. The number I(n) of labeled n-vertex interval graphs satisfies

1
n log I(n) � 2 log n − log log n − O(1). It follows that there are 2Ω(n logn) unlabeled
n-vertex interval graphs.

Proof. There are at least I(n)/n! unlabeled interval graphs. First let us show that
the lower bound on 1

n log I(n) stated in Theorem 1 implies that there are 2Ω(n log n) un-
labeled n-vertex interval graphs. Indeed, using the fact that log(n!) = n log n− Θ(n),
we have

1

n
log I(n) � 2 log n− log log n−O(1)

⇒ log I(n) � 2n log n− n log log n−O(n)

⇒ log I(n) − log(n!) � 2n log n− log(n!) − n log log n−O(n)

⇒ log(I(n)/n!) � n log n− n log log n−O(n)

⇒ I(n)/n! � 2n logn−o(n logn).

So there are 2Ω(n logn) unlabeled interval graphs. Let us now prove the lower bound
on I(n).

Let Sp,k denote the set of all the sequences (S1, . . . , Sp) of integer sets such
that, for every i ∈ {1, . . . , p}, it holds that |Si| = k and Si ⊂ {0, . . . , (p − i)(k +

1) + k}. As there are
(
(p−i)(k+1)+k+1

k

)
ways to choose Si, it follows that |Sp,k| =∏p

i=1

(
(p−i)(k+1)+k+1

k

)
=

∏p
i=1

(
(p−i+1)(k+1)

k

)
=

∏p
i=1

(
i(k+1)

k

)
.

From every S = (S1, . . . , Sp) ∈ Sp,k we construct an interval graph GS of vertex
set V (GS) = A ∪B ∪ C with A = {ai,j | 1 � i � p, 1 � j � k}, B = {b0, . . . , bp}, and
C = {c1, . . . , ck}. The edge set is defined by the intersection of the intervals associated
to each vertex of GS . For every v ∈ V (GS), the interval of v is I(v) and is defined as
follows: for i ∈ {1, . . . , p} and j ∈ {1, . . . , k} (in the following, we denote by si,j the
jth smallest integer of Si)

• I(ai,j) = [(i− 1)(k + 1) + j, i(k + 1) + si,j ];
• I(bi) = [i(k + 1), i(k + 1) + k] and I(b0) = [0, k]; and
• I(cj) = [p(k + 1) + j, p(k + 1) + j + k].

As depicted in Figure 1 (where p = k = 3), for each fixed i, the right boundaries of
the ai,j ’s must differ and must fall into the area delimited by the two vertical dotted
lines. The intervals associated with the bi’s and cj ’s are all of length k.

We consider the set Fp,k composed of all labeled graphs GS obtained for S ∈ Sp,k

and such that b0 is labeled 1 and cj is labeled j + 1 for every j ∈ {1, . . . , k}. Clearly,
Fp,k is composed of labeled connected interval graphs on n = (p + 1)(k + 1) vertices.
Thus, I((p + 1)(k + 1)) � |Fp,k|. We will first show that

(1) ∀ p, k � 1, |Fp,k| = (p(k + 1))! · |Sp,k|

and then show how to fix p = p(n) and k = k(n) to get the desired lower bound on
I(n).
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Fig. 1. The interval representation of GS for S = (S1, S2, S3).

By construction Fp,k contains at most |Sp,k| unlabeled graphs, and each one has
at most (|A|+ |B\{b0} |)! = (p(k+1))! ways of labeling, since b0, c1, . . . , ck are labeled
1, . . . , k+1. Hence |Fp,k| � (p(k+1))!|Sp,k|. To prove equality, we describe hereafter a
two-step procedure that from any G ∈ Fp,k (1) retrieves in a unique way a sequence S
such that G is isomorphic to GS and (2) gives the label sequence of the vertices of G in
a given order (for instance, in the increasing order of their left boundary in the interval
representation of GS). These two steps ensure that |Fp,k| � (|A| + |B \ {b0} |)! |Sp,k|.

For that, let us consider any labeled graph G ∈ Fp,k. Let S be a sequence such
that G is isomorphic to GS . (Obviously, at this step, S and the interval representation
of GS are unknown.) We say that a vertex v of G is identified if one can decide
whether v = ai,j or v = bi or v = cj (and then give for each case the corresponding
indices i and j). So identifying all the vertices of G completes step (2). As we will see
later, identifying a vertex v also allows the recovery of its interval representation and
eventually its associated integer si,j , completing step (1) as well.

For every i ∈ {0, . . . , p}, let Li denote the set of vertices of GS whose left boundary
is � i(k+1), i.e., at most equal to the left boundary of bi. To show that all the vertices
of G can be identified, it suffices to show that all the vertices of Lp can be identified
in G. Indeed, GS \ Lp consists of the vertices of C, and each cj ∈ C can be identified
in G as its label is j + 1. So, let us show by induction that all the vertices of Lp can
be identified in G.

L0 = {b0} can be identified in G as its label is 1. Assume that Li−1 can be
identified, i > 0, and let us show how to identify the vertices of Li. As Li−1 ⊂ Li, we
just have to identify Li \ Li−1 = {ai,1, . . . , ai,k} ∪ {bi}.

Let Gi = (GS \Li−1)∪ {bi−1}. In the graph Gi, we have the following properties
that come trivially from the interval definition of GS :

1. the neighbors of bi−1 are ai,1, . . . , ai,k;
2. every vertex of V (Gi) \ {bi−1} \ C is of degree > k; and
3. the degree of ai,j is k + j + si,j .

Note that by assumption bi−1 and Li−1 are identified, so the above properties also hold
for the graph (G\Li−1)∪{bi−1}. Combining properties 1 and 3, the ai,j ’s can be iden-
tified as the degree of ai,j ’s are distinct and increasing with j. Moreover, as the graph
Gi+1 can be obtained from Gi by removing the identified vertices bi−1, ai,1, . . . , ai,k,
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it follows (applying properties 1 and 2 to Gi+1) that bi can be identified: it is the only
degree k vertex of Gi+1 \ C. Thus Li’s vertices can be identified in G. Therefore, all
the vertices of Lp, and thus all the vertices of G, can be identified. This completes
step (2).

