
Digital Object Identifier (DOI) 10.1007/s00446-002-0073-5
Distrib. Comput. (2003) 16: 111–120

c© Springer-Verlag 2003

Compact and localized distributed data structures

Cyril Gavoille1, David Peleg2

1 LaBRI, Université Bordeaux I, 351, cours de la Libération, 33405 Talence Cedex, France (e-mail: gavoille@labri.fr)
2 Department of Computer Science and Applied Mathematics, The Weizmann Institute of Science, Rehovot, 76100 Israel

(e-mail: peleg@wisdom.weizmann.ac.il)

Received: August 2001 / Accepted: May 2002

Abstract. This survey concerns the role of data structures
for compactly storing and representing various types of in-
formation in a localized and distributed fashion. Traditional
approaches to data representation are based on global data
structures, which require access to the entire structure even
if the sought information involves only a small and local set
of entities. In contrast, localized data representation schemes
are based on breaking the information into small local pieces,
or labels, selected in a way that allows one to infer informa-
tion regarding a small set of entities directly from their labels,
without using any additional (global) information. The survey
concentrates mainly on combinatorial and algorithmic tech-
niques, such as adjacency and distance labeling schemes and
interval schemes for routing, and covers complexity results on
various applications, focusing on compact localized schemes
for message routing in communication networks.

Key words: Informative labeling schemes – Distance labeling
– Compact routing tables

1 Introduction

Efficient data structures are at the heart of any data-
manipulating computer system, and this fundamental fact
is just as valid for distributed systems. Certain distributed
programming languages support distributed data structures
explicitly (cf. [CGL86]), and many distributed algorithms
use such structures (explicitly or implicitly) for their data-
management purposes. But more importantly, such structures
are in many cases constructed not as part of any particular algo-
rithm but for direct use as the building blocks of various stor-
age and retrieval mechanisms, such as distributed dictionaries,
name servers in communication networks, bulletin boards, re-
source allocation managers and the like [Re78,OD81,FWB85,
LEH85,Ter87,MV88,GS89]. The function common to all of
these mechanisms is supplying facilities for storing accumu-
lated information in the system and making it available to
potential users throughout the system.

Supported in part by a grant from the Israel Science Foundation.

The topic of distributed data structures is rather wide,
and the distributed setting raises several issues that are not
encountered in the usual, shared-memory sequential setting.
In particular, this topic touches upon several large research
areas, such as ordinary data structures and data types, dis-
tributed databases, and concurrency control theory (cf. [LM79,
H84,Wei84,BHG86,Pap86,H87]). We shall make no attempt
to review the relevant literature here, nor shall we ad-
dress the area of concurrent data structures, which refers
to data structures stored in common (shared) memory but
accessible by many processes concurrently, cf. [BS79,El80,
El80b,KL80,ML84,Man86,BB87,PK87,RK88], or the area
of designing special purpose VLSI machines for implement-
ing data structures, cf. [Le79,ORS82,DS85,SS85,CCIR86,
DS87,OB87,SL87,AK].

Rather, in this paper we shall restrict ourselves to dealing
with one specific aspect of distributed data structures, namely,
the relationships between the topology of the underlying com-
munication network (and its graph-theoretic properties) and
efficient schemes for organizing and distributing data in the
various sites. When the communication network underlying
the system is based on a network of arbitrary topology, various
graph-theoretic parameters become significant in determining
the appropriate way for distributing the data and the resulting
complexity.

Our primary concern is to maintain the data structure using
reasonable overall space requirements. However, no less im-
portant is the need to balance the memory loads over the sites
of the system. Future systems are expected to carry enormous
amounts of data, and a single site can hardly be expected to
function as the sole storing site for a large data structure. It
is therefore desirable to be able to distribute the data in sev-
eral sites and balance the memory requirements of the data
structure between all sites in the network. Such a geographic
distribution of data among the different network sites is also
dictated by considerations of access speed and reliability.

This survey discusses combinatorial and algorithmic tech-
niques related to these issues, and covers complexity results
on various applications. In particular, we will focus on two
specific problems which will be used for illustrating the main
issues and ideas involved. The first of these problems concerns
adjacency and distance labeling schemes, and more generally,

112 C. Gavoille, D. Peleg: Compact and localized distributed data structures

informative localized labeling schemes, and the second deals
with the design of compact localized schemes for message
routing in communication networks. For more detailed pre-
sentation of various aspects of these problems see [Gav00,
Gav01,Pel00a].

2 Adjacency and distance labeling schemes

Most traditional centralized approaches to the problem of net-
work representation are based on storing adjacency informa-
tion using some kind of a data structure, e.g., an adjacency
matrix. Such representation enables one to decide, given the
indices of two vertices, whether or not they are adjacent in the
network, simply by looking at the appropriate entry in the ta-
ble. However, note that (a) this decision cannot be made in the
absence of the table, and (b) the indices themselves contain
no useful information, and they serve only as “place hold-
ers”, or pointers to entries in the table, which forms a global
representation of the network.

In contrast, for a distributed computing setting we are inter-
ested in more informative and localized schemes for represent-
ing the network. In particular, labeling schemes are based on
the following idea. Given a graph, the scheme associates with
each of its vertices a special label. These labels are selected in
a such way that will allow us, later on, to infer the adjacency
of two vertices directly from their labels, without using any
additional information sources. In essence, this rather extreme
approach to the network representation problem discards all
other components, and bases the entire representation on the
set of labels alone.

Obviously, labels of unrestricted size can be used to en-
code any desired information. Specifically, it is possible to
encode the entire row i in the adjacency matrix of the graph
in the label chosen for vertex i. As another concrete example,
adjacency labeling systems of general graphs based on Ham-
ming distances were studied in [Bre66,BF67]. Specifically,
in [BF67] it is shown that it is possible to label the vertices of
every n-vertex graph with 2n∆ bit labels such that two ver-
tices are adjacent if and only if their labels are at Hamming
distance 4∆−4 or less of each other, where ∆ is the maximum
vertex degree in the graph.

However, efficiency considerations dictate the use of rela-
tively short labels (say, of length polylogarithmic in n), which
nevertheless allow us to deduce adjacencies efficiently (say,
within polylogarithmic time).

Efficient adjacency labeling schemes were introduced
in [KNR88]. In particular, a labeling scheme using 2 log n bit
labels was proposed for the class of trees. Given an n-vertex
tree T , the scheme assigns labels to its vertices as follows.
Choose a root and associate a distinct integer L(v) ∈ [1, n]
with each vertex v of T , and then assign a vertex v with par-
ent w the label 〈L(v), L(w)〉. (For the root, replace L(w) by
0.) Given two labels 〈L(v), L(w)〉 and 〈L(v′), L(w′)〉, one
can check if the vertices v and v′ are neighbors, as this hap-
pens if and only if one is the parent of the other, i.e., if either
L(v) = L(w′) or L(v′) = L(w). This scheme was extended
in [KNR88] to O(log n) adjacency labeling schemes for a
number of other graph families, such as bounded arboricity
graphs (namely, graphs whose edge set can be partitioned into
k forests, including, in particular, graphs of bounded degree

or bounded genus, e.g., planar graphs), various intersection-
based graphs (including interval graphs), and c-decomposable
graphs for constant c (namely, graphs having a recursive sep-
arator of size at most c). Additional O(log n) adjacency la-
beling schemes have been designed in [CV01] for bounded
clique-width graphs (see [CO02] for more details about these
class), a class generalizing and including bounded tree-width
graphs [Bod98], c-decomposable graphs for constant c, and
other families like hereditary graphs (namely, graphs such that
every induced path is a shortest path, cf. [BLS99]).

