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Abstract

In this paper, we consider routing with compact tables in reliability networks. More precisely, we
study interval routing on random graphsG(B, p) obtained from a base graphB by independently
removing each edge with a failure probability 1−p. We focus on additive stretched routing forn-node
random graphs for which the baseB is a square mesh andp= 0.5, that is the percolation model at the
critical phase. We show a lower bound of�(

√
log n/(�+ 2)) on the number of intervals required per

edge for every additive stretch��0. On the other side, our experimental results show that the size
of the largest biconnected components is�(n0.827), and thus that there exists a trivial shortest-path
routing scheme using at most O(n0.827) intervals per edge.

The results are extended to random meshes of higher dimension. We show that, asymptotically
almost surely, the number of intervals per edge for a randomr-dimensional mesh withn nodes is
�(16−r (�+2)1−r r−4(log n)1−1/r ), for every additive stretch��0 and for every integral dimension
r ∈ [1, log2 n].
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1. Introduction

Research in the area of routing algorithms on computer networks is permanently of great
interest by many researchers since routing problems belong to the fundamental topics in
distributed systems. Routing is interesting both from a theoretical and also from a practical
point of view. One aspect of research in this field covers compacting of routing tables,
by maintaining the smallest amount of routing information (or knowledge) locally in each
router while guaranteeing that the routes are near the shortest paths.

Many results concern the design ofuniversalrouting strategies in the sense that they are
applicable to all the networks. In particular, the proposed schemes give trade-offs between
the memory requirements (the size of the local routing tables) and the stretch factor, namely
the maximum ratio between the length of the route between any two nodes and their distance
in the network. Among them[3,5,9,32,38,13]are for a survey.

While the above strategies apply to all the networks, a natural question is whether other
more efficient techniques can be applied on realistic networks. Although there is still no
answer to the question “what a realistic network is?”, many models consider that such
networks are based on some structured underlying topology (which is certainly not the
complete network) with some random extra connections or some random link failures
(cf. the augmented grid Kleingberg’s model of small world[23,24]).

1.1. Reliability networks

In this paper, we consider a point-to-point communication network modeled by a simple
connected graphG = (V ,E), whereV is the set of nodes (or processors or routers) andE is
a set of edges (or bidirectional communication links). We focus on random graphsG(B, p)

obtained from a graphB, with node set{1, . . . , |V (B)|}, by independently removing each
edge with a failure probability 1−p. SoG ∈ G(B, p) is a uniform labeled random spanning
subgraph ofB asV (G) = V (B) andE(G) ⊆ E(B). More precisely,

Pr(G) = p|E(G)|(1 − p)|E(B)|−|E(G)|.

The graphB is called thebasegraph, and the value 1− p the failure probability. This
model, called thereliability network model, appears in[28–30] and is described in more
detail in[22, p. 2]. The reliability network is a natural generalization of the binomial random
graph model of Erdös-Rényi, denoted hereafterG(n, p), for whichB = Kn is the complete
graph onn nodes. The reliability network based on the infinite square mesh represents the
square bond percolation model described in[21]. As mentioned in[22], this model can
be generalized further by allowing different probabilities of failure at different edges. It is
also related to other problems of computer science such as grid-computing, fault-tolerant
distributed computing, effective data structures, etc.

Our paper is also concerningadditivestretched routing schemes, rather than multiplicative
stretch (or stretch factor). A path of a graph is�-stretchedif the length of the path is at most
the length of a shortest path between its extremities plus�. A �-stretched routing scheme
is a scheme for which all the routes are�-stretched paths. The parameter� is also called
thedeviationof the routing scheme. It is provable that even a small deviation allows better
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optimizations for spanner construction[7] and distance computation[16], and yields also
compact routing tables[4].

1.2. Routing tables and interval routing

Finally, we focus on theinterval routing scheme, a particular way of implementing
standardrouting tables[35,40]. Each node has a local routing table, and addresses of the
nodes range in{1, . . . , |V (G)|}. When a sourceu sends a message to a destinationv, it
attaches to the message the address ofv, say the integeri, and forwardsi and the message
to a neighbor ofu by looking at theith entry ofu’s local table. So the route is computed
in a distributed fashion by the nodes along the route betweenu andv. Obviously, it is
required that for every source–destination pairu, v a route connectsu to v. Interval routing
implements local routing tables as follows:u stores ad entry table,d being the degree of
u. Each entry corresponds to the list of destination addresses using the same first edge in
the routing fromu. If for every nodeu, all the lists can be grouped into at mostk sets
of consecutive integers (consecutive modulon), we say that the routing scheme is ak-
interval routing scheme(k-IRS for short). For more precise formulations and other details
see[12,34].

