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Abstract. Interval routing is a compact way of representing routing tables on a graph. It is
based on grouping together, in each node, destination addresses that use the same outgoing edge in
the routing table. Such groups of addresses are represented by some intervals of consecutive integers.
We show that almost all the graphs, i.e., a fraction of at least 1 − 1/n2 of all the n-node graphs,
support a shortest path interval routing with three intervals per outgoing edge, even if the addresses
of the nodes are arbitrarily fixed in advance and cannot be chosen by the designer of the routing
scheme. In case the addresses are initialized randomly, we show that two intervals per outgoing
edge suffice, and, conversely, that two intervals are required for almost all graphs. Finally, if the
node addresses can be chosen as desired, we show how to design in polynomial time a shortest path
interval routing with a single interval per outgoing edge for all but at most O(log3 n) outgoing edges
in each node. It follows that almost all graphs support a shortest path routing scheme which requires
at most n+O(log4 n) bits of routing information per node, improving on the previous upper bound.
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1. Introduction.

1.1. Background. A universal routing strategy is an algorithm which generates
a routing scheme for every given network. One type of trivial universal routing strat-
egy is based on schemes that keep in each node a full routing table which specifies an
output port for every destination. Though this strategy can guarantee routing along
shortest paths, each router has to locally store Θ(n log d) bits of information, where
d is the degree of the router (i.e., the number of output ports) and n is the number
of nodes in the network.

The interval routing scheme [9, 10] is a compact routing scheme, i.e., a routing
scheme that needs to keep only a small amount of information in each node to route
messages correctly through the network. The idea of this scheme is to label the n
nodes of the network with unique integers from {1, . . . , n} and to label the outgoing
arcs in every node with a set of intervals forming a partition of the name range. The
routing process sends a message on the unique outgoing arc labeled by an interval that
contains the destination label. While the preprocessing stage of such a routing scheme
(which is performed once in the initialization of the network) might be complex, the
delivery protocol consists of simple decision functions which can be implemented with
O(kd log n) bits in each node of degree d, where k is the maximum number of inter-
vals assigned to an arc. Such a routing scheme supports a compact implementation
whenever k is small in comparison with n or d.
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In [8], it is shown that there is no universal routing strategy that can guarantee
a shortest path routing scheme with less than Ω(n log d) bits per node for all the n-
node networks of maximum degree d. This result means that there is some worst-case
network where for any shortest path routing function, the number of bits required to be
stored in a router is not significantly smaller than the size of a routing table, whatever
the node labeling (from the range {1, . . . , n}) and the shortest paths are. Fortunately,
such a problematic situation where the routing tables cannot be compressed occurs
for a limited number of worst-case networks only.

In particular, in [3], it is shown that for almost all the n-node networks the size of
the routing tables can be reduced to O(n) bits per node. More precisely, it is shown
that all labeled graphs but a 1/n3 fraction can be routed with a scheme that uses
3n+ o(n) bits of information, under the assumption that nodes are randomly labeled
in the range {1, . . . , n}, and that every node knows its neighbors for “free,” or that
the port assignment may be changed. Moreover, if, during the initialization process
of the network, nodes can be relabeled with binary string of length c log2 n+o(log2 n)
bits1 (for constant c > 3), then c log2 n bits per node suffice to route along the shortest
paths for almost all networks.

1.2. Definitions and results. In this paper, we consider shortest path routing
schemes only. An undirected graph G = (V,E) represents the classic model of the
underlying topology of the network. An n-node graph G with the nodes labeled by
labels from the set {1, . . . , n} is said to support a k-interval routing scheme (k-IRS
for short) if there exists an interval routing scheme R for G with the property that
for every (directed) edge e, the set of node labels to which R routes messages via e
is composed of at most k intervals. (An interval means a set of consecutive integers
taken from {1, . . . , n}, where n and 1 are considered to be consecutive.)

Our goal is to find a labeling of the nodes and a shortest path system in order to
minimize the maximum number of intervals assigned to the edges of the graph. We
distinguish three models depending on the freedom we have in labeling the nodes.

1. Adversary. Labels are fixed in advance (by an adversary) and cannot be
permuted.

2. Random. Labels are randomly permuted.
3. Designer. Labels can be chosen (by the routing designer) in order to achieve

the smallest possible number of intervals.
In all three models, the routing designer has the freedom of selecting the shortest

paths to be used.
Corresponding to these three models, we introduce the following three parameters.

We denote by IRSA(G) the smallest integer k such that G supports a k-IRS in the
adversary model (namely, for every arbitrary labeling of the nodes). We denote by
IRSR(G) the smallest k such that G supports a k-IRS in the random model (namely,
given a random labeling of the nodes of G) with high probability. Finally, we denote
by IRS(G) the smallest k such that G supports a k-IRS in the designer model (namely,
under some specifically chosen node labeling of G). Clearly, IRS(G) � IRSR(G) �
IRSA(G) for every graph G.

The parameter IRS(G), sometimes called the compactness of the scheme, has
been computed for many classes of graphs (see [6] for a recent overview). Notably,
in [7] it is shown that for every G, IRSR(G) < n/4 + o(n), whereas there exists some
worst-case G0 such that IRS(G0) > n/4− o(n). However, as shown in this paper, the

1Where hereafter log denotes the logarithm in base 2.
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situation is considerably better for the “average” case. Specifically, we will see that
IRS(G) � 2 for a fraction of at least 1− 1/n2 of all the n-node labeled graphs.

