
Discrete Mathematics 273 (2003) 115–130
www.elsevier.com/locate/disc

Distance labeling scheme and split decomposition

Cyril Gavoillea , Christophe Paulb
aLaBRI - Universit�e Bordeaux I, 351 cours de la lib�eration, 33405 Talence Cedex, France

bCNRS - LIRMM, 161 rue Ada, 34 392 Montpellier Cedex, France

Received 12 November 2001; received in revised form 12 January 2003; accepted 14 April 2003

Abstract

A distance labeling scheme is a distributed data-structure designed to answer queries about
distance between any two vertices of a graph G. The data-structure consists in a label L(x; G)
assigned to each vertex x of G such that the distance dG(x; y) between any two vertices x
and y can be estimated as a function f(L(x; G); L(y; G)). In this paper, by the use of split
decomposition of graphs, we combine several types of distance labeling schemes. This yields to
optimal label length schemes for the family of distance-hereditary graphs and for other families
of graphs, allowing distance estimation in constant time once the labels have been constructed.
c© 2003 Published by Elsevier B.V.

Keywords: Distance labeling scheme; Split decomposition; Distance-hereditary graphs

1. Introduction

In this paper we deal with undirected simple and connected graphs. The distance
dG(x; y) between two vertices x; y of a graph G is the minimum length (or the min-
imum cost in the case of weighted graphs) of a path connecting x and y in G. We
are interested in the distance labeling problem, i.e., the design of a full distributed
data-structure that supports distance queries. More precisely:

How to label the vertices of a graph G in such a way the distance between any
two vertices x and y of G can be computed or approximated by inspecting the
labels of x and of y, and without any other information source?

E-mail address: paul@lirmm.fr (C. Paul).

0012-365X/03/$ - see front matter c© 2003 Published by Elsevier B.V.
doi:10.1016/S0012-365X(03)00232-2

mailto:paul@lirmm.fr

116 C. Gavoille, C. Paul / Discrete Mathematics 273 (2003) 115–130

Clearly, one can encode all the desired information without any restriction on the
label length of the vertices. On the other hand short labels, say of (log n)c bits 1

per vertex where c is a constant and n the number of vertices of the graph, is not
possible for all n-vertex graphs. Indeed, there are more than exp(n(log n)c) graphs
with n vertices. The sequence of the n labels su?ces to entirely rebuild the graph by
testing distances, and there are at most exp(nL) such sequences if vertex labels are on
L bits or less. Our goal is to design labeling schemes that assigns relatively short labels
to all n-vertex graphs of a given family of graphs, and such that distance queries can
be performed quickly, ideally in constant time. In addition, we are looking for labeling
schemes that are polynomially constructible.
This labeling problem has been formally introduced in [30], but appears earlier

informally in [20] about the Squashed Cube Embedding problem. Distance labeling
is a natural generalization of the problem of Dnding implicit representation of graphs
[5,8,23,33] that consists in assigning labels of the vertices of a graph such that the
adjacency between vertices can be tested using the corresponding labels. Other functions
can be computed by suitable labeling schemes: ancestry and small distances in trees
[2,4,24], nearest-common ancestor in trees [3], and other functions [14,25,29]. A recent
overview on compact labeling schemes can be founded in [18].

De�nition 1 (Gavoille et al. [17]). Let s and r be two real numbers such that s¿ 1
and r¿ 0. Given a family F of connected graphs, an (s; r)-approximate distance
labeling scheme on F, (s; r)-approximate DLS for short, is a pair 〈L; f〉, where L is
called the labeling function and f the distance decoder, such that for any G ∈F and
any pair x; y of distinct vertices of G, L(x; G)∈{0; 1}∗, and

dG(x; y)6f(L(x; G); L(y;G))6 sdG(x; y) + r:

An (1; r)-approximate DLS is called r-additive, while an (s; 0)-approximate is called
s-multiplicative. For convenience, 0-additive and 1-multiplicative DLS are called exact
DLS.
The reader interested in distance schemes has to keep in mind the following deep

result due to [14] related to the clique-width of a graph. The clique-width is a com-
plexity measure of graphs. For a given graph, it corresponds to the minimum number
of diKerent labels needed to build it under the three following operations: (1) create
a vertex with a given label; (2) relabel all the vertices of a given label to another
label; and (3) connect every vertex of label i to all the vertices of label j. Cliques
have clique-width two, and bounded tree-width graphs are of bounded clique-width
(see [13] for more details about this construction).

Theorem 1 (Courcelle and Vanicat [14]). The family of n-vertex bounded clique-width
graphs enjoys an exact distance labeling scheme using labels of length O(log2 n) bits.
Moreover, the distance can be computed in O(log2 n) time.

1 The function log denotes the logarithm in base two.

C. Gavoille, C. Paul / Discrete Mathematics 273 (2003) 115–130 117

Some graph families studied here have bounded clique-width (namely distance-
hereditary graph). But in our point of view, this result has to be considered care-
fully. It shows the existence of exact DLS with relatively short labels and fast distance
queries. However the scheme is not explicit (the clique-width decomposition must be
given) and the hidden constants in the label length and in the query time complexity
are huge (a stack of exponentials). Note that computing the clique-width of a graph
(and its optimal decomposition) is a wide open problem. For Dxed k ¿ 3, it is not
known whether there exists a polynomial time algorithm that recognizes graphs of
clique-width at most k (recently Corneil et al. [12] have showed that the case k =3 is
polynomial). So Dnding an explicit and polynomial time constructible distance label-
ing scheme with constant time query for bounded clique-width graphs is a challenging
problem.
In this paper, we show how the split decomposition of a graph [15] can be used to

