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Abstract

In this paper, we consider routing with compact tables in reliability networks. More precisely, we
study interval routing on random graplis B, p) obtained from a base grafhby independently
removing each edge with a failure probability- . We focus on additive stretched routing fenode
random graphs for which the baBés a square mesh and= 0.5, that is the percolation model at the
critical phase. We show a lower bound®¢./log n/(6 + 2)) on the number of intervals required per
edge for every additive stretah>0. On the other side, our experimental results show that the size
of the largest biconnected component@ielOBZ?), and thus that there exists a trivial shortest-path
routing scheme using at most/&-827) intervals per edge.

The results are extended to random meshes of higher dimension. We show that, asymptotically
almost surely, the number of intervals per edge for a randalimensional mesh witin nodes is
Q67 (6+2)1"r~4(log n)1=1/7), for every additive stretch>> 0 and for every integral dimension
r € [1,logy n].
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1. Introduction

Research in the area of routing algorithms on computer networks is permanently of great
interest by many researchers since routing problems belong to the fundamental topics in
distributed systems. Routing is interesting both from a theoretical and also from a practical
point of view. One aspect of research in this field covers compacting of routing tables,
by maintaining the smallest amount of routing information (or knowledge) locally in each
router while guaranteeing that the routes are near the shortest paths.

Many results concern the designuwfiversalrouting strategies in the sense that they are
applicable to all the networks. In particular, the proposed schemes give trade-offs between
the memory requirements (the size of the local routing tables) and the stretch factor, namely
the maximum ratio between the length of the route between any two nodes and their distance
in the network. Among ther{8,5,9,32,38,134re for a survey.

While the above strategies apply to all the networks, a natural question is whether other
more efficient techniques can be applied on realistic networks. Although there is still no
answer to the question “what a realistic network is?”, many models consider that such
networks are based on some structured underlying topology (which is certainly not the
complete network) with some random extra connections or some random link failures
(cf. the augmented grid Kleingberg’s model of small wdél@,24).

1.1. Reliability networks

In this paper, we consider a point-to-point communication network modeled by a simple
connected grapty = (V, E), whereV is the set of nodes (or processors or routers)tisd
a set of edges (or bidirectional communication links). We focus on random gtahsp)
obtained from a grapB, with node set1l, ..., |V (B)|}, by independently removing each
edge with a failure probability2 p. SoG € G(B, p) is a uniform labeled random spanning
subgraph oBasV(G) = V(B) andE(G) C E(B). More precisely,

Pr(G) = p\E(Gﬂ(l_p)IE(B)\—IE(G)\.

The graphB is called thebasegraph, and the value 2 p the failure probability. This
model, called theeliability network modelappears if28—-30]and is described in more
detail in[22, p. 2] The reliability network is a natural generalization of the binomial random
graph model of Erdds-Rényi, denoted hereafiét, p), for whichB = K,, is the complete
graph om nodes. The reliability network based on the infinite square mesh represents the
square bond percolation model described2h]. As mentioned inf22], this model can
be generalized further by allowing different probabilities of failure at different edges. It is
also related to other problems of computer science such as grid-computing, fault-tolerant
distributed computing, effective data structures, etc.

Our paperis also concerniagdditivestretched routing schemes, rather than multiplicative
stretch (or stretch factor). A path of a graplistretchedf the length of the path is at most
the length of a shortest path between its extremities plds J-stretched routing scheme
is a scheme for which all the routes aretretched paths. The paramedeis also called
thedeviationof the routing scheme. It is provable that even a small deviation allows better
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optimizations for spanner constructiff] and distance computatiqh6], and yields also
compact routing tablegl].