Technically, we use random graphs instead of the Kolmogorov random graphs
used in [3]. A discussion about the relationships between random and Kolmogorov
random graphs can be found in [4]. The class Gn,p denotes the classic model of n-node
labeled random graphs, where 0 � p � 1 represents the probability of having an edge
between any two nodes. Clearly, a random graph G ∈ Gn,1/2 has a given property P
with probability α if and only if P holds for a fraction of α of all the n-node labeled
graphs. Interval routing on random graphs has been first investigated in [5], where
some lower bounds are given for IRS(G) for G ∈ Gn,p. More precisely, it is shown
therein that for p = n−1+1/s for integer s > 0, such that there exists some ε > 0
satisfying (ln1+ε n)/n < p < n−1/2−ε, a graph G ∈ Gn,p satisfies

IRS(G) � 1

10
n1−6/ ln (np)−ln (np)/ lnn(1.1)

with high probability. It is also shown that for some p = n−1+1/Θ(
√

logn), a graph

G ∈ Gn,p satisfies IRS(G) = Ω(n1−1/Θ(
√

logn)) with high probability. In this paper,
we investigate the case where p is a fixed constant, e.g., p = 1/2, in order to establish
some average results on the total space of n-node graphs. (Note that for constant p,
(1.1) cannot be used since in this case p lies outside the validity range.)

The following table presents our results for each model. The results of the table
are proved for a fraction of at least 1− 1/n2 of all the n-node labeled graphs.

Label select Designer Random Adversary

Upper bound IRS � 2 IRSR � 2 IRSA � 3
Lower bound IRS � 1 IRSR � 2 IRSA � 3

At this time, we are still unable to decide whether IRS(G) = 1 or 2 for almost
every graph G in the model where both the node labels and the shortest path system
can be chosen in advance by the designer. However, we present a polynomial time
algorithm to design a 2-IRS for all graphs but a 1/n fraction such that for every node,
all its outgoing edges are labeled with a single interval, except for up to O(log3 n)
edges where two intervals are required. It follows that almost every graph supports
a shortest path routing scheme that can be implemented with n + O(log4 n) bits,
improving on the best known result (cf. [3]). Note that our result is stated with the
assumption that nodes can be permuted but without the assumption that nodes know
their neighbors.

2. Randomly assigned node labels. In this section, we show that in the ran-
dom model, almost every graph G satisfies IRSR(G) = 2. This implies, in particular,
that almost every graph G satisfies IRS(G) � 2. This is done by showing that, with
probability at least 1 − 1/n2, a random graph G from Gn,1/2 satisfies IRSR(G) = 2.
Actually, we show that the result holds for the class Gn,p of random graphs for each
fixed probability 0.45 < p < 1.

2.1. Upper bound. In this subsection, we shall prove that IRSR(G) � 2. As-
sume the node labels {1, . . . , n} are assigned randomly for the graph G. In that case,
given that G is a random graph in Gn,p, we may assume that the nodes are first
marked by the labels 1 through n, and only then we draw the edges randomly and
uniformly with probability p.
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For random graphs selected from Gn,p, we have the following simple bounds.2 We
denote by Γ(v) the set composed of v and of its neighbors.

Lemma 2.1. With probability at least 1 − 1/n3, and for every fixed 0 < p < 1, a
random graph G ∈ Gn,p is of diameter 2, and for every node v ∈ V,

np− 3
√
n lnn � |Γ(v)| � np + 3

√
n lnn.

Let EA denote the event that the random graph at hand does not satisfy the
properties asserted in Lemma 2.1. Henceforth, we ignore that possibility and restrict
our attention to EA.

For notational convenience, we identify nodes with their labels, i.e., denote V =
{1, . . . , n}.

Consider a node v0 ∈ V . We need to argue that with high probability, the edges
of v0 can be labeled with at most two intervals per edge so that for every possible
destination vd ∈ V , the selected edge is along a shortest path from v0 to vd.

Let A = Γ(v0) \ {v0} and B = V \ Γ(v0). Since G satisfies the event EA,

np− 3
√
n lnn− 1 � |A| � np + 3

√
n lnn,(2.1)

n(1− p)− 3
√
n lnn � |B| � n(1− p) + 3

√
n lnn.(2.2)

Let

C = {v ∈ B | v + 1 ∈ A and (v, v + 1) ∈ E} .
Lemma 2.2. With probability at least 1 − 1/n3, the size of the set C is bounded

by

n(1− p)p2 − 5
√
n lnn � |C| � n(1− p)p2 − 5

√
n lnn.

Proof. Consider a vertex v ∈ B, and let Iv denote the event that v ∈ C. This
event happens precisely if v + 1 ∈ A and (v, v + 1) ∈ E. These two subevents are
independent and both occur with probability p, and hence P(Iv) = p2. Also note
that the events Iv for v ∈ B are mutually independent. Let Z be a random variable
denoting the size of |C|. Then Z =

∑
v∈B zv, where zv is the characteristic random

variable of the event Iv. Hence, Z is the sum of |B| mutually independent Bernoulli
variables, and its expected value is E(Z) = |B|p2, and hence applying Chernoff’s
bound (cf. [1]) we get

P

(
Z � n(1− p)p2 + 5

√
n lnn

)
� P

(
Z � E(Z) + 2

√
n lnn

)

� exp


−

(
2
√
n lnn

)2

n


 � 1

n4

and

P

(
Z � n(1− p)p2 − 5

√
n lnn

)
� 1

n4
,

and the lemma follows.