The main difficulty in the design of interval routing schemes for a given graph is to find
out a suitable address assignment for the nodes and a suitable system of routes for all the
pairs of nodes such that the number of intervals per output port (equivalently per outgoing
edge) is minimal while keeping the routes near-shortest paths. Whenever shortest paths are
required, the problem to know whether a graph supports a 1-IRS is already NP-complete[6].
A �-stretchedk-IRS, denoted by(k, �)-IRS, is simply ak-IRS that is a�-stretched routing
scheme. A(k,0)-IRS is also called a shortest-pathk-IRS. Fig.1 depicts two interval routing
schemes on the 6-cycle.

1.3. Previous works on random graphs

The main advantage ofk-IRS concerns the size of the memory requirements. In an
n-node graph supporting ak-IRS, a node of degreed has to store O(kd log n) bits of infor-
mation, whereas�(n log d) bits are required for a standard routing table implementation.
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Fig. 1. A shortest-path 1-IRS (left side), and a 2-stretched 1-IRS (right side).
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In particular, interval routing is efficient for structured graphs like cycles, complete graphs,
meshes, trees, outerplanar graphs, tori, hypercubes,k-trees, etc. All these graphs support
shortest-path O(1)-IRS (more results about interval routing are accessible in the survey
[12]).

Flammini, van Leeuwen and Marchetti-Spaccamela[8] proved a non-constant lower
bound onk for shortest-pathk-IRS on random graphs ofG(n, p), the Erdös–Rényi model.
It is proved therein that, with high probability, a graphG(n, p) requires�(n1−1/�(

√
log n ))

intervals per outgoing edge for some specific value ofp, namely forp = 1/n1−1/�(
√

log n).
On the other hand, Gavoille and Peleg[18] proved that almost all graphs (that is a fraction
of 1 − o(1) of all n-node graphs, or equivalently the graphs ofG(n, p) for p = 0.5 and
with high probability) support a shortest-path 2-IRS. Actually, they constructed a routing
scheme such that every node has at most O(log3 n) outgoing edges with 2 intervals, all the
other ones having 1 interval, leaving open the question of whether almost all graphs support
shortest-path 1-IRS. Finally, for shortest-pathk-IRS on randomn-node tori (i.e. Cartesian
product of two cycles, each of

√
n nodes with random deletion of edges), a preliminary

result appears in[27] where it is proved a lower bound of�(
√

log n). A summary of these
results is listed in the following table.

Random graph Probabilityp Shortest-pathk-IRS Reference

G ∈ G(n, p) 1/n1−1/�(
√

log n) �
(
n1−1/�(

√
log n)

)
[8]

G ∈ G(n, p) constant �2 [18]

T ∈ G
(
T√
n×√

n, p
)

constant �
(√

log n
)

[27]

1.4. Our results

The main results of this paper are the following:
1. A lower bound onk for (k, �)-IRS on randomn-noder-dimensional meshes with con-

stant failure probability. We show that, asymptotically almost surely,k = �(16−r (� +
2)1−r r−4(log n)1−1/r ), for every additive stretch��0 and for every dimensionr ∈
[1, log2 n].

2. For upper bounds, we have studied random square meshes(r = 2) with p = 0.5, that
is the percolation threshold probability. Recall that when the size of the mesh becomes
infinite, p = 0.5 is precisely the probability where the mesh contains a unique infinite
connected component[21]. Unfortunately, as many interesting problems in percolation
theory (and as suggested by[1]), few answers can be done analytically and we restrict
ourselves to make experiments. Based on the expected size of the largest biconnected
components of random square meshes, our results suggest that random squaren-node
meshes support shortest-pathk-IRS withk = O(n0.827).
The motivation for studying, meshes is that meshes or the subgraphs of a mesh are

typical planar graphs (cf. the graph minor theory of Robertson and Seymour[33]) and
many problems are still unsolved about routing in planar graphs with compact tables. For
instance, the optimal size of shortest-path routing tables is not known.The complexity bound
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ranges between�(
√
n) [5] and O(n) bits per node[15,26]. For shortest-path interval routing

the range is similar:�(
√
n) intervals is the best known lower bound[19,39] and O(n) is

the trivial upper bound. Similar gaps exist also fordistance labelingin planar graphs whose
goal is to compute distances between two nodes based only on their node label[31]: label
length must be�(n1/3) for some worst-case, and O(

√
n log n) bit labels are sufficient for

every planar graph[20]. Finding structure of shortest paths and distances in planar graphs
is probably difficult and certainly would require more combinatorics.