design e?cient labeling schemes. Our technique allows to combine diKerent types of
schemes. Applying this technique, we show that the optimal schemes for trees obtained
by [17,19] can be generalized to distance-hereditary graphs. Our results are extended to
other classical families of graphs. For the family of n-vertex distance-hereditary graphs,
we explicitly construct (in polynomial time) an exact DLS with O(log2 n) bit labels,
and a (1 + o(1))-multiplicative DLS with O(log n log log n) bit labels. We show that
our schemes are asymptotically optimal w.r.t. the label length and the approximation.
Moreover, distances can be estimated in worst-case constant time under a standard
word-RAM model providing standard arithmetic operations on M(log n) bit words in
constant time.
The paper is organized as follows. Section 2 presents how the split decomposi-

tion can be used to compute a tree-like auxiliary graph from which distances of
the original graph can be recovered. Then Section 3 shows how diKerent approxi-
mate DLS can be arranged together when a graph has a suitable block-partition, a
graph decomposition along some cut-vertices. The technique is applied in the last
section to some graph families. First we illustrate our technique on a simple ex-
ample of graph family, namely the block-graphs. Then we apply the technique to
graph families related to distance-hereditary graphs, namely all the graphs G whose
distance between x; y in any connected induced subgraph is at most sdG(x; y) + r.
In particular, we show that distances in a distance-hereditary graph (s = 1 and r =
0) can be reconstructed from distances taken from two block-graphs of linear
size.

2. On the split decomposition

In this section, we show that the split decomposition enables us to compute from a
graph G a new graph T and a tree T̃ such that the distances in G can be retrieved from
the distances in T and in T̃ . The split decomposition has been originally introduced
by Cunninghan [15].
In a graph G, the neighborhood of a vertex x∈V (G) is denoted by N (x). The

neighborhood of a set of vertices S ⊆ V (G) is the set N (S) =
⋃

s∈S N (s) \ S.

118 C. Gavoille, C. Paul / Discrete Mathematics 273 (2003) 115–130

V1 V2

v1

G1 G2

v2

Fig. 1. A step in a split decomposition and the tree-like graph construction.

8 9

5v1 v2

6

3

1
4

2

7

8 9

5

7

6

3

1
4

2

5

6

9

4

3

u1
1

2
7 8

w2

w1u2 v1 v2

G

T
5

4

3

u1
1

2

u2 v1 v2

9

7

6

w2

w1

z2z1

8

Fig. 2. A tree-like graph T obtained from G with the 4 splits: (V1; V2) = ({1; 2; 3}; {4; 5; 6; 7; 8; 9}), then
(U1; U2)=({1; 2}; {v1; 3}) and (W1; W2)=({5; 6}; {4; v2; 7; 8; 9}), and Dnally (Z1; Z2)=({w1; 7}; {4; v2; 8; 9}).
The component {4; v2; z1; 8; 9} could be still decomposed.

De�nition 2 (Cunninghan [15]). A split in a graph G = (V; E) is a partition of V into
two sets V1 and V2 such that |V1|¿ 2, |V2|¿ 2, and such that for all x1 ∈ Ṽ 1 = V1 ∩
N (V2) and x2 ∈ Ṽ 2 = V2 ∩ N (V1), {x1; x2}∈E.

A graph without any split is called prime. In particular, a graph with 3 vertices or
less is prime. When a graph G has a split (V1; V2), it can be decomposed into two
graphs G1 and G2 as follows: G1 (resp. G2) is induced by V1 ∪ {v1} (resp. V2 ∪ {v2})
where v1 (resp. v2) is a virtual vertex adjacent to all the vertices of Ṽ 1 (resp. Ṽ 2).
One can then decide to decompose recursively G1 and/or G2. The graphs obtained at
the end of a split decomposition are the split-components.
It is important to note that each split-component is isomorphic to an induced subgraph

of G. In particular, split-components that are prime graphs are induced subgraphs of
G. A split decomposition is not unique, however, it has been shown in [15] that
every connected graph has a unique split decomposition into a minimal number of
split-components that are cliques, stars (i.e., a tree of depth 1), or prime graphs. This
unique split decomposition is obtained if during the decomposition maximal splits are
chosen (maximal w.r.t. the inclusion of Ṽ 1 ∪ Ṽ 2).
Let G be an unweighted n-vertex graph. From G and from any split decomposition

applied to G we construct a graph T , called tree-like graph of G, obtained recursively
as follows (cf. Figs. 1 and 2): If G is a split-component (e.g. G is prime), then T is G.

C. Gavoille, C. Paul / Discrete Mathematics 273 (2003) 115–130 119

Otherwise, let G1; G2 be the two graphs into which G is decomposed. Then T consists
in joining the graphs T1 and T2, the tree-like graphs of G1 and G2, by connecting the
virtual vertices v1 and v2 by an edge, called virtual edge.
A similar construction of T appears in [27]. The split-components of G in T are

exactly the connected components—called hereafter simply component of T—obtained
by removing all the virtual edges of T . Fig. 2 shows three tree-like graphs of a graph
G, the last one denoted T has 5 components.
For every tree-like graph T of G, we deDne T̃ by the graph obtained from T by

contracting each component into a single vertex. So the vertices of T̃ are seen as the
components of T , and its edges are the virtual edges of T . By construction of T , T̃ is
a tree. In the example depicted in Fig. 2, T̃ is a path of length 4.

Lemma 2.1. Let T be a tree-like graph of G, let x and y be two vertices of G, and let
X (resp. Y) be the component of T containing x (resp. y). Then, dG(x; y)=dT (x; y)−
2dT̃ (X; Y).