Recovering the sequence S is easy once ai,j ’s have been identified in G: it suffices to
compute Gi and, by Property 3, to recover si,j from the degree of ai,j . This completes
step (1) of the procedure and thus proves equation (1).

Using the fact that
(
a
b

)
� (a/b)

b
, we have

|Sp,k| �
p∏

i=1

(
i(k + 1)

k

)k

=

(
1 +

1

k

)pk

(p!)
k � (p!)

k
.

Thanks to (1) and using the fact that x! � (x/e)x, we have

|Fp,k| �
(
p(k + 1)

e

)p(k+1) (p
e

)pk

�
(
p2k

e2

)pk

.

As I(n) is increasing, for every n � (p + 1)(k + 1) we therefore have

log I(n) � log |Fp,k| � 2pk log p + pk log k −O(pk).

Let us choose k = �log n − 1 and p = �n/ log n − 1 so that n � (p + 1)(k + 1).
Observe that pk � n(1 − 4/ log n). We have

log I(n) � 2pk log(n/ log n) + pk log log n−O(n)

� 2pk log n− pk log log n−O(n)

� 2n(1 − 4/ log n) log n− n(1 − 4/ log n) log log n−O(n)

� 2n log n− n log log n−O(n).

This ends the proof of Theorem 1.
Each vertex can be described by its interval representation, and since there are at

most 2n interval boundaries ranging in [1, 2n], adjacency labels of length �2 log(2n)�
suffice. Concatenating such labels according to the vertex ordering of the graph yields
an upper bound on the number of labeled n-vertex graphs, i.e., I(n) � �2 log(2n)�n �
2n log n+O(n). It follows that 1

n log I(n) � 2 log n+O(1), and so the lower bound of
Theorem 1 on 1

n log I(n) is tight up to an additive factor of log logn.

2.2. Lower bounds on distance labeling schemes. The eccentricity of a
vertex x in a graph G is the maximum of the distances between x and any vertex
of G. An α-graph, for integer α � 1, is a graph G having a pair of vertices (l, r),
possibly with l = r, each one of eccentricity at most α. Let S = (H0, H1, . . . , Hk)
be a sequence of α-graphs, and let (li, ri) denote the pair of vertices that defines the
α-graph Hi for i ∈ {0, . . . , k}. For each nonnull integer sequence W = (w1, . . . , wk),
we denote by SW the graph obtained by attaching a path of length wi between the
vertices ri−1 and li for every i ∈ {1, . . . , k} (see Figure 2).

A subfamily H ⊂ F of graphs is α-linkable if H consists only of α-graphs and if
SW ∈ F for every sequence S of graphs of H and for every nonnull integer sequence W .

The following lemma shows a lower bound on the length of the labels required by
a distance labeling scheme on any graph family having an α-linkable subfamily. The
bound is related to the number of labeled graphs contained in the subfamily. As we
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Fig. 2. Linking a sequence of α-graphs.

shall see, interval graphs support a large 1-linkable subfamily (we mean large with
respect to n), whereas proper interval graphs support a large 2-linkable subfamily.

Lemma 1. Let H be an α-linkable subfamily of a graph family F . Let H(ν) denote
the number of labeled ν-vertex graphs of H. Then, every distance labeling scheme on
the family of n-vertex graphs of F requires a label of length at least 1

ν logH(ν)+log ν−
9, where ν = �n/(α log n).

Let us first sketch the proof. It uses a sequence S of k = Θ(logn) graphs Hi taken
from an arbitrary α-linkable subfamily H. Each graph Hi has ν = Θ(n/ log n) vertices,
and consecutive Hi’s from S are spaced with paths of length Θ(n/ log n). Intuitively,
the term 1

ν logH(ν) measures the minimum label length required to compute the
distance between any two vertices within the same Hi’s (i.e., whether they are adjacent
or at distance at least two). The log ν term is required to compute the distance between
vertices of distinct Hi’s. The difficulty is to show that some vertices require both
pieces of information, observing that one can distribute information on the vertices
in a nontrivial way. For instance, the two extreme vertices of a path of length wi do
not require logwi bit labels, but only 1

2 logwi bits: each extremity can store one half
of the binary word representing wi and merge their labels for a distance query.

Proof of Lemma 1. Let p, q, k be nonnull integers. Let W be the set of all the
integer sequences (w1, . . . , wk) such that wi ∈ {1 + (j − 1)(2α + 1) | 1 � j � q}. Since
a sequence may contain repeated elements, |W| = qk. Let H be an arbitrary α-linkable
subfamily of F . Let H(p) be the number of labeled p-vertex graphs of H. For every
W ∈ W, we denote by Hp(W ) the set of all graphs SW where S is a sequence of k+1
graphs of H, each with exactly p vertices (see Figure 2).

The number of vertices of any graph of Hp(W ) is (k + 1)p + (
∑k

i=1(wi − 1)) �
(k + 1)p+ k(q − 1)(2α+ 1) + 1 � (k + 1)(p+ 3αq) as α � 1. Since H is an α-linkable
subfamily of F , any graph SW belongs to F , and thus, for every n � (k+1)(p+3αq),
we get

⋃
W∈W Hp(W ) ⊆ Fn, where Fn denotes the family of all n-vertex graphs

of F .
Let 〈L, f〉 be any distance labeling scheme on Fn. We consider the set LW of all

the (k + 1)-tuples of labels for all the graphs SW ∈ Hp(W ), each tuple being formed
by taking a vertex label successively in H0, H1, . . . , Hk. More formally,

LW =
⋃

SW ∈Hp(W )

with H=(H0,...,Hk)

{(L(u0, H0), . . . , L(uk, Hk)) | (u0, . . . , uk)

∈ V (H0) × · · · × V (Hk)}.