Surprisingly, bounds for multiplicative stretched routing and approximated distance la-
beling are much more competitive. In general almost poly-logarithmic space per node is
sufficient[11,37]. Observe that shortest-path and additive stretched routing in planar graphs
are two equivalent problems in the sense that the lower bounds on the shortest-path version
transfer to lower bounds on stretched version by subdividing each edge into� other edges.
This forces any additive O(�)-stretched routing scheme to respect the shortest paths in the
subdivided graph, and this latter graph remains of linear size for constant�.

The paper is organized as follows: Section2 presents the lower bound, and Section3
the upper bound and our of experiments. We conclude by a large set of open problems in
Section4.

2. Lower bound for random r-dimensional meshes

If G is a connected graph, then we denote by IRS�(G) the smallest integerk such thatG
supports a(k, �)-IRS. The number IRS0(G) is also called thecompactnessof G. Because
the graphs ofG(B, p) are not necessarily connected, we extend the notion of the routing
schemes on non-connected graphs as follows: a routing scheme on a non-connected graph is
simply the union of the routing schemes of each of its connected components. It is therefore
only required to have a route between two nodes of a same connected component. Then,
IRS�(G) = maxi IRS�(Gi) where theGis are the connected components ofG.

For two integersr�1 and s�1, the r-dimensional mesh, denotedMr
s , is the graph

whose nodes are all ther-tuples over the set{1, . . . , s}. Two nodesu = (u1, . . . , ur ) and
v = (v1, . . . , vr ) are adjacent if and only if there is an indexi0 such that|ui0 − vi0| = 1
andui = vi for everyi �= i0. The graphMr

s hassr nodes andrsr−1(s − 1) edges.
This section concerns graphs ofG(Mr

s , p). In order to prove the lower bound we need
several preliminary results.

A subgraphX of G is isolatedif there is no edge{u, v} ∈ E(G) such thatu ∈ V (X) and
v /∈ V (X). Note that ifX is isolated inG, then IRS�(G)� IRS�(X) for every��0, since
by definition IRS�(G) = maxi IRS�(Gi).

A graphX is anm-subgraph of Gif G containsm subgraphs isomorphic toX pair-
wise at distance two or more. For instance,K2 is a 2-subgraph of the 6-cycle depicted in
Fig. 1 (take two opposite edges). We emphasize that ifX is anm-subgraph ofG thenX is
not necessarily an induced subgraph ofG.

Lemma 1. Let B be a connected graph with n nodes and maximum degree d, and let X be
anm-subgraph of B with x nodes. Then,G ∈ G(B, p) contains X as isolated subgraph with
probability at least1 − exp(−mqdx), whereq = min {p,1 − p}.
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Proof. LetG ∈ G(B, p), and letA be the event “G containsX as isolated subgraph”. Our
goal is to lower bound Pr(A). So,

Pr(A)� Pr(X is isolated inG).

LetX1, . . . , Xm bem subgraphs ofB pairwise at distance two, each one isomorphic toX.
For eachi ∈ {1, . . . , m}, let Zi be the random boolean variable such thatZi = 1 if and
only if the subgraphXi is isolated inG. Finally, letZ = ∑m

i=1 Zi .

Pr(X is isolated inG)� Pr(Z�1) = 1 − Pr(Z = 0).

As theXi ’s are pairwise at distance at least two, there is no edge{u, v} ∈ E(B)with u ∈ Xi
andv ∈ Xj . Therefore, “Xi is isolated inG” is an event independent from “Xj is isolated
in G”. Thus the variablesZi are mutually independent. It follows that,

Pr(Z = 0) =
m∏
i=1

Pr(Zi = 0)�
(

max
i

Pr(Zi = 0)

)m
=
(

1 − min
i

Pr(Zi = 1)

)m
.

To makeXi isolated inB it suffices to keep or remove independently some edges ofBwith
at least one extremity is inXi . It is possible to check (recall that the degree of each node of
B is bounded byd) that Pr(Zi = 1)�qdx , whereq = min {p,1 − p}. Thus,

Pr(A)� Pr(Z�1)�1 −
(
1 − qdx

)m
�1 − exp

(
−mqdx

)
using the fact that(1− b/a)c� exp(−c(b/a)), for all 0< b�b+ c < a (cf. [2, Eq. (1.6)
p. 5]). This completes the proof.�

In the following, we denote by� a routing property, that is a set of possible routes for a
routing scheme on a graph. More formally, a routing property� is a function that associates
with every graphG a set�(G) of paths ofG. A routing schemeR onG has the property
� (or is a�-routing) if all the routes induced byR belong to�(G). For instance, the
“shortest-path” property is simply a function� such that, for everyG, �(G) returns the
set of all the shortest paths inG.