Proof. The property holds if T =G, in particular whenever n6 3. For an induction on
n, assume that n¿ 3, and that the property holds for every tree-like graph of a graph
of at most n−1 vertices. Finally, assume that T consists of joining the tree-like graphs
T1 and T2 for a split (V1; V2) of G.
Let n1= |V1| and n2= |V2|. Let v1 (resp. v2) be the vertex of T1 (resp. T2) connected

to all the vertices of Ṽ 1 (resp. Ṽ 2). Note that T1 (resp. T2) is a tree-like graph of
a graph G1 (resp. G2) with n1 + 1 vertices (resp. with n2 + 1 vertices). Since n =
n1 + n2 and n1; n2¿ 2, it follows that n1 + 1; n2 + 16 n − 1, thus that Lemma 2.1
holds for G1 and G2. Let P be a shortest path from x to y in G. We consider two
cases.
Case 1: x; y∈V1 (or both in V2). Let us Drst show that P is isomorphic to a path

P′ entirely contained in G1. If P ⊆ V1, then one can set P′ = P and we are done.
If P ∩ V2 �= ∅, then P contains one (and only one) vertex of V2 and P has the form
P = (x; A; u; w; v; B; y), where A and B are sequences of vertices of V1, u; v∈ Ṽ 1, and
w∈ Ṽ 2. Since v1 is adjacent to u and v in G1, P is isomorphic to P′=(x; A; u; v1; v; B; y),
a path wholly contained in G1.
Since P is isomorphic to a path P′ wholly contained in G1, we have dG1 (x; y)6

dG(x; y). However, since G1 is isomorphic to an induced subgraph of G, we have
dG1 (x; y) = dG(x; y). By induction, dG1 (x; y) = dT1 (x; y) − 2dT̃ 1 (X; Y). Since the edge
joining T1 to T2 is a bridge, dT1 (x; y)=dT (x; y) and dT̃ 1 (X; Y)=dT̃ (X; Y). It follows that
dG1 (x; y)=dT (x; y)−2dT̃ (X; Y), hence that dG(x; y)=dT (x; y)−2dT̃ (X; Y), completing
the proof of Case 1.
Case 2: x∈V1 and y∈V2 (or the reverse). Note that removing the edges between

Ṽ 1 and Ṽ 2 disconnects G. Thus P has the form P = (x; A; u; w; B; y) where A ⊆ V1,
B ⊆ V2, u∈ Ṽ 1, and w∈ Ṽ 2. It follows that

dG(x; y) = dG1 (x; u) + dG2 (w; y) + 1: (1)

By Case 1 (from the two last equations), dG1 (x; u)=dT (x; u)−2dT̃ (X;U) and dG2 (w; y)
= dT (w; y) − 2dT̃ (W; Y), where U (resp. W) is the component of T containing u

120 C. Gavoille, C. Paul / Discrete Mathematics 273 (2003) 115–130

(resp. w). {U;W} is an edge of T̃ that disconnects the component X from Y , thus
dT̃ (X; Y) = dT̃ (X;U) + 1 + dT̃ (W; Y). Hence

dT̃ (X;U) + dT̃ (W; Y) = dT̃ (X; Y)− 1:

The vertex v1 is connected to u in T1, v2 is connected to w in T2, and {v1; v2} is a
bridge of T . Thus (u; v1; v2; w) is a shortest path in T . Hence dT (x; y) = dT (x; u) +
dT (u; w) + dT (w; y), and that implies

dT (x; u) + dT (w; y) = dT (x; y)− 3:

Plugging in Eq. (1), we have

dG(x; y) = (dT (x; u)− 2dT̃ (X;U)) + (dT (w; y)− 2dT̃ (W; Y)) + 1

= dT (x; u) + dT (w; y)− 2(dT̃ (X;U) + dT̃ (W; Y)) + 1

= dT (x; y)− 3− 2(dT̃ (X; Y)− 1) + 1

= dT (x; y)− 2dT̃ (X; Y);

completing the proof of Case 2 and of Lemma 2.1.

Lemma 2.2. Let T be a tree-like graph of G. Then, T contains no more than
max{n− 3; 0}¡n virtual edges.

Proof. The property holds if T =G, in particular whenever n6 3. For an induction on
n, assume that n¿ 4, and that the property holds for every tree-like graph of a graph
of at most n−1 vertices. Finally, assume that T consists in joining the tree-like graphs
T1 and T2 for a split (V1; V2) of G. Let n1 = |V1| and n2 = |V2|. As already said in the
proof of Lemma 2.1, T1; T2 are tree-like graphs of graphs with n1 + 1; n2 + 16 n− 1
vertices. So by induction T1 and T2 have, respectively, at most n1+1−3 and n2+1−3
virtual edges. It follows that T has at most 1 + (n1 + 1 − 3) + (n2 + 1 − 3) = n − 3
virtual edges, completing the proof.

It follows that T has less than 2n virtual vertices, and less than 3n vertices.

3. Distance labeling schemes combination

It is known that there exist some n-vertex graphs that need exact distance labels of
P(n) bits [19]. Therefore, for general graphs, we do not expect short labels even by
the use of split decomposition. However, there is hope for families of graphs whose
prime components have suitable properties, like bounded tree-width, bounded chordal-
ity, planarity, etc. This section presents DLS, widely based on the schemes for trees
[17] and derived from DLS of prime components. For that purpose we need to inves-
tigate labeling schemes on graphs having a suitable block-partition, a notion we give
below. Recall that a cut-vertex of a graph G is a vertex whose deletion disconnects
G in two or more non-empty connected components.

C. Gavoille, C. Paul / Discrete Mathematics 273 (2003) 115–130 121

Fig. 3. A block-partition of an arbitrary graph, and its associated tree.

De�nition 3. A block-partition of a graph G is a set of subgraphs of G, called blocks
of G, such that: (1) every vertex of G is contained in a block, (2) every edge of G is
contained in exactly one block and (3) the blocks intersect at some cut-vertices only.