This natural idea lay dormant for over a decade, until in-
terest in this direction was revived by the observation that the
ability to decide adjacency is only one of a number of basic
properties a representation may be required to possess. In par-
ticular, another natural property of interest may be the ability
to determine the distance between two vertices efficiently (say,
in polylogarithmic time again) given their labels. This has led
to the notion of distance labeling schemes, which are schemes
possessing this ability [Pel99]. It is clear that distance labeling
schemes with short labels are easily derivable for highly regu-
lar graph classes, such as rings, meshes, tori, hypercubes, and
the like. It is less clear whether more general graph classes can
be labeled in this fashion. It was shown in [Pel99] that the class
of n-vertex weighted trees with m bit edge weights enjoys an
O(m log n+log2 n) distance labeling scheme. This scheme is
complemented by a matching lower bound [GPPR01], show-
ing that Ω(m log n + log2 n) bit labels are necessary for
this class. In [GPPR01] the scheme is extended to n-vertex
graphs with an r(n)-separator for monotone function r(n). It
is shown that this class supports a scheme with labels of size
O(R(n) · log n), where R(n) =

∑log n
i=1 r(n/2i). We have

R(n) ≤ r(n) log n, and R(n) = O(r(n)) if r(n) ≥ nε for
constant ε > 0. For bounded tree-width graphs, including
trees, outerplanar graphs, series-parallel graphs, k-outerplanar
graphs (defined for k = 1 as outerplanar graphs and for k > 1
as planar graphs in which removing the outer face yields a
(k − 1)-outerplanar graph) and c-decomposable graphs for
constant k and c, R(n) = O(log n) since r(n) = O(1).
For bounded genus graphs, including planar graphs, R(n) =
O(r(n)) = O(

√
n).

Roughly speaking, the scheme is based on building a tree-
decomposition T of the n-vertex graph G (cf. Fig. 1). Each
vertex of T corresponds to a separator of G. In particular, the
root of T corresponds to a subset S of vertices of G such
that |S| ≤ r(n) and such that G \ S consists of connected
components of size at most n/2. (If G is itself a tree then
r(n) = 1, and the singleton S is a center of the tree.) Each
connected component of G \ S corresponds to a subtree of T ,
so that any shortest path from u to v in G taken from different
subtrees has to cross some vertices of S. The label of u, L(u),
consists of the concatenation of all the distances in G between
u and the vertices of G contained in all the ancestor vertices of
u in T (the vertex containing u has at most log n ancestors). To
compute the distance between u and v, it suffices to compute
their least common ancestor in T , say S, and then to compute
d(u, v) = minz∈S{d(u, z) + d(v, z)}. Note that to compute
this minimum, the labels of u and of v must encode the vertices
of S.

This scheme is near-optimal since there is a lower bound of
Ω(r(n)) on the label size for the class of all the graphs having

C. Gavoille, D. Peleg: Compact and localized distributed data structures 113

L(u):

vu

r(n)

log nd(u,1)

1

d(u,2) d(u,3)
, ,

6 8 9

, ,

7

2
T

54

3

5 6
3

d(u,4) d(u,5) d(u,6)4
21

Fig. 1. The separator technique for distance labeling

an r(n)-separator [GPPR01]. However, for the class of pla-
nar graphs (which is a proper subclass of the class of graphs
with O(

√
n)-separators) there is a specific lower bound of

Ω(n1/3) on the label size, leaving an intriguing (polynomial)
gap. More recently, schemes with O(log2 n) bit labels that
do not make use of the “small separator” technique were pre-
sented for n-vertex interval and permutation graphs [KKP00]
and for distance hereditary graphs [GP01a].

As observed in [KNR88], a class of 2Ω(n1+ε) n-vertex
graphs, must use adjacency labels (and thus distance labels)
whose total combined length is Ω(n1+ε), hence at least one
label must be of Ω(nε) bits. Specifically, for the class of
all unweighted graphs, any distance labeling scheme must
label some n-vertex graphs with labels of size Ω(n). Con-
versely, there exists a scheme for the class of arbitrary un-
weighted n-vertex graphs with O(n) bit labels, which re-
quires O(log log n) time to decode the distance from the la-
bels [GPPR01]. Hence Θ(n) bits is the optimal distance label
length for general unweighted graphs.

This raises the natural question of whether more efficient
labeling schemes can be constructed if we abandon the ambi-
tious goal of capturing exact information, and settle for obtain-
ing approximate estimates. An (s, r)-approximate distance la-
beling scheme is a distance labeling scheme such that for u, v
coming from the same graph, the estimated distance d̃(u, v)
computed by the scheme from the labels L(u) and L(v) satis-
fies d(u, v) ≤ d̃(u, v) ≤ s · d(u, v) + r. In particular, (exact)
distance labeling schemes coincide with (1, 0)-approximate
distance labeling schemes.

General weighted graphs were given an (8κ, 0)-
approximate distance labeling scheme, for every integer κ ≥
1, with O(κ ·n1/κ log n · log D) bit labels [Pel99], where D is
the weighted diameter of the graph, and later an improved
(2κ − 1, 0)-approximate scheme with O(n1/κ log1−1/κ n ·
log(nD)) bit labels [TZ01a]. The time to decode the estimated
distance is O(κ). This implies a (2 log n, 0)-approximate
scheme with O(log2 n) bit labels for general unweighted
graphs. These results are complemented by a lower bound in

Ω(n1/κ) on the label size of (Ω(κ), 0)-approximate schemes,
presented independently in [TZ01a] and in [GKKPP01].

It is interesting to notice that a small variation on the qual-
ity of the estimators, say, moving from (1, 0)-approximate
to (1 + o(1), 0)-approximate or to (1, O(1))-approximate
schemes, results in a significant impact on the label size.
Trees, and more generally graphs with r(n)-separators, sup-
port a (1 + 1/ log n, 0)-approximate scheme with O(R(n) ·
log log n) bit labels [GKKPP01]. In particular, trees enjoy
O(log n·log log n) bit label (1+1/ log n, 0)-approximate dis-
tance labeling scheme. A lower bound of Ω(log n · log log n)
is also shown in [GKKPP01] for any (1 + 1/ log n, 0)-
approximate distance labeling scheme on the class of trees.
However, distances in a tree between vertices at distance at
most d can be computed with labels of log n + O(d

√
log n)

bits [KM01]. A similar phenomenon between the label length
and the quality of the estimators holds for planar graphs.
[Tho01] has presented for planar digraphs a (1 + ε, 0)-
approximate scheme with O(1

ε log2 n) bit labels, for every
ε > 0, to be contrasted with the fact that for ε = 0 labels
must have Ω(n1/3) bits [GPPR01]. Additional results appear
in [CHKZ02,Tho01].

A number of additional approximate distance labeling
schemes are presented in [GKKPP01], including a (1, 2)-
approximate scheme with O(log n) bit labels for permuta-
tion graphs (namely, graphs constructed from a permutation
σ on the vertices such that i and j are adjacent iff i < j
and σ(i) > σ(j)) and AT-free graphs (namely, graphs with-
out any triple of pairwise non-adjacent vertices such that there
is a path connecting any two of them that avoids the neigh-
borhood of the third), and a (1, �c/2�)-approximate scheme
with O(log2 n) bit labels for c-chordal graphs (namely, graphs
whose longest induced cycle is no greater than c). In particu-
lar, it yields a (1, 1)- approximate labeling scheme for chordal
(i.e., 3-chordal) graphs, to be contrasted with the fact that every
exact ((1, 0)-approximate) scheme requires Ω(n) bit labels on
some chordal graphs. The question of the label size complex-
ity of distance labeling schemes for interval and permutation
graphs is left open, with the bounds ranging from Ω(log n) to
O(log2 n) [KKP00].

