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Abstract

In this paper we consider routing with compact tables in reliability networks.
More precisely, we study interval routing on random graphs ��� B � p � obtained
from a base graph B by independently destroying each edge of B with a
failure probability 1 � p. We focus on additive stretched routing for n-node
random graphs for which the base B is a square mesh and with p � 0 � 5, that
is the percolation model at the critical phase. We show a lower bound of
Ω �
	 logn ��� δ  1 ��� on the number of intervals required per edge for every
additive stretch δ � 0. On the other side, our experimental results show that
the size of the largest biconnected components is Θ � n0 � 827 � , and thus that
there exists a trivial shortest-path routing scheme using at most O � n0 � 827 �
intervals per edge.

The results are extended to random meshes of higher dimension. We
show that asymptotically almost surely, the number of intervals per edge for
a random r-dimensional mesh with n nodes is Ω ��� δ  1 � 1 � rr � 4 � logn � 1 � 1 � r � ,
for every additive stretch δ � 0 and for every integral dimension r ��
1 � log2 n � .
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1 Introduction

Research in the area of routing algorithms on computer networks became of great
interest by many researchers in recent years. This topic is interesting both from
the theoretical and also from the application point of view. One aspect of research
in this field is to compact routing tables, by maintaining the smallest amount of
routing information (or knowledge) locally in each router while guaranteeing that
the routes are near the shortest paths.�
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Many results concern the design of universal routing strategies in the sense
that they are applicable to all the networks. In particular, the proposed schemes
give trade-offs between the memory requirements (the size of the local routing
tables) and the stretch factor, namely the maximum ratio between the length of the
route between any two nodes and their distance in the network. Among them [3,
5, 9, 30, 35] and [12] for a survey.

The above strategies apply to all the networks, however is it natural to won-
der whether other more efficient techniques can be applied on realistic networks.
Although there is still no answer to the question “what a realistic network is?”,
many models consider that such networks are based on some structured under-
lying topology (which is certainly not the complete network) with some random
extra connections or some random link failures (cf. the augmented grid Kleing-
berg’s model of Small World [23, 22]).

1.1 Reliability Networks

In this paper we consider a point-to-point communication network modeled by a
simple connected graph G ��� V � E � , where V is the set of nodes (or processors or
routers) and E is a set of edges (or bidirectional communication links). We focus
on random graphs ��� B � p � obtained from a graph B, with node set � 1 � �!�!� �#"V � B �$"&% ,
by independently destroying each edge of B with a failure probability 1 ' p. So
G ()��� B � p � is a uniform (labeled) random spanning subgraph of B as V � G �*�
V � B � and E � G �,+ E � B � . More precisely,

Pr � G �-� p .E / G 0 .1� 1 ' p �2.E / B 0 . 34.E / G 0 .5�
The graph B is called the base graph, and the value 1 ' p the failure probabil-
ity. This model, called the reliability network model, appears in [27, 28] and is
described in more detail in [21, pp. 2]. The reliability network is a natural gener-
alization of the binomial random graph model of Erdös-Rényi, denoted hereafter�6� n � p � , for which B � Kn is the complete graph on n nodes. The reliability net-
work based on infinite square mesh belongs to percolation theory [20]. As men-
tioned in [21], this model can be generalized further by allowing different proba-
bilities of failure at different edges. This model is also related to other problems
of computer science such as grid-computing, fault-tolerant distributed computing,
effective data structures, etc.

Our paper is also concerning additive stretched routing schemes, rather than
multiplicative stretch (or stretch factor). A path of a graph is δ-stretched if the
length of the path is at most the length of a shortest path between its extremities
plus δ. A δ-stretched routing scheme is a scheme for which all the routes are δ-
stretched paths. The parameter δ is also called the deviation of the routing scheme.
It is provable that even a small deviation allows better optimizations for spanner
construction [7] and distance computation [15], and yields also compact routing
tables [4].
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1.2 Routing Tables and Interval Routing

We focus on interval routing scheme, a particular way of implementing standard
routing tables [33, 37]. Recall that a routing table on a graph G consists of the set
of distinct addresses ranging in � 1 �!� �!� �#"V � G �7"1% and a set of local routing tables
associated with each node. When a source u sends a message to a destination v, it
attaches to the message the address of v, say the integer i, and forwards the mes-
sage through the output port number q which is computed by u by looking at the
ith entry of its local table. So the route is computed in a distributed fashion by all
the nodes along the route between u and v. Obviously it is required that for every
source-destination pair u � v a route connects u to v. Interval routing implements
local routing tables as follows: u stores a d entry tables, d being the degree of u.
The qth entry is the list of destination addresses v for which the route from u to v
uses output port number q. If for all the nodes, the destination addresses using the
same output port can be grouped into k sets of consecutive integers (consecutive
modulo n), we say that the routing scheme is a k-interval routing scheme (k-IRS
for short). For more precise formulations and other details see [11] and [32].