DeDnition 3 is nothing else than the Robertson–Seymour’s tree-decomposition [32]
in which the subgraphs intersect in cut-vertices only (in a tree-decomposition, subgraph
intersections may be larger). Note that if two blocks intersect they have in common
exactly one cut-vertex. Given a block-partition P we associate a tree T deDned as
follows:

V (T) = P ∪ C; where C = {V (B) ∩ V (B′) |B �= B′ ∈P};
E(T) = {{B; X } |B∈P; X ∈C ∩ V (B)}:

Roughly speaking, T is obtained from P by replacing every block by a star whose
leaves are the intersections with all its intersecting blocks (see Fig. 3). Observe that we
make no restrictions on the blocks. They may contain, for instance, some cut-vertices
of the graph that are not in the set C. However if C is the set of all the cut-vertices
of the graph (that is blocks are exactly the 2-connected components), T is then related
to the block-cutvertex graph introduced by Gallai, Harary and Prins in the 1960s (cf.
[31,6]).

Lemma 3.1. |V (T)|6 2|P| − 1 and |P|6 n− 1, where n= |V (G)|.

Proof. Let us root T at a vertex of P. Consider c∈C. Because c is the intersection of
two blocks, c is not a leaf in T . Thus, in T , every non-root block of P has an unique
father of C, proving that |P| − 1¿ |C|. Thus, |V (T)|6 2|P| − 1. Consider now any
spanning tree S of G (G is connected). By Rule 2 of DeDnition 3, every edge of S
belongs to at most one block, thus |P|6 n− 1.

In this section we deal with weighted or unweighted graphs with n vertices. Given
an integer w¿ 0, let us call a w-diameter graph any weighted graph whose edge cost

122 C. Gavoille, C. Paul / Discrete Mathematics 273 (2003) 115–130

is a non-null integer, and such that the weighted diameter is at most w. Unweighted
n-vertex graphs are n-diameter graphs. Hereafter, we assume a word-RAM model of
computation providing constant time standard arithmetic operations on M(log n) bit
words.
Given a real s¿ 1 and an integer w¿ 0, a pair of functions 〈$; %〉 is an (s; w)-

estimator if $: {1; : : : ; w} → {0; 1}&, % : {0; 1}& → N, and for every x∈{1; : : : ; w}, x6
%($(x))6 sx. Intuitively, we think of $ as a function “compacting” x into a string
$(x) of & bits (typically &�logw) and of % as a decoding function attempting to
reconstruct x from $(x). The size of the estimator is &, and its time complexity decoder
is the worst-case time complexity of the function %. For every w, there is a trivial
(1; w)-estimator of size �logw� consisting in representing in binary each integer of
{1; : : : ; w}. More sophisticated estimators can be constructed. For instance, in [17] the
following range of estimators is built.

Lemma 3.2 (Gavoille et al. [17]). For all k and m∈{0; : : : ; k}, there exists a (polyno-
mially constructible) (1+2−m; 2k)-estimator of size &=m+�log(k−m+1)�. Moreover
the decoder has constant time complexity if k=O(log n) assuming a word-RAM model
of computation providing constant time standard arithmetic operations on M(log n)
bit words.

Choosing k= �logw� and m= �log k�, Lemma 3.2 gives a (1+1=logw; w)-estimator
of size 2 log logw +O(1) and of constant time decoder if logw =O(log n).
The main result of this section is the following theorem:

Theorem 2. Let & be the size of an (s; w)-estimator with constant time decoder.
Let F and B be two families of w-diameter graphs with at most n vertices such
that every G ∈F has a block-partition P ⊂ B such that |P|6p. Assume that B
has an (s; r)-approximate DLS with labels of length at most * and with a con-
stant time distance decoder. Then, F has an (s; r)-approximate DLS using labels
of length at most (& + *) log(4p) + O(log n) bits and with a constant time distance
decoder.

Intuitively, Theorem 2 means that distances in G can be approximated by the com-
bination of O(logp) DLS, each one being deDned inside a block of G. It is important
to note that despite the fact that each block can be of unbounded size, * can be of
constant size. In DeDnition 1, it is just required that distances can be computed from
labels of distinct vertices, two vertices can have the same label. For instance, if each
block is an unweighted clique with M(

√
n) vertices, then M(log n) is not a lower bound

for *: constant length labels su?ce to compute distances in cliques of arbitrary size!
To prove Theorem 2 we need some preliminaries.
The separator of a rooted tree T is the vertex s obtained by performing a traversal

of T from its root, and is deDned as follows: Let u be the current vertex (initially u
is the root). If all the connected components of T \ {u} have n=2 vertices or less, then
s=u. Otherwise updates u by the unique child of u having more than n=2 descendants.
It is not di?cult to see that the above procedure ends on a vertex s such that T \ {s}

C. Gavoille, C. Paul / Discrete Mathematics 273 (2003) 115–130 123

is composed of connected components of at most n=2 vertices. Moreover, s can be
founded in linear time.
Given a vertex x of T , the separator-sequence of x is the sequence of vertices

(s1; : : : ; sh) such that: (1) s1 is the separator of T , (2) either x = s1 and h = 1,
or (s2; : : : ; sh) is the separator-sequence of the tree T ′ containing x taken from the
forest T \ {s1}, T ′ rooted at the neighbor of s1 in T that is contained in T ′. The
separator-sequence of all the vertices of T can be constructed in O(n log n) time, and
we have h6 �log n�.
By construction, every path from x to y in T (with x �= y) must traverse a

vertex s common to the separator-sequence of x and of y. More precisely, if the
separator-sequence of x is (s1 = x1; x2; : : : ; xhx = x), and the separator-sequence of y
is (s1 = y1; y2; : : : ; yhy = y), then we have dT (x; y) = dT (x; xi0) + dT (xi0 ; y), where
i0 is the largest index i such that xi = yi. Actually, i0 is the length of the longest
common preDx of the separator-sequence of x and of y, which we denote hereafter
by lcp(x; y).
Assume that T is a w-diameter tree, and assume that some (s; w)-estimator of size &

is given. A simple s-multiplicative DLS on T can be described. The label of x consists
of two sub-labels: a label Sx representing its separator-sequence; and a table Dx of
hx − 1 binary strings such that Dx[i] = $(dT (x; xi)) for every i∈{1; : : : ; hx − 1} (since
dT (x; xhx) = 0, we can save the last entry of Dx). Similarly, y has a label Sy and a
table Dy[j] = $(dT (y; yj)) for every j∈{1; : : : ; hy − 1}. From the above discussion,
dT (x; y) can be estimated by d̃(x; y) as follows:

(1) compute i0 = lcp(x; y) from Sx and Sy;
(2) compute d̃(x; y) = %(Dx[i0]) + %(Dy[i0]).