2We state a variant of the bounds suitable to our needs and make no attempt to optimize them;
see [2] for sharper statements.
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Let EB denote the event that the random graph at hand does not satisfy the
property asserted in Lemma 2.2 for some node v0. Note that the probability for this
event is bounded above by 1/n3. Henceforth, we ignore that possibility and restrict
our attention to EB .

Let us now define one interval per emanating edge of v0 to take care of routing
to the nodes in A ∪ C. For every node w ∈ A, mark the edge (v0, w) by the interval
[w − 1, w] if w − 1 ∈ C and by the interval [w] if w − 1 
∈ C.

It is thus left to show how the remaining interval per edge of v0 can be used
to route optimally towards the nodes in X = B \ C. This is done as follows. Let
X = {x1, . . . , xm}. Note that since G satisfies the events EA and EB ,

n(1− p)(1− p2)− 8
√
n lnn � m � n(1− p)(1− p2) + 8

√
n lnn.

We now describe a process for selecting a subset of A, denoted Y = {y1, . . . , ym} ⊆
A, such that there is an edge (xi, yi) ∈ E for every 1 � i � m. Once this is done, we
mark each edge (v0, yi) by the interval [xi], thus completing our task.

The selection process is a straightforward greedy one. Let Q = A. Having already
selected y1, . . . , yi−1, the ith step consists of selecting yi to be some arbitrary neighbor
of xi in Q and discarding yi from Q. If, at any stage, the node xi considered by the
process has no neighbors in the remaining set Q, then the process fails and we abort
our attempt to provide a 2-IRS for G.

We need to argue that with very high probability, the process does not fail. Let
Fi be the event that the process fails in the ith step. Note that at the beginning of
step i the current set Q is of size

|Q| = |A| − (i− 1) � |A|+ 1−m

� np− n(1− p)(1− p2)− 11
√
n lnn

� n

2

(
p− (1− p)(1− p2)

)
for sufficiently large n.

Let

f(p) = p− (1− p)(1− p2) = − p3 + p2 + 2p− 1.

Then f ′(p) = −3p2 +2p+2, which is positive for 0 < p < 1. Therefore, f increases on
this range. Note that3 f(0.45) > 0.01. Therefore, for 0.45 < p < 1, and for sufficiently
large n, |Q| > n/200.

Event Fi occurs only if xi is not connected to any node of Q. This is the inter-
section of |Q| independent events of probability 1− p each, and hence

P(Fi) � (1− p)n/200 < c−n

for constant c > 1. Let EF (v0) denote the event that the process fails for v0. This
event occurs if for some xi ∈ X, no remaining common neighbors of v0 and xi could
be found, i.e., EF (v0) =

⋃
i Fi. We have P(EF (v0)) < mc−n. It follows that for a

sufficiently large n, the event EF =
⋃

v0
EF (v0) has probability P(EF ) � 1/n3.

Combining all possible failure events (namely, EA ∪ EB ∪ EF ), we get that for
sufficiently large n, the probability that our process fails to generate an interval routing

3Actually, the root of f(p) = 0, for 0 < p < 1, is p0 ≈ 0.445041.
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scheme for the graph with two intervals per edge is bounded from above by 1/n2. We
remark that all the intervals considered here are linear, i.e., of the type [a, b] with
a � b, and are strict, i.e., do not include the label of the node itself.

Theorem 2.3. For sufficiently large n, and for every fixed 0.45 < p < 1,
a random graph G ∈ Gn,p satisfies IRSR(G) � 2 with probability at least
1− 1/n2.

2.2. Lower bound. In this subsection, we prove that IRSR(G) � 2 for almost
every graph G for a random assignment of node labels.

Again, we assume the node labels {1, . . . , n} are assigned randomly for the graph
G, so given that G is a random graph in Gn,p, for p fixed, we may assume that the
nodes are first labeled 1 through n and the edges are randomly drawn only later. As
in the previous subsection, we assume the event EA.

We need to show that with high probability, a single interval per edge will not be
sufficient for producing shortest paths.

Consider a node x ∈ {1, . . . , n}. Suppose that x is connected to x + 1 and x + 3
and that x+2 is not connected to any node from {x, x + 1, x + 3}. Let I(x, u) be the
interval assigned to the edge (x, u) that contains x+ 2. Since the diameter of G is 2,
it follows that u 
∈ {x + 1, x + 2, x + 3}. I(x, u) must contain u and x+2, but neither
x + 1 nor x + 3, which are connected to x. This contradicts the fact that I(x, u) is
composed of a single interval.

Let xi = 4i − 3, for every i ∈ {1, . . . ,m}, with m = �n/4�. Let Ki denote the
event xi as in the previous configuration, and let EK denote the event that there
exists an event Ki0 that occurs. Note that by the above discussion, the probability
of IRSR(G) > 1 (under the event EA) is lower bounded by P(EK).

Let Zi be the characteristic random variable of the event Ki, and Z =
∑m

i=1 Zi.
The events Ki are independent, and each one occurs with probability p2(1 − p)3.
Therefore, P(Z = 0) = (1 − p2(1 − p)3)m < 1/n3 for a sufficiently large n. It follows
that P(EK) � 1− 1/n3.

Theorem 2.4. For sufficiently large n, and for every fixed 0 < p < 1, a random
graph G ∈ Gn,p satisfies IRSR(G) � 2 with probability at least 1− 1/n2.