The main difficulty in the design of interval routing schemes for a given graph
is to find out a suitable address assignment for the nodes and a suitable system
of routes for all the pairs of nodes such that the number of intervals per out-
put port (equivalently per outgoing edge) is minimum while keeping the routes
near-shortest paths. Whenever shortest paths are required, the problem to decide
whether a graph supports a 1-IRS is already NP-complete [6]. A δ-stretched k-
IRS, denoted by � k � δ � -IRS, is simply a k-IRS that is a δ-stretched routing scheme.
A � k � 0 � -IRS is also called a shortest-path k-IRS. Fig. 1 depicts two interval rout-
ing schemes on the 6-cycle.

1.3 Previous Works on Random Graphs

The main advantage of k-IRS concerns the size of the memory requirements. In an
n-node graph supporting a k-IRS, a node of degree d has to store O � kd logn � bits
of information whereas O � n logd � bits are required for a standard routing table
implementation. In particular, interval routing is efficient for structured graphs
like cycles, complete graphs, meshes, trees, outerplanar graphs, tori, hypercubes,
k-trees, etc. All these graphs support shortest-path O � 1 � -IRS (more results about
interval routing are accessible in the survey [11]).

Flammini, van Leeuwen and Marchetti-Spaccamela [8] proved a non-constant
lower bound on k for shortest-path k-IRS on random graphs of �8� n � p � , the Erdös-
Rényi model. It is proved therein that, with high probability, a graph ��� n � p � re-
quires Ω � n1 3 1 9 Θ : logn � intervals per outgoing edge for some specific value of p,
namely for p � 1 ; n1 3 1 9 Θ : logn . On the other hand, Gavoille and Peleg [17] proved
that almost all graphs (that is graphs of �8� n � p � for p � 0 � 5 and with high proba-
bility) support a shortest-path 2-IRS. Actually, they constructed a routing scheme
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Figure 1: A shortest-path 1-IRS (left side), and a 2-stretched 1-IRS (right side).

such that every node has at most O � log3 n � outgoing edges with 2 intervals, all
the other one having 1 interval, leaving open the question of whether almost all
graphs support shortest-path 1-IRS. Finally, for shortest-path k-IRS on random
n-node tori, a preliminary result appears in [26] where it is proved a lower bound
of Ω ��> logn � .
1.4 Our Results

The main results of this paper are the following:

1. A lower bound on k for � k � δ � -IRS on random n-node r-dimensional meshes
with constant failure probability. We show that asymptotically almost
surely, k � Ω �!� δ ? 1 � 1 3 rr 3 4 � logn � 1 3 1 9 r � , for every additive stretch δ @ 0
and for every dimension r ( <

1 � log2 n = .
2. For upper bounds, we have studied random square meshes (r � 2) with

p � 0 � 5, that is the percolation threshold probability. Recall that when the
size of the mesh becomes infinite, p � 0 � 5 is precisely the probability where
the mesh contains a unique infinite connected components [20]. Unfortu-
nately, as many interesting problems in Percolation Theory (and as sug-
gested by [1]), we are reduced to make experiments. Based on the expected
size of the largest biconnected components of a random square meshes, our
results suggest that random square n-node meshes support shortest-path k-
IRS with k � O � n0 A 827 � .

The motivation for studying meshes is that meshes or the subgraphs of a mesh
is a typical planar graphs (cf. the Graph Minor Theory of Robertson and Sey-
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mour [31]). And many problems are still unsolved about routing in planar graphs
with compact tables. For instance, the optimal size of shortest-path routing ta-
bles is not known. The complexity bound ranges between Ω � > n � [5] and O � n �
bits per node [14, 25]. For shortest-path interval routing, the range is similar:
Ω � > n � intervals is the best known lower bound [19, 36], and O � n � is the trivial
upper bound. Similar gaps exist also for distance labeling in planar graphs whose
goal here is to compute distances between two nodes based only on their node
label [29]: label length must be Ω � n1 9 3 � for some worst-case, and O � > n logn �
bit labels are sufficient for every planar graph [18]. Finding structure of short-
est paths and distances of planar graphs is probably difficult and certainly would
require more combinatorics.