We check that dT (x; y)6 d̃(x; y)6 sdT (x; y), as dT (x; y) = dT (x; xi0) + dT (xi0 ; y). As
shown in [17], the labels Sx and Sy can be coded (in polynomial time) on O(log n) bits
if we are interested only in extracting lcp(x; y) in constant time. 2 Therefore, provided
that the (s; w)-estimator has constant time decoder, one can estimate distances in con-
stant time in n-vertex trees using labels of & log n+ O(log n) bits, as hx; hy6 �log n�.
This is mainly the scheme used for trees in [17].
One need to extend this construction to complete the proof of Theorem 2.

Proof of Theorem 2. Let 〈$; %〉 be an (s; w)-estimator of size & and with constant time
decoder. Let 〈LB; fB〉 be an (s; r)-approximate DLS on B with labels of length at
most * and with a constant time distance decoder. Consider an n-vertex w-diameter
graph G ∈F having a block-partition P ⊂ B. Let C = {V (B) ∩ V (B′) |B �= B′ ∈P}.
Let T be the associated tree of P, and let us root T in an arbitrary vertex.

2 The idea is the following. Instead of storing (s1; : : : ; sh) in extension with h log n = O(log2 n) bits, we
associate to each si a number ci¿ 1 that identiDes the subtree containing x whenever si is removed from
the current tree component. Sorting the subtrees by size one can show that

∏
i ci6 n, and thus one can

encode (c1; : : : ; ch) on O(log n) bits.

124 C. Gavoille, C. Paul / Discrete Mathematics 273 (2003) 115–130

We construct an approximate DLS 〈L; f〉 on F as follows. For every x∈V (G), we
set

L(x; G) = (hX ; SX ;MX ; Dx; PX)

where X ∈P is a block containing x (if several blocks contains x, choose one arbi-
trarily). hX is the length of the separator-sequence of X in T . SX is the label assigned
to the separator-sequence of X that allows to e?ciently compute lcp(X; Y) from the
corresponding label of any vertex Y of T . Assume that the separator-sequence of X
is (X1; : : : ; XhX). From this sequence we construct a new sequence of vertices of G,
(x1; : : : ; xhX), such that, for every i∈{1; : : : ; hX }: if Xi ∈C, then xi =Xi; xhX = x; and if
Xi ∈P and i �= hX , then xi is the unique vertex of C that neighbors Xi on the path from
X to Xi in T (xi exists since X; Xi ∈P and X �= Xi). MX is a table such that, for every
i∈{1; : : : ; hX −1}: MX [i]=1 if xi=Xi (i.e., if Xi ∈C), and MX [i]=0 otherwise. Finally,
Dx and PX are tables such that for every i∈{1; : : : ; hX −1}, Dx[i]=$(dG(x; xi)), and for
every i∈{1; : : : ; hX }, PX [i] = LB(xi; Xi) if Xi ∈P (if Xi ∈C, PX [i] is not deDned—the
entry is empty).
Let x; y be any two distinct vertices of G with labels:

L(x; G) = (hX ; SX ;MX ; Dx; PX);

L(y;G) = (hY ; SY ;MY ; Dy; PY):

The distance decoder f is computed as follows (for short, we let d̃(x; y) =
f(L(x; G); L(y;G))):

(1) compute i0 = lcp(X; Y) from SX and SY ;
(2) If i0 = hX = hY , then return d̃(x; y) = fB(PX [i0]; PY [i0]);
(3) If MX [i0] = 1, then return d̃(x; y) = %(Dx[i0]) + %(Dy[i0]);
(4) return d̃(x; y) = %(Dx[i0]) + fB(PX [i0]; PY [i0]) + %(Dy[i0]).

Let us show that 〈L; f〉 is an (s; r)-approximate DLS, that is dG(x; y)6 d̃(x; y)
6 sdG(x; y) + r.

(1) If i0 = hX = hY , then X = Y and x and y belong to the same block B of P.
Therefore the local (s; r)-approximate DLS on B, namely 〈LB; fB〉, can be used
and the approximation follows.

(2) If MX [i0] = 1, then Xi0 = Yi0 ∈C is a cut-vertex that separates x from y. In other
words, dG(x; y) = dG(x; Xi0) + dG(y; Yi0). The Drst term is stored in the table Dx

and the second in the table Dy. Therefore the result follows by using 〈$; %〉.
(3) If MX [i0] = 0, then Xi0 = Yi0 ∈P is a block B that separates x from y. Therefore

any shortest path from x to y has to cross xi0 and yi0 , both in B. In other words,
dG(x; y)=dG(x; xi0)+dB(xi0 ; yi0)+dG(yi0 ; y). Note xi0 �= yi0 so dB(xi0 ; yi0) can be
estimated, thanks to the labels LB(xi0 ; B) and LB(yi0 ; B). Since Dx[i0]=$(dG(x; xi0)),
Dy[i0]=$(dG(y; yi0)) and since the local label of xi0 and yi0 are stored, respectively,
in PX [i0] and PY [i0], the approximation follows.

