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Graph Representations

How to encode informations about a graph G in such a way that
an oracle is able to answer queries on that graph?

Examples of queries : adjacency, connectivity, distance, rout-
ing, connectivity ...

Type of representation: centralized, distributed or mixed

Evaluation: a tradeoff between

e Space: number of bits needed

e [imes: complexity to answer queries and to compute the
labels (usually the WORD-RAM model is used)



Labeling Schemes

Let O be a type of queries (adjacency, distance,...).
For a family F of graphs, a O-labeling scheme is a pair of func-
tions (L, f) such that:

e L(v,G) is a binary label associated to vertex v in graph G
o f(L(x,&),L(y,G)) is a decoder function that answer the querie

bewteen x and y in graph G

The labeling scheme is said a I[(n)-Q labeling scheme if for every
n-vertex graph G € F, the length of the labels is bounded by I(n)
bits.



Adjacency vs. Distance Labeling Schemes

Implicit graph conjecture [Kannan, Naor & Rudich 1992]
Any hereditary family F containing no more than on.k(n) graphs
of n vertices enjoys a O(k(n))-adjacency labeling scheme.

2 log n-adjacency labeling scheme

Example of trees { 0(|oan)—distance labeling scheme

Question: does there exists a non-trivial family of graphs (large
enough) for which the distance can be encoded within the same
order of space than the adjacency?



Interval Graphs

A graph is an interval graph if it is the intersection graph of a
family of intervals on the real line.

Interval graphs enjoys a 2 logn-adjacency labeling scheme :
any vertex x stores its left and right boundaries r(x),I(x)

[Katz, Katz & Peleg 2000] The family of interval graphs en-
joys an O(log?n)-distance labeling scheme (DLS for short)
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Optimal Distance Labeling Schemes

An interval graph is proper iff there exists a layout without any
interval inclusion.

Theorem 1 [Gavoille & Paul 2003]
e n vertex proper interval graphs enjoys a 2 [logn|-DLS;
e n vertex interval graphs enjoys a 3+ 5[logn)|-DLS;
e n vertex circular-arc graphs enjoys a O(logn)-DLS.
The distance decoder has constant time decoder and given the

sorted list of intervals, the labels can be computed in O(n) time.
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Layer Partition

Let [zg,...x;] be the base-path where zg has r(x) minimum and
Vi > 0,2, € N(x;_1) such that r(x;) is maximum

T he layer partition Vq,... V. is defined by
Vi = {v[l(v) <Nzi—1)} \Uogj<i Vj With Vo =10



Graph of Errors

Let A(z) be the integer such that =z € V,(,) and let H be the
digraph on V composed of the arcs xy such that

AMz) < XMy) and (z,y) € E

The graph of errors is the transitive closure H! of H, let

adj i (x,y) = 1 iff 2y is an arc of H'



Theorem 2 For all distinct vertices x, y such that A(z) < \(y),

distg(z,y) = AMy) — XMx) +1 — adjye(z,y)

Theorem 3 There exists a linear ordering w of the vertices, con-
structible in O(n) time, such that

adjrt(x,y) = 1 iff AM(z) < A(y) and n(x) > 7(y)

m is the pop ordering of a DFS on H using |(x) as a priority rule.

The label of the vertex x is L(x,G) = (A(x),w(x))



An Example

vertex |a|blc|d|le|fT|lg|h|i]]]|Kk
Al1]1]1]2(2[3|3|3/4 /4|4
7T

Stack: |a
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An Example

vertex [a|lb|jc|d|e|f|g|h]|i]|]]|K
Al111]1]212/3[3[3/ 4,44
w1

Stack: | 4

11



An Example

vertex [a|lb|jc|d|e|f|g|h|i]|]]|K
Al111]1]212/3[3[3/ 4,44
w1

Stack: [a b
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An Example

vertex [a|lb|jc|d|e|f|g|h|i]|]]|K
Al111]1]212/3[3[3/ 4,44
w1

Stack: |a b d
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An Example

vertex [a|lb|jc|d|e|f|g|h|i]|]]|K
Al111]1]212/3[3[3/ 4,44
w1

Stack: |a bdf
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An Example

vertex [a|lb|jc|d|e|f|g|h|i]|]]|K
Al111]1]212/3[3[3/ 4,44
w1

Stack: (A bdfi
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An Example

vertex [a|lb|jc|d|e|f|g|h|i]|]]|K
Al111]1]212/3[3[3/ 4,44
w1 2

Stack: |abdf /[
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An Example

vertex [a|lb|jc|d|e|f|g|h|i]|]]|K
Al111]1]212/3[3[3/ 4,44
w1 3 2

Stack: |labd f/
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An Example

vertex [a|lb|jc|d|e|f|g|h|i]|]]|K
Al111]1]212/3[3[3/ 4,44
w1 4 3 2

Stack: |labd f/
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An Example

vertex [a|lb|jc|d|e|f|g|h|i]|]]|K
Al111]1]212/3[3[3/ 4,44
1|5 4 3 2

Stack: |a b d f i
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An Example

vertex [a|lb|jc|d|e|f|g|h|i]|]]|K
Al111]1]212/3[3[3/ 4,44
T 1]|5 4 3 2

Stack: (apd fjic
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An Example

C f
a d
b h
vertex |a|b|c|d|e| f | g|h]i
Al1]1]12]2[3[3[3|4
| 1|5 4 3 2
Stack: |abd fjice
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An Example