Another quality measure of interest is the time required
for decoding the labels and deducing the information stored in
them. All the approximate schemes presented in [GKKPP01]
(for trees, planar, c-chordal and interval graphs and so on)
require a constant time complexity for decoding the distance
estimator on a word-RAM computer. However, an intrigu-
ing result established in [GPPR01] is that there exist n-vertex
graphs Gn which enjoy a distance labeling with labels of size
O(log n) on the one hand, but on the other hand, if one uses on
Gn labels with fewer than n/2 bits, then time exponential in
n may be required for decoding the distance. A similar result
is obtained therein for planar graphs.

Finally, an interesting direction involves localized label-
ing schemes for the dynamic distributed setting, namely, dis-
tributed online schemes on dynamically changing networks.
Such schemes are clearly necessary for handling applications
such as distributed systems and communication networks. A
first step in this direction is made in [KPR02], which studies
labeling schemes on dynamic tree networks.

114 C. Gavoille, D. Peleg: Compact and localized distributed data structures

3 Informative localized labeling schemes

Adjacency and distance labeling schemes motivate the gen-
eral question of developing label-based network representa-
tions that allow retrieving useful information about arbitrary
functions or substructures in a graph in a localized manner,
i.e., using only the local pieces of information available to, or
associated with, the vertices under inspection, and not having
to search for additional global information. We refer to such
representations as informative labeling schemes, formally de-
scribed in [Pel00b].

To illustrate this concept with respect to additional func-
tions, let us concentrate on the class of rooted trees. In addition
to finding out whether two given vertices v and w are adjacent,
or what is the distance between them, one may be interested
in many other pieces of information concerning these ver-
tices. For example, in some cases it may be useful to know
if v is an ancestor (or a descendant) of w. It is rather easy
to encode the ancestry relation in a tree with 2 log n bit la-
bels using interval-based schemes: associate with each vertex
u an interval I(u) = [i, i + w] where i ∈ [1, n] is a label
obtained by traversing the n-vertex tree in a depth-first search
fashion [Tar72], and w is the number of descendants of u. It
is easy to verify that u is an ancestor of v iff I(v) ⊆ I(u). It
turns out that ancestor queries can be handled by a more com-
pact labeling scheme, using log n + O(

√
log n) bit labels,

independently discovered by [AR02,KM01a,TZ01]. (Actu-
ally, [TZ01] proposed a log n + O(log n/ log log n) bit label-
ing scheme but answering more general routing queries, see
Sect. 4). More sophisticated labeling schemes allow us to com-
bine parent and ancestor queries with 2 log n + O(log log n)
bit labels [KM01a]. Moreover, queries can be answered in con-
stant time on a word-RAM computer. A comparative study of
ancestor labeling schemes appears in [KMS02].Additional re-
sults on labeling schemes (like reachability in planar digraphs)
appear in [CHKZ02,Tho01].

Another example for a piece of non-numeric information
that may be required in rooted trees is the least common ances-
tor of v and w. Standard solutions [HT84,SV88] can answer
such queries in constant time with a suitable preprocessing of
the tree, but cannot be applied in a localized computation set-
ting, as they require some accesses to a global table of O(n)
items. In [Pel00b] it is shown that the identifier of the least
common ancestor can be found using a labeling scheme with
O(log2 n) bit labels. This scheme is asymptotically optimal if
vertices have freely chosen their own identifier. However, if it
is only required to return the label of the least common ances-
tor (that is, all the vertex identifiers consist of the labels issued
by the labeling scheme), then it can be done with O(log n) bit
labels [AGKR01]. Another related function is the separation
level of two vertices of a rooted tree, defined as the depth of
their least common ancestor. This function is given in [Pel00b]
a labeling scheme similar to the one for distance labeling, with
(asymptotically optimal) O(log2 n) bit labels.

As an additional example, labeling schemes for flow and
connectivity were studied in [KKKP02]. In a weighted undi-
rected graph, where the weights represent edge capacities, a
flow labeling scheme should provide, given the two labels
L(u) and L(w), the maximum flow that can be pushed from u
to w. Similarly, a k-connectivity labeling scheme should tell
us, given the two labels L(u) and L(w), whether or not u and

w are k-connected, namely, there are k disjoint paths connect-
ing them. An (asymptotically optimal) flow labeling scheme
using O(log2 n + log n · log ω) bit labels is presented therein
for general n-vertex graphs with maximum (integral) edge ca-
pacity ω. For edge-connectivity, this yields a tight bound of
Θ(log2 n) bits. Also, a k-vertex connectivity labeling scheme
is given for general n-vertex graphs using O(log n) bit labels
for fixed k. Finally, a lower bound of Ω(k log n) is established
for k-vertex connectivity on n-vertex graphs when k is poly-
logarithmic in n.

The types of localized information to be encoded by an in-
formative labeling scheme are not limited to binary relations.
An example for information involving three vertices v, w and
u is finding their center, namely, the unique vertex z such that
the paths connecting it to v, w and u are edge disjoint. More
generally, for any subset of vertices S in a weighted graph,
one may be interested in inferring w(S), the weight of their
Steiner tree (namely, the lightest tree spanning them), based
on their labels. It is easy to verify that an exact Steiner label-
ing scheme for the class of n-vertex graphs requires Ω(n) bit
labels. However, the class of arbitrary n-vertex graphs with
m bit edge weights admit a O(log n)-multiplicative approxi-
mate Steiner labeling scheme using O(m log2 n + log3 n) bit
labels [Pel00b]. For n-vertex trees with m bit edge weights,
there exists an exact scheme with O(m log n + log2 n) bit
labels, which is asymptotically optimal [Pel00b].

Actually, labeling schemes for answering a graph property
P (v1, . . . , vk) defined on k vertices can be constructed for the
class of bounded clique-width graphs. More precisely, [CV01]
have proposed a O(log n) bit labeling scheme for every fixed
graph property P expressible in monadic second-order logic,
that is, first-order logic over the vertices augmented with vari-
ables denoting subsets of vertices and with membership atomic
formulas (adjacency and reachability belong to this class).
Similarly, a labeling scheme for every monadic second-order
optimization function P , that is, a function that returns the
minimum or maximum cardinality of a set, can be constructed
for the class of bounded clique-width graphs with O(log2 n)
bit labels [CV01]. (For instance, the unweighted distance be-
tween two vertices can be expressed as a minimum cardinality
set of edges connecting them.)

4 Routing and other applications

Delivering messages between pairs of processors is a basic
activity of any distributed communication network. This task
is performed using a routing scheme, which is a mechanism
for routing messages in the network. The routing mechanism
can be invoked at any origin vertex and be required to deliver
a message to some destination vertex.

Using edge lengths to reflect transmission costs and delays,
it is naturally desirable to route messages along paths that are
as short as possible. The efficiency of a routing scheme can
be measured in terms of its stretch, namely, the maximum
ratio between the length of a route produced by the scheme
for some pair of processors, and their distance. A straightfor-
ward approach for achieving the goal of guaranteeing optimal
routes is to store a complete routing table in each vertex v in
the network, specifying for each destination u the first edge
(or an identifier of that edge, indicating the output port) along

C. Gavoille, D. Peleg: Compact and localized distributed data structures 115

6
7

13 14

16

8

1

10

124

11

3

1 2

<[5,8]:1,[9,10]:2,[11,3]:3>

T

9

15
17

2

3

5

Fig. 2.An interval routing for T , and the data structure for the vertex 4

some shortest path from v to u. However, this approach may
be too expensive for large systems since it requires a total
of O(n2 log d) memory bits in an n-processor network with
maximum degree d. Thus, an important problem in large scale
communication networks is the design of routing schemes that
produce efficient routes and have relatively low memory re-
quirements.

This problem can be approached via localized techniques
based on labeling schemes. Informally speaking, the routing
problem can be presented as requiring us to assign two kinds of
labels to every vertex of a graph. The first is the address of the
vertex, whereas the second label is a data structure called the
local routing table. The labels are assigned in such a way that at
every source vertex v and given the address of any destination
vertex u, one can decide the output port of an outgoing edge
of v that leads to u. The decision must be taken locally in v,
based solely on the two labels of v and with the address label
of u.