Finally, let L =
⋃

W∈W LW .
Claim 1. L assigns on a graph of Fn a label of length at least 1

k+1 log |L| − 1.
Indeed, assume that the length of any label assigned by L on some graph of Fn is

at most t bits. Then, as there are 2t+1−1 binary strings of length at most t, there are
(2t+1 − 1)k+1 distinct (k + 1)-tuples of such labels. Since L is a set of (k + 1)-tuples,

thus |L| � (2t+1 − 1)k+1, implying that t � log(|L|1/(k+1)
+ 1) − 1 � 1

k+1 log |L| − 1.
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Claim 2. |LW |p � H(p)k+1. We can assume each graph Hj ∈ S of any SW ∈
Hp(W ) is defined on a copy of the same sorted set of vertices. Therefore, a set LS of
(k + 1)-tuples can be associated with each SW,

LS = {(L(vj , H0), . . . L(vj , Hk)) | j ∈ [1, p]},

each (k + 1)-tuple being composed by the labels of an arbitrary vertex in each Hi.
We have

⋃
SW∈Hp(W ) LS ⊆ (LW )

p
. Let us show that LS �= LS′ for all S �= S ′.

Indeed, if S �= S ′, there exist two vertices, say, vj1 and vj2 , adjacent in the ith graph
Hi of S but not adjacent in H ′

i ∈ S ′ (distS′W (vj1 , vj2) � 2). The distance decoder
f must therefore return different values for the corresponding pair of labels, i.e.,
f(L(vj1 , Hi), L(vj2 , Hi)) �= f(L(vj1 , H

′
i), L(vj2 , H

′
i)). As both labels, L(vj1 , Hi) and

L(vj1 , H
′
i) (L(vj2 , Hi) and L(vj2 , H

′
i), respectively), are located in the same respective

(k + 1)-tuple of LS and LS′ , LS �= LS′ follows. It implies that∣∣∣∣∣∣
⋃

SW∈Hp(W )

LS

∣∣∣∣∣∣ � |Hp(W )| .

Since Hp(W ) contains any sequence of (k + 1) p-vertex graphs of H, |Hp(W )| =
H(p)k+1 (H(p) counting the p-vertex graphs of H). Combining the previous inequal-
ities and inclusions, Claim 2 follows: we have |LW |p � H(p)k+1.

Claim 3. For all distinct W,W ′ ∈ W, LW ∩ LW ′ = ∅.
First observe that if W and W ′ differ at the ith entry, with wi �= w′

i, then
[wi, wi+2α]∩[w′

i, w
′
i+2α] = ∅. Indeed, by construction of the integers of W, |wi−w′

i| �
2α+1. We observe that f(L(u,Hi−1), L(v,Hi)) ∈ [wi, wi+2α] for every i ∈ {1, . . . , k}
and for all (u, v) ∈ V (Hi−1) × V (Hi). Note also that every tuple of labels T ∈ LW

contains a label taken from Hi−1 and a label from Hi. So, as the ranges of distances
are disjoint, if W and W ′ differ by the ith entry, then every element T ∈ LW and
every element T ′ ∈ LW ′ must differ by the (i− 1)th or the ith entry, proving the last
claim.

From the last two claims and since |W| = qk, |L| �
∑

W∈W |LW | � H(p)(k+1)/pqk

holds. From Claim 1, the label length is at least (note that k/(k + 1) � 1− 2/(k + 2)
for k � 1)

t � 1

p
logH(p) +

k

k + 1
(log q) − 1 >

1

p
logH(p) +

(
1 − 2

k + 2

)
(log q) − 1.

Let ν = �n/(α log n), p = q = ν, and k = �α log n/(1 + 3α) − 1. We have
n � (k + 1)(p + 3αq), as required. So,

t + 1 � 1

ν
logH(ν) +

(
1 − 2

α log n/(1 + 3α)

)
log ν

� 1

ν
logH(ν) + log ν − 2(1 + 3α)

α

log ν

log n

� 1

ν
logH(ν) + log ν − 8, as n � ν and α � 1, completing the proof.

Let us now show that interval graphs and proper interval graphs both enjoy a
large enough α-linkable subfamily of labeled graphs. The lower bounds on distance
labeling schemes for these two graph families therefore follow from Lemma 1 and
Theorem 1.
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Theorem 2. Any distance labeling scheme on the family of n-vertex interval
graphs requires a label of length at least 3 log n− 4 log log n.

Proof. Let I(ν) be the number of labeled interval graphs with ν vertices. Let H be
that family of labeled ν-vertex interval graphs enjoying a universal vertex (adjacent
to any other vertex) where the universal vertex is labeled ν. Any graph of H is a
1-graph (set the universal vertex as l = r). And note that H is a 1-linkable subfamily
of the family of interval graphs (see Figure 3). Moreover, it is straightforward to see
that any (ν−1)-vertex labeled interval graph is an induced subgraph of some H ∈ H.
It follows that the number H(ν) of ν-vertex labeled graphs of H is precisely I(ν − 1).

k

ww

H H H H

l  =rl =rl    =r

w

l  =r0 0

0

1

i−1

i−1 i−1

i

i i

i

k

k k

Fig. 3. Each Hi is a 1-linkable ν-interval graph with a universal vertex li = ri.

By Lemma 1 applied to H and the interval graph family, the maximum length t
of a label of length is at least

t � 1

ν
logH(ν) + log ν −O(1) � 1

ν
log I(ν − 1) + log ν −O(1).

From Theorem 1, we have

1

ν
log I(ν − 1) =

ν − 1

ν
(2 log(ν − 1) − log log (ν − 1) −O(1))

� 2 log (ν − 1) − log log ν −O(1).

Since H is a 1-graph family, we have α = 1. Therefore, Lemma 1 sets ν =
�n/ log n. This implies that ν − 1 � n

2 log n .

1

ν
log I(ν − 1) � 2 log

(
n

2 log n

)
− log log �n/ log n − O(1)

� 2 log n− 3 log log n + log log logn−O(1).

Gathering everything together, we obtain

t � 2 log n− 3 log log n + log log logn + log �n/ log n − O(1)

� 3 log n− 4 log log n,

completing the proof.
Theorem 3. Any distance labeling scheme on the family of n-vertex proper in-

terval graphs requires a label of length at least 2 log n− 2 log log n−O(1).
Proof. Let Qp be the intersection graph of the interval family {I(xi) = [i, i + p],

I(yi) = [i+ p, i+ 2p− 1], 1 � i � p}. (See Figure 4.) Since any interval is of length p,
Qp is a proper interval graph with 2p vertices.