1.2. Routing tables and interval routing

Finally, we focus on thénterval routing schemea particular way of implementing
standardouting tables[35,40] Each node has a local routing table, and addresses of the
nodes range ifl, ..., |V(G)|}. When a source& sends a message to a destinatiotit
attaches to the message the address séy the integer, and forwards and the message
to a neighbor ofli by looking at theith entry ofu’s local table. So the route is computed
in a distributed fashion by the nodes along the route betweand v. Obviously, it is
required that for every source—destination paiv a route connectgto v. Interval routing
implements local routing tables as followsstores & entry tabled being the degree of
u. Each entry corresponds to the list of destination addresses using the same first edge in
the routing fromu. If for every nodeu, all the lists can be grouped into at massets
of consecutive integers (consecutive modajpwe say that the routing scheme ika
interval routing schemé&-IRS for short). For more precise formulations and other details
see[12,34]

The main difficulty in the design of interval routing schemes for a given graph is to find
out a suitable address assignment for the nodes and a suitable system of routes for all the
pairs of nodes such that the number of intervals per output port (equivalently per outgoing
edge) is minimal while keeping the routes near-shortest paths. Whenever shortest paths are
required, the problem to know whether a graph supports a 1-IRS is already NP-cd@iplete
A o-stretched-IRS, denoted byk, 0)-IRS, is simply &-IRS that is aj-stretched routing
scheme. Ak, 0)-IRS is also called a shortest-p&thRS. Fig.1 depicts two interval routing
schemes on the 6-cycle.

1.3. Previous works on random graphs
The main advantage d¢IRS concerns the size of the memory requirements. In an

n-node graph supportinglalRS, a node of degregthas to store (kd log n) bits of infor-
mation, wherea&(n log d) bits are required for a standard routing table implementation.

Fig. 1. A shortest-path 1-IRS (left side), and a 2-stretched 1-IRS (right side).
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In particular, interval routing is efficient for structured graphs like cycles, complete graphs,
meshes, trees, outerplanar graphs, tori, hyperclbieses, etc. All these graphs support
shortest-path @)-IRS (more results about interval routing are accessible in the survey
[12]).

Flammini, van Leeuwen and Marchetti-Spaccam@laproved a non-constant lower
bound ork for shortest-path-IRS on random graphs @¥(», p), the Erd6s—Rényi model.
Itis proved therein that, with high probability, a gra@tin, p) requiresQ(nl-1/©(/1ogn))
intervals per outgoing edge for some specific valug, olamely forp = 1/,1-1/@/ogm)
On the other hand, Gavoille and Pe[&g] proved that almost all graphs (that is a fraction
of 1 — o(1) of all n-node graphs, or equivalently the graphs®f:, p) for p = 0.5 and
with high probability) support a shortest-path 2-IRS. Actually, they constructed a routing
scheme such that every node has at magi@S ») outgoing edges with 2 intervals, all the
other ones having 1 interval, leaving open the question of whether almost all graphs support
shortest-path 1-IRS. Finally, for shortest-p&tiRS on randomm-node tori (i.e. Cartesian
product of two cycles, each afn nodes with random deletion of edges), a preliminary
result appears if27] where it is proved a lower bound 6¥(,/Tog 7). A summary of these
results is listed in the following table.

Random graph Probability Shortest-path-IRS Reference
G € G, p) 1/n1-1/©(Vlogn) Q (nl—l/®(«/W)> 8]

G € G(n, p) constant <2 [18]

TeG (Tﬁxﬁ, p) constant Q (/Togn) [27]

1.4. Our results

The main results of this paper are the following:

1. Alower bound ork for (k, 9)-IRS on randomm-noder-dimensional meshes with con-
stant failure probability. We show that, asymptotically almost sukeby, Q167" (5 +
2)1=7r=%(log n)1~1/"), for every additive stretckh >0 and for every dimension e
[1, log, n].

2. For upper bounds, we have studied random square meéske®) with p = 0.5, that
is the percolation threshold probability. Recall that when the size of the mesh becomes
infinite, p = 0.5 is precisely the probability where the mesh contains a unique infinite
connected componeff21]. Unfortunately, as many interesting problems in percolation
theory (and as suggested [1}), few answers can be done analytically and we restrict
ourselves to make experiments. Based on the expected size of the largest biconnected
components of random square meshes, our results suggest that randormsupaee
meshes support shortest-p&tRS with k = O(1n%827),

The motivation for studying, meshes is that meshes or the subgraphs of a mesh are
typical planar graphs (cf. the graph minor theory of Robertson and Seyj&8)rand

many problems are still unsolved about routing in planar graphs with compact tables. For

instance, the optimal size of shortest-path routing tables is not known. The complexity bound
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ranges betweef(/n) [5] and Q) bits per nod¢15,26] For shortest-path interval routing

the range is similar€(/n) intervals is the best known lower boufith,39] and Qin) is

the trivial upper bound. Similar gaps exist alsodigstance labelingn planar graphs whose
goal is to compute distances between two nodes based only on their nod@ijbkibel
length must b&(n1/3) for some worst-case, and(Qn log n) bit labels are sufficient for
every planar grapf20]. Finding structure of shortest paths and distances in planar graphs
is probably difficult and certainly would require more combinatorics.