The paper is organized as follows: in Section 2 presents the lower bound, and
Section 3 the upper bound and our of experiments. We conclude by a large set of
open problems in Section 4.

2 Lower Bound for Random r-dimensional Meshes

If G is a connected graph, then we denote by IRSδ � G � the smallest integer k
such that G supports a � k � δ � -IRS. The number IRS0 � G � is also called the com-
pactness of G. Because the graphs of �6� B � p � are not necessarily connected,
we extend the notion of the routing schemes on non-connected graphs as fol-
lows: a routing scheme on a non-connected graph is simply the union of the
routing scheme on each of its connected components. It is therefore only re-
quired to have a route between two nodes of a same connected component. Then,
IRSδ � G �B� maxi IRSδ � Gi � where the Gi’s are the connected components of G.

For two integers r @ 1 and s @ 1, the r-dimensional mesh, denoted Mr
s , is

the graph whose nodes are all the r-tuples over the set � 1 �!� �!� � s % . Two nodes
u �C� u1 �!� �!�#� ur � and v ��� v1 �!� �!�#� vr � are adjacent if and only if there is an index i0

such that " ui0 ' vi0 "5� 1 and ui � vi for every i D� i0. The graph Mr
s has sr nodes

and rsr 3 1 � s ' 1 � edges.
This section concerns graphs of �8� Mr

s � p � . In order to prove the lower bound
we need several preliminary results.

Let X be an induced subgraph of graph G. X is said to be a subgraph of δ-
stretched paths of G if for all u � v ( V � X � , every δ-stretched path between u and
v in G is contained in X . For instance the subgraph induced by 3 consecutive
nodes of the 6-cycle is a subgraph of 1-stretched paths (cf. Fig. 1). The following
property is a generalization of the result of [10], originally stated for δ � 0.

Lemma 1 If X is a subgraph of δ-stretched paths of G, then IRSδ � G �E@ IRSδ � X � .
Proof. Let X be a subgraph of δ-stretched paths of G. Let R be a � k � δ � -interval
routing scheme for G such that k � IRSδ � G � . If X is a subgraph of δ-stretched
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paths of G, then all δ-stretched paths between any pair of nodes of X are contained
in X . Hence R is a � k � δ � -interval routing scheme for X with node labels taken
from the set � 1 � �!� � �F"V � G �$"1% . It suffices to replace each node label by its rank in
the range � 1 � �!� �!�#"V � X �$"&% to obtain an interval routing scheme R G on X . R G is a� k � δ � -IRS as the scheme R (see details in Theorem 4 of [10], p. 167). It implies
that IRSδ � X �IH k. J

A subgraph X of G is isolated if there is no edge � u � v %K( E � G � such that
u ( V � X � and v ;( V � X � . X is near-isolated if there is only one edge � u � v %L( E � G �
such that u ( V � X � and v ;( V � X � (this edge must be a bridge in G). It is clear
that any simple path connecting two nodes taken in an isolated or near-isolated
subgraph X is contained in X , in particular any simple path that is not a shortest
path. So, any isolated or near-isolated subgraph is a subgraph of δ-stretched paths
in G, and this for every δ. By Lemma 1, it follows that for every connected graph
G that contains a near-isolated subgraph X , IRSδ � G �I@ IRSδ � X � , for every δ.

A graph X is a m-subgraph of G if G contains m subgraphs isomorphic to X
pairwise at distance two or more. For instance, K2 is a 2-subgraph of the 6-cycle
depicted on Fig. 1 (take two opposite edges).

Lemma 2 Let B be a connected graph with n nodes and maximum degree d,
and let X be a m-subgraph of B with x nodes. Then, G (-��� B � p � contains X as
subgraph of δ-stretched paths with probability at least 1 ' exp �M' mqdx � , where
q � min � p � 1 ' p % . So, by Lemma 1, IRSδ � G �,@ IRSδ � X � , for every δ.

Proof. Let G (N�8� B � p � , and let A be the event “G contains X as subgraph of
δ-stretched paths”. Our goal is to lower bound Pr � A � . From the previous discus-
sion, if X is near-isolated (or isolated) in G, then G contains X as subgraph of
δ-stretched paths. So,

Pr � A �O@ Pr � X is near-isolated in G ���
Let X1 �!� �!�#� Xm be m subgraphs of B pairwise at distance two, each one isomorphic
to X . For each i (P� 1 � �!�!�#� m % , let Zi be the random boolean variable such that
Zi � 1 if and only if the subgraph Xi is isolated in G. Finally, let Z � ∑m

i Q 1 Zi.