As a basic example, let us describe an efficient method,
known as interval routing scheme (IRS) for storing shortest
path routing information in a tree network. Start by a depth-
first search traversal of the n-vertex tree T , associating with
each vertex v an address label L(v) ∈ [1, n], see Fig. 2. Then,
associate with each outgoing edge (v, u) of v the set I(v, u) of
labels of all the vertices w with the property that the route from
v to w starts with the edge (v, u). By construction, the labels
contained in I(v, u) are consecutive (modulo n). Hence, to
represent I(v, u) in v’s memory it suffices to store its interval
boundaries, at a cost of 2 log n bits per set. Overall, the local
routing table of v is a data structure of the form

〈I(v, u1) :p1, I(v, u2) :p2, . . . , I(v, ud) :pd〉
where p1, p2, . . . , pd are respectively the output port numbers
leading to the neighbors u1, u2, . . . , ud (see Fig. 2 for the ver-
tex labeled 4). Therefore the size of the routing table for v is
O(d log n) bits, where d is the degree of v. This should be
compared with the O(n log d) bits bound for a standard rout-
ing table. Routing a message from a source v to a destination
w is done by searching for the interval I(v, ui) in v’s table
such that L(w) ∈ I(v, ui) (implying that the message has to
include the destination label L(w) in its header), and then for-

warding the message through the output port pi to the neighbor
ui. This local computation is then repeated at intermediate ver-
tices along the route. This search can be performed using log n
comparisons by sorting the intervals or in O(log log n) time
using more sophisticated data structures [vBoas77]. Observe
that the local memory requirement increases with the degree
of the vertex (other labeling schemes, discussed later, aim at
overcoming the problem of large degree vertices), but the to-
tal memory requirement over the entire tree network is only
O(n log n) bits.

The interval routing scheme for trees is due to [SK].
This scheme can be applied rather efficiently to certain re-
stricted graph families, and it has also been extended later to
a wider variety of networks, cf. [vLT87,FJ89,Fre93,FGS96,
FG98,EMZ97b]. When considering interval routing schemes
for classes of graphs other than trees, a natural question is
to identify which graphs admit interval routing along shortest
paths [FG98,NS96,Fla97,EMZ97a], or to minimize the length
of the longest route [EMZ99,1,KRS00]. Another natural ex-
tension is to allow using more than one interval on each edge,
raising the question of how many intervals are necessary to en-
sure shortest path routing, and how such a scheme can be im-
plemented [KKR96,FvLS98,NN98,GG98,GP01]. It is worth
noting that an interval routing scheme, once computed for a
graph, can be used to perform other tasks than routing. This
idea was investigated by [vLT87] and then by [TNP98], which
proposed an approach for efficiently performing broadcast on
graphs supporting an interval routing scheme. Subsequently,
[FGM01] have proposed for graphs supporting a shortest path
interval routing scheme with one interval per edge a Θ(n)
messages broadcast algorithm that uses only interval routing
labels. A vast array of other routing scheme types has been de-
veloped, including prefix routing schemes [BLT90], boolean
routing schemes [FG97a], multi-dimensional interval routing
schemes [FGNT98,RS00] and more. For surveys of the many
developments in this area see [vLT94f,Gav00].

The problem of efficiency-memory tradeoffs for routing
schemes was first raised in [KK1], which proposed the general
approach of hierarchically clustering a network into κ levels
and using the resulting structure for routing. The total memory
used by the scheme is O(n1+1/κ ·log n). However, the method
of [KK1] is based on making some fairly strong assumptions
regarding the existence of a certain partition of the network,
and moreover, the method does not provide an algorithm for
computing such a partition if it exists. Several variations and/or
improvements were studied later, cf. [KK2,Per82,Sun82].

Most subsequent work on the problem has focused on
solutions for special classes of network topologies. Shortest
path (i.e., stretch factor 1) routing schemes with total mem-
ory requirement O(n log n) were designed for simple topolo-
gies like trees [SK], unit-cost rings, complete networks and
grids [vLT86,vLT87], and outerplanar networks [FJ88]. The
problem of designing memory-efficient near-optimal rout-
ing schemes was cast in a theoretical formulation in [FJ86,
FJ88,FJ89], which also gave precise solutions for various
graph classes up to and including planar graphs. Near-optimal
stretched routing schemes were constructed in [FJ89,?] for c-
decomposable networks and for planar networks. The schemes
for c-decomposable networks guarantee a stretch factor rang-
ing between 2 and 3 (specifically, 1 + 2/a where a > 1 is

116 C. Gavoille, D. Peleg: Compact and localized distributed data structures

the positive root of the equation a�(c+1)/2� − a − 2 = 0)
and have total memory requirement O(c2 log c · n log2 n).
A crucial step in constructing these routing schemes is as-
signing names to the vertices as part of the routing scheme,
namely O(c log c · log n) bit labels. (For stretch factor 3 a
simpler scheme was proposed in [FJ90] that uses O(log n)
bit names.) Although planar networks can be considered as c-
decomposable networks for c = Θ(

√
n), better schemes can

be achieved. A first scheme in [FJ89] has a total memory re-
quirement O(n4/3 log n), stretch factor 3, and uses O(log n)
bit names. The second one achieves for every constant d > 3,
a total memory requirement O(dn1+1/d log n), stretch factor
7, and uses O(d log n) bit names. Recently, [GH99] have con-
structed new routing schemes for planar graphs with optimal
stretch 1. Based on book embedding, these schemes use label
names ∈ [1, n]. (A k-page embedding of a graph consists of
a linear ordering of its nodes drawn on a line and of a parti-
tion of its edges into k “pages” so that edges residing on the
same page do not intersect; cf. [B92].) The memory bound is
8n + o(n) bits per vertex. The schemes can be extended to
g genus graphs with n log g + O(n) memory bits per vertex.
As another example, the construction of 3-spanners for the
family of chordal graphs described in [PS89] can be used to
construct routing schemes for these graphs with stretch fac-
tor 3 and O(n log2 n) bits of memory in total. For Euclidean
networks, namely, networks whose sites are embedded in the
2-dimensional plane with Euclidean distances, recent papers
have dealt with proposing efficient designs for compact rout-
ing schemes, based on coordinates of the vertices and compass
routing methods (cf. [BCSW98,BM99,KSU99,BM01]) or ef-
ficient spanner constructions [HP00].

The problem of constructing compact routing schemes for
arbitrary unweighted networks was studied in [PU89], which
presents a family of hierarchical routing schemes (for every
fixed integer κ ≥ 1) that guarantee stretch O(κ) and require
storing a total of O

(
κ3 n1+1/κ log n

)
bits of routing infor-

mation in the network. Similar to [KK1], these schemes are
also based on suitable partitions of the network, but here the
partitions are shown to exist and an algorithm is given for
computing them. Just as for the IRS approach and the routing
schemes of [FJ89,FJ90,GH99], the schemes of [PU89] require
assigning suitable names to the vertices. These names are of
size O(log2 n) bit. However, these schemes (as well as most
earlier approaches, such as IRS and the schemes of [FJ89,
FJ90]) have the disadvantage that the routing information is
not balanced on the set of vertices. In the worst-case, some
vertices may require Ω(n log n) bits of memory.