C. Gavoille, C. Paul / Discrete Mathematics 273 (2003) 115–130 125

Let us upper bound the length of L(x; G). Note that hX 6 1+ log|V (T)|. By Lemma
3.1, |V (T)|6 2|P| − 1¡ 2p, thus hX ¡ log(4p). The label length of x is therefore
bounded by �log hX �=O(log logp) bits for hX , O(logp) bits for SX , hX −1=O(logp)
bits for MX , &(hX − 1)¡& log(4p) bits for Dx, and at most * · hX ¡* log(4p) bits
for PX . By Lemma 3.1, p¡n, thus hX , SX and MX cost O(log n) bits. All together,
we obtain (& + *) log(4p) + O(log n) bit for L(x; G), and this completes the proof of
Theorem 2.

Theorem 2 can be completed by remarking that the scheme constructed for F is
polynomial time constructible if the block-partitions, the estimator and the DLS for B
are polynomial time constructible.

4. Application to some graph families

Let us now apply the technique presented in the previous section to some graph
families. All the graphs we consider in this section are unweighted.

4.1. Block-graphs

Theorem 2 can be applied in a trivial case: the block-graph family. A graph is
a block-graph if all its maximal 2-connected components are cliques (see [22,26]).
Block-graphs can be seen as graphs constructed from trees by replacing each edge by
a clique of arbitrary size. Every block-graph is chordal, i.e., a graph without induced
cycles of length larger than 3. Block-graphs are also the intersection graphs induced
by the block-partition of a graph: the vertex set is the set of blocks, and the edge set
is the blocks that intersect.

Theorem 3. The family of unweighted n-vertex block-graphs has an exact DLS (resp.
(1+ 1=log n)-multiplicative) with O(log2 n) (resp. O(log n log log n)) bit labels. More-
over, the scheme is polynomial time constructible and the distance decoder has con-
stant time complexity.

Proof. We combine Lemma 3.1 (p¡n), Lemma 3.2 (choosing & = O(log n) or
O(log log n) depending on the willing approximation) and Theorem 2 remarking that
* = 0 since exact DLS on the family of cliques can be done without any label.

Since block-graphs contain trees, Theorem 3 is optimal according to the following
lower bound due to [17,19].

Lemma 4.1 (Gavielle et al. [17,19]). Let s be such that 16 s6 1 + 6=log n, and let
r¿ 0. Let Ls (resp. Lr) be any s-multiplicative (resp. r-additive) DLS on the family
of unweighted n-vertex trees. Then, Ls (resp. Lr) assigns on a vertex of a tree a
label of length M(log n log log n) bits (resp. M(log2(n=(r + 1))) bits).

126 C. Gavoille, C. Paul / Discrete Mathematics 273 (2003) 115–130

4.2. Generalized distance-hereditary graphs

A graph G is distance-hereditary if the distance between any two vertices of any
connected induced subgraph H of G is the same in H and in G. Distance-hereditary
graphs have been investigated to design interconnection network topologies for their
distance property in the case of faulty nodes (see [7] for references about this family).
We introduce the family of (s; r)-distance-hereditary graphs, with s¿ 1 and r¿ 0,

a natural generalization of distance-hereditary graphs.

De�nition 4. A graph G is a (s; r)-distance-hereditary graph if for every connected
induced subgraph H of G, dH (x; y)6 sdG(x; y)+ r for any two vertices x; y of H . We
denote by DH(s; r) the family of all (s; r)-distance-hereditary graphs.

The sub-family DH(1; 0) is exactly the family of distance-hereditary graphs, and
DH(s; 0) has been introduced and investigated in [10,11]. The sub-family DH(1; r)
have been studied in [1,9]. Observe that the family DH(s; r) is closed under taking
induced subgraphs.
Recall that a graph is k-chordal if it does not contain any induced chordless cycle

of length larger than k. Chordal graphs are exactly 3-chordal graphs.

Lemma 4.2. Every (s; r)-distance-hereditary graph is (2s+ r + 2)-chordal.

Proof. Let C be a cycle of length ‘. Observe that if ‘¿ 2s+r+2, then C �∈ DH(s; r).
Indeed, the deletion of a vertex of C induces a subgraph P of C (a path) with two
vertices x; y such that dP(x; y)=‘−2¿ 2s+r=sdC(x; y)+r, contradicting C ∈DH(s; r).
Since DH(s; r) is closed under taking induced subgraph, every G ∈DH(s; r) has no
induced cycle of length ‘¿ 2s+ r + 2, implying that G is (2s+ r + 2)-chordal.

For k-chordal graphs we have the following result:

Lemma 4.3 (Gavoille et al. [17]). The family of n-vertex k-chordal graphs has a
�k=2�-additive (resp. (1 + 1=log n; �k=2�)-approximate) DLS with O(log2n) (resp.
O(log n log log n)) bit labels. Moreover, the scheme is polynomial time constructible
and the distance decoder has constant time complexity.

Lemmas 4.2 and 4.3 give us an immediate DLS for the family DH(s; r).

Theorem 4. The family of n-vertex (s; r)-distance-hereditary graphs has an (s+�r=2�+
1)-additive (resp. (1 + 1=log n; s+ �r=2�+1)-approximate) DLS with O(log2n) (resp.
O(log n log log n)) bit labels. Moreover the scheme is polynomial time constructible
and the distance decoder has constant time complexity.

The scheme of [17] for k-chordal graphs is optimal in terms of label length for
every k6 n0, for arbitrary constant 0¡ 1. Indeed, trees are k-chordal, and there is no
r-additive DLS on trees with labels shorter than O(log2(n=(r+1))) bits (cf. Lemma 4.1).