Let H be the family of labeled graphs isomorphic to Qp such that the vertices
x1 and y1 are labeled 1 and 2, respectively. Let Q ∈ H. It is not difficult to see by
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Fig. 4. The graph Q4 and its interval representation.

induction that once xi and yi have been identified in Q, then xi+1 and yi+1 can be
identified, too. It suffices to remove all the vertices x1, . . . , xi−1 and y1, . . . , yi−1 from
H (and so to form a graph isomorphic to Qp−(i−1)), and observe that in this latter
graph (1) xi+1 is the neighbor of xi, distinct from yi, with minimum degree; and (2)
yi+1 is the only nonneighbor of xi that is adjacent to xi+1. Therefore, the cardinality
of H is (2p− 2)!.

Now, setting l = x1 and r = yp, l and r are both of eccentricity 2, as the vertex
xp is a universal vertex. So H is a family of 2-graphs. Moreover H is a 2-linkable
subfamily of the proper interval graphs.

Let ν = 2p. The cardinality H(ν) of H is (ν − 2)!. We note that 1
ν log(ν − 2)! �

log ν−O(1). By Lemma 1, for α = 2 and ν = �n/(2 log n), the length of the maximum
label for n-vertex proper interval graphs is at least

1

ν
logH(ν) + log ν −O(1) � log ν + log ν −O(1) � 2 log n− 2 log log n−O(1),

ending the proof.

3. Upper bounds on distance labeling schemes. This section deals with
optimal distance labeling schemes for proper interval graphs, interval graphs, and
circular-arc graphs. We first show how to complete any interval graph G into a proper
interval graph G′ so that the distance between two vertices x and y in G can be
retrieved from the distance in G′ and the adjacency in G between x and y. Then, we
present a distance labeling scheme for proper interval graphs. This scheme is based
on an adjacency labeling scheme of an auxiliary graph. It turns out that the auxiliary
graph of any proper interval graph enjoys an optimal adjacency labeling scheme. The
O(log n)-distance labeling scheme for interval graphs follows. Finally, an extension of
this scheme is proposed for the family of circular-arc graphs.

From now on, the input interval graph G is supposed to be an n-vertex connected
graph, and I is given as a realizer. We then denote by I(x) the interval associated
with vertex x and by l(x) and r(x), respectively, the left and the right boundaries
of I(x). As in [5], the intervals of I are assumed to be sorted according to the left
boundaries. We will also assume w.l.o.g. that the left boundaries are pairwise distinct
and range in {1, . . . , 2n}. These hypotheses are not restrictive since in O(n) time
one can scan all the intervals and their boundaries from minx l(x) to maxx l(x) and
compute another realizer for G with sorted and distinct boundaries in {1, . . . , 2n}.
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3.1. Reduction to proper interval graphs. Proper interval graphs are inter-
val graphs having an inclusion-free realizer. There are several recognition algorithms
that run in linear time, that is, O(n + m) time, where n is the number of vertices
and m the number of edges; cf. [8, 10, 18]. Moreover, these algorithms output an
inclusion-free realizer.

It is well known that the family of proper interval graphs can be characterized
as the family of K1,3-free

3 interval graphs [37] (see Figure 5) or as the family of
intersection graphs of a family of unit length intervals [28].

x
x

b

a c a cb

Fig. 5. The K1,3 is an interval graph but not a proper interval graph.

Reducing the interval graph to a proper interval graph, the interval realizer we
obtain yields a slightly different characterization of proper interval graphs. Such a
realizer is called a proper realizer.

Definition 1. A realizer I of an interval graph is proper if for every pair of
intervals I(x) and I(y) such that I(x) ⊆ I(y), r(x) = r(y).

Let us notice that an inclusion-free realizer of intervals is a proper realizer; indeed,
only special inclusions are allowed in a proper realizer. The reverse is also true: any in-
terval graph having a proper realizer is K1,3, i.e., is a proper interval graph. Let I be a
proper realizer of an interval graph G. Assume by contradiction that G contains a set of
four vertices that induces a K1,3; say, a, b, c are three independent vertices adjacent to
a common neighbor x. W.l.o.g. assume that l(a) < r(a) < l(b) < r(b) < l(c) < r(c).
It follows that l(x) � r(a) and l(c) � r(x). Thereby we have I(b) ⊂ I(x) and
r(b) �= r(x), which is a contradiction; the realizer I is supposed to be proper.

Our reduction is based on the notion of an enclosing neighbor.

Definition 2. Let I be a nonproper realizer of an interval graph G = (V,E).
Let x ∈ V such that I(x) ⊂ I(y) and r(x) < r(y) for some vertex y. The enclosing
neighbor of x, denoted by Ne(x), is a neighbor of x for which I(x) ⊂ I(Ne(x)) such
that the following conditions are satisfied:

• r(Ne(x)) is maximal, and
• I(Ne(x)) is maximal for the inclusion.

As the left boundaries of I are pairwise disjoint, the enclosing neighbor, if it exists,
is unique for every vertex. From a realizer I, we can construct a proper realizer I ′

as follows: if x has an enclosing neighbor, then we set I ′(x) = [l′(x) = l(x),r′(x) =
r(Ne(x))], and we set I ′(x) = I(x) otherwise.

Let us remark that
1. r

′(x) � r(x);
2. by maximality of its right boundary I(Ne(x)) = I ′(Ne(x)); and
3. G is a subgraph of G′ = (V,E′ ⊆ E), the graph realized by I ′.

We say that a vertex x has been extended in G′ if r
′(x) > r(x).

Lemma 2. The realizer I ′ is proper. It can be computed from I in O(n) time.

3That is, the graph does not contain a K1,3 graph as an induced subgraph.
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Proof. Assume there is a pair of vertices u and v such that I ′(u) ⊂ I ′(v) and
r
′(u) < r

′(v). W.l.o.g. assume that I ′(v) is maximal for inclusion. Notice that r(v) =
r
′(v); otherwise v would have an enclosing neighbor w that would imply I ′(v) ⊂ I ′(w),

contradicting the maximality of v. As r(u) � r
′(u), we have l(v) < l(u) < r(u) <

r
′(v). Now, r(v) = r

′(v) implies I(u) ⊂ I(v), meaning that u has an enclosing
neighbor. It follows that r

′(u) � r(v) = r
′(v), contradicting r

′(u) < r
′(v). So we

proved that for any pair of vertices u and v such that I ′(u) ⊂ I ′(v), we have r
′(u) =

r
′(v); thereby I ′ is proper.