The solution of [PU89] was later generalized in a num-
ber of ways, and various qualities of the resulting schemes
were improved in [PU87,ABLP89,AP92]. For instance, the
schemes were extended to weighted graphs, they were modi-
fied to work in a setting where vertices can freely select their
own names or routing labels, they were provided with efficient
and distributed preprocessing procedures and so on. These de-
velopments parallel a chain of successive improvements in
the corresponding cluster-based representations used by the
schemes. Recent developments concerning compact routing
schemes with low stretch factor (mainly integral stretch factors
≤ 5) are presented in [KKU95,NO97,EGP98,CW00,Cow01,
TZ01], and also in [TZ01] for higher stretches. The currently

best memory-stretch tradeoff for arbitrary weighted graphs
is achieved by a scheme in which the stretch factor is O(κ)
and the memory requirements are O(n1/κ logO(1) n) bits per
vertex [TZ01a].

Lower bounds for the space-efficiency tradeoff of routing
schemes were studied in [PU89,GP96,KK96,FG97b,EGP98,
BHV99,GG01]. More precisely, in [PU89] it is shown that
every routing strategy that guarantees an s stretched rout-
ing scheme for every n-vertex graph must provide at least
a total of 2Ω(n1+1/(2s+4)) different routing schemes. Thus for
κ ≥ 5, no routing strategy can guarantee for every graph a rout-
ing scheme with a stretch factor O(κ) (specifically κ/2 − 2)
and o(n1+1/κ) bits of total memory. For the case of optimal
stretch 1, it is shown in [GP96] that for every shortest path rout-
ing strategy and for all d and fixed ε < 1 such that 3 ≤ d ≤ εn,
there exists a worst-case graph of degree bounded by d on
which the total memory requirement is Ω(n2 log d), match-
ing the memory requirements of standard routing tables. Both
lower bounds assume that routes and O(log n) bit label names
can be computed and optimized by the routing strategy in order
to decrease the memory requirement.

The issues of name independence and balancing the mem-
ory requirements were first raised in [ABLP89]. The schemes
proposed in [ABLP89] are name-independent (i.e., the orig-
inal name of the destination vertex is used for the routing,
and cannot be relabeled) and apply to arbitrary weighted net-
works. However, they have an inferior efficiency-space trade-
off. For instance, the schemes of [ABLP89], for κ ≥ 1,
use O(κ n1/κ log n) bits of memory per vertex and guaran-
tee a stretch of O(κ2 9κ). The tradeoff was improved by the
schemes of [AP92], which are simpler, and possess the addi-
tional attractive features discussed above. The stretch is O(κ2)
and the memory requirement is O(κ n1/κ log2 n · log D) bits
per vertex, where D is the weighted diameter of the network.
The scheme of [TZ01a] has better memory-stretch tradeoff
but it does not enjoy name-independence (the scheme needs
O(κ log2 n/ log log n) bit names). On the other hand, it is
worth noting that the schemes of [ABLP89] and of [TZ01]
have one additional advantage over [AP92], namely, their
memory complexity is independent of the range of the edge
costs, or the network diameter (or put another way, the routing
algorithm is “purely combinatorial”).

All the schemes presented in [ABLP89,AP92,EGP98,
Cow01,TZ01] have a cluster-based representation as a com-
mon feature. Inside each cluster, the routing is performed along
some spanning trees. Hence the basic problem of efficient rout-
ing in n-vertex trees is of major significance when building
efficient routing schemes in general networks. The basic IRS
scheme of [SK] for trees presented at the beginning of the
section can be improved in several respects. For instance, by
extending the address range from log n to3 log nbits, [Cow01]
has shown that O(

√
n log n) bits suffice for the local routing

table, an improvement for high degree trees. In [EGP98] it
is shown that every routing scheme that selects addresses in
the range [1, n] must use an Ω(

√
n) bit local routing table

for some trees. Hence by increasing the address size, a variant
of this problem would be to consider routing labels such that
the message can be routed between v to u relying solely on
their label (and possibly the labels of the intermediate vertices
along the route) without any routing tables. This leads to the

C. Gavoille, D. Peleg: Compact and localized distributed data structures 117

notion of memory-free routing, or using the terminology of the
previous sections, routing labeling schemes. Obviously such a
routing labeling scheme can be obtained from a standard rout-
ing scheme by concatenating in a single label, for every vertex
v, the address of v and its local routing table. Surprisingly, if
output port numbers can be permuted in advance, trees have
routing labeling schemes with only c log n bit labels [FG01],
for a small constant c. It is even proved in [TZ01] that c can be
reduced to c = 1 + O(1/ log log n). If the output port num-
ber cannot be permuted (as required in a general graph where
several tree routing schemes overlap), then trees have routing
labeling schemes with O(log2 n/ log log n) bit labels [FG01,
TZ01], and this bound was shown to be tight [FG02]. This
emphasizes that a small variation on the size of the addresses
has a significant effect on the size of the routing table.

Other related work deals with routing with succinct routing
tables. The case of dynamic networks is dealt with in [AGR89]
in the limited setting of networks whose topology is a tree, and
the topological changes are restricted to growing (i.e., new
edges and vertices are occasionally added to the network).
The routing problem was also dealt with in the context of
the new generation of ATM and optical networks [DKKP95].
See [Gav01,Pel00a] for more detailed overviews.

At this stage, let us discuss some other potential applica-
tions for informative labeling schemes. It seems likely that
labeling schemes may prove useful for various applications in
the contexts of communication networks and distributed proto-
cols. The relevance of distance labeling schemes in the context
of communication networks has been pointed out in [Pel99],
and illustrated by discussing the application of such labeling
schemes to distributed connection setup procedures in circuit-
switched networks. Some other problems where it seems that
distance labeling schemes may be useful include memory-free
routing schemes, bounded (“time-to-live”) broadcast proto-
cols, topology update mechanisms, etc. For specific classes
of graphs, like rooted trees, it is shown in [AKM01] how to
use ancestor labeling schemes to optimize queries on large
database with XML search engines. It is also plausible that
other types of informative labeling schemes may prove useful
for other applications. For instance, one can envision using
Steiner labeling schemes as a tool for optimizing multicast
schedules and selection of subtrees for group communication,
and possibly even for certain information representation prob-
lems on theWeb. Moreover, one may expect that suitable infor-
mative labeling schemes will be applicable in entirely differ-
ent application domains as well, including for instance com-
putational geometry, say, in the context of Euclidean graphs
(cf. [RU99]), and combinatorial optimization in general, by
viewing a vertex labeling as a “nice,” i.e., easily manageable,
representation of the graph.

Let us conclude with a brief discussion of future prospects.
As observed in this paper, both the quality and the cost of
an informative labeling scheme depend on two central fac-
tors: the type of information handled by the scheme, and the
class of networks for which the scheme is designed. Neverthe-
less, there is hope that general and uniform algorithmic and
data-structuring techniques will emerge that will facilitate the
design of informative labeling schemes for many types of in-
formation, or even the design of general schemes capable of
encoding a group of information types together, for instance,
routing and distance.

Finally, the information types handled by the labeling
scheme may not necessarily be directly related to the topol-
ogy of the graph itself. Rather, it may be derived from various
other types of (external) data, stored in the vertices of the net-
work. The idea is to eventually be able to come up with data
structures that will allow “local” deductions on the basis of
small parts of the data, without having to inspect the entire
data structure. Conceivably, this may lead to the development
of abstract types of “fragmented” (or “localized”) data struc-
tures, whose dependencies on the topology are only partial,
giving rise to many interesting and new problems.