Pr � X is near-isolated in G �R@ Pr � Z @ 1 �-� 1 ' Pr � Z � 0 �S�
As the Xi’s are pairwise at distance at least two, there is no edge � u � v %S( E � B � with
u ( Xi and v ( X j. Therefore, “Xi is near-isolated in G” is an event independent
from “X j is near-isolated in G”. The variables Zi are mutually independent. It
follows that,

Pr � Z � 0 �T� m

∏
i Q 1

Pr � Zi � 0 �-H U
max

i
Pr � Zi � 0 ��V m H U

1 ' min
i

Pr � Zi � 1 �MV m
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To make Xi isolated or near-isolated in B it suffices to keep or destroy indepen-
dently some edges of B whose at least one extremity is in Xi. We check (recall
that the degree of each node of B is bounded by d) that Pr � Zi � 1 ��@ qdx, where
q � min � p � 1 ' p % . Thus,

Pr � A �R@ Pr � Z @ 1 �N@ 1 'XW 1 ' qdx Y m @ 1 ' exp WZ' mqdx Y
using the fact that � 1 ' b ; a � c H e 3 / b 9 a 0 c, for all 0 [ b H b ? c [ a (cf. [2, Eq. (1.6)
pp. 5]). This completes the proof. J

In the following, we denote by Π a routing property, that is a set of possible
routes for a routing scheme on a graph. More formally, a routing property Π is a
function that associates with every graph G a set Π � G � of paths of G. A routing R
on G has the property Π (or is a Π-routing) if all the routes induced by R belongs
to Π � G � . For instance, the “shortest-path” property is simply a function Π such
that, for every G, Π � G � returns the set of all the shortest paths in G.

The following useful lemma is a generalization of a result of Kráľovič,
Ružička and Štefankovič [24] originally proved for the shortest-path property.

Lemma 3 Let G be a graph, and Π be a routing property. Let P � u � v � be the set
of nodes w such that there exists a path of Π � G � from u to w that starts with
the edge � u � v % . Let U and W be two disjoint node subsets of G such that for all
distinct nodes w � w G\( W, there is u ( U such that for each neighbor v of u it holds
w ;( P � u � v � or w GB;( P � u � v � . Then, every k-IRS with property Π on G must satisfy

k @ "W "
∑u ] U deg � u � �

Proof. Let R be any k-IRS with property Π on G, a graph with node set� v1 � �!�!�#� vn % and arc set (each edge appears twice, one for each orientation)� e1 � �!�!�#� em % . From R we construct a n ^ m boolean matrix Mi _ j as follows: Mi _ j � 1
iff the route induced by R from u j (the tail of e j) to vi starts with the edge e j, and
set Mi _ j � 0 otherwise. It is not difficult to see that the number of intervals asso-
ciated with the edge e j by R is exactly the number of 01-sequences in the binary
vector composed of jth column of Mi _ j (the last bit and the first bit being consid-
ered as consecutive). Let c � e j � be its 01-sequence number. From the choice of R,
c � e j �IH k for every j.

Consider now the sub-matrix M G composed of all the rows corresponding to a
node of W and of all the columns corresponding to an arc outgoing from a node
of U . Let c G
� e j � be the 01-sequence number of the column e j of M G . Removing
some bits of a binary vector does not increase its 01-sequence number. Hence,
c G
� e j �IH c � e j � , and so k @ c G
� e j � .

Let us show that ∑i c G
� e j ��@X"W " , where the sum is done over all the columns
of M G . Indeed, consider two consecutive rows of M G (again the last and the first
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column are considered as consecutive), and let w � w G be the corresponding nodes
of W , say w G located below w in M G . Consider the node u ( U such that for each
neighbor v of u, w ;( P � u � v � or w G�;( P � u � v � . R has the property Π, thus u has
a neighbor v G such that w G`( P � u � v Ga� . As w ;( P � u � v Ga� , it follows that the binary
vector of the column associated with the arc � u � v Ga� contains a 01-sequence starting
at position the row of w. Considering all the consecutive pairs w � w G of M G we
have that all the columns of M G contain at least "W " disjoint 01-sequences, i.e.,
∑i c G
� e j �,@X"W " as claimed.