The realizer I ′ can be computed as follows: scan the intervals of I accord-
ing to their left boundary ordering and output the ordered set of vertices S =
{x1, . . . , xi, . . . } so that xi+1 has minimum left boundary among {x | l(xi) < l(x) and
r(xi) < r(x)}. Now for any vertex v /∈ S, its enclosed neighbor is the maximum xi ∈ S
such that l(xi) < l(v). Two scans of the vertices suffice to compute those enclosed
neighbors. As by construction the vertices of S are maximal for the inclusion, they
do not have enclosed neighbors. It follows that computing I ′ requires only O(n)
time.

The main result of this subsection shows that distances in G can be retrieved
from the distances in G′ whose realizer I ′ is proper. To prove Theorem 4, the lemma
below is required.

Lemma 3. If x and y are two vertices such that r(x) = r
′(x) � r(y), then

distG(x, y) = distG′(x, y).
Proof. Let us first remark that since G is a subgraph of G′, then distG(x, y) �

distG′(x, y). So assume that distG(x, y) = k > 1. Let us first remark that any path
of G′ that does not use any extended vertex is also a path of G. Let P = [x =
u0, u1, . . . , uj , . . . , uk = y] be a shortest x, y-path in G′ using a minimum number of
extended vertices. Assume there exists some j > 0 such that uj has been extended
(i.e., I(uj) �= I ′(uj)) and choose j minimum. By assumption I(uj−1) = I ′(uj−1)
holds and implies that uj−1 and uj are adjacent in G. Since I(uj) ⊂ I(Ne(uj)),
substituting in P vertex uj by vertex Ne(uj) yields a shortest x, y-path P ′ in G′ using
fewer extended vertices than P , which is a contradiction; P does not contain any
extended vertex.

Definition 3. For any vertex x, the maximum neighbor of x, denoted by Nm(x),
is a neighbor of x such that r(Nm(x)) is maximum.

Like enclosing neighbors, maximum neighbors are not extended in G′; i.e., for
any x, r

′(Nm(x)) = r(Nm(x)). Otherwise we would have I(Nm(x)) ⊂ I(v) for some
vertex v and r(Nm(x)) < r(v). Since I(x)∩I(Nm(x)) �= ∅, we also have I(x)∩I(v) �=
∅. Since r(Nm(x)) < r(v), by definition, we should have v = Nm(x), which is a
contradiction.

Let us define adjG(x, y) as 1 if x and y are adjacent in G and as 0 otherwise.
Theorem 4. Let x and y be two vertices such that r(x) � r(y). Then,

(2) distG(x, y) = distG′(Nm(x), y) + 1 − adjG(x, y).

Proof. If x and y are adjacent, then Nm(x) and y are also adjacent in both G and
G′; therefore, the result holds. So assume that x and y are not adjacent. Since Nm(x)
has not been extended in G′, by Lemma 3, distG′(Nm(x), y) = distG(Nm(x), y). So we
have to prove that distG(x, y) = 1 + distG(Nm(x), y).

Let us first remark that distG(Nm(x), y) � distG(x, y) since r(x) < l(y) and
r(x) < r(Nm(x)). The only case to be considered is distG(Nm(x), y) = k > 1.
Let P = [Nm(x), v1, . . . , vk−1, y] be a shortest Nm(x), y-path. Let us assume that
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distG(x, y) = k, then there exists a path Q = [x, u1, u2, . . . , uk−1, y] of length k.
By definition of Nm(x), we have r(u1) < r(Nm(x)). It implies that Nm(x) is ad-
jacent to u2; therefore, [Nm(x), u2, . . . , uk−1, y] is a path of length k − 1, which is
a contradiction.

Given a distance labeling scheme of a proper interval graph, (2) directly describes
the decoder function of a distance labeling scheme for the family of interval graphs.
The label L(x,G) of each vertex should contain

• r(x) and l(x), the boundaries of I(x) that enable us to test adjG(x, y); and
• L′(x,G′) and L′(Nm(x), G′), the labels of x and Nm(x) in the distance labeling

scheme of the proper interval graph G′ that enable us to compute distG′(x, y).
Corollary 1. If there exists a distance labeling scheme for n-vertex proper in-

terval graphs using labels of length s(n), then the n-vertex interval graph family enjoys
a distance labeling scheme using labels of length 2 �log (2n)� + 2s(n).

3.2. Distance labeling scheme of proper interval graphs. Let us now as-
sume that a proper realizer I for a graph G = (V,E) is given (so G is a proper interval
graph). Let x0 be the vertex with the minimum left boundary. Notice that x0 also has
a minimum right boundary. We define the layer partition V0, V1, . . . , Vk (see Figure
6) as the partition of vertices into distance layers from x0:

∀i � 0, Vi = {v | distG(x0, v) = i} .
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Fig. 6. A proper interval graph with an interval representation and the associated layer partition.

Given the sorted list of intervals, the layer partition can be computed in O(n)
time. Let λ(x) denote the unique index i such that x ∈ Vi. Let H be the digraph on
the vertex set V composed of all the arcs xy such that λ(x) < λ(y) and (x, y) ∈ E.
Note that H is acyclic.

Claim 4. The transitive closure Ht of H is a poset (partially ordered set).

Let adjHt(x, y) be the boolean function such that

adjHt(x, y) = 1 iff xy is an arc of Ht.

Notice that since Ht is a digraph, adjHt(x, y) = 1 implies that adjHt(y, x) = 0.
Also by definition of Ht, if adjHt(x, y) = 1, then λ(x) < λ(y) holds.
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Theorem 5. For all distinct vertices x and y such that λ(x) � λ(y),

(3) distG(x, y) = λ(y) − λ(x) + 1 − adjHt(x, y).

To prove Theorem 5, we need the following preliminary result.

