Optimal Distance Labeling Scheme for Interval and Circular-arc Graphs

C. Gavoille

LaBRI, University Bordeaux I

C. Paul

CNRS - LIRMM, University of Montpellier II

Graph Representations

How to encode informations about a graph G in such a way that an oracle is able to answer queries on that graph?

Examples of queries : adjacency, connectivity, distance, routing, connectivity . . .

Type of representation: centralized, distributed or mixed

Evaluation: a tradeoff between

- Space: number of bits needed
- Times: complexity to answer queries and to compute the labels (usually the WORD-RAM model is used)

Labeling Schemes

Let \mathcal{Q} be a type of queries (adjacency, distance,...). For a family \mathcal{F} of graphs, a \mathcal{Q} -labeling scheme is a pair of functions $\langle L, f \rangle$ such that:

- \bullet L(v,G) is a binary label associated to vertex v in graph G
- f(L(x,G),L(y,G)) is a decoder function that answer the querie bewteen x and y in graph G

The labeling scheme is said a l(n)-Q labeling scheme if for every n-vertex graph $G \in \mathcal{F}$, the length of the labels is bounded by l(n) bits.

Adjacency vs. Distance Labeling Schemes

Implicit graph conjecture [Kannan, Naor & Rudich 1992] Any hereditary family \mathcal{F} containing no more than $2^{n.k(n)}$ graphs of n vertices enjoys a $\mathcal{O}(k(n))$ -adjacency labeling scheme.

Example of trees $\begin{cases} 2 \log n \text{-adjacency labeling scheme} \\ \mathcal{O}(\log^2 n) \text{-distance labeling scheme} \end{cases}$

Question: does there exists a non-trivial family of graphs (large enough) for which the distance can be encoded within the same order of space than the adjacency?

Interval Graphs

A graph is an interval graph if it is the intersection graph of a family of intervals on the real line.

Interval graphs enjoys a $2 \log n$ -adjacency labeling scheme : any vertex x stores its left and right boundaries r(x), l(x)

[Katz, Katz & Peleg 2000] The family of interval graphs enjoys an $\mathcal{O}(\log^2 n)$ -distance labeling scheme (DLS for short)

Optimal Distance Labeling Schemes

An interval graph is proper iff there exists a layout without any interval inclusion.

Theorem 1 [Gavoille & Paul 2003]

- n vertex proper interval graphs enjoys a $2 \lceil \log n \rceil$ -DLS;
- n vertex interval graphs enjoys a $3 + 5 \lceil \log n \rceil DLS$;
- n vertex circular-arc graphs enjoys a $O(\log n)$ -DLS.

The distance decoder has constant time decoder and given the sorted list of intervals, the labels can be computed in $\mathcal{O}(n)$ time.

Layer Partition

Let $[x_0, \dots x_k]$ be the base-path where x_0 has r(x) minimum and $\forall i > 0, x_i \in N(x_{i-1})$ such that $r(x_i)$ is maximum

The layer partition
$$V_1, \dots V_k$$
 is defined by
$$V_i = \{v | \mathsf{I}(v) < \mathsf{I}(x_{i-1})\} \setminus \bigcup_{0 \leqslant j < i} V_j \text{ with } V_0 = \emptyset$$

Graph of Errors

Let $\lambda(x)$ be the integer such that $x \in V_{\lambda(x)}$ and let H be the digraph on V composed of the arcs xy such that

$$\lambda(x) < \lambda(y)$$
 and $(x,y) \in E$

The graph of errors is the transitive closure H^t of H, let

$$adj_{H^t}(x,y) = 1$$
 iff xy is an arc of H^t

Theorem 2 For all distinct vertices x, y such that $\lambda(x) \leq \lambda(y)$,

$$dist_G(x,y) = \lambda(y) - \lambda(x) + 1 - adj_{H^t}(x,y)$$

Theorem 3 There exists a linear ordering π of the vertices, constructible in $\mathcal{O}(n)$ time, such that

$$adj_{H^t}(x,y) = 1$$
 iff $\lambda(x) < \lambda(y)$ and $\pi(x) > \pi(y)$

 π is the pop ordering of a DFS on H using I(x) as a priority rule.