3. Adversely assigned labels. Next we assume the adversary model, in which
the assignment of the node labels {1, . . . , n} to nodes is done by an adversary, aiming
to cause the routing scheme to use the maximum number of intervals. We show that
almost every graph G satisfies IRSA(G) = 3.

3.1. Upper bound. We start by showing that with probability at least 1−1/n2,
a random graph G from Gn,p satisfies IRSA(G) � 3, for every fixed probability p,
1/3 < p < 1. More generally, we show that for each integer k � 2, IRSA(G) � k with
probability at least 1− 1/n2 for G ∈ Gn,p, for each fixed p, 1/k < p < 1.

Once again, by Lemma 2.1, we are allowed to restrict our attention to the event
EA, and assume the graph G = (V,E) at hand is of diameter 2, and such that for
every node v ∈ V , np− 3

√
n lnn � |Γ(v)| � np + 3

√
n lnn.

Consider a node v0 ∈ V and an integer k � 2. We need to argue that with high
probability, the edges of v0 can be labeled with at most k intervals per edge so that
for every possible destination vd ∈ V , the selected edge is along a shortest path from
v0 to vd.

Let A = Γ(v0) \ {v0} and B = V \ Γ(v0). Let us first define one interval per
emanating edge of v0 to take care of routing to the nodes of A. Namely, for every
node w ∈ A, mark the edge (v0, w) by the interval [w]. It is left to show how the



712 CYRIL GAVOILLE AND DAVID PELEG

remaining k − 1 intervals per edge of v0 can be used to route optimally towards the
nodes of B.

This is done as follows. Let B = {b1, . . . , bm}. Recall that A and B satisfy
inequalities (2.1) and (2.2). We now describe a process for selecting an intermediate
node ai ∈ A for every 1 � i � m such that the routing from v0 to bi will go through
ai. For this, we need to ensure that there is an edge (ai, bi) ∈ E for every 1 � i � m.
Once this is done, we mark each edge (v0, ai) by the interval [bi], thus completing our
task.

The selection process is similar to the greedy process of section 2.1. Let Q = A,
and define a counter C(a) for each node a ∈ A, initially setting all counters to zero.
Having already selected a1, . . . , ai−1, the ith step consists of selecting ai to be some
arbitrary neighbor of bi in Q, increasing the counter C(ai) by one, and discarding ai
from Q if the counter has reached k − 1. If, at any stage, the node bi considered by
the process has no neighbors in the remaining set Q, then the process fails and we
abort our attempt to provide a k-IRS for G.

We need to argue that with high probability, the process does not fail. Let Fi be
the event that the process fails in the ith step. Note that at the beginning of step i the
counters sum up to i − 1, and hence at most �(i− 1)/(k − 1)� nodes were discarded
from Q, so the current set Q is of size

|Q| � |A| −
⌊
i− 1

k − 1

⌋
> |A| − |B|

k − 1

> np− n(1− p)

k − 1
− 6

√
n lnn− 1

>
n

2

(
p− 1− p

k − 1

)

for sufficiently large n. Since p > 1/k, and k > 1, it implies that

p− 1− p

k − 1
> 0.

Therefore, there is a constant α > 0 such that for sufficiently large n, |Q| > αn.
Event Fi occurs only if bi is not connected to any node of Q. This is the intersec-

tion of |Q| independent events of probability 1−p each, and hence P(Fi) � (1−p)αn <
c−n, for constant c > 1. Letting EF (v0) denote the event that the process fails for
v0, i.e., EF (v0) =

⋃
i Fi, we have P(EF (v0)) � mc−n. It follows that for a sufficiently

large n, the event EF =
⋃

v0
EF (v0) has probability P(EF ) � 1/n3.

Combining all possible failure events (namely, EA∪EF ), we get that the probability
that our process fails to generate an interval routing scheme for the graph with three
intervals per edge is bounded from above by 1/n2. We remark that all the intervals
used in the scheme are linear and strict.

Theorem 3.1. For sufficiently large n, for every integer k � 2, and for every
fixed p in the range 1/k < p < 1, a random graph G ∈ Gn,p satisfies IRSA(G) � k
with probability at least 1− 1/n2.

In particular, a graph G ∈ Gn,1/2 satisfies IRSA(G) � 3 with probability at least
1− 1/n2.

3.2. Lower bound. We restrict our attention to random graph G ∈ Gn,1/2 and
show that IRSA(G) � 3 with probability at least 1−1/n2. As in the previous sections,
we assume the event EA; i.e., G has diameter 2.
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The main idea is the following. Consider a node v such that |Γ(v)| = d + 1, for
some suitable integer d < n/2, and let A = Γ(v) \ {v}, and B = V \ Γ(v). Now
suppose that A = {a1, . . . , ad}, and C = {b1, . . . , bd+1} ⊂ B such that the following
two assumptions hold:
(A1) For every i ∈ {1, . . . , d}, ai is connected to neither bi nor bi+1.
(A2) The adversary has labeled the nodes by ai = 2i and bi = 2i − 1 for all i ∈

{1, . . . , d}. (The other nodes have arbitrary labels.)
Since |A| < |C|, for every shortest path routing there exist two nodes b, b′ ∈ C, b < b′,
that are reached from v through the same a ∈ A. Thus the set Iv,a that labels the
edge (v, a) contains a, b, b′. However, a − 1, a + 1 
∈ Iv,a, and by assumption (A1)
b + 1, b′ − 1 
∈ Iv,a. It forces at least three linear intervals for Iv,a.