Surprisingly, bounds for multiplicative stretched routing and approximated distance la-
beling are much more competitive. In general almost poly-logarithmic space per node is
sufficient[11,37] Observe that shortest-path and additive stretched routing in planar graphs
are two equivalent problems in the sense that the lower bounds on the shortest-path version
transfer to lower bounds on stretched version by subdividing each edgeadther edges.

This forces any additive @)-stretched routing scheme to respect the shortest paths in the
subdivided graph, and this latter graph remains of linear size for constant

The paper is organized as follows: Sect@presents the lower bound, and Sect®n
the upper bound and our of experiments. We conclude by a large set of open problems in
Section4.

2. Lower bound for random r-dimensional meshes

If Gis a connected graph, then we denote byJ&9 the smallest integdesuch thatc
supports dk, 6)-IRS. The number IREG) is also called theompactnessf G. Because
the graphs ofz(B, p) are not necessarily connected, we extend the notion of the routing
schemes on non-connected graphs as follows: a routing scheme on a non-connected graph is
simply the union of the routing schemes of each of its connected components. It is therefore
only required to have a route between two nodes of a same connected component. Then,
IRSs(G) = max IRS;(G;) where theG;s are the connected component$of

For two integersr >1 ands > 1, ther-dimensional meshdenotedM;, is the graph
whose nodes are all thetuples over the sdtl, .. ., s}. Two nodest = (u1, ..., u,) and
v = (v1, ..., v,) are adjacent if and only if there is an ind@xsuch thafu;, — v;)| = 1
andu; = v; for everyi # ip. The graph¥] hass” nodes anads"~1(s — 1) edges.

This section concerns graphs@{M, p). In order to prove the lower bound we need
several preliminary results.

A subgraphX of Gis isolatedif there is no edgégu, v} € E(G) such thait € V(X) and
v ¢ V(X). Note that ifX is isolated inG, then IRS(G) > IRS;(X) for every >0, since
by definition IRS(G) = max IRS;(G;).

A graph X is an m-subgraph of Gf G containsm subgraphs isomorphic t& pair-
wise at distance two or more. For instan&g, is a 2-subgraph of the 6-cycle depicted in
Fig. 1 (take two opposite edges). We emphasize thitif anm-subgraph ofs thenX is
not necessarily an induced subgrapltof

Lemma 1. Let B be a connected graph with n nodes and maximum degezeldet X be
an m-subgraph of B with x nodes. Théhe G(B, p) contains X as isolated subgraph with
probability at leastl — exp(—mg?*), whereq = min{p, 1 — p}.
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Proof. LetG € G(B, p), and letA be the eventG containsX as isolated subgraph”. Our
goal is to lower bound RA). So,

Pr(A) > Pr(X is isolated inG).

Let X4, ..., X,, bemsubgraphs oB pairwise at distance two, each one isomorphixto
Foreach € {1,...,m}, let Z; be the random boolean variable such that= 1 if and
only if the subgrapl¥; is isolated inG. Finally, letZ = " ; Z;.

Pr(X isisolated inG) > Pr(Z>1) =1 - Pr(Z = 0).

