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Abstract

Distance hereditary graphs are those graphs for which in any connected induced
subgraph, the distance between any two vertices in this subgraph is equal to their
distance in the whole graph. This class strictly contains trees. We show how the
distance labelling scheme for trees presented in [?] can be extended to distance
hereditary graphs with optimal length labels. The result is based on the split de-
composition of a graph [?].
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1 Introduction

A distance labelling scheme is a distributed data-structure designed to answer
queries about distance between any two vertices of a graph G. The data-
structure consists in a label L(z, G) assigned to each vertex = of G such that
the distance dg(z,y) between any two vertices x and y can be estimated as a
function f(L(z,G), L(y, G)). Two problems can be considered: exact distance
labelling [?] and approximate distance labelling [?]|. In the further one, we
look for an exact value of the distance while in the later one, we estimate the
distance within a multiplicative factor s > 1 and/or with an additive constant
r = 0 (e, dg(z,y) < f(L(z,G),L(y,G)) < s-dg(z,y) +r ). We are
interested in finding labelling scheme that assigns shortest labels (expressed
in bits) for every graphs of a given family. This paper show how the use of
the well known split decomposition [?] of graphs can help to design distance
labelling schemes. Indeed, applying this technique enable us to apply any
distance labelling scheme designed for trees to the more general family of
graphs called distance hereditary graphs.
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2 Split decomposition

In this paper, we consider undirected graphs and use classical notations: N(z)
denotes the set of neighbors of « and N(9), where S is a set of vertices, denotes
the set of vertices that have a neighbor in S.

A split [?] of a graph G = (V, ) is a partition of V' into two sets Vi and V;
such that for any x € Vi = ViN N(Vz) and y € Vo = Vo N N(W1), (z,y) € E
and V1] > 1, |Va| > 1. If a graph has no split, then it is called prime.

When a graph has a split (Vi,V2), it can be decomposed into two graphs
G and Ga. The graph Gy (resp. Go) is induced by Vi U {v1} (resp. Vo U
{vy}) where vy (resp. vy) is a virtual vertex adjacent to all the nodes of Vj
(resp. ‘72) The final graphs created by the split decomposition are the split
components. Cunninghan [?] showed that any connected graphs has a unique
split decomposition into prime graphs, stars and cliques with a minimum
number of split components. It is also easy to prove that the number of splits
of a graph is bounded by its number of vertices [?].

To get this canonical decomposition, at each step of the decomposition process
we have to choose a maximal split (i.e., maximal w.r.t. the inclusion of V;UV3).
Let us now present a transformation of an arbitrary graph G = (V, F) into
a tree-like weighted graph T'((7) such that for any pair of vertices z and y
of V, da(z,y) = dr)(z,y). The transformation is a representation of the
split decomposition process. It first appears in these terms in [?]. Let (Vi, V2)
be a split of G. Partition G into G; = G[V4] and G, = G|V, and add the
virtual vertices v; and vy adjacent respectively to ‘71 and ‘72 Then also add a
virtual edge between v; and vy. Repeat recursively the process on G and Gy
until getting prime graphs. Notice that the split components are exactly the
connected components obtained by removing the virtual edges of T'(G).

In order to leave to distance unchanged, we have to put weights on the edges
of T(G): w(e) = —1 if e is a virtual edge; w(e) = 1 otherwise.

Lemma 1 Let x andy be two vertices of a graph G. Then da(x,y) = dr)(z,y),
where T'(G) is the tree-like decomposition associated with G.

Since the number of splits is bounded by the number of vertices, the size of
T'(G) is linear in the size of G. Therefore if we are able to design a distance
labelling scheme of size S for T'(G), it can be directly applied to G.
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3 A distance labelling scheme for distance hereditary graphs

As an example, let us consider the family of completely decomposable graphs.
These graphs are called distance hereditary graphs [?]: in any connected in-
duced subgraph H of a distance hereditary graph G, dy(z,y) = dg(z,y) for
any two vertices z,y € V(H). Since they are completely decomposable graphs,
the split components are either cliques or stars.

For the case of distance hereditary graph we can continue the transformation
of GG to get a weighted tree denoted by T(G) It suffices to replace any k-clique
with & > 3 by a star with & leaves (the vertices of the clique) centered on a
virtual clique vertex. To complete the transformation, we have to weight all
the edges of the new stars by 1/2. Notice that no edge of the original k-clique
is a virtual edge and thus is valued by 1. Since any edge of this k-clique is
replaced by the edges of weight 1/2, the distances leave unchanged.

Given an integer W > 0, let us denote by W-tree any weighted tree whose
edge cost is a non-null integer, and such that the weighted diameter is at most
W. We need the following result to complete our result.

Lemma 2 ([?]) There exists a (1+1/log W)-multiplicative (resp. exact) dis-
tance labelling scheme using labels of size O(log n-log log W) bits (resp. O(log n-
log W) bits) for the family of W -trees with at most n vertices. Moreover the
scheme is polynomial time constructible, and under a word-RAM model of
computation with standard arithmetic operations, the distance can be com-
puted in constant time if W = n®W),

Now, consider the weighted tree T"(G) composed of T(G) in which all the
weights have been incremented by two and then doubled. Formally, for any
edge e of T(G), the weight &(e) is transformed in the new weight of T7(G)
setting &'(e) = 2(w(e) + 2). By Lemma 1, for all z,y € V(G), dg(z,y) =
Ay (®,y) = dpyy(@,y)/2—2. Now observe that, since the number of splits is
bounded by n, the size of T'(G) cannot exceed 2n, moreover &'(e) € {1,...,6}.
Thus 7'(G) is a 12n-tree since its weighted diameter is bounded by 12n.
Applying the scheme of Lemma 2, we have:

Theorem 3 The family of distance hereditary graphs with at most n vertices
enjoys a (1 + 1/log W)-multiplicative (resp. exact) distance labelling scheme
using labels of size O(lognloglogn) bits (resp. O(log?n) bits). Moreover the
scheme is polynomial time constructible, and under a word-RAM model of
computation with standard arithmetic operations, the distance can be computed
i constant time.

Theorem 3 provides labels of optimal length because the family of distance
hereditary graphs contains trees, and it is known that any exact distance
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labelling scheme (resp. (1 + 1/logn)-multiplicative distance labelling scheme)
on the family of unweighted trees with at most n vertices requires some labels
of size Q(log?n) bits [?] (resp. Q(log nloglogn) bits [?]).

4 Conclusion

In this paper, we showed that the distances in a graphs have a nice behavior
with respect to the split decomposition. The result and the technique pre-
sented here may be generalized to other families of graphs: getting a tree
representation of the prime components is enough. For example, if any prime
component has a k-tree spanner [?|, a similar result can be obtained but for
an approximating distance labelling scheme.
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