However, if the labeling is allowed to be nonstrict and nonlinear, b = 1, b′ = n−1,
and v = n ∈ Iv,a, it is possible to have b and b′ in a single wraparound interval which
does not contain b+1 and b′−1. For example, Iv,a = [a]∪[b′, b]. In order to strengthen
our lower bound we will show that, actually, with high probability this node labeling
implies three intervals, even if the intervals used are nonstrict and nonlinear. Indeed,
it suffices to show that there is a node b′′ ∈ B \ C that is not connected to a. From
the definition of the node labeling b < b′ < b′′. Therefore, even if b = 1 and v ∈ Iv,a,
the set Iv,a cannot contain the subinterval [b′, b] since it would contain b′′.

First, we prove4 that with high probability there must be some node v such that
|Γ(v)| � n/2− 16 log2 n.

Lemma 3.2. With probability at least 1 − 1/n3, there exists a node v such that
|Γ(v)| � n/2− 16 log2 n.

Proof. For every node v, let deg(v) = |Γ(v)| − 1. Consider an arbitrary v ∈ V .
Note that deg(v) is the sum of n− 1 independent Bernoulli random variables each of
probability 1/2. Therefore,

P(deg(v) = i) =

(
n−1
i

)
2n−1

.

For notational convenience, let m = n− 1. For every integer h, 0 < h < m/2,

P(deg(v) < m/2− h) =
1

2m

m/2−h−1∑
i=0

(
m

i

)

=
1

2m


m/2∑

i=0

(
m

i

)
−

m/2∑
i=m/2−h

(
m

i

)

� 1

2m


2m−1 −

m/2∑
i=m/2−h

(
m

i

) .

By the Stirling formula,
(

m
m/2

)
� c · 2m/

√
m for some constant c > 0. Also,

(
m
i

)
�(

m
m/2

)
for every 0 � i � m. Hence,

P(deg(v) < m/2− h) � 1

2m
(
2m−1 − (h + 1)c · 2m/

√
m
)

� 1

2
− (h + 1)c√

m
.

4Again, making no attempt to optimize the constants involved in the calculations.
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Hence, for h = 16 log2 n + 1, we have P(deg(v) < m/2 − h) � 1/4 for sufficiently
large n. The probability that all the nodes have degree at least m/2 − h is thus
bounded by (3/4)n � 1/n3 for sufficiently large n. Hence, with probability at least
1− 1/n3 there exists a node v such that deg(v) � n/2− 16 log2 n− 1, and the lemma
follows.

Hence, we have |B| − |A| � 32 log2 n. Define a “walk” in G such that any two
consecutive nodes of the walk are nonadjacent, as follows. Start the walk at an
arbitrary node b1 of B, continuing to an arbitrary nonneighbor a1 in A, from there
back to an arbitrary nonneighbor b2 in B, and so on. Continue in that fashion for the
first |A| − �8 log n� “double steps” (each consisting of two substeps, from B to A and
back to B) and ending at some node at ∈ A.

Lemma 3.3. With probability at least 1−1/n3, the walk does not get stuck during
its first |A| − �8 log n� steps.

Proof. First, consider a random v. Let QB = B and QA = A. Having already
selected b1, a1, . . . , bi−1, ai−1, the ith step of the walk consists of choosing an arbitrary
bi ∈ QB \ Γ(ai−1) and discarding bi from QB . It fails if |QB \ Γ(ai−1)| = 0, i.e., if
ai−1 is connected to all nodes of QB . Let F i

B be this failure event. This event is the
intersection of |QB | independent events of probability 1/2 each. Note that at any step
|QB | � |B| − |A| � 32 log2 n; thus

P(F i
B) �

(
1

2

)32 log2 n

<
1

n32
.

Then we choose ai ∈ QA \ Γ(bi), discarding ai from QA. Let F i
A denote the event

“|QA \ Γ(bi)| = 0.” It occurs if bi is connected to all nodes of QA. This is the
intersection of |QA| independent events of probability 1/2 each. Since |QA| � 8 log n,

P(F i
A) �

(
1

2

)8 log n

=
1

n8
.

Thus letting Fi = F i
A ∪ F i

B be the event that the walk fails at the ith step, we have

P(Fi) <
2

n8
.

Therefore, the walk fails within the first |A| − �8 log n� < n/2 steps with probability

P

(⋃
i

Fi

)
<

1

n7
.

Finally, the probability that the walks from any of the nodes v fails is bounded by

P

(⋃
v

⋃
i

Fi

)
<

1

n3
.

Let EW denote the event that G does not satisfy the property asserted in Lemma 3.3.
Henceforth, we ignore that possibility and restrict our attention to EW .

Let the first segment of the walk consist of the following sequence of nodes:

b1, a1, b2, a2, . . . , bt, at.
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At the end of the first stage, there are only k = d− t = �8 log n� nodes remaining
in A, at+1, . . . , ad, and more than 32 log2 n nodes in B. Partition the remaining nodes
of B arbitrarily into k + 1 groups of 4 logn nodes each, denoted by Bt+1, . . . , Bd+1.
(The last group may be larger.)

The only thing that remains to do is to pick in each set Bi a distinct node bi that
neighbors both ai−1 and ai, for i ∈ {t + 1, . . . , d}. The resulting second segment of
the walk would be

bt+1, at+1, . . . , bd, ad.

This can be done with high probability again. (For the last step, of choosing bd+1, we
need only to verify that it neighbors ad.)