AstheX;’s are pairwise at distance at least two, there is no ¢dge} € E(B) withu € X;
andv € X ;. Therefore, X; is isolated inG” is an event independent fronk?; is isolated
in G”. Thus the variableg; are mutually independent. It follows that,

m m

Pr(Z=0) =[] Pr(Z; =0)< (max Pr(z; = 0)) = (1— min Pr(Z; = l)>
i=1 ! i

To makeX; isolated inB it suffices to keep or remove independently some edgBsnth

at least one extremity is ii;. It is possible to check (recall that the degree of each node of

B is bounded byl) that PxZ; = 1) >¢%*, whereg = min{p, 1 — p}. Thus,

Pr(A)>Pr(Z>1)>1— (1 _ qu>’" >1- exp<_qux>

using the fact thatl — b/a)¢ < exp(—c(b/a)), forall0 < b<b + ¢ < a (cf. [2, Eq. (1.6)
p. 5])). This completes the proof.[]

In the following, we denote byl arouting property that is a set of possible routes for a
routing scheme on a graph. More formally, a routing propBrtg a function that associates
with every graphG a setl1(G) of paths ofG. A routing schemdr on G has the property
II (or is all-routing) if all the routes induced bR belong toII(G). For instance, the
“shortest-path” property is simply a functidi such that, for everg, I1(G) returns the
set of all the shortest paths &

The following useful lemmais a generalization of a result oflsvit et al.[25] originally
proved for the shortest-path property.

Lemma 2. Let G be a graph andI be a routing property. Le§(u, v) be the set of nodes
w such that there exists a path Bf(G) from u tow that starts with the edgg:, v}. Let U
and W be two disjoint node subsets of G such that for all distinct nedes € W, there
isu € U such that for each neighbar of u it holdsw ¢ S(u, v) or w’ ¢ S(u, v). Then
every k-IRS with propert§ on G must satisfy

W]
ZueU dequ)
Proof. LetRbe anyk-IRS with propertyll on a graplG with node sefvy, ..., v,} and arc

set (each edge appears twice, once for each orientdtign). ., e, }. FromRwe construct
an x m boolean matrixV; ; as follows:M; ; = 1 iff the route induced bR fromu; (the

k>
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tail of ;) to v; starts with the edge;, and setM; ; = 0 otherwise. It is not difficult to
see that the number of intervals associated with the eddg R is exactly the number of
01-sequences in the binary vector composgthotolumn ofM; ; (the last bit and the first
bit being considered as consecutive). k@t;) be its 01-sequences number. By the choice
of R, c(e;) <k for everyj.

Consider now the sub-matrid’ composed of all the rows corresponding to a node of
W and of all the columns corresponding to an arc outgoing from a node loét¢’(e;) be
the 01-sequences number of the colummf M’. Removing some bits of a binary vector
does not increase its 01-sequence number. Hefieg) <c(e;) and sok >¢’(e;).

Let us show tha[jj c’(ej) = |W|, where the sum is done over all the columns\gt
Indeed, consider two consecutive rowsWf (again the last and the first row are considered
as consecutive), and lat, w’ be the corresponding nodes\&f sayw’ located beloww
in M’'. Consider the node € U such that for each neighberof u, w ¢ S(u,v) or
w’ ¢ S(u,v). R has the propertyl, thusu has a neighbor’ such thatw’ € S(u, v").
Asw ¢ S(u,v’), it follows that the binary vector of the column associated with the arc
(u, v") contains a 01-sequence starting at the row ofonsidering all the consecutive pairs
w, w’ of M’ we have that all the columns &1’ contain at leastW| disjoint 01-sequences,
i.e.,Zi c’(ej) = |W| as claimed.

As the number of columns dif’ is 3, ., degu), it follows that

> c(e)) - W]
ZMEU dequ) - ZMEU degu)

k>

In Lemma3, we will apply Lemma2 wherell(G) is the set ob-stretched paths oG.

For a positive integet; let us define an operatiaiover a graplG and thet-node pathP,
as follows:G * P; is a graph which consists of two copies@fnamelyG andG’, such that
each node: € G is connected with its corresponding copye G’ by a pathP;. For all
t,r 21, we define the grapH, recursively byH[+1 = H/ % P, with H! = P,. In other
words,

HtrZPt*Pt*‘-'*Pt.
—_—————

r times

Note thatH, is a subgraph of the-dimensional mesiM; for r <s. Similarly as in meshes
M, we will identify nodes ofH, by r-tuples over the sdtl, .. ., }. The number of nodes
of H/ is¢", and its number of edges {8 — 1)(r" — 2")/(t — 2), that follows from the
recurrence{E(H; )| = 2|[E(H})| + (t — )¢’ with |E(H?)| = 0. See Fig2 for some
examples of; .