Lemma 4. For all i � 1, let xi−1 be the vertex of Vi−1 having maximum right
boundary.4 Then {xi−1} ∪ Vi is a clique of G.

Proof. Let us first show that xi−1 dominates Vi. It holds for i = 1 by definition of
the layer partition. Let us consider the case for larger i. First any vertex v ∈ Vi has
a neighbor in Vi−1 and xi−1 has a maximum right boundary among Vi−1’s vertices.
This implies that l(xi−1) < l(v) < r(xi−1); in other words, v neighbors xi−1.

Let us show now that Vi induces a clique. Since V0 = {x0}, for any vertex v ∈ V1,
I(v) contains r(x0); both V0 and V1 are cliques. For larger i, we already proved that
any v ∈ Vi satisfies l(xi−1) < l(v) < r(xi−1). Since the realizer of G is assumed to be
proper, we also have l(v) < r(xi−1) � r(v). Therefore, for any v ∈ Vi, I(v) contains
r(xi−1). This implies that Vi is a clique.

Proof of Theorem 5. Let x and y be two vertices such that λ(x) = i and λ(y) =
i + h with h � 0. It is obvious that h � distG(x, y). Note that by definition of the
layer partition, the statement holds for i = 0.

Let us consider i > 0. Lemma 4 implies the result in cases h = 0 and h = 1. So
assume the statement holds for h − 1 � 0, and let us prove it for h. By Lemma 4,
x is adjacent to xi and xi+h−1 is adjacent to y. Therefore, [x, xi, . . . , xi+h−1, y] is
a path of length h + 1 and distG(x, y) � λ(y) − λ(x) + 1. Inequality holds iff x is
adjacent to some vertex z ∈ Vi+1 such that distG(z, y) = h − 1. In that case, we
have adjHt(x, z) = 1, and, by induction, hypothesis adjHt(z, y) = 1 holds. Since Ht

is transitive, distG(x, y) = h iff adjHt(x, y) = 1. This ends the proof.

Therefore, to compute the distance between any pair of vertices, we have to test
whether adjHt(x, y) = 1. For this reason Ht can be considered as the graph of errors
associated with the layer partition. Let us now prove that in Ht the adjacency can be
encoded using short labels (namely, 2 logn bits labels).

Theorem 6. There exists a total ordering π of the vertices such that

(4) adjHt(x, y) = 1 iff λ(x) < λ(y) and π(y) < π(x).

Moreover, given Ht and I, the ordering π can be computed in O(n) time.

Proof. We first claim that such an ordering π is obtained by an elimination or-
dering of the vertices such that at each step, the sink of the subgraph of H induced
by the noneliminated vertices that has a minimum left bound is removed. This can
be implemented by using a depth-first search of H: the ordering π is the postorder
traversal of the search (i.e., the order in which the vertices have been removed from
the LIFO-stack).

In the example in Figure 6, we obtain the following ordering:

π = 9, 6, 4, 2, 10, 7, 11, 8, 5, 3, 1.

It is easy to check that if adjHt(x, y) = 1, then λ(x) < λ(y) and π(y) < π(x). So
assume that adjHt(x, y) = 0 and λ(x) < λ(y) (which implies l(x) < l(y)).

4For i > 0, xi is the maximum neighbor of xi−1 and x0 ∈ V0.
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Claim 5. Let z be a vertex such that λ(y) < λ(z). If adjHt(x, z) = 1, then
adjHt(y, z) = 1.

Since adjHt(x, z) = 1, the graph G contains a x, z-shortest path of length λ(z) −
λ(x). Let P = [x, . . . vλ(y)−1, vλ(y), vλ(y)+1, . . . z] be such a path with vi ∈ Vi for
i ∈ {λ(y) − 1, λ(y), λ(y) + 1} and possibly x = vλ(y)−1 and z = vλ(y)+1. Note that
adjHt(x, y) = 0 implies that adjHt(vλ(y)−1, y) = 0. It follows that vλ(y)−1 and y are
nonadjacent in G. Now if adjHt(y, z) = 0, it similarly implies that adjHt(y, vλ(y)+1) =
0, and thus y and vλ(y)+1 are also nonadjacent vertices of G. As P is a shortest path,
vλ(y)−1 and vλ(y)+1 are nonadjacent in G. As by construction λ(vλ(y)) = λ(y), y is ad-
jacent in G to λ(vλ(y)). It follows that in G the set of vertices {y, vλ(y)−1, vλ(y), vλ(y)+1}
induce a K1,3, which is a contradiction; G is a proper interval graph. Claim 5 follows:
if adjHt(x, z) = 1, then adjHt(y, z) = 1.

Note also that at the step when y becomes a sink, there remains no vertex z such
that λ(y) < λ(z) and adjHt(x, z) = 1. If x is also a sink, since l(x) < l(y), the priority
rule implies π(x) < π(y), and we are done. So assume x is not a sink. Therefore, there
exists z such that adjHt(x, z) = 1. By Claim 5, z satisfies λ(z) � λ(y). Moreover, we
show that l(z) < l(y). Otherwise z and y would both belong to Vλ(y), and a shortest
path of length λ(y) − λ(x) between x and z would imply a shortest path of the same
length between x and y, contradicting adjHt(x, y) = 0. Finally, both z and y are
sinks, but l(z) < l(y) implies that z is eliminated before y. Recursively applying this
argument enables us to prove that x will be eliminated before y by the algorithm, and
so π(x) < π(y).

Let us now analyze the time complexity of the computation of the π ordering.
Notice that the digraph H can be stored in O(n) space. The set of vertices is sorted
in an array with respect to the left boundary of their interval. Since the layers and
also the neighborhood in H of any vertex appear consecutively in this array, each
vertex can be associated with its first and last neighbor in the array. The priority rule
implies that when a vertex v is popped by the algorithm, any vertex u ∈ Vλ(v) such
that l(u) < l(v) has already been popped. Assuming that the layer of any vertex
is stored and that for each layer, the index of the last popped vertex is maintained,
the next vertex to be pushed can be found in O(1). Therefore, π can be computed in
O(n) time.