Lemma 3.4. With probability at least 1 − 1/n3, the second segment of the walk
can be completed successfully.

Proof. The formal proof requires some care, since it is necessary to show that
the events are independent. In particular, for the second stage, we are left with some
nodes in A which were not chosen completely randomly, since these are nodes that
perhaps were not connected to various nodes along the first segment of the walk.
However, the events we look at in the second stage are independent of the events
considered earlier. In particular, for each ai and each b ∈ Bi, the events considered
are “ai is connected to b” and “ai−1 is connected to b,” and these events are indeed
independent of any event considered in the first stage, and of each other. Moreover,
the probability of each such event is exactly 1/2. Therefore,

P(Bi ∩ Γ(ai) = ∅) � 1

24 log n
=

1

n4
,

and similarly

P(Bi ∩ Γ(ai−1) = ∅) � 1

n4
.

Hence, letting EW ′ denote the event that the property asserted in the lemma does not
hold, we have

P(EW ′) � 2(d− t)

n4
� 1

n3
.

The combined path now consists of all nodes of A and |A| + 1 nodes of B, and
the proof follows for linear intervals. To show that the lower bound holds also for
nonstrict and nonlinear intervals, it remains to show the following lemma.

Lemma 3.5. With probability at least 1− 1/n3, there is no node a ∈ A connected
to all nodes of B \ {b1, . . . , bd+1}.

Proof. Let C = {b1, . . . , bd+1}. The probability that all the nodes of B \ C are
connected to a random node a ∈ A is(

1

2

)|B\C|
<

1

n4

since |B \ C| > 4 log n. Therefore, the probability that at least one node of A is
connected to all of them of B \ C is upper bounded by |A|/n4 < 1/n3.

Combining all possible failure events (namely, EA, Lemma 3.2, EW , Lemma 3.4,
and Lemma 3.5), we obtain the following theorem.

Theorem 3.6. For sufficiently large n, with probability at least 1 − 1/n2, a
random graph G ∈ Gn,1/2 satisfies IRSA(G) � 3.
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4. Designer chosen labels. We next assume the designer model, in which the
assignment of the node labels {1, . . . , n} to nodes is done by the designer of the routing
scheme, aiming to minimize the number of intervals used by the routing scheme.

In this case, the only lower bound we have at the moment is the trivial IRS(G) � 1
for every graph G. In the opposite direction, we are also unable so far to prove an
upper bound of 1 on the maximum number of intervals per edge.

However, we will show that it is possible to assign the node labels in such a way
that, while some edges might still require two intervals, the number of such violations
will be very small, and more specifically, bounded by O(log3 n) with high probability.
In this section, we restrict our attention to the case p = 1/2, so G ∈ Gn,1/2.

The idea behind the selection process is the following. Suppose that the node set
of the given random graph is partitioned into cliques V = C1 ∪ · · · ∪ Cm. Label the
nodes of V according to this partition, so that the nodes of each clique Ci are numbered
consecutively. Now use this partition to define the routing scheme as follows. Consider
a sender v0. Suppose that v0 ∈ CJ , and consider some other clique CI . The central
property we rely upon is that if v0 is adjacent to some of the nodes of CI , then all the
nodes of CI can be provided for using a single interval on each edge going from v0 to
the nodes of CI , as follows. Let CI = {p, p + 1, . . . , q}. If v0 has a unique neighbor ,
in CI , then mark the edge from v0 to , by the interval [p, q]. Otherwise, suppose v0

has neighbors ,1 < ,2 < · · · < ,k in CI . Then the edges ej = (v0, ,j) leading from v0

to these nodes can be labeled by intervals I(ej), as follows:

I(ej) =




[p, ,2 − 1], j = 1,
[,j , ,j+1 − 1], 1 < j < k,
[,k, q], j = k.

Note that this choice of intervals also takes care of the special case of CI = CJ

itself, where every node other than v0 itself is a neighbor of v0.
Thus we are left only with the need of handling the cliques Ci, none of whose nodes

are adjacent to v0. Call these cliques the “remote” cliques. The nodes of these remote
cliques must be reached through nodes of other cliques, potentially using additional
intervals, and at worst using a unique new interval for each node. It is thus required
to bound from above the maximum number of nodes in the remote cliques. Towards
this goal, we rely intuitively on the fact that large cliques are unlikely to be remote.
More precisely, the probability that a clique of size k is remote is roughly 1/2k. It
thus becomes necessary to explore the distribution of clique sizes in a clique partition
of random graphs or at least generate partitions with favorable size distributions.

We make use of the following two properties of random graphs. (In the following,
the function log denotes the logarithm in base 2.) First, regarding the size of the
maximum clique, we have (cf. Chapt. XI.1 of [2]) the following lemma.

Lemma 4.1. With probability at least 1 − 1/nlog log n, the maximum clique in a
random graph G ∈ Gn,1/2 is of size at most 2 log n.

Let EC denote the event that the random graph at hand does not satisfy the
property asserted in Lemma 4.1. Henceforth, we ignore that possibility and restrict
our attention to EC . As before, we also restrict ourselves to EA.