The label of the vertex x is $L(x,G) = \langle \lambda(x), \pi(x) \rangle$

vertex	a	b	С	d	е	f	g	h	i	j	k
λ	1	1	1	2	2	3	3	3	4	4	4
π											

Stack: a

vertex	a	b	С	d	е	f	g	h	i	j	k
λ	1	1	1	2	2	3	3	3	4	4	4
π	1										

Stack: 🎽

vertex	а	b	С	d	е	f	g	h	i	j	k
λ	1	1	1	2	2	3	3	3	4	4	4
$\overline{\pi}$	1										

Stack: 🔰 b

vertex	а	b	С	d	е	f	g	h	i	j	k
λ	1	1	1	2	2	3	3	3	4	4	4
π	1										

Stack: b d

vertex	а	b	С	d	е	f	g	h	i	j	k
λ	1	1	1	2	2	3	3	3	4	4	4
$\overline{\pi}$	1										

Stack: p b d f

	vertex	a	b	С	d	е	f	g	h	i	j	k
-	λ	1	1	1	2	2	3	3	3	4	4	4
-	π	1										

Stack: p b d f i

ver	tex	а	b	С	d	е	f	g	h	i	j	k
	λ	1	1	1	2	2	3	3	3	4	4	4
	π	1								2		

Stack: p b d f /

vertex	а	b	С	d	е	f	g	h	i	j	k
λ	1	1	1	2	2	3	3	3	4	4	4
π	1					3			2		

Stack: b d f /

	vertex	а	b	С	d	е	f	g	h	i	j	k
_	λ	1	1	1	2	2	3	3	3	4	4	4
	π	1			4		3			2		

Stack: 🏚 b ø f j

	vertex	a	b	С	d	е	f	g	h	i	j	k
_	λ	1	1	1	2	2	3	3	3	4	4	4
-	π	1	5		4		3			2		

Stack: ಶ 👂 💋 🏄

vertex	a	b	С	d	е	f	g	h	i	j	k
λ	1	1	1	2	2	3	3	3	4	4	4
$\overline{\pi}$	1	5		4		3			2		

Stack: p p f i c

vertex	а	b	С	d	е	f	g	h	i	j	k
λ	1	1	1	2	2	3	3	3	4	4	4
π	1	5		4		3			2		

Stack: p p f / c e

vertex	а	b	С	d	е	f	g	h	i	j	k
λ	1	1	1	2	2	3	3	3	4	4	4
π	1	5		4		3			2		

Stack: øøffceg

vertex	a	b	С	d	е	f	g	h	i	j	k
λ	1	1	1	2	2	3	3	3	4	4	4
π	1	5		4		3			2		

Stack: p p f i c e g j

vertex	а	b	С	d	е	f	g	h	i	j	k
λ	1	1	1	2	2	3	3	3	4	4	4
π	1	5		4		3			2	6	

Stack: øøficegj

vertex	а	b	С	d	е	f	g	h	i	j	k
λ	1	1	1	2	2	3	3	3	4	4	4
π	1	5		4		3	7		2	6	

Stack: øøficeøj

vertex	a	b	С	d	е	f	g	h	i	j	k
λ	1	1	1	2	2	3	3	3	4	4	4
π	1	5		4		3	7		2	6	

Stack: p p f i c e g i h

vertex	а	b	С	d	е	f	g	h	i	j	k
λ	1	1	1	2	2	3	3	3	4	4	4
π	1	5		4		3	7		2	6	

Stack: øøficeøjhk

vertex	а	b	С	d	е	f	g	h	i	j	k
λ	1	1	1	2	2	3	3	3	4	4	4
π	1	5		4		3	7		2	6	8

Stack: p p f i c e g i h k

vertex	а	b	С	d	е	f	g	h	i	j	k
λ	1	1	1	2	2	3	3	3	4	4	4
π	1	5		4	8	3	7	9	2	6	8

Stack: øøficeøjkk

vertex	а	b	С	d	е	f	g	h	i	j	k
λ	1	1	1	2	2	3	3	3	4	4	4
π	1	5		4	10	3	7	9	2	6	8

Stack: p p f i c e g j h k

vertex	а	b	С	d	е	f	g	h	i	j	k
λ	1	1	1	2	2	3	3	3	4	4	4
π	1	5	11	4	10	3	7	9	2	6	8

Stack: $\not a \not b \not a \not f \not i \not c \not e \not a \not j \not h \not k$