Lemma 3. IRS;(H/) = Q (6 + 21" r=227"(t — 7’ ~1), forall §>0,r >1and >8.

Proof. The result clearly holds i§>1, since in this case IR$H;) = Q(r=227"). So
assumed<r — 1.
Let U andW be the following sets.
ueUifinu=(u1,...,u,)thereisatmostong;, #1 (@G €{1,...,r}).
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Fig. 2. H}, H and Hj.
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Fig. 3. The set§VandU in the graphH?.

weWifw=(ws,...,w,), where:
o 2<w1 <1,
o w; =2+I1(0+2forl=0,...,.—2,suchthat € {2,...,r}and

, t—1[0/2] -3
A= L 512 J + 2.
The construction 0fVyields the important fact that all nodes frihare of degree two and
have only edges in theh dimension. Note that for eaab;, i € {2, ..., r} it holds that
2<w; <t —[6/2] —1and)_, ., dequ) = O(r2t), since|U|<rt and|W| = (t — 1) -

(4 — 1)1 Clearly,U andW are disjoint andW| > 0. (For the construction & andU in
H? see Fig3.)

Let I1(H,) be thed-stretched path routing property. We will show that the setsdW
satisfy the assumption of Lemn2aThe main idea comes from the following fact: for all
pairs of nodesv, w’ € W a nodeu € U exists such that there is only onestretched path
P(w, u) from w to u and also only oné-stretched pati? (w’, u) from w’ to u. Moreover
pathsP(w, u) and P(w’, u) are disjoint except for the node It follows that there is only
one way to reach nodes andw’ from u according talI(H; ), and the two corresponding
paths start with different edges incidentuahus satisfying the assumption of Lemha
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Letw = (wy,...,w),w = (w],...,w,) be two distinct nodes froriV. We will
distinguish two cases for setting the nade

Casel: Nodesw and w’ differ in the first element, i.ew = (w1,...,w,), W =
(w),...,w,) andwy # wj. Let us choose the corresponding node fronto beu =
(w1, 1,...,1). Recall that all nodesv, w’ € W are incident only with edges in the
rth dimension. LetP(w, u) be the path fromw to u containing the following nodes:
(w1, ..., wr—1,1), (w1, ..., w—2,1,1),...,(w1,1,...,1). The length£(P(w, u)) of
P(w, u) is given by

L(P(w,u)) = g(wi —1).

HenceP (w, u) isthe shortest path, since the distance ahduin H; is equalt (P (w, u)).
Clearly, P (w, u) satisfies the property (H;"). Another possibility for reaching nodgrom

w is to pass through a nodevy, ..., w;_1,1, wjt1, ..., w,) for an aribtraryj such that
2< j <r. However, each such path does not satisfy the progé(ty, ). The argument is
that the construction &Vyields that the distance between any= (w1, ..., w,) € W and
the node(wy, ..., wj_1,7, wjt1, ..., w,) is atleasfd/2] + 1. So the length of any path
that contains the nodevy, ..., wj_1,¢, w11, ..., w,) israised above 26/2] +1). More
precisely, letP’(w, u) denote a path fromw to u that contains the nodevs, ..., w,_1, £).
(Note that it holdsj = r in this case.) For its length( P’ (w, u)) it holds

r—1 r
P (w,u) =Y (wi—D+rt—1+t—w, =) (w; —1) +2t—2w,.
i=2 i=2

Let us express the differenéeP’(w, u)) — £(P(w, u))
(P (w,u)) —L(P(w,u) =2(t —w,) =+ 2,

sincer — w, >[06/2] + 1. ThusP (w, u) is the only one possible path that satisfi&&, ),
since the length of any other path framto u is greater than or equal &P’ (w, u)).

An analogous situation holds also for the nade= (w3, ..., w;): the only routing
pathP(w’, u) € I1(H]) contains the node@v’, ..., w._;, 1), (W, ..., w._,, 1, 1),...,
(w}, 1,...,1). Assume w.l.o.g. thabj > wi. Then the lengtli (P (w’, u)) of P(w', u) is
equal to the distance betweenandu

.
P, w) =Y (w — 1)+ wy — wi.
i=2
On the other hand, leP’(w’, u) denote the path fromw’ to u that contains the node
(W), ..., w._q,1). The lengthe (P’ (w’, u)) is expressed as follows:

r—1

P (W u)=Y (w,—D+t—147r—w, +w)—wp
i=2

p
=Y (w —1)+ 2t — 2w, + wj — wa,
=

1
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and consequently,
P (W' u)) — E(P(w', u) =20t —w)=0+2,

sincer — w,. >[0/2] + 1.