Second, we make use of a natural technique for generating a clique partition
of a given graph. This technique is the “mirror image” of the greedy algorithm
often used to generate a legal coloring for a graph. This simple algorithm operates
as follows. Start by ordering the nodes arbitrarily, numbering them as 1, 2, . . . , n.
Assign the nodes to cliques C1, C2, . . . , Cn one by one, assigning each node to the
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smallest-indexed admissible clique. Node 1 is thus assigned to C1, node 2 is assigned
to C1 if it is a neighbor of node 1, otherwise it is assigned to C2, and so on. It
is known (cf. Chapt. XI.3 of [2]) that with high probability this process will pack
the nodes of the given random graph G in fewer than n/ log n cliques. Moreover,
analyzing the process in more detail, we will derive bounds on the number of small
cliques generated. Specifically, there will be no more than 2k log n cliques of size k
with high probability. Coupled with Lemma 4.1, this can be used to show that the
total number of nodes in remote cliques is bounded (with high probability) by about

2 log n∑
k=1

k · 1

2k
· 2k log n = O(log3 n).

The problem that makes formalizing this argument somewhat more difficult is that
once the partition is calculated, the graph can no longer be treated as random, as the
fact, say, that v0 is not in the clique Ci bears some implications on the probability
that v0 is connected to some node of Ci and prevents us from assuming that all the
events considered in the analysis are independent. Nevertheless, the dependencies can
be bounded and turn out to have little effect on the resulting probabilities.

Let us fix our attention on a node v0, belonging to the clique CJ , and on another
clique CI . We would like to bound the probability that v0 is not connected to any
node of CI .

For every clique Ci and node v ∈ V , partition Ci into Ci = Bi(v) ∪ Ai(v), where
Bi(v) consists of all the nodes that entered Ci before v was considered by the algorithm,
namely, Bi(v) = {w ∈ Ci | w < v}, and Ai(v) = Ci\Bi(v), the nodes added to Ci after
v was added to some clique. Let βi(v) = |Bi(v)| and αi(v) = |Ai(v)|. In particular,
let B = BI(v0), A = AI(v0), β = βI(v0), and α = αI(v0).

Lemma 4.2. If I < J , then the probability that CI is remote from v0 is at most
1/2|CI |−1.

Proof. We will actually prove the somewhat stronger claim that if I < J , then
the probability that v0 is not connected to any node in CI is 1

2α(2β−1)
that is at most

1/2|CI |−1 because β � 1.
Since I < J , when the greedy algorithm considered v0, it had to examine (and

reject) the possibility of adding it to CI before actually adding it to CJ . The fact
that v0 was not added to CI implies that there is some node in B that does not
neighbor v0. However, of all 2β possible connection configurations between v0 and the
nodes of B, the event EN = “v0 has a nonneighbor in B” excludes only the possibility
that v0 neighbors all nodes of B and leaves us with 2β − 1 other possibilities. Hence,
conditioned on EN , we have

P(v0 has no neighbors in B) =
1

2β − 1
.

As for the nodes of A, each such node v was added to CI after v0 was considered,
and since I < J , the decision to add v into CI was reached before considering clique
CJ , and hence it was independent of the existence (or nonexistence) of the edge (v, v0).
Hence,

P(v0 has no neighbors in A) =
1

2α
.

The lemma follows.



718 CYRIL GAVOILLE AND DAVID PELEG

Lemma 4.3. If I > J , then the probability that CI is remote from v0 is at most

1

2β
·
∏
v∈A

2βJ (v)−1

2βJ (v) − 1
.

Proof. Since I > J , when the greedy algorithm considered each node v of CI , it
had to first examine (and reject) the possibility of adding it to CJ . For v ∈ B, the
decision not to add v to CI was clearly independent of the edge (v, v0). (Note that in
fact v0 ∈ AJ(v).) Hence,

P(v0 has no neighbors in B) =
1

2β
.

It remains to consider nodes v ∈ A.
The fact that a node v ∈ A was not added to CJ implies that there exists

a node in BJ(v) that does not neighbor v. However, again, of all 2βJ (v) possible
connection configurations between v and the nodes of BJ(v), the event EN (v) = “v
has a nonneighbor in BJ(v)” excludes only the possibility that v neighbors all nodes
of BJ(v) and leaves us with 2βJ (v) − 1 other possibilities. Of those, v neighbors v0

in exactly 2βJ (v)−1 possibilities. Hence, conditioned on EN (v), the probability that v

does not neighbor v0 is 2βJ (v)−1

2βJ (v)−1
. Hence,

P(v0 has no neighbors in A) =
∏
v∈A

2βJ (v)−1

2βJ (v) − 1
.

The lemma follows.
The product appearing in the bound of Lemma 4.3 is small only when the values

βJ(v) involved in it are sufficiently large. Fortunately, there cannot be too many
nodes v with small βJ(v) values, as we prove next.

For integer k � 1, let XJ(k) denote the set of nodes v that were considered by the
algorithm during the period when CJ contained exactly k nodes and were rejected
from CJ . In particular, we are interested in the collection of such nodes for small
values of k, i.e., X̂ =

⋃log log n
k=1 XJ(k).

Corollary 4.4. Suppose that the clique CI , I > J , contains no node from X̂.
Then the probability that v0 is not connected to any node in CI is at most γ/2

|CI | for
some fixed constant γ > 1.

Proof. Under the assumption of the corollary, βJ(v) > log log n for every v ∈ A.
Therefore,

2βJ (v)−1

2βJ (v) − 1
=

1

2

(
1 +

1

2βJ (v) − 1

)
� 1

2

(
1 +

1

2log log n+1 − 1

)
� 1

2

(
1 +

1

log n

)
.

The bound of Lemma 4.3 thus becomes

1

2β
·
(

1

2

(
1 +

1

log n

))α

.