The following useful lemma is a generalization of a result of Kráľovič et al.[25] originally
proved for the shortest-path property.

Lemma 2. Let G be a graph and� be a routing property. LetS(u, v) be the set of nodes
w such that there exists a path of�(G) from u tow that starts with the edge{u, v}. Let U
and W be two disjoint node subsets of G such that for all distinct nodesw,w′ ∈ W , there
is u ∈ U such that for each neighborv of u it holdsw /∈ S(u, v) or w′ /∈ S(u, v). Then,
every k-IRS with property� on G must satisfy

k� |W |∑
u∈U deg(u)

.

Proof. LetRbe anyk-IRS with property� on a graphGwith node set{v1, . . . , vn} and arc
set (each edge appears twice, once for each orientation){e1, . . . , em}. FromRwe construct
an×m boolean matrixMi,j as follows:Mi,j = 1 iff the route induced byR from uj (the
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tail of ej ) to vi starts with the edgeej , and setMi,j = 0 otherwise. It is not difficult to
see that the number of intervals associated with the edgeej by R is exactly the number of
01-sequences in the binary vector composed ofjth column ofMi,j (the last bit and the first
bit being considered as consecutive). Letc(ej ) be its 01-sequences number. By the choice
of R, c(ej )�k for everyj.

Consider now the sub-matrixM ′ composed of all the rows corresponding to a node of
Wand of all the columns corresponding to an arc outgoing from a node ofU. Let c′(ej ) be
the 01-sequences number of the columnej of M ′. Removing some bits of a binary vector
does not increase its 01-sequence number. Hence,c′(ej )�c(ej ) and sok�c′(ej ).

Let us show that
∑
j c

′(ej )� |W |, where the sum is done over all the columns ofM ′.
Indeed, consider two consecutive rows ofM ′ (again the last and the first row are considered
as consecutive), and letw,w′ be the corresponding nodes ofW, sayw′ located beloww
in M ′. Consider the nodeu ∈ U such that for each neighborv of u, w /∈ S(u, v) or
w′ /∈ S(u, v). R has the property�, thusu has a neighborv′ such thatw′ ∈ S(u, v′).
As w /∈ S(u, v′), it follows that the binary vector of the column associated with the arc
(u, v′) contains a 01-sequence starting at the row ofw. Considering all the consecutive pairs
w,w′ ofM ′ we have that all the columns ofM ′ contain at least|W | disjoint 01-sequences,
i.e.,

∑
j c

′(ej )� |W | as claimed.
As the number of columns ofM ′ is

∑
u∈U deg(u), it follows that

k�
∑
j c

′(ej )∑
u∈U deg(u)

� |W |∑
u∈U deg(u)

. �

In Lemma3, we will apply Lemma2 where�(G) is the set of�-stretched paths onG.
For a positive integert, let us define an operation& over a graphGand thet-node pathPt

as follows:G&Pt is a graph which consists of two copies ofG, namelyGandG′, such that
each nodeu ∈ G is connected with its corresponding copyu′ ∈ G′ by a pathPt . For all
t, r�1, we define the graphHrt recursively byHr+1

t = Hrt & Pt , with H 1
t = Pt . In other

words,

Hrt = Pt & Pt & · · · & Pt︸ ︷︷ ︸
r times

.

Note thatHrt is a subgraph of ther-dimensional meshMr
s for t�s. Similarly as in meshes

Mr
s , we will identify nodes ofHrt by r-tuples over the set{1, . . . , t}. The number of nodes

of Hrt is t r , and its number of edges is(t − 1)(tr − 2r )/(t − 2), that follows from the
recurrence:|E(Hi+1

t )| = 2|E(Hit )| + (t − 1)t i with |E(H 0
t )| = 0. See Fig.2 for some

examples ofHrt .

Lemma 3. IRS�(H
r
t ) = �

(
(� + 2)1−r r−22−r (t − 7)r−1

)
, for all ��0, r�1 andt�8.

Proof. The result clearly holds if�� t , since in this case IRS�(H
r
t ) = �

(
r−22−r). So

assume�� t − 1.
LetU andWbe the following sets.
u ∈ U if in u = (u1, . . . , ur ) there is at most oneui �= 1 (i ∈ {1, . . . , r}).
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Fig. 2.H1
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Fig. 3. The setsWandU in the graphH2
t .

w ∈ W if w = (w1, . . . , wr), where:
• 2�w1� t ,
• wi = 2 + l(� + 2) for l = 0, . . . , � − 2, such thati ∈ {2, . . . , r} and

� =
⌊
t − ��/2� − 3

� + 2

⌋
+ 2.