Now, itis easy to see that= (w1, 2, 1, ..., 1) isthe last node that is contained in the path
P(w,u) € [I(H]) beforeitsend-node = (w1, 1,..., 1) andv’ = (w1+1,1,...,1)isthe
last node that is contained in the pattw’, u) € II(H]) before its end-node. Consequently,
for neighborsy andv’ of uit holds:v € P(u, w), v’ € P(u, w’) andv # v'. Both paths
P(u, w) andP (u, w’) are the only possible ones satisfyifigH, ). Hence, the assumption
of Lemmaz2 holds.

Case2: Let j > 1 be the index of the first element in whieh andw’ are different,
e.w = (wg,...,wj_1,wj,...,w,) andw’ = (w,..., wj_1, w;., ..., w)). Let us
choose the corresponding node frahto be

w(i—i—w;
u=1|21...,Lr+1—| ——|,1,...,1
e’ 2 ——
j-1 r—j

Assume w.l.0.g. that; > w;.. By the argument that all nodes¥Wfare incident only with
edges in theth dimension, there exists the paf(w, u) which contains the following
nodes:(wy, ..., wj, ..., w1, D, ..., (wy, ..., w;, 1L,..., D, ... (wy, ..., wj_1,t, 1,
D (we, L LD, @ L L D), The fact(wy, L, wiog, 8, L
..., 1) € P(w,u)yields

j—1 r
EPw,u)=3 (wi—D+ > (wi—1D+@—w))
i=1 i=j+1

w; +w'
a2

r wj +w)
=¥ o= i - 20+ |
=

On the other hand, leP’(w, u) denote the path fromw to u that contains the node
(wy,...,wj—1,1,1,...,1). Itimplies

/ " wj—i-u)}
P (w,u) =) (wj—1)+r+1-— — _1
i=1

The differencel (P (w, u)) — £(P(w, u)) is
E(P"(w, u)) — £(P(w,u)) = w; —w;>5+2,

that follows from the definition o and from the fact thaw; > w’,. Similarly as in the
previous caseP (w, u) is the only possible path satisfyidg(H, ).
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An analogous argument yields that there is only one possible pat, u) € IT1(H])
suchthaiws, ..., w;—1,1,1,...,1) € P(w', u). Note that in this case

: L wj +
P, u) = (w;—1+r1— — |
i=1

since P(w’, u) is the shortest path. Let us denote the expreszsreri = [(w; +w’ )/ZJ

by u ;. The construction of the patR(w, u) yields thatv = (1,..., 1, u; +1,1,...,1)

is the last node oP (w, u) € II(H,) before its end-node = (1, ..., 1, u;, 1, ..., 1) and

v=(1,...,5u;—11,...,1) is the last node that is contained in the p&ttw’, u) €

I1(H]) before its end-noda. Now it is easy to see that for each neighbauf u it holds

w ¢ S(u,v)orw’ ¢ S(u,v). (The meaning of («, v) is the same as in Lemnia)
Lemmaz2 leads to the following inequality:

IRS;(H ) >r~272¢t — (4 — 1)L,
By the choice ofi,

t—90/2—4 t—7

"_12 = 3
& 5+2 ~206+2

sinced <r—1. Moreover;~1(r—1) >7/8, since >8 and we obtain the resulting asymptotic
formula:

IRS;(H7) = Q (227 (L1 H 0
o 1) = r 5+2 .

The main result of this section is the following.

Theorem 1. Let0 < p < 1 be a constantand lets >2, r>1, § >0 be integers. With
probability at leastl — exp(—(s/2)"~?) a random meshG € G(M!, p) verifies
IRSs(G) = Q167" (5 + 21" r3(log 5)1-1/7).