vertex	а	b	С	d	е	f	g	h	i	j	k
λ	1	1	1	2	2	3	3	3	4	4	4
π	1	5	11	4	10	3	7	9	2	6	8

$$dist(b,i) = \lambda(i) - \lambda(b) + 1 - adj_{Ht}(b,i) = 4 - 1 + 1 - 1 = 3$$
$$dist(d,k) = \lambda(k) - \lambda(d) + 1 - adj_{Ht}(d,k) = 4 - 2 + 1 - 0 = 3$$

Result for proper interval graphs

Theorem 4 The family of n-vertex proper interval graphs enjoys a distance labeling scheme using labels of length

 $2 \lceil \log n \rceil$ bits

and the distance decoder has a $\mathcal{O}(1)$ time complexity.

Moreover, given the sorted list of intervals, all the labels can be computed in $\mathcal{O}(n)$ time.

Generalization to Interval graphs

Extending some intervals of a layout \mathcal{I} of an interval graph G, we compute a layout \mathcal{I}' of a proper interval graph G'.

$$N_m(x) = 3$$
 $N_e(x) = 2$
 x

If $\mathcal{I}(x) \subset \mathcal{I}(y)$ then the enclosed neighbor $N_e(x)$ is the neighbor of x such that $\mathcal{I}(x) \subset \mathcal{I}(N_e(x))$ and $R(N_e(x))$ is maximum

We set
$$\mathcal{I}'(x) = [L(x), R(N_e(x))]$$

For any vertex x, the maximum neighbor $N_m(x)$ is the neighbor of x with $R(N_m(x))$ maximum.

Theorem 5 Let x and y be two vertices such that $R(x) \leq R(y)$. Then,

$$dist_G(x,y) = dist_{G'}(N_m(x),y) + 1 - adj_G(x,y)$$

The label of the vertex x is

$$L(x,G) = \langle L(x), R(x), \lambda(x), \pi(x), b(x), \pi(N_m(x)) \rangle$$

where
$$b(x)$$
 is a bit telling whether $\lambda(N_m(x)) = \lambda(x)$ or $\lambda(N_m(x)) = \lambda(x) + 1$

Result for interval graphs

Theorem 6 The family of n-vertex interval graphs enjoys a distance labeling scheme using labels of length

$$5 \lceil \log n \rceil + 3$$
 bits

and the distance decoder has a $\mathcal{O}(1)$ time complexity.

Moreover, given the sorted list of intervals, all the labels can be computed in $\mathcal{O}(n)$ time.

(which is better in both time and space than the distance matrix)

Lower bounds (hints)

Lemma 1 Any distance labeling scheme on n-vertex interval graphs requires a label of length

$$\frac{1}{N}\log I(N) + \log N - 9 \text{ where } N = \lfloor n/\log n \rfloor$$

Theorem 7 The number I(n) of labeled n-vertex connected interval graphs satisfies

$$\frac{1}{n}\log I(n)\geqslant 2\log n-\log\log n-\mathcal{O}(1)$$

 \Rightarrow there are $2^{\Omega(n \log n)}$ unlabeled n-vertex interval graphs.

Theorem 8 Any distance labeling scheme on the the family of n-vertex interval graphs requires labels of length at least $3 \log n - 4 \log \log n$.

Theorem 9 Any distance labeling scheme on the the family of n-vertex proper interval graphs requires labels of length at least $2\log n - 2\log\log n - \mathcal{O}(1)$.