The construction ofWyields the important fact that all nodes fromWare of degree two and
have only edges in therth dimension. Note that for eachwi , i ∈ {2, . . . , r} it holds that
2�wi� t − ��/2� − 1 and

∑
u∈U deg(u) = O(r2t), since|U |�rt and|W | = (t − 1) ·

(� − 1)r−1. Clearly,U andWare disjoint and|W | > 0. (For the construction ofWandU in
H 2
t see Fig.3.)
Let �(Hrt ) be the�-stretched path routing property. We will show that the setsU andW

satisfy the assumption of Lemma2. The main idea comes from the following fact: for all
pairs of nodesw,w′ ∈ W a nodeu ∈ U exists such that there is only one�-stretched path
P(w, u) fromw to u and also only one�-stretched pathP(w′, u) fromw′ to u. Moreover
pathsP(w, u) andP(w′, u) are disjoint except for the nodeu. It follows that there is only
one way to reach nodesw andw′ from u according to�(Hrt ), and the two corresponding
paths start with different edges incident tou, thus satisfying the assumption of Lemma2.
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Let w = (w1, . . . , wr), w
′ = (w′

1, . . . , w
′
r ) be two distinct nodes fromW. We will

distinguish two cases for setting the nodeu.
Case1: Nodesw andw′ differ in the first element, i.e.w = (w1, . . . , wr), w′ =

(w′
1, . . . , w

′
r ) andw1 �= w′

1. Let us choose the corresponding node fromU to beu =
(w1,1, . . . ,1). Recall that all nodesw,w′ ∈ W are incident only with edges in the
rth dimension. LetP(w, u) be the path fromw to u containing the following nodes:
(w1, . . . , wr−1,1), (w1, . . . , wr−2,1,1), . . . , (w1,1, . . . ,1). The length,(P (w, u)) of
P(w, u) is given by

,(P (w, u)) =
r∑
i=2
(wi − 1).

HenceP(w, u) is the shortest path, since the distance ofw andu inHrt is equal to,(P (w, u)).
Clearly,P(w, u) satisfies the property�(Hrt ).Another possibility for reaching nodeu from
w is to pass through a node(w1, . . . , wj−1, t, wj+1, . . . , wr) for an aribtraryj such that
2�j�r. However, each such path does not satisfy the property�(Hrt ). The argument is
that the construction ofWyields that the distance between anyw = (w1, . . . , wr) ∈ W and
the node(w1, . . . , wj−1, t, wj+1, . . . , wr) is at least��/2� + 1. So the length of any path
that contains the node(w1, . . . , wj−1, t, wj+1, . . . , wr) is raised above 2(��/2�+1). More
precisely, letP ′(w, u) denote a path fromw to u that contains the node(w1, . . . , wr−1, t).
(Note that it holdsj = r in this case.) For its length,(P ′(w, u)) it holds

,(P ′(w, u)) =
r−1∑
i=2
(wi − 1)+ t − 1 + t − wr =

r∑
i=2
(wi − 1)+ 2t − 2wr.

Let us express the difference,(P ′(w, u))− ,(P (w, u))
,(P ′(w, u))− ,(P (w, u)) = 2(t − wr)�� + 2,

sincet −wr���/2� + 1. ThusP(w, u) is the only one possible path that satisfies�(Hrt ),
since the length of any other path fromw to u is greater than or equal to,(P ′(w, u)).

An analogous situation holds also for the nodew′ = (w′
1, . . . , w

′
r ): the only routing

pathP(w′, u) ∈ �(Hrt ) contains the nodes(w′
1, . . . , w

′
r−1,1), (w

′
1, . . . , w

′
r−2,1,1), . . . ,

(w′
1,1, . . . ,1). Assume w.l.o.g. thatw′

1 > w1. Then the length,(P (w′, u)) of P(w′, u) is
equal to the distance betweenw′ andu

,(P (w′, u)) =
r∑
i=2
(w′
i − 1)+ w′

1 − w1.

On the other hand, letP ′(w′, u) denote the path fromw′ to u that contains the node
(w′

1, . . . , w
′
r−1, t). The length,(P ′(w′, u)) is expressed as follows:

,(P ′(w′, u))=
r−1∑
i=2
(w′
i − 1)+ t − 1 + t − w′

r + w′
1 − w1

=
r∑
i=2
(w′
i − 1)+ 2t − 2w′

r + w′
1 − w1,
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and consequently,

,(P ′(w′, u))− ,(P (w′, u)) = 2(t − w′
r )�� + 2,

sincet − w′
r���/2� + 1.