In passing, let us point out an interesting combinatorial property of poset Ht. The
dimension of a poset P on a set V is the minimum number d of total orders ρ1, . . . , ρd
on V such that x <P y iff x <ρi y for every i [11, 36]. By choosing ρ1 = π and ρ2 as
any linear extension of λ, Theorem 6 immediately implies the following corollary.

Corollary 2. Ht is a poset of dimension two.
We now have the material to define the distance labeling scheme for proper in-

terval graphs. To each vertex x of G, we assign the label L(x,G) = 〈λ(x), π(x)〉. The
distance decoder is given by (3) and (4). Clearly, λ(x), π(x) ∈ {1, . . . , n}, so the main
result follows.

Theorem 7. The family of n-vertex proper interval graphs enjoys a distance
labeling scheme using labels of length 2 �log n�, and the distance decoder has constant
time complexity. Moreover, given the sorted list of intervals, all the labels can be
computed in O(n) time.

3.3. Optimized distance labeling scheme for interval graphs. According
to Corollary 1 and Theorem 7, the family of interval graphs enjoys a (6 logn+O(1))-
distance labeling scheme with constant time decoder. We shall see that these labels
can be compacted to 5 log n + O(1) bits. Let us recall that for any vertex x of an
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interval graph G, we have to know r(x) and l(x), the boundaries of the interval I(x),
plus the labels of x and Nm(x) in the extended proper interval graph G′.

The improvement is based on the observation that λ(x) and λ(Nm(x)) differ at
most by one (λ(Nm(x))−λ(x) ∈ {0, 1}). Indeed, there is no edge in G between a pair of
vertices that does not belong to the same distance layer or consecutive distance layers.
Therefore, a single bit, say, b(x), suffices to recover λ(Nm(x)) from λ(x). Therefore,
the label of a vertex x can be defined as follows:

L(x,G) = 〈l(x),r(x), λ(x), π(x), b(x), π(Nm(x))〉 .

As 1 � l(x) < r(x) � 2n, so 2 �log n� + 2 bits suffice to store the first two
integers. The next four components can be stored with 3 �log n�+1 bits, summing up
to 5 �log n� + 3. Thus, we have the following theorem.

Theorem 8. The family of n-vertex interval graphs enjoys a distance labeling
scheme using labels of length 5 �log n�+3, and the distance decoder has constant time
complexity. Moreover, given the sorted list of intervals, all the labels can be computed
in O(n) time.

Proof. We have already discussed the length of the labels. The distance decoder
takes a constant time. Concerning the time complexity of constructing all the labels,
let us first observe that in O(n) time one can compute Nm(x) for each x as follows:
Since I ′ is proper, a maximum neighbor of a given vertex x is precisely the vertex y
with maximum left boundary satisfying l(y) � r(x). Since we made the assumption
that the intervals have been given sorted with respect to their left boundaries, a single
scan enables us to compute the maximum neighbor of each vertex.

Since the distance labels in proper interval graphs can be computed in O(n) time,
and since G′ can be obtained within the same complexity, all the labels of G can be
computed in O(n) time.

3.4. A scheme for circular-arc graphs. Circular-arc graphs are a natural
generalization of interval graphs in which vertices are mapped to arcs of a circle rather
than intervals on the real line. This section shows that the distance labeling scheme
problem for circular-arc graphs reduces to the interval graphs case. Consider a circular-
arc graph G. We can associate with every vertex x of G a range I(x) = [θl(x), θr(x)]
of angles where θl(x) and θr(x) are taken clockwise in [0, 2π). The range I(x) can
be seen as a “cyclic” interval in which [θl(x), θr(x)] for θl(x) > θr(x) stands for
[θl(x), 2π) ∪ [0, θr(x)]. The vertices x and y are adjacent if I(x) ∩ I(y) �= ∅. See an
example in Figure 7.

A neighbor y of x is a right neighbor (resp., left neighbor) iff θl(y) ∈ I(x) and
θr(y) /∈ I(x) (resp., θl(y) /∈ I(x) and θr(y) ∈ I(x)). Notice that some neighbor of x
may be neither a right nor a left neighbor. A path x0, x1, . . . , xk is a right-path from
x0 to xk if, for every i ∈ {0, . . . , k − 1}, xi+1 is a right neighbor of xi. Intuitively, a
right-path is obtained starting from x0 and successively clockwise encountering the
vertices x1, . . . , xk.

Lemma 5. Every shortest path between nonadjacent vertices x and y is either a
right-path from x to y or a right-path from y to x.

Proof. Assume that P = [x = x0, x1, . . . , xk = y] is a shortest path from x to y
but is neither a right-path from x0 to xk nor a right-path from xk to x0.

W.l.o.g. assume that x1 is a right neighbor of x0. The case that x1 is not a right
neighbor of x0 can be treated similarly by exchanging the roles of θr and θl boundaries.
Since the path from x0 to xk is not a right-path, there is an integer i, 1 � i < k, such
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Fig. 7. A circular-arc graph with its arc representation. Vertices are labeled from 1 to 18
according to their value θl.

that xi+1 is not a right neighbor of xi and such that the subpath from x0 to xi is a
right-path.

• If xi+1 is not a left neighbor of xi, then either I(xi) is included in I(xi+1) or
vice-versa. In both cases, the vertex with the smallest range can be removed
from the path, henceforth proving the existence of a shorter path, which is a
contradiction.

• If xi+1 is a left neighbor of xi, then θl(xi) ∈ I(xi−1) ∩ I(xi+1), proving that
xi−1 and xi+1 are adjacent. By the way, the path P can be shortened to
[x = x0, . . . , xi−1, xi+1, . . . , xk = y], which is a contradiction.

Let x1, . . . , xn be the vertices of G ordered such that θl(xi) � θl(xi+1) for every

i ∈ {1, . . . , n− 1}. We associate with G a new intersection graph G̃ with vertex set

V (G̃) =
⋃

1�i�n

{
I(x1

i ), I(x
2
i )
}
, where, for every 1 � i � n,

I(x1
i ) =

{
[θl(xi), θr(xi)] if θl(xi) � θr(xi),
[θl(xi), θr(xi) + 2π] if θl(xi) > θr(xi),

I(x2
i ) =

{
[θl(xi) + 2π, θr(xi) + 2π] if θl(xi) � θr(xi),
[θl(xi) + 2π, θr(xi) + 4π] if θl(xi) > θr(xi).