C. Gavoille, C. Paul / Discrete Mathematics 273 (2003) 115–130 127

However, for the family DH(s; r) there is a little hope to do better because Lemma
4.2 is not a complete characterization. 3

It is not di?cult to check that, for all s¿ 1 and r¿ 0, the graph C(s; r) composed of
two cycles sharing an edge of length, respectively, ‘1=s+�r=2�+3 and ‘2=s+�r=2�+2
satisDes C(s; r) is (s+�r=2�+3)-chordal (thus is also (2s+r+2)-chordal), but C(s; r) �∈
DH(s; r). For that it su?ces to delete a vertex of degree 3 in C(s; r) to get a path P
with two vertices x; y at distance two in C(s; r) and such that dP(x; y)= ‘1− 2+ ‘2−
2 = 2s+ r + 1¿sdC(s; r)(x; y) + r.
Let us investigate the sub-family DH(1; 0) in more details, and let us try to im-

prove Theorem 4 for s= 1 and r = 0. By Theorem 4, distance-hereditary graphs have
a 2-additive DLS with O(log2n) bit labels. It is known [17] that 3-chordal graphs
(and 4-chordal graphs as well) need P(n) bit labels for any exact DLS. However,
the counterexample C(1; 0) taken from the above discussion—it is named domino
in [21]—shows that many 4-chordal graphs are not distance-hereditary. So, there is
hope to do better, at least from the approximation side. EKectively, we will see
that an exact DLS can be designed with O(log2 n) bit labels. We use the following
result:

Lemma 4.4 (Dahlhaus [16], Hammer and MaKray [21]). Distance-hereditary graphs
has a split decomposition such that its split-components are stars and cliques [21].
Moreover, this split decomposition can be performed in linear time [16].

Consider an n-vertex distance-hereditary graph G. Lemma 4.4 implies that in lin-
ear time one can construct a tree-like graph T from G (as deDned in Section 2)
whose components are stars and cliques. Therefore, T is a block-graph. The asso-
ciated tree of T , namely T̃ , is also a block-graph (it is a tree). By Lemma 2.2,
T and T̃ have O(n) vertices. So, by Theorem 3, T and T̃ have an e?cient DLS.
By Lemma 2.1, one can rebuild the distances in G from the distances in T and T̃ .
Therefore:

Theorem 5. The family of n-vertex distance-hereditary graphs enjoys an exact (resp.
(1 + 1=log n)-multiplicative) DLS (polynomially constructible) using labels of length
O(log2n) (resp. O(log n log log n)) and constant time decoder.

Again since distance-hereditary graphs contain trees, this result is optimal by
Lemma 4.1.

4.3. Weak-bipolarizable graphs

Since we are looking for graphs whose split components have a nice local (s; r)-
approximate DLS, one could think about graphs whose split-components are k-chordal.

3 To the best of our knowledge, only the families DH(1; 0) [21], DH(1; 1) [1,9], and DH(3=2; 0) [10]
have been characterized in terms of forbidden induced subgraphs and have a polynomial time recognition
algorithm. The recognition problem for DH(1; r) (r not Dxed) has been shown Co-NP-complete [9].

128 C. Gavoille, C. Paul / Discrete Mathematics 273 (2003) 115–130

But it is easy to see that for any k ¿ 4, if G is k-chordal then its split-components are
also k-chordal. So there is some hope only for 4-chordal graphs.
Let us consider the family of weak-bipolarizable or HHDA-free graphs [28]. This

is the family consisting of graphs without House (a square and a triangle sharing an
edge), Hole (a cycle of length larger than 4), Domino (two squares sharing an edge),
and A (a cycle of 4 vertices with two pendant vertices attached to two consecutive
vertices on the cycle) as induced subgraphs. Even though HHDA-free graphs are not
necessarily 3-chordal, [28] has showed that this family has a split decomposition (linear
time constructible) such that the split-components are 3-chordal graphs.
Combining Theorem 2 and Lemma 4.3, we have that HHDA-free graphs enjoy an

1-additive DLS with O(log3 n) bit labels. However, one can reduce the label length to
O(log2 n) bits, observing that the tree-like graph obtained by the split decomposition
of [28] is a 3-chordal graph. Indeed, if G has a split decomposition such that its
split-components are k-chordal, then its tree-like graph is itself k-chordal. So the scheme
for a weak-bipolarizable graph G can be obtained from a simple application of Lemmas
4.3 and 2.1.

Theorem 6. The family of weak-bipolarizable n-vertex graphs enjoys an 1-additive
(resp. (1 + 1=log n; 1)-approximate) DLS (polynomially constructible) using labels of
length O(log2n) (resp. O(log n log log n)) and constant time decoder.

The scheme is optimal in the label length since trees are HHDA-free graphs (cf.
Lemma 4.1).

5. Conclusion

This paper presents a way to combine several approximate DLS by the use of the
decomposition techniques (block-partition and split decomposition). The Dnal results
are generalizations of known results to larger graphs families. The natural question
is about the use of more general graph decomposition techniques. For example, one
could think about a block-partition based on vertex separators. On the other hand, the
split decomposition, which uses cutset (set of edges that splits the graphs into several
components) that are complete bipartite graphs, may be generalized if we consider
cutsets that are not complete bipartite graphs. What kind of bipartite graphs can be
interesting to deDne a generalized split decomposition? This problem is of wide interest
in algorithmic graph theory.

References

[1] M. AVWder, Almost distance-hereditary graphs, Discrete Math. 242 (2002) 1–16.
[2] S. Alstrup, P. Bille, T. Rauhe, Labeling schemes for small distances in trees, in: 15th Symposium on

Discrete Algorithms (SODA), ACM-SIAM, January 2003.
[3] S. Alstrup, C. Gavoille, H. Kaplan, T. Rauhe, Nearest common ancestors: a survey and a new distributed

algorithm, in: 14th Annual ACM Symposium on Parallel Algorithms and Architecture (SPAA), ACM
PRESS, August 2002, pp. 258–264.

C. Gavoille, C. Paul / Discrete Mathematics 273 (2003) 115–130 129

[4] S. Alstrup, T. Rauhe, Improved labeling scheme for ancestor queries, in: 13th Symposium on Discrete
Algorithms (SODA), ACM-SIAM, January 2002, pp. 947–953.