Now, it is easy to see thatv = (w1,2,1, . . . ,1) is the last node that is contained in the path
P(w, u) ∈ �(Hrt )before its end-nodeu = (w1,1, . . . ,1)andv′ = (w1+1,1, . . . ,1) is the
last node that is contained in the pathP(w′, u) ∈ �(Hrt ) before its end-node. Consequently,
for neighborsv andv′ of u it holds:v ∈ P(u,w), v′ ∈ P(u,w′) andv �= v′. Both paths
P(u,w) andP(u,w′) are the only possible ones satisfying�(Hrt ). Hence, the assumption
of Lemma2 holds.
Case2: Let j > 1 be the index of the first element in whichw andw′ are different,

i.e. w = (w1, . . . , wj−1, wj , . . . , wr) andw′ = (w1, . . . , wj−1, w
′
j , . . . , w

′
r ). Let us

choose the corresponding node fromU to be

u =

1, . . . ,1︸ ︷︷ ︸

j−1

, t + 1 −
⌊
wj + w′

j

2

⌋
,1, . . . ,1︸ ︷︷ ︸

r−j


 .

Assume w.l.o.g. thatwj > w′
j . By the argument that all nodes ofWare incident only with

edges in therth dimension, there exists the pathP(w, u) which contains the following
nodes:(w1, . . . , wj , . . . , wr−1,1), . . . , (w1, . . . , wj ,1, . . . ,1), . . . , (w1, . . . , wj−1, t,1,
. . . ,1), (w1, . . . ,1, t,1, . . . ,1), . . . , (1, . . . ,1, t,1, . . . ,1). The fact(w1, . . . , wj−1, t,1,
. . . ,1) ∈ P(w, u) yields

,(P (w, u))=
j−1∑
i=1
(wi − 1)+

r∑
i=j+1

(wi − 1)+ (t − wj)

+t −
(
t + 1 −

⌊
wj + w′

j

2

⌋)

=
r∑
i=1
(wi − 1)+ t − 2wj +

⌊
wj + w′

j

2

⌋
.

On the other hand, letP ′(w, u) denote the path fromw to u that contains the node
(w1, . . . , wj−1,1,1, . . . ,1). It implies

,(P ′(w, u)) =
r∑
i=1
(wi − 1)+ t + 1 −

⌊
wj + w′

j

2

⌋
− 1.

The difference,(P ′(w, u))− ,(P (w, u)) is

,(P ′(w, u))− ,(P (w, u)) = wj − w′
j�� + 2,

that follows from the definition ofW and from the fact thatwj > w′
j . Similarly as in the

previous case,P(w, u) is the only possible path satisfying�(Hrt ).
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An analogous argument yields that there is only one possible pathP(w′, u) ∈ �(Hrt )
such that(w1, . . . , wj−1,1,1, . . . ,1) ∈ P(w′, u). Note that in this case

,(P (w′, u)) =
r∑
i=1
(w′
i − 1)+ t −

⌊
wj + w′

j

2

⌋
,

sinceP(w′, u) is the shortest path. Let us denote the expressiont + 1 − �(wj + w′
j )/2�

by uj . The construction of the pathP(w, u) yields thatv = (1, . . . ,1, uj + 1,1, . . . ,1)
is the last node ofP(w, u) ∈ �(Hrt ) before its end-nodeu = (1, . . . ,1, uj ,1, . . . ,1) and
v′ = (1, . . . ,1, uj − 1,1, . . . ,1) is the last node that is contained in the pathP(w′, u) ∈
�(Hrt ) before its end-nodeu. Now it is easy to see that for each neighborv of u it holds
w /∈ S(u, v) orw′ /∈ S(u, v). (The meaning ofS(u, v) is the same as in Lemma2.)

Lemma2 leads to the following inequality:

IRS�(H
r
t )�r−2t−1(t − 1)(� − 1)r−1.

By the choice of�,

� − 1� t − �/2 − 4

� + 2
� t − 7

2(� + 2)
,

since�� t−1. Moreover,t−1(t−1)�7/8, sincet�8 and we obtain the resulting asymptotic
formula:

IRS�(H
r
t ) = �

(
r−22−r

(
t − 7

� + 2

)r−1
)
. �

The main result of this section is the following.