Proof. The result holds for = 1, as 167 (5 + 2)1"r~3(log s)~¥" = O(1) and since
IRS;(G) is always at least 1. (Notice that evefye G(M2, p) is a forest thus satifying
IRSo(G) = 1 by[35].) We note also that far = O(1), 16" (5 + 2)1"r3(log s)- " =
0O(1), thus the result holds as well. So let us assumenbs? and thats is large enough
(i.e.,sis greater than some fixed constagit

Let us show that, for every<s — 2, H is anm-subgraph oM form = [s/(t +2)]".
We split each patlP; of the construction oM/ into [s/(r + 2)J segments of + 2 nodes.
It splits M] into |s/(t + 2)]" sub-meshes |somorph|c I+»- Each sub-mesh contains
H/ as a subgraph (not necessarily induced) that one can place so that any two copies of
H’ into M7 are at distance at least two. By this way we have shownM‘[at:ontalns
m = |s/(t + 2)]" subgraphs isomorphic i, and pairwise at distance two. Fogs —
we haven >1 andH; is anm-subgraph oM’ as claimed.
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Let us fixz = (ar log,(s/2))Y" with o« = —1/(8r?log, q) for ¢ = min{p,1— p}.?
Note that O< o < 1. Observe also that, for everg=1,r1/" € [1, e¥/¢]. So,(ar)V/" <el/?,
and thug <eY/¢(log, (s/2))Y” <s — 2 for slarge enough. Let us expregs— 7)" 1. Note
that from Lemma3 we have the condition>>8 and consequently,— 7>¢/8. It follows
thatr — 7>8"1(ar log,(s/2))Y/". Now,

t—7""r>8"". (ar)- ()Y (log, (s/2) 1 Y"

> 8" or - e - (log, (s/2) 7, 1)
e e
2 _ . —r=1 2 1-1/r
8log,q 8 "r "(log, (s/2))
e e 8 1 1-1 2
> QT =1/r
= 2|092 q r (ng S) ( )

LetG € G(M], p). By Lemmal, with some suitable probability computed hereafter,
IRSs(G) > IRSs(H]) for everyd. From LemmaB, IRS;(H]) = Q((d + 2)L-rp=20-r( —
7)"~1) for everyd. By the choice ot, and by inequations2}, IRS;(H/) = Q167" (5 +
2)l—rr—3(|og S)l—l/r)_

Let us compute the probability. From Lemmal, n>1 — exp(—mgq®*), whered is
the maximum degree of the base graph (hBre- M), x is the number of nodes of the
m-subgraph (here = |V (H/)| = ¢") and recall thatj is a non-null constan& % We have
x =oarlog, s,d =2r,andm = |s/(t + 2)]". Forslarge enoughp > (s /(2¢))".

We havegd® = ¢2°#10%(5/2 — (5/2)~/4 We have also thats/(21))" = (s/2)" /t" =
(s/2)" /(arlog, s). We observe thatr = —1/(8rl0og, g) <c, wherec is some constant
sincer >1 andq is a constant. So, farlarge enough it follows that

m>(s/(20)) > (s/2)" /(clogy 5) > (s/2) /4
and sang® > (s/2)"~Y/2. Therefore,
n>1-exp(—(s/2) 72)
as claimed, that completes the proof.]

Corollary 1. For all integersr € [1,log, n] and 6 >0, with probability at leastl —
exp(—+/n), a random r-dimensional mesh G of n nodes with constant failure probability
verifies thatRS;(G) = Q1677 (6 + 2)1"r~*(log n)1~1/7).

Proof. The number of nodes i} isn = s". We observe that far = 1 ors = O(1), the
result holds since in both cases we have that 16+ 2)1~"r~*(log n)1~1/" = O(1) and
IRSs(G) is always at least equal to 1 (i.e., with probability 1). We note that fe2 and
for slarge enough, we hawg/2)" 2>/ = /n. O

2\W.l.o.g. is chosen such thats integer. Indeed, ift = —1/(8-2log, ¢) does not suffice, we can enlarge
by a factor at most two. This does not affect the final result.