As the number of columns of M G is ∑u ] U deg � u � , it follows that

k @ ∑i c G
� e j �
∑u ] U deg � u � @ "W "

∑u ] U deg � u � �
J

For a positive integer t, let us define an operation b over a graph G and the
t-node path Pt as follows: G b Pt is a graph which consists of two copies of G,
namely G and G G , such that each node u ( G is connected with its corresponding
copy u Gc( G G by a path Pt . For all t � r @ 1, we define the graph H r

t recursively by
Hr d 1

t � Hr
t b Pt , with H1

t � Pt . In other words,

Hr
t � Pt b Pt bfe!e e
b Ptg hji k

r times

See Fig. 2 for an example. Note that H r
t is a subgraph of the r-dimensional mesh

Mr
s for t H s.

lm
lm

lm

δ ? 2

δ ? 2

���
@ δ ; 2 ? 1

ut d 1 ut d 2 u2t 3 1

u1

ui

ut 3 2δ 3 4

ut 3 δ 3 2

ut U

w j w j d 1 ws / t 3 1 0
wt wt d 1 w2t 3 2

w1 w2 wt 3 1

W

Figure 2: The sets W and U in the graph H2
t .
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Lemma 4 IRSδ � Hr
t �4� Ω n#� δ ? 1 � 1 3 rr 3 2tr 3 1 o , for all δ @ 0 and r @ 1.

Proof Sketch. The result holds trivially for r � 1 or for δ p t ; 3 ' 2. So assume
r @ 2 and δ H t ; 3 ' 2.

Due to space limitation, we only sketch the proof for r � 2. The sets
U �q� ui % and W �q� wi % are chosen as depicted on Fig. 2. We check that"W "E@q� t ' 1 �c� t ;c� δ ? 2 �r' 2� r 3 1 and ∑u ] Ur deg � u �KHs� r ? 1 �2� rt ' 1 � , so that"W " ; ∑u ] U deg � u �r� Ω n � δ ? 1 � 1 3 rr 3 2tr 3 1 o . Then the result comes from Lemma 3
applied to the routing property Π = “δ-stretched path”. J
Remark: It is not difficult to construct a � k � δ � -IRS for H2

t with k � O � t ;c� δ ? 1 � �
intervals. Therefore, for r � 2, the bound of Lemma 4 is tight, i.e., IRSδ � H2

t �,�
Θ � t ;c� δ ? 1 �!� .

The main result of this section is the following.

Theorem 1 Let 0 [ p [ 1 be a constant, and let s @ 2, r @ 1, δ @ 0 be integers.
With probability at least 1 ' exp �M't� s ; 3 � r 3 1 9 2 � a random mesh G (u��� Mr

s � p � ver-
ifies IRSδ � G �B� Ω �!� δ ? 1 � 1 3 rr 3 3 � logs � 1 3 1 9 r � .
Proof. The result holds for r � 1, as � δ ? 1 � 1 3 rr 3 3 � logs � 1 3 1 9 r � 1 and as every
G (v�6� M1

s � p � is a forest thus satisfying IRS0 � G �4� 1 (cf. [33]). We note also that
for s � O � 1 � , � δ ? 1 � 1 3 rr 3 3 � logs � 1 3 1 9 r � O � 1 � , thus the result holds as well. So
let us assume r @ 2 and that s is large enough (i.e., s is greater than some fixed
constant s0).

Let us show that, for every t H s ' 2, H r
t is a m-subgraph of Mr

s for m �w
s ;x� t ? 2 ��y r. We split each path Ps of the construction of Mr

s into
w
s ;c� t ? 2 �zy seg-

ments of t ? 2 nodes. It splits Mr
s into

w
s ;c� t ? 2 �zy r sub-meshes isomorphic to

Mr
t d 2. Each sub-mesh contains Hr

t as a subgraph that one can centered so that any
two copies of Hr

t into Mr
t d 2 in Mr

s are at distance at least two. By this way we
have shown that Mr

s contains m � w
s ;c� t ? 2 �zy r subgraphs isomorphic to Hr

t and
pairwise at distance two. For t H s ' 2, m @ 1 and H r

t is a m-subgraph of Mr
s as

claimed.
Let us fix t �C� αr logs � 1 9 r for some α � Θ � 1 ; r2 � given later. Note that r1 9 r (<