Theorem 1. Let 0 < p < 1 be a constant, and let s�2, r�1, ��0 be integers. With
probability at least1 − exp(−(s/2)r−1/2) a random meshG ∈ G(Mr

s , p) verifies
IRS�(G) = �(16−r (� + 2)1−r r−3(log s)1−1/r ).

Proof. The result holds forr = 1, as 16−r (� + 2)1−r r−3(log s)1−1/r = O(1) and since
IRS�(G) is always at least 1. (Notice that everyG ∈ G(M1

s , p) is a forest thus satifying
IRS0(G) = 1 by [35].) We note also that fors = O(1), 16−r (� + 2)1−r r−3(log s)1−1/r =
O(1), thus the result holds as well. So let us assume thatr�2 and thats is large enough
(i.e.,s is greater than some fixed constants0).

Let us show that, for everyt�s − 2,Hrt is anm-subgraph ofMr
s for m = �s/(t + 2)�r .

We split each pathPs of the construction ofMr
s into �s/(t + 2)� segments oft + 2 nodes.

It splitsMr
s into �s/(t + 2)�r sub-meshes isomorphic toMr

t+2. Each sub-mesh contains
Hrt as a subgraph (not necessarily induced) that one can place so that any two copies of
Hrt into Mr

s are at distance at least two. By this way we have shown thatMr
s contains

m = �s/(t + 2)�r subgraphs isomorphic toHrt and pairwise at distance two. Fort�s − 2,
we havem�1 andHrt is anm-subgraph ofMr

s as claimed.
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Let us fix t = (�r log2(s/2))
1/r with � = −1/(8r2 log2 q) for q = min {p,1 − p}. 2

Note that 0< � < 1. Observe also that, for everyr�1, r1/r ∈ [1, e1/e]. So,(�r)1/r�e1/e,
and thust�e1/e(log2 (s/2))

1/r�s − 2 for s large enough. Let us express(t − 7)r−1. Note
that from Lemma3 we have the conditiont�8 and consequently,t − 7� t/8. It follows
thatt − 7�8−1(�r log2(s/2))

1/r . Now,

(t − 7)r−1 � 81−r · (�r) · (�r)−1/r · (log2 (s/2))
1−1/r

� 81−r�r · e−1/e · (log2 (s/2))
1−1/r , (1)

� − e−1/e

8 log2 q
· 81−r r−1(log2 (s/2))

1−1/r

� − e−1/e

2 log2 q
· 8−r r−1(log2 s)

1−1/r . (2)

LetG ∈ G(Mr
s , p). By Lemma1, with some suitable probability� computed hereafter,

IRS�(G)� IRS�(H
r
t ) for every�. From Lemma3, IRS�(H

r
t ) = �((� + 2)1−r r−22−r (t −

7)r−1) for every�. By the choice oft, and by inequations (2), IRS�(H
r
t ) = �(16−r (� +

2)1−r r−3(log s)1−1/r ).
Let us compute the probability�. From Lemma1, ��1 − exp(−mqdx), whered is

the maximum degree of the base graph (hereB = Mr
s ), x is the number of nodes of the

m-subgraph (herex = |V (Hrt )| = t r ) and recall thatq is a non-null constant� 1
2. We have

x = �r log2 s, d = 2r, andm = �s/(t + 2)�r . Fors large enough,m�(s/(2t))r .
We haveqdx = q2r2� log2(s/2) = (s/2)−1/4. We have also that(s/(2t))r = (s/2)r/tr =

(s/2)r/(�r log2 s). We observe that�r = −1/(8r log2 q)�c, wherec is some constant
sincer�1 andq is a constant. So, fors large enough it follows that

m�(s/(2t))r�(s/2)r/(c log2 s)�(s/2)r−1/4

and somqdx�(s/2)r−1/2. Therefore,

��1 − exp
(
−(s/2)r−1/2

)
as claimed, that completes the proof.�

Corollary 1. For all integers r ∈ [1, log2 n] and ��0, with probability at least1 −
exp(−√

n), a random r-dimensional mesh G of n nodes with constant failure probability
verifies thatIRS�(G) = �(16−r (� + 2)1−r r−4(log n)1−1/r ).