References

[AKM01] S. Abiteboul, H. Kaplan, T. Milo. Compact labeling
schemes for ancestor queries. In Proc. 12th ACM
Symp. on Discrete Algorithms, 2001 pp. 547–556

[AGR89] Y.Afek, E. Gafni, M. Ricklin. Upper and lower bounds
for routing schemes in dynamic networks. In Proc.
30th IEEE Symp. on Foundations of Computer Sci-
ence, 1989 pp. 370–375

[AK] S. Aggarwal, S. Kutten. Time-optimal self stabilizing
spanning tree algorithms. In Proc. 13th Conf. on the
Foundations of Software Technology and Theoretical
Computer Science, 1993 pp. 400–410

[AGKR01] S. Alstrup, C. Gavoille, H. Kaplan, T. Rauhe. Nearest
Common Ancestors: A Survey and a new Distributed
Algorithm. In 14th Annual ACM Symposium on Paral-
lel Algorithms and Architecture (SPAA), ACM Press,
2002, pp. 258–264

[AR02] S. Alstrup, T. Rauhe. Improved Labeling Scheme for
Ancestor Queries. In Proc. 13th Symposium on Dis-
crete Algorithms (SODA),ACM-SIAM, 2002 pp. 947–
953

[ABLP89] B. Awerbuch, A. Bar-Noy, N. Linial, D. Peleg. Com-
pact distributed data structures for adaptive network
routing. In Proc. 21st ACM Symp. on Theory of Com-
puting, 1989 pp. 230–240

[AP92] B. Awerbuch, D. Peleg. Routing with polynomial
communication-space trade-off. SIAM Journal on
Discrete Math. 5: 151–162 (1992)

[BCSW98] S. Basagni, I. Chlamtac, V.R. Syrotiuk, B.A. Wood-
ward. A distance routing effect algorithm for mobility
(dream). In Proc. MOBICOM, 1998 pp. 76–84

[BS79] R. Bayer, M. Schkolnick. Concurrency of operations
on B-trees. Acta Informatica 9: 1–21, 1979

[BHG86] P. Bernstein, V. Hadzilacos, N. Goodman. Concur-
rency Control and Recovery in Database Systems.
Reading, MA: Addison-Wesley 1986

[BB87] J. Biswas, J.C. Browne. Simultaneous update of pri-
ority structures. In Proc. IEEE Int. Conf. on Parallel
Process, 1987 pp. 124–131

[BLS99] A. Brandstädt, V.B. Le, J.P. Spinrad. Graph Classes –
A survey. SIAM Monographs on Discrete Mathemat-
ics and Applications, Philadelphia, 1999

[BLT90] E.M. Bakker, J. van Leeuwen, R.B. Tan. Prefix rout-
ing schemes in dynamics networks. Technical Report
RUU-CS-90-10, Utrecht University, Mar. 1990

[B92] T. Bilski. Embedding graphs in books: a survey. IEEE
Proceedings 139: 134–138, 1992

[BM99] P. Bose, P. Morin. Online routing in triangulations. In
Proc.10th Int. Symp. on Algorithms and Computation,
pp. 113–122, SV LNCS 1741, 1999

118 C. Gavoille, D. Peleg: Compact and localized distributed data structures

[BM01] P. Bose, P. Morin. Competitive online routing in ge-
ometric graphs. In Proc. 8th Colloq. on Structural
Information & Communication Complexity, pp. 35–
44, Carleton University Press, Jun. 2001

[Bod98] H.L. Bodlaender. A partial k-arboretum of graphs
with bounded treewidth. Theoretical Computer Sci-
ence 209(1-2): 1–45, 1998

[Bre66] M.A. Breuer. Coding the vertexes of a graph. IEEE
Trans. on Information Theory IT-12: 148–153, 1966

[BF67] M.A. Breuer, J. Folkman. An unexpected result on
coding the vertices of a graph. Journal of Mathemat-
ical Analysis and Applications 20: 583–600, 1967

[BHV99] H. Buhrman, J.-H. Hoepman, P. Vitányi. Space-
efficient routing tables for almost all networks and
the incompressibility method. SIAM Journal on Com-
puting, 28(4): 1414–1432, 1999

[CGL86] N. Carriero, D. Gelernter, J. Leichter. Distributed data
structures in Linda. In Proc. 13th ACM Symp. on Prin-
ciples of Prog. Lang, 1986 pp. 236–242

[CCIR86] J.H. Chang, M.J. Chung, O.H. Ibarra, K.K. Rao. Sys-
tolic tree implementation of data structures. In Proc.
IEEE Int. Conf. on Parallel Process., 1986 pp. 669–
671

[CHKZ02] E. Cohen, E. Halperin, H. Kaplan, U. Zwick. Reacha-
bility and Distance Queries via 2-hop Labels. In Proc.
19th ACM-SIAM Symp. on Discrete Algorithms, Jan.
2002

[CO02] B. Courcelle, S. Olariu. Upper bounds to the clique-
width of graphs. Discrete Applied Mathematics 101:
77–114, 2000

[Cow01] L.J. Cowen. Compact routing with minimum stretch.
Journal of Algorithms 38: 170–183, 2001

[CW00] L.J. Cowen, C.G. Wagner. Compact roundtrip routing
in directed networks. In Proc. 19th ACM Symp. on
Principles of Distributed Computing, 2000 pp. 51–59

[CV01] B. Courcelle, R. Vanicat. Query efficient implemen-
tation of graphs of bounded clique width. Discrete
Applied Mathematics, to appear

[DS85] W.J. Dally, C.L. Seitz. The balanced cube: a con-
current data structure. Technical Report 5174:TR:85,
California Institute of Technology, 1985

[DS87] F. Dehne, N. Santoro. Optimal VLSI dictionary ma-
chines on meshes. In Proc. IEEE Int. Conf. on Parallel
Process, 1987 pp. 832–840

[DKKP95] S. Dolev, E. Kranakis, D. Krizanc, D. Peleg. Bubbles:
adaptive routing scheme for high-speed dynamic net-
works. SIAM Journal on Computing, 29: 804–833,
1999. Preliminary version appeared in STOC 1995

[EGP98] T. Eilam, C. Gavoille, D. Peleg. Compact routing
schemes with low stretch factor. In Proc. 17th Annual
ACM Symp. on Principles of Distributed Computing,
1998 pp. 11–20

[EMZ97a] T. Eilam, S. Moran, S. Zaks. The complexity of the
characterization of networks supporting shortest-path
interval routing. In Proc. 4th Int. Colloq. on Structural
Information & Communication Complexity, pages 99–
111. Carleton Scientific 1997

[EMZ97b] T. Eilam, S. Moran, S. Zaks. A simple DFS-based
algorithm for linear interval routing. In Proc. 11th

Int. Workshop on Distributed Algorithms, vol. 1320
of LNCS, pp. 37–51, Berlin Heidelberg New York:
Springer 1997

[EMZ99] T. Eilam, S. Moran, S. Zaks. Lower bounds for linear
interval routing. Networks 34(1): 37–46, 1999

[El80] C.S. Ellis. Concurrent search and insertion in 2-3 trees.
Acta Informatica 14: 63–86, 1980

[El80b] C.S. Ellis. Concurrent search and insertion in AVL
trees. IEEETrans. on Computers C-29: 811–817, 1980

[El85] C.S. Ellis. Distributed data structures, a case study.
IEEE Trans. on Computers C-34: 1178–1185, 1985

[Fla97] M. Flammini. On the hardness of devising interval
routing schemes. Parallel Processing Letters 7(1): 39–
47, 1997

[FGS96] M. Flammini, G. Gambosi, S. Salomone. Interval rout-
ing schemes. Algorithmica 16(6): 549–568, 1996

[FG97a] M. Flammini, G. Gambosi. On devising boolean rout-
ing schemes. Theoretical Computer Science 186: 171–
198, 1997

[FGNT98] M. Flammini, G. Gambosi, U. Nanni, R.B. Tan. Mul-
tidimensional interval routing schemes. Theoretical
Computer Science 205: 115–133, 1998

[FvLS98] M. Flammini, J. van Leeuwen, A. Marchetti-
Spaccamela. The complexity of interval routing on
random graphs. The Computer Journal 41(1): 16–25,
1998

[FG95] P. Fraigniaud, C. Gavoille. Memory requirement for
universal routing schemes. In Proc. 14th ACM Symp.
on Principles of Distributed Computing, 1995 pp.
223–230