C f
a d
b h
vertex |a|b|c|d|e| f | g|h]i
Al1]1]12]2[3[3[3|4
| 1|5 4 3 2
Stack: |abd ficeg
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An Example

C f
a d
b h
vertex |a|b|c|d|e| f | g|h]i
Al1]1]12]2[3[3[3|4
| 1|5 4 3 2
Stack: |abd fjiceg]
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An Example

C f
a d
b h
vertex [a|lb|jc|id|e|f|lg|h|i]]
Al1]1]1]2(2(3|3|3/4 4
| 1|5 4 3 2|6
Stack: |[abd ficeqg]
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An Example

C f
a d
b h
vertex [a|lb|jc|id|e|f|lg|h|i]]
Al1]1]1]2(2(3|3|3/4 4
w| 1|5 4 3|7 26
Stack: |[abd ficeg )
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An Example

C f
a d
b h
vertex [a|lb|jc|id|e|f|lg|h|i]]
Al1]1]1]2(2(3|3|3/4 4
w| 1|5 4 3|7 26
Stack: |apbd fjicegjh
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An Example

C f
a d
b h
vertex [a|lb|jc|id|e|f|lg|h|i]]
Al1]1]1]2(2(3|3|3/4 4
w| 1|5 4 3|7 26
Stack: |abd fjiceg jhk
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An Example

C f
a d
b h
vertex [a|lb|jc|d|e|f|g|h|i]|]]|K
Al1]1]1]2(2(3|3|3/4,4),|4
T 1]|5 4 3|7 2|6 |8
Stack: |abd ficeg jhK
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An Example

C f
a d
b h
vertex [a|lb|jc|d|e|f|g|h|i]|]]|K
Al1]1]1]2(2(3|3|3/4,4),|4
T 1]|5 418|3|7|9|2|6]|8
Stack: |apdfjiceg K
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An Example

Stack:

vertex |a|blc|d|] e | flg|lh|i|]|Kk
All1|1(1(2] 2 3[3|3/4|4 4
| 1|5 4110371926 ]|8

ppadficedjpk
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An Example

vertex |la|b| c |d] e |flglhl|ilj]|k
Al11 1 2|1 2 (33344 4
11151111410 | 3|7 |9 |26 |8

Stack: g padfigéadjnk
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An Example

vertex |a|b| c |d|l e | flglh|i]|]]|KkK
Al1]1] 122 (3[3/ 34|44
~|1/5111(4]10|3|7,/9 /2|68

dist(b,i) = A(@) —A(b) + 1 —adje(b,i) =4 —14+1—1=3
dist(d, k) = A(k) = A(d) + 1 —adjji(d k) =4—-2+1-0=3
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Result for proper interval graphs

Theorem 4 The family of n-vertex proper interval graphs enjoys
a distance labeling scheme using labels of length

2 [logn]| bits

and the distance decoder has a O(1) time complexity.

Moreover, given the sorted list of intervals, all the labels can be
computed in O(n) time.
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Generalization to Interval graphs

Extending some intervals of a layout 7 of an interval graph G,
we compute a layout 7’ of a proper interval graph G'.

4

1 Np(x) =3

If Z(x) C Z(y) then the enclosed neighbor N¢(x) is the neighbor
of = such that Z(x) C Z(Ne(x)) and R(Ne(x) is maximum

We set 7/(z) = [L(z), R(N.(2)]
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For any vertex x, the maximum neighbor N,,(z) is the neighbor
of x with R(Nm(x)) maximum.

Theorem 5 Let x and y be two vertices such that R(x) < R(y).
T hen,

dist(z,y) = dist(Nm(x),y)) + 1 — adja(zx, y)

The label of the vertex x is
L(z,G) = (L(z), R(z), A\(z), m(x), b(z), 7(Nm(x)))

where b(x) is a bit telling whether
AN (z)) = Ax) or A(Nm(x)) = X(x) + 1
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Result for interval graphs

Theorem 6 The family of n-vertex interval graphs enjoys a dis-
tance labeling scheme using labels of length

5[logn]| 4+ 3 bits

and the distance decoder has a O(1) time complexity.

Moreover, given the sorted list of intervals, all the labels can be
computed in O(n) time.

(which is better in both time and space than the distance matrix)
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Lower bounds (hints)

Lemma 1 Any distance labeling scheme on n-vertex interval
graphs requires a label of length

1
NlogI(N) + log N — 9 where N = |n/logn|
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Theorem 7 The number I(n) of labeled n-vertex connected in-
terval graphs satisfies

1
—logI(n) > 2logn —loglogn — O(1)
n

— there are 252(n1097) ynjabeled n-vertex interval graphs.

Theorem 8 Any distance labeling scheme on the the family of
n-vertex interval graphs requires labels of length at least
3logn — 4loglogn.
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Theorem 9 Any distance labeling scheme on the the family of
n-vertex proper interval graphs requires labels of length at least
2logn —2loglogn — O(1).
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