Proof. The number of nodes inMr
s is n = sr . We observe that forr = 1 or s = O(1), the

result holds since in both cases we have that 16−r (� + 2)1−r r−4(log n)1−1/r = O(1) and
IRS�(G) is always at least equal to 1 (i.e., with probability 1). We note that forr�2 and
for s large enough, we have(s/2)r−1/2�sr/2 = √

n. �

2 W.l.o.g.� is chosen such thatt is integer. Indeed, if� = −1/(8r2 log2 q) does not suffice, we can enlarge�
by a factor at most two. This does not affect the final result.
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3. Upper bound for random two-dimensional meshes

It is also of great importance to state a nontrivial upper bound on IRS� for randomr-
dimensional meshes, and in particular the upper bound on IRS0, that is the compactness of
a random mesh. The trivial upper bound is O(n). In this section we consider random meshes
G(M2

s , p) with n = s2 nodes and forp = 0.5, that is the critical value in the percolation
theory.

We will use the following property due to[14].

Lemma 4 (Gavoille and Guévremont[14] ). The compactness of any connected graph is
the maximum of the compactness over all its biconnected components.

Note that the compactness of ann-node graph is no more thatn/2.Actually, from[17], the
compactness is no more thann/4+o(n), and there are graphs with compactnessn/4−o(n).
So, in general, the compactness ofG is at most O(L), whereL is the size of the largest
biconnected components ofG.

Let f (s) denote the expected value of the number of nodes in the largest biconnected
component in a randoms × s mesh (withp = 0.5). In order to estimatef (s) on large
values ofswe have programmed a standard linear-time algorithm for finding biconnected
components based on the modification of a depth first search traversal, cf.[36]. Some outputs
of our algorithm are depicted in Figs.5–9 (see also Fig.4).

Our experiments (up to 50 tests for random meshes as large as 2048× 2048 meshes)
show thatf (s) ≈ �s� where� = 0.32 and� = 1.654. (More precisely, we remark that

0

20000

40000

60000

80000

100000

120000

140000

0 500 1000 1500 2000

f(s
)

s

"data"
0.32*exp(1.654*log(s))

Fig. 4. The size of the largest biconnected components of a randoms × s mesh. The tests come from averaging
2000 experiments (for the small values ofs) and up to 50 experiments (for the larger values ofs).
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Fig. 5. A 40× 40 random mesh withp = 0.5. Edges are horizontal and vertical segments, isolated nodes have
been removed.

Fig. 6. The mesh of Fig.5 without trees.
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Fig. 7. The largest biconnected component (with 116 nodes) in Fig.5.

Fig. 8. A 160× 160 random mesh withp = 0.5.
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Fig. 9. The mesh of Fig.8 without trees. The largest biconnected component has 672 nodes. Observe that this
random mesh contains theH2

3 graph (circled) as isolated subgraph.

f (2x)/f (x) is a constant, so logf (x) ≈ ax + b.) The value� has been computed by
� = log2 A, whereA is the average value off (2i+1)/f (2i ) for i = 1, . . . ,10. The value
on� follows. Expressed as the total number of nodes of the mesh (n = s2), it turns out that
f (s) ≈ �(n0.827). Our experimental results are summarized in Fig.4.

4. Conclusion and further works

We have proved a nonconstant asymptotic lower bound on the number of intervals for
�-stretched interval routing schemes on random multi-dimensional meshes. By the exper-
imental simulations we have also stated a nontrivial upper bound on this measure for the
two-dimensional case.

We leave several open questions and further directions for the study of compact routing
in reliability networks.
1. Extension to arbitrary routing strategies. It would be interesting to prove similar lower

bounds in a general encoding model, so applicable to any encoding of the routing scheme
rather than the interval routing model.

2. Extension to randomB-graphs with different edge probabilities. For instance a model
G(B, pr, pc) whereB is a mesh and wherepr applies to rows andpc to the columns
would be interesting. In particular, finding the shortest-path routing tables complexity of
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G ∈ G(B,0.5,1) is of some interest. This could also be a tool for the study of augmented
random graphs for Small World (cf. Kleingberg’s model).

3. We know that w.h.p. randomKn-graphs (theG(n, p)model) have constant compactness3

[18], and that random meshes have compactness�(16−r r−4(log n)1−1/r ) (this paper).
Complete graphs and meshes having compactness 1. However, can we have a base graph
B of high compactness, say�(nε), such that randomB-graphs have low compactness
(w.h.p.)?

4. What is the compactness of a generaln-node randomB-graph forp = 0.5 (still w.h.p.)?
Is �(n) possible? Same question ifB is a bounded degree graph or a planar graph or if
B is the hypercube (our lower bound onr-dimensional meshes just gives a constant in
this case).

5. Is H 2
t the worst-case sub-mesh for the compactness? If the answer is “yes”, then it

would clearly improve our O(n0.827) upper bound for random meshes. They would have
compactness at most O(

√
n).

6. But maybe, the most interesting question remains: is there ann-node planar graph with
compactness larger than

√
n?
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