[FG97b] P. Fraigniaud, C. Gavoille. Universal routing schemes.
Journal of Distributed Computing 10: 65–78, 1997

[FG98] P. Fraigniaud, C. Gavoille. Interval routing schemes.
Algorithmica 21: 155–182, 1998

[FG01] P. Fraigniaud, C. Gavoille. Routing in trees. In Proc.
28th Int. Colloq. on Automata, Languages & Prog.,
vol. 2076 of LNCS, 2001 pp. 757–772

[FG02] P. Fraigniaud, C. Gavoille. A space lower bound for
routing in trees. In Proc. 19th Symp. on Theoretical
Aspects of Computer Science, Mar. 2002

[FGM01] P. Fraigniaud, C. Gavoille, B. Mans. Interval rout-
ing schemes allow broadcasting with linear message-
complexity. Distributed Computing 14: 217–229,
2001

[FWB85] A.J. Frank, L.D. Wittie, A.J. Bernstein. Maintaining
weakly-consistent replicated data on dynamic groups
of computers. In Proc. IEEE Int. Conf. on Parallel
Process., 1985 pp. 155–162

[Fre93] G.N. Frederickson. Searching among intervals and
compact routing tables. In Proc. 20th Int. Colloq. on
Automata, Languages & Prog., vol. 700 of LNCS, pp.
28–39. Berlin Heidelberg New York: Springer 1993

[FJ86] G.N. Frederickson, R. Janardan. Separator-Based
Strategies for Efficient Message Routing. In Proc.
27th IEEE Symp. on Foundations of Computer Sci-
ence, 1986 pp. 428–437

[FJ88] G.N. Frederickson, R. Janardan. Designing networks
with compact routing tables. Algorithmica 3: 171–
190, 1988

[FJ89] G.N. Frederickson, R. Janardan. Efficient message
routing in planar networks. SIAM Journal on Com-
puting 18: 843–857, 1989

[FJ90] G.N. Frederickson, R. Janardan. Space-efficient mes-
sage routing in c-decomposable networks. SIAM Jour-
nal on Computing 19: 164–181, 1990

[Gav00] C. Gavoille. A survey on interval routing schemes.
Theoretical Computer Science 245(2): 217–253, 2000

[Gav01] C. Gavoille. Routing in distributed networks:
overview and open problems. ACM SIGACT News
- Distributed Computing Column 32(1): 36–52, 2001

C. Gavoille, D. Peleg: Compact and localized distributed data structures 119

[GG98] C. Gavoille, E. Guévremont. Worst case bounds for
shortest path interval routing. Journal of Algorithms
27: 1–25, 1998

[GG01] C. Gavoille, M. Gengler. Space-efficiency of routing
schemes of stretch factor three. Journal of Parallel
and Distributed Computing 61: 679–687, 2001

[GH99] C. Gavoille, N. Hanusse. Compact routing tables for
graphs of bounded genus. In Proc. 26th Int. Colloq.
on Automata, Languages and Programming, vol. 1644
of LNCS, 1999 pp. 351–360

[GKKPP01] C. Gavoille, M. Katz, N.A. Katz, C. Paul, D. Peleg.
Approximate distance labeling schemes. In Proc. 9th

European Symp. on Algorithms, Aug. 2001
[GP96] C. Gavoille, S. Pérennès. Memory requirement for

routing in distributed networks. In Proc. 15th ACM
Symp. on Principles of Distributed Computing, 1996
pp. 125–133

[GP01a] C. Gavoille, C. Paul. Split decomposition and distance
labelling: an optimal scheme for distance hereditary
graphs. In Proc. Euro. Conf. on Combinatorics, Graph
Theory and Applications, Sep. 2001

[GP01] C. Gavoille, D. Peleg. The compactness of interval
routing for almost all graphs. SIAM Journal on Com-
puting 31(3): 706–721, 2001

[GPPR01] C. Gavoille, D. Peleg, S. Pérennes, R. Raz. Distance
labeling in graphs. In Proc. 12th ACM Symp. on Dis-
crete Algorithms, 2001 pp. 210–219

[GS89] D. Ginat, A.U. Shankar. Decentralized ordering of
contending nodes in a distributed system. Unpub-
lished manuscript, 1989

[HT84] D. Harel, R.E. Tarjan. Fast algorithms for finding near-
est common ancestors. SIAM Journal on Computing
13(2): 338–355, 1984

[HP00] Y. Hassin, D. Peleg. Sparse Communication Networks
and Efficient Routing in the Plane. In Proc. 19th ACM
Symp. on Principles of Distributed Computing, 2000
pp. 41–50

[H84] M. Herlihy. Replication methods for abstract data
types. Technical Report TR-319, MIT, Lab. for Com-
puter Science, 1984

[H87] M. Herlihy. Concurrency versus availability: atomic-
ity mechanisms for replicated data. ACM Trans. on
Comput. Syst. 5: 249–274, 1987

[KNR88] S. Kannan, M. Naor, S. Rudich. Implicit represen-
tation of graphs. SIAM Journal on Discrete Math.
5(4): 596–603, 1992. Preliminary version appeared in
STOC 1988

[KM01] H. Kaplan, T. Milo. Short and simple labels for small
distances and other functions. In Proc. Workshop on
Algorithms and Data Structures, Aug. 2001

[KM01a] H. Kaplan, T. Milo. Parent and ancestor queries us-
ing a compact index. In Proc. 20th ACM Symp. on
Principles of Database Systems, May 2001

[KMS02] H. Kaplan, T. Milom, R. Shabo. A Comparison of
Labeling Schemes forAncestor Queries. In Proc. 19th

ACM-SIAM Symp. on Discrete Algorithms, Jan. 2002
[KKKP02] M. Katz, N.A. Katz, A. Korman, D. Peleg. Label-

ing schemes for flow and connectivity. In Proc. 19th

ACM-SIAM Symp. on Discrete Algorithms, Jan. 2002
[KKP00] M. Katz, N.A. Katz, D. Peleg. Distance labeling

schemes for well-separated graph classes. In Proc.
17th Symp. on Theoretical Aspects of Computer Sci-
ence, vol. 1770 of LNCS, pp. 516–528, Feb. 2000

[KK1] L. Kleinrock, F. Kamoun. Hierarchical routing for
large networks; performance evaluation and optimiza-
tion. Computer Networks 1: 155–174, 1977

[KK2] L. Kleinrock, F. Kamoun. Optimal clustering struc-
tures for hierarchical topological design of large com-
puter networks. Computer Networks 10: 221–248,
1980

[KPR02] A. Korman, D. Peleg, Y. Rodeh. Labeling Schemes
for Dynamic Tree Networks. In Proc. 19th Symp. on
Theoretical Aspects of Computer Science, Mar. 2002

[KK96] E. Kranakis, D. Krizanc. Lower bounds for compact
routing. In Proc. 13th Symp. on Theoretical Aspects
of Computer Science, vol. 1046 of LNCS, 1996 pp.
529–540

[KKR96] E. Kranakis, D. Krizanc, S.S. Ravi. On multi-label lin-
ear interval routing schemes. The Computer Journal
39: 133–139, 1996

[KKU95] E. Kranakis, D. Krizanc, J. Urrutia. Compact routing
and shortest path information. In Proc. 2nd Colloq.
on Structural Information & Communication Com-
plexity, pp. 101–112. Carleton University Press, Jun.
1995

[KRS00] R. Kráľovič, P. Ružička, D. Štefankovič. The com-
plexity of shortest path and dilation bounded interval
routing. Theoretical Computer Science 234(1-2): 85–
107, 2000

[KSU99] E. Kranakis, H. Singh, J. Urrutia. Compass routing on
geometric networks. In Proc. 11th Canadian Conf. on
Computational Geometry, 1999 pp. 51–54