[5] S. Alstrup, T. Rauhe, Small induced-universal graphs and compact implicit graph representations, in:
43rd Annual IEEE Symposium on Foundations of Computer Science (FOCS), IEEE Computer Society
Press, November 2002.

[6] C. Barefoot, Block-cutvertex trees and block-cutvertex partitions, Discrete Math. 256 (1–2) (2002)
35–54.

[7] A. BrandstVadt, V.B. Le, J.P. Spinrad, Graph Classes—A survey, SIAM Monographs on Discrete
Mathematics and Applications, SIAM, Philadelphia, 1999.

[8] M.A. Breuer, J. Folkman, An unexpected result on coding the vertices of a graph, J. Math. Anal. and
Appl. 20 (1967) 583–600.

[9] S. Cicerone, G. D’Ermiliis, G. Di Stefano, (k;+)-distance-hereditary graphs, in: 27th International
Workshop, Graph—Theoretic Concepts in Computer Science (WG), Lecture Notes in Computer Science,
Vol. 2204, Springer, Berlin, June 2001, pp. 66–77.

[10] S. Cicerone, G. Di Stefano, Networks with small stretch number, in: 26th International Workshop,
Graph—Theoretic Concepts in Computer Science (WG), Lecture Notes in Computer Science, Vol.
1928, Springer, Berlin, June 2000, pp. 95–106.

[11] S. Cicerone, G. Di Stefano, Graphs with bounded induced distance, Discrete Appl. Math. 108 (1–2)
(2001) 3–21.

[12] D.G. Corneil, M. Habib, J.-M. Lanlignel, B. Reed, U. Rotics, Polynomial time recognition algorithm of
clique-width 6 3 graphs, in: Latin American Symposium on Theoretical Informatics (LATIN), Lecture
Notes in Computer Science, Vol. 1776, 2000, pp. 126–134.

[13] B. Courcelle, J. Engelfriet, G. Rozenberg, Handle-rewriting hypergraph grammars, J. Comput. System
Sci. 46 (1993) 218–270.

[14] B. Courcelle, R. Vanicat, Query e?cient implementation of graphs of bounded clique width, Discrete
Appl. Math. (2001), to appear.

[15] W.H. Cunninghan, Decomposition of directed graphs, SIAM J. Algebraic Discrete Methods 3 (1982)
214–228.

[16] E. Dahlhaus, E?cient parallel and linear time sequential split decomposition, in: 14th Conference on
Foundations of Software Technology and Theoretical Computer Science (FST& TCS), Lecture Notes
in Computer Science, Vol. 880, Springer, Berlin, December 1994, pp. 171–180.

[17] C. Gavoille, M. Katz, N.A. Katz, C. Paul, D. Peleg, Approximate distance labeling schemes, in: nineth
Annual European Symposium on Algorithms (ESA), Lecture Notes in Computer Science, Vol. 261,
Springer, Berlin, August 2001, pp. 476–488.

[18] C. Gavoille, D. Peleg, Compact and Localized distributed data structures, Research Report RR-1261-01,
LaBRI, University of Bordeaux, France, August 2001, J. Distrib. Comput. for the PODC 20-Year Special
Issue, to appear.

[19] C. Gavoille, D. Peleg, S. P\erennes, R. Raz, Distance labeling in graphs, in: 12th Symposium on Discrete
Algorithms (SODA), ACM-SIAM, January 2001, pp. 210–219.

[20] R.L. Graham, H.O. Pollak, On embedding graphs in squashed cubes, Lecture Notes in Mathematics,
Vol. 303, 1972, pp. 99–110.

[21] P.L. Hammer, F. MaKray, Completely separable graphs, Discrete Appl. Math. 27 (1990) 85–99.
[22] E. Howorka, On metric properties of certain clique graphs, J. Combin. Theory B 27 (1979) 67–74.
[23] S. Kannan, M. Naor, S. Rudich, Implicit representation of graphs, SIAM J. Discrete Math. 5 (1992)

596–603.
[24] H. Kaplan, T. Milo, Parent and ancestor queries using a compact index, in: 20th ACM Symposium on

Principles of Database Systems (PODS), ACM-SIAM, May 2001.
[25] M. Katz, N.A. Katz, A. Korman, D. Peleg, Labeling schemes for]ow and connectivity, in: 13th

Symposium on Discrete Algorithms (SODA), ACM-SIAM, January 2002, pp. 927–936.
[26] D.C. Kay, G. Chartrand, A characterization of certain ptolemaic graphs, Canad. J. Math. 17 (1965)

342–346.
[27] J.-M. Lanlignel, Autour de la d\ecomposition en coupes, Ph.D. Thesis, Universit\e Montpellier II—

Sciences et Techniques du Languedoc, June 2001.
[28] S. Olariu, Weak-bipolarizable graphs, Discrete Math. 74 (1989) 159–171.

130 C. Gavoille, C. Paul / Discrete Mathematics 273 (2003) 115–130

[29] D. Peleg, Informative labeling schemes for graphs, in: 25th International Symposium on Mathematical
Foundations of Computer Science (MFCS), Lecture Notes in Computer Science, Vol. 1893, Springer,
Berlin, August 2000, pp. 579–588.

[30] D. Peleg, Proximity-preserving labeling schemes, J. Graph Theory 33 (2000) 167–176.
[31] M.D. Plummer, On minimal blocks, Trans. Amer. Math. Soc. 134 (1968) 85–94.
[32] N. Robertson, P.D. Seymour, Graph minors. III. planar tree-width, J. Combin. Theory 36 (1984)

49–64.
[33] J.P. Spinrad, E?cient Graph Representations, 2000, in preparation.

	Distance labeling scheme and split decomposition
	Introduction
	On the split decomposition
	Distance labeling schemes combination
	Application to some graph families
	Block-graphs
	Generalized distance-hereditary graphs
	Weak-bipolarizable graphs

	Conclusion
	References