C. Gavoille, M. Nehéz / Theoretical Computer Science 333 (2005) 415-432 427
3. Upper bound for random two-dimensional meshes

It is also of great importance to state a nontrivial upper bound ory aSrandomr-
dimensional meshes, and in particular the upper bound og, IR& is the compactness of
arandom mesh. The trivial upper bound i8:Q In this section we consider random meshes
G(Mf, p) with n = s2 nodes and fop = 0.5, that is the critical value in the percolation
theory.

We will use the following property due {d4].

Lemma 4 (Gavoille and Guévremomt4]). The compactness of any connected graph is
the maximum of the compactness over all its biconnected components.

Note that the compactness ofmmode graph is no more that2. Actually, from[17], the
compactness is no more thafd+ o(n), and there are graphs with compactness— o(n).
So, in general, the compactness®is at most @QL), whereL is the size of the largest
biconnected components Gf

Let f(s) denote the expected value of the number of nodes in the largest biconnected
component in a random x s mesh (withp = 0.5). In order to estimatg (s) on large
values ofs we have programmed a standard linear-time algorithm for finding biconnected
components based on the modification of a depth first search traverfg] ckome outputs
of our algorithm are depicted in Figs-9 (see also Fig4).

Our experiments (up to 50 tests for random meshes as large as<2P@88 meshes)
show thatf (s) ~ fs* whereff = 0.32 andx = 1.654. (More precisely, we remark that

140000 : . : .
“data”
0.32*exp(1.654*log(s)) -------
120000 u
100000 // u
80000 |- i
60000 |- i

40000 e u

20000 | T E

0 500 1000 1500 2000

Fig. 4. The size of the largest biconnected components of a randommesh. The tests come from averaging
2000 experiments (for the small valuesspand up to 50 experiments (for the larger values)of
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Fig. 6. The mesh of Figh without trees.
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il

I 1

Fig. 7. The largest biconnected component (with 116 nodes) irbFig.

=0.5.

Fig. 8. A 160x 160 random mesh witp
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Fig. 9. The mesh of Fig8 without trees. The largest biconnected component has 672 nodes. Observe that this
random mesh contains th‘éf graph (circled) as isolated subgraph.

f(2x)/f(x) is a constant, so log (x) ~ ax + b.) The valuex has been computed by
« = log, A, whereA is the average value of(2'+%)/f(2) fori = 1, ..., 10. The value
on f3 follows. Expressed as the total number of nodes of the meshs?), it turns out that
£(s) ~ ©n%827), Our experimental results are summarized in Big.

4. Conclusion and further works

We have proved a nonconstant asymptotic lower bound on the number of intervals for
J-stretched interval routing schemes on random multi-dimensional meshes. By the exper-
imental simulations we have also stated a nontrivial upper bound on this measure for the
two-dimensional case.

We leave several open questions and further directions for the study of compact routing
in reliability networks.

1. Extension to arbitrary routing strategies. It would be interesting to prove similar lower
bounds in a general encoding model, so applicable to any encoding of the routing scheme
rather than the interval routing model.

2. Extension to randorB-graphs with different edge probabilities. For instance a model
G(B, pr, pc) WhereB is a mesh and wherg, applies to rows ang to the columns
would be interesting. In particular, finding the shortest-path routing tables complexity of
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G € G(B, 0.5, 1) is of some interest. This could also be a tool for the study of augmented
random graphs for Small World (cf. Kleingberg’s model).

3. Weknowthatw.h.p. randoii,-graphs (thé (n, p) model) have constant compactn@ss
[18], and that random meshes have compactf®$§ " r—*(log n)1~1/") (this paper).
Complete graphs and meshes having compactness 1. However, can we have a base graph
B of high compactness, sd¥(n*), such that randorB-graphs have low compactness
(w.h.p.)?

4. What is the compactness of a gen@ralbde randonB-graph forp = 0.5 (still w.h.p.)?

Is Q(n) possible? Same questiondfis a bounded degree graph or a planar graph or if
B is the hypercube (our lower bound ofimensional meshes just gives a constant in
this case).

5. 1s Hl2 the worst-case sub-mesh for the compactness? If the answer is “yes”, then it
would clearly improve our ©:%827) upper bound for random meshes. They would have
compactness at most(Qn).

6. But maybe, the most interesting question remains: is thenerende planar graph with
compactness larger thagn?
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