[KL80] H.T. Kung, P.L. Lehman. Concurrent manipulation
of binary search trees. ACM Trans. on Programming
Lang. and Syst. 5: 339–353, 1980

[LEH85] K. A. Lantz, J. L. Edighoffer, B. L. Histon. Towards a
universal directory service. In Proc. 4th ACM Symp.
on Principles of Distributed Computing, 1985 pp.
261–271

[Le79] C.E. Leiserson. Systolic priority queues. Techni-
cal Report CMU-CS-79-115, Carnegie-Mellon Uni-
versity, 1979

[LM79] N. Lynch, M. Merritt. Introduction to the theory of
nested transactions. In Proc. Int. Conf. on Database
Theory, Rome, Italy 1979 pp. 278–305

[Man86] U. Manber. On maintaining dynamic information in a
concurrent environment. SIAM Journal on Computing
15: 1130–1142, 1986

[ML84] U. Manber, R.E. Ladner. Concurrency control in a
dynamic search structure. ACM Trans. on Database
Syst. 9: 439–455, 1984

[MV88] S.J. Mullender, P. Vitányi. Distributed match-making.
Algorithmica 3: 367–391, 1988

[NN98] L. Narayanan, N. Nishimura. Interval routing on k-
trees. Journal of Algorithms 26(2): 325–369, 1998

[NO97] L. Narayanan, J. Opatrny. Compact routing on chordal
rings. In Proc. 4th Colloq. on Structural Informa-
tion & Communication Complexity, Carleton Scien-
tific, Jul. 1997 pp. 125–137

[NS96] L. Narayanan, S. Shende. Characterizations of
networks supporting shortest-path interval labeling
schemes. In Proc. 3rd Int. Colloq. on Structural Infor-
mation & Communication Complexity, Carleton Uni-
versity Press, Jun. 1996 pp. 73–87

[OB87] A.R. Omondi, J.D. Brock. Implementing a dictionary
on hypercube machines. In Proc. IEEE Int. Conf. on
Parallel Process., 1987 pp. 707–709

120 C. Gavoille, D. Peleg: Compact and localized distributed data structures

[OD81] D. Oppen,Y.K. Dalal. The clearinghouse: a decentral-
ized agent for locating named objects in a distributed
environment. Technical Report OPD-T8103, Xerox
Corp., Oct. 1981

[ORS82] T.A. Ottman,A.L. Rosenberg, L.J. Stockmeyer. A dic-
tionary machine for VLSI. IEEE Trans. on Computers
C-31: 892–897, 1982

[Pap86] C.H. Papadimitriou. The Theory of Concurrency Con-
trol. Rockville, MD: Computer Science Press 1986

[Pel99] D. Peleg. Proximity-preserving labeling schemes and
their applications. In Proc. 25th Int. Workshop on
Graph-Theoretic Concepts in Computer Science, vol.
1665 of LNCS, 1999 pp. 30–41

[Pel00a] D. Peleg. Distributed Computing:A Locality-Sensitive
Approach. SIAM, 2000

[Pel00b] D. Peleg. Informative labeling schemes for graphs.
In Proc. 25th Symp. on Mathematical Foundations of
Computer Science, vol. 1893 of LNCS, pp. 579–588.
Berlin Heidelerg New York: Springer 2000

[PS89] D. Peleg, A.A. Schäffer. Graph spanners. Journal of
Graph Theory 13: 99–116, 1989

[PU87] D. Peleg, E. Upfal. Efficient message passing us-
ing succinct routing tables. Research Report RJ5768,
IBM, Aug. 1987

[PU89] D. Peleg, E. Upfal. A tradeoff between size and ef-
ficiency for routing tables. Journal of the ACM 36:
510–530, 1989

[Per82] R. Perlman. Hierarchical networks and the subnet-
work partition problem. In Proc. 5th Conf. on System
Sciences, 1982

[PK87] S. Pramanik, M.H. Kim. HCB tree: A B tree structure
for parallel processing. In Proc. IEEE Int. Conf. on
Parallel Process., 1987 pp. 140–146

[RU99] S. Rajsbaum, J. Urrutia. Some problems in distributed
computational geometry. In Proc. 6th Int. Colloq. on
Structural Information & Communication Complex-
ity, Carleton University Press 1999 pp. 233–248

[RK88] V.N. Rao, V. Kumar. Concurrent insertions and dele-
tions in a priority queue. In Proc. IEEE Int. Conf. on
Parallel Process., 1988 pp. 207–211

[Re78] D.P. Reed. Naming and Synchronization in a Decen-
tralized Computer System. PhD thesis, MIT, Dept. of
Electrical Engineering, 1978

[RS00] P. Ružička, D. Štefankovič. On the complexity of
multi-dimensional interval routing schemes. Theoret-
ical Computer Science 245(2): 255–280, 2000

[SK] N. Santoro, R. Khatib. Labelling and implicit routing
in networks. The Computer Journal 28: 5–8, 1985

[SV88] B. Schieber, U. Vishkin. On finding lowest common
ancestors: simplification and parallelization. SIAM
Journal on Computing 17(6): 1253–1262, 1988

[SS85] H. Schmeck, H. Schröder. Dictionary machines for
different models of VLSI. IEEE Trans. on Computers
C-34: 472–475, 1985

[SL87] A.M. Schwartz, M. Loui. Dictionary machines on
cube-class networks. IEEE Trans. on Computers C-
36: 100–105, 1987

[Sun82] C.A. Sunshine. Addressing problems in multi-
network systems. In Proc. IEEE INFOCOM, 1982
pp. 12–18

[Tar72] R.E. Tarjan. Depth-first search and linear graph algo-
rithms. SIAM Journal on Computing 1(2): 146–160,
1972

[Ter87] D.B. Terry. Cashing hints in distributed systems. IEEE
Trans. on Software Eng. SE-13: 48–54, 1987

[TNP98] P. de la Torre, L. Narayanan, D. Peleg. Thy neighbor’s
interval is greener: A proposal for exploiting interval
routing schemes. In Proc. 5th Int. Colloq. on Struc-
tural Information & Communication Complexity, Car-
leton Scientific, Jun. 1998 pp. 214–228

[Tho01] M. Thorup. Compact oracles for reachability and ap-
proximate distances in planar digraphs. In Proc. 42nd

IEEE Symp. on Foundations of Computer Science,
Oct. 2001

[TZ01] M. Thorup, U. Zwick. Compact routing schemes. In
Proc. 13th ACM Symp. on Parallel Algorithms and
Architecture, 2001 pp. 1–10

[TZ01a] M. Thorup, U. Zwick. Approximate distance oracles.
In Proc. 33rd ACM Symp. on Theory of Computing,
2001 pp. 183–192

1. [TL97] S.S.H. Tse, F.C.M. Lau. A lower bound for
interval routing in general networks. Networks 29(1):
49–53, 1997

[vBoas77] P. van Emde Boas. Preserving order in a forest in less
than logarithmic time and linear space. Information
Processing Letters 6(3): 80–82, 1977

[vLT86] J. van Leeuwen, R.B. Tan. Routing with compact rout-
ing tables. In: G. Rozenberg, A. Salomaa (eds.) The
Book of L, pages 259–273. New York: Springer 1986

[vLT87] J. van Leeuwen, R.B. Tan. Interval routing. The Com-
puter Journal 30: 298–307, 1987

[vLT94f] J. van Leeuwen, R.B. Tan. Compact routing methods:
a survey. In Proc. 1st Int. Colloq. on Structural In-
formation & Communication Complexity, pp. 99–110.
Carleton University Press 1994

[Wei84] W.E. Weihl. Specification and implementation of
atomic data types. Technical Memo MIT/LCS/TM-
314, MIT, Lab. for Computer Science, Mar. 1984