As the size of the maximum clique in a random graph is at most 2 logn (with proba-
bility at least 1− 1/nlog log n), this bound is no greater than

1

2β
· 1

2α

(
1 +

1

log n

)2 log n

� 1

2β+α
· e2,

and the claim follows.
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Lemma 4.5. With probability at least 1−1/n3, the set XJ(k) is of size |XJ(k)| �
2k+2 lnn for every k � 1.

Proof. Suppose that |XJ(k)| > 2k+2 lnn. For every v ∈ XJ(k), the probability
for v not joining CJ (on account of a missing edge from v to some node in CJ) is
1− 1/2k. Thus the probability of all of those nodes being rejected from CJ is

(
1− 1

2k

)|XJ (k)|
<

(
1− 1

2k

)2k+2 lnn

� e−4 lnn =
1

n4
.

Summing these probabilities over all k yields the desired claim.

Let ED denote the event that the random graph at hand does not satisfy the
property asserted in Lemma 4.5. Henceforth, we ignore that possibility and restrict
our attention to ED. Under this restriction, the size of the set X̂ is bounded above by

|X̂| �
log log n∑
k=1

2k+2 lnn = O(log2 n).

It remains to bound the number of remote cliques CI (that have no neighbor of
v0). Let f(k) denote the number of cliques of size k.

Lemma 4.6. With probability at least 1−1/n2, f(k) � 2k+2 lnn for every k � 1.

Proof. Let us bound the probability of the event that there are more than
2k+1 log n cliques of size k, Ci1 , . . . , Cif(k)

. Let m = 2k+2 lnn and consider the time
when clique Cim was formed by the greedy algorithm (for the purpose of hosting the
currently inspected node v′). For any node v considered after v′, the probability that
it could not have joined the clique Cij is

1− 1

2βij
(v)

� 1− 1

2k
.

Hence, the probability that v could not have joined any of those m cliques is at most

(
1− 1

2k

)m

�
(
1− 1

2k

)2k+2 lnn

� e−4 lnn =
1

n4
.

Consequently, the probability that any of the remaining nodes to be considered by the
algorithm after v′ could not join an existing clique, and a new clique must be formed,
is at most 1/n3. Summing these probabilities for every k, the lemma follows.

Let EH denote the event that the random graph at hand does not satisfy the
property asserted in Lemma 4.6. Henceforth, we ignore that possibility and restrict
our attention to EH .

Lemma 4.7. The number of remote cliques is at most O(log2 n) with probability
1− 1/n2.

Proof. Assuming event ED, the total number of remote cliques that contain a
node of X̂ is at most O(log2 n). It remains to count the remote cliques among the
cliques that do not contain any node of X̂. The probability of such a clique CI being
remote is bounded, in Lemma 4.2 and Corollary 4.4, by δ/2|CI | for some constant
δ > 1.

For every clique Ci of size k, let Ri be the event that Ci is remote. Let R be a
random variable representing the number of remote cliques of size k, and let fR(k)
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denote its expectation. Since R is the sum of f(k) Bernoulli random variables Ri,
each with probability δ/2k, fR(k) is at most δf(k)/2k. Assuming event EH , we have

fR(k) � δ2k+2 lnn

2k
= 4δ lnn.

Applying Chernoff’s bound, we get that

P(R � 8δ lnn) < exp(−2δ lnn) = n−2δ <
1

n2
.

Hence, for the cliques not containing any nodes from X̂, with probability at least
1−1/n2, the total number of remote cliques of any size k is bounded (recalling Lemma
4.1) by O(log2 n).

Combining both clique types together, we get the claim of the lemma.
It follows that for every v0, the number of “problematic” nodes (namely, those of

remote cliques) that need to be assigned an individual interval is bounded by O(log3 n)
with probability 1− 1/n.

Combining all possible failure events (namely, EA ∪ EC ∪ ED ∪ EH), we get that
for a random graph in Gn,1/2, with probability at least 1−1/n, it is possible to assign
node labels and design an interval routing scheme in such a way that for every node
v0, there is a single interval on every edge except at most O(log3 n) edges with two
intervals each. (Spreading the problematic nodes so that each adds an interval to a
different edge is done by a greedy process similar to those of sections 2.1 and 3.) We
remark that the intervals used in the scheme are linear and strict.

Theorem 4.8. For sufficiently large n, with probability at least 1−1/n, a random
graph G ∈ Gn,1/2 can be given an assignment of node labels and a shortest path interval
routing scheme (polynomial time constructible) using a single interval per edge, except
for at most O(log3 n) edges per node where two intervals must be used.

Corollary 4.9. For almost every n-node graph G there exists an assignment
of node labels from the set {1, . . . , n} and a shortest path routing scheme using at
most n + O(log4 n) bits of information per node. Moreover, the routing scheme is
constructible in polynomial time.

Proof. Assume G satisfies Theorem 4.8. The interval routing scheme on G can
be implemented in each node by a table of O(log3 n) integers and a binary vector of
n bits. Indeed, every 1-IRS can be implemented in each node in n + O(log n) bits
(cf. [6]). Note that the O(log3 n) problematic nodes contribute for at most O(log3 n)
single intervals, each one composed of exactly one node label. We store in a table of
O(log3 n) entries the label of these nodes and the output port number that makes an
overhead of O(log4 n) bits in total. These nodes are treated as exceptions and checked
first in the routing process. Therefore, the label of these nodes can be merged to the
remaining intervals in order to simulate a 1-IRS.
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