Intuitively, G̃ is obtained from G by listing all the intervals according to increasing
angle θl, starting from the arc of x1, and turning clockwise around twice. So, each
vertex xi in G appears twice in G̃ as x1

i and x2
i . It is straightforward to check that G̃

is an interval graph.
Lemma 6. For every i < j, distG(xi, xj) = min

{
distG̃(x1

i , x
1
j ),distG̃(x1

j , x
2
i )
}
.

Proof. Let P = [xi, xt1 , . . . , xtk , xj ] be a shortest path between xi and xj in G.
From Lemma 5 P is a right-path from xi to xj or a right-path from xj to xi.

In the former case, we have i � t1 � · · · � tk � j. Consider the path P ′ =
[x1

i , x
1
t1 , . . . , x

1
tk
, x1

j ] of G̃. Because P ′ can be constructed from P by turning clockwise

from xi to xj in G, P ′ is isomorphic to P , showing that distG(xi, xj) � distG̃(x1
i , x

1
j ).

We observe that any shortest path from x1
i to x1

j in G̃ must be a right-path. By

construction, every right-path of length l between a given pair of vertices in G̃ is
isomorphic to some right-path of same length between the corresponding vertices
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in G. So a shorter path between x1
i and x1

j would provide a shorter path between xi

and xj in G. Therefore, P ′ is a shortest path in G̃ and distG(xi, xj) = distG̃(x1
i , x

1
j ).

Assume now that P is a right-path from xj to xi. P is obtained by turning

clockwise from xj to xi. P is isomorphic to a right-path P ′′ in G̃ between x1
j and

x2
i . Indeed, since i < j, θl(xi) � θl(xj) < θl(xi) + 2π. Similarly to the previous case,

P ′′ is a shortest path, proving that, in this case, distG(xi, xj) = distG̃(x1
j , x

2
i ) and

completing the proof of the lemma.

Therefore, a distance labeling scheme for interval graphs can be transformed into
a scheme for a circular-arc graph family by doubling the number of vertices and the
label length.

Theorem 9. The family of n-vertex circular-arc graphs enjoys a distance labeling
scheme using labels of length O(log n), and the distance decoder has constant time
complexity. Moreover, given the sorted list of intervals, all the labels can be computed
in O(n) time.

4. Universal distance matrix. Given a family F of graphs, [6, 1] considered
the size of the smallest induced universal graph to give a measure of the density of F .
A graph G is an induced universal graph with respect to F if any graph of F is an
induced subgraph of G. In this section, we similarly define the universal distance matrix
of a family F , which is a square matrix Un containing the distance matrix of every
(unweighted) n-vertex graph of F as an induced submatrix. A matrix B = (Bi,j)1�i,j�p

is an induced submatrix of a matrix A = (Ai,j)1�i,j�q if there exists a sequence
(s1, . . . , sp) of indices such that Bi,j = Asi,sj for all i, j ∈ {1, . . . , p}. Intuitively, a
small universal distance matrix for F indicates that many distance patterns repeat in
many different graphs of F .

Proposition 1 will be a tool for proving lower and upper bounds on the dimension
of universal distance matrix. The proof technique is similar to the proof given by [19]
for the relationship between adjacency schemes and induced universal graphs [1, 6].

Proposition 1. If F enjoys an �-distance labeling scheme, then F has a uni-
versal distance matrix of dimension 2�+1 − 1. If F has a universal distance matrix of
dimension d, then F enjoys a �log d-distance labeling scheme.

Proof. For every integer i � 1, let φ(i) denote the ith binary string in the lex-
icographic order φ(1) = ε, φ(2) = 0, φ(3) = 1, φ(4) = 00, φ(5) = 01, φ(6) = 10,
φ(7) = 11, φ(8) = 000, . . .. We note that the length of φ(i) is �log i. We denote by
φ−1 the inverse function of φ.

A universal distance matrix M for F can be defined from any distance labeling
scheme 〈L, f〉 for F as follows: Mi,j = f(φ(i), φ(j)) if there exists a graph G ∈ F with
two vertices u and v such that L(u,G) = φ(i) and L(v,G) = φ(j), and Mi,j = ∞
otherwise.

With every G ∈ F , one can associate the subset IG =
{
φ−1(L(u,G)) | u ∈ V (G)

}
of indices. By construction, for all i, j ∈ IG, Mi,j = f(φ(i), φ(j)), which is the distance
in G between the vertices labeled φ(i) and φ(j). So M contains as an induced sub-
matrix the distance matrix of every G ∈ F : M is universal. Moreover, its dimension
is smaller than the largest integer contained in a subset IG, which cannot exceed the
number of binary strings of length at most �, i.e., 2�+1 − 1.

Now, assume M is a universal distance matrix of dimension d for F . Then a
distance labeling scheme 〈L, f〉 can be constructed as follows: if the distance matrix
of G is the induced submatrix of M with a sequence of indices IG, then we label the
vertex corresponding to the index i ∈ IG by the binary string φ(i). The length of
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this label is the length of φ(i). The length is therefore bounded by the length of φ(d),
that is, �log d bits. Now, given two binary labels λ and λ′, extracted from the same
graph, one can compute the distance by searching in M (which depends only on F)
the entry Mφ−1(λ),φ−1(λ′). As the two labels are extracted from the same graph, this
value is the distance between the corresponding vertices.

From Proposition 1 and previously known bounds on the distance labeling
scheme [15], trees have a universal distance matrix of dimension 2Θ(log2 n), whereas
any universal distance matrix for cubic graphs must be of dimension at least 2Ω(

√
n ).

By the way, the dimension of the smallest universal distance matrix can be considered
as a complexity measure of a graph family. From Proposition 1 and Theorems 3 and 2
we obtain the following corollaries.

Corollary 3. The dimension of the smallest universal distance matrix of n-
vertex proper interval graphs is at most O(n2) and at least Ω(n2/ log2 n).

Corollary 4. The dimension of the smallest universal distance matrix of n-
vertex interval graphs is at most O(n5) and at least Ω(n3/ log4 n).
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