1 � e1 9 e = for every r @ 1. Thus, � αr � 1 9 r � Θ � 1 � and t � Θ �!� logs � 1 9 r � . So, for s
large enough and r @ 2, t H s ' 2. Let G ()��� Mr

s � p � . By Lemma 2, with some
suitable probability π computed hereafter, IRSδ � G �4@ IRSδ � Hr

t � for every δ. From
Lemma 4, IRSδ � Hr

t �B� Ω �!� δ ? 1 � 1 3 rr 3 2tr 3 1 � for every δ. By the choice of t,

tr 3 1 �{� αr log s � 1 3 1 9 r � Θ � r 3 1 � logs � 1 3 1 9 r �*�
Hence IRSδ � Hr

t �4� Ω �!� δ ? 1 � 1 3 rr 3 3 � logs � 1 3 1 9 r � .
Let us compute the probability π. From Lemma 2, π @ 1 ' exp �M' mqdx � where

q � min � p � 1 ' p % is a constant, d is the maximum degree of the base graph
(here B � Mr

t ), and where x is the number of nodes of the m-subgraph (here x �
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"V � Hr
t �$"5� tr). We have x � αr logs, d � 2r, and m � w

s ;c� t ? 2 �zy r @X� s ;x� 3t �!� r �
Θ � r � s ; 3 � r ; logs � . Plugging all previous values, we obtain:

π @ 1 ' exp

U ' Θ
U

r � s ; 3 � r

logs
e q2r2α logs VfVq�

Let us fix α � 1 ;x� 8r2 logq � . As q is a non-null constant H 1 ; 2, we have α �
Θ � 1 ; r2 � as required. So, q2r2α logs � s 3 1 9 4. We have also, for s large enough and
r @ 2, that Θ � r � s ; 3 � r ; logs �,@|� s ; 3 � r 3 1 9 4. Therefore,

π @ 1 ' exp W 't� s ; 3 � r 3 1 9 2 Y
as claimed, that completes the proof. J
Corollary 1 For all integers r ( <

1 � log2 n = and δ @ 0, with probability at least
1 ' exp �M' > n � , a random r-dimensional mesh G of n nodes with constant failure
probability verifies that IRSδ � G �B� Ω � � δ ? 1 � 1 3 rr 3 4 � logn � 1 3 1 9 r � .
Proof. The number of nodes in Mr

s is n � sr. We observe that for r � 1 or s �
O � 1 � , the result holds since in both cases we have that � δ ? 1 � 1 3 rr 3 4 � logn � 1 3 1 9 r �
O � 1 � and IRSδ � G �I@ 1 always (with probability 1). We note that for r @ 2 and for
s large enough, we have � s ; 3 � r 3 1 9 2 @ sr 9 2 � > n. J
3 Upper Bound for Random 2-dimensional Meshes

This is also of great importance to state the nontrivial upper bound on IRSδ for
random r-dimensional meshes, and in particular upper bound on IRS0, the com-
pactness of a random mesh. The trivial upper bound is O � n � . In this section we
consider random meshes �8� M2

s � p � with n � s2 nodes and for p � 0 � 5, that is the
critical value in the percolation theory.

We will use the following property due to [13].

Lemma 5 ([13]) The compactness of any connected graph is the maximum of the
compactness overall its biconnected components.

Note that the compactness of an n-node graph is no more that n ; 2. Actually,
from [16], the compactness is no more than n ; 4 ? o � n � , and there are graphs with
compactness n ; 4 ' o � n � . So, in general, the compactness of G is at most O � L � ,
where L is the size of the largest biconnected components of G.

Let f � s � denotes the expected value of the number of nodes in the largest
biconnected component in a random s ^ s mesh (with p � 0 � 5). In order to estimate
f � s � on large values of s we have programmed a standard linear-time algorithm
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for finding biconnected components based on the modification of a depth first
search traversal, cf. [34]. Some outputs of our algorithm are depicted on figures 4,
and 5.

Our experiments (up to 50 tests for random meshes as large as 2048 ^ 2048
meshes) show that f � s ��} βsα where β � 0 � 32 and α � 1 � 654. (More precisely,
we remark that f � 2x �#; f � x � is a constant, so log f � x �I} ax ? b.) The value α has
been computed by α � log2 A, where A is the average value of f � 2i d 1 � ; f � 2i � for
i � 1 � �!� � � 10. The value on β follows. Expressed as the total number of nodes of
the mesh (n � s2), it turns out that f � s �E} Θ � n0 A 827 � . Our experimental results are
summarized on Fig. 3.
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Figure 3: The size of the largest biconnected components of a random s ^ s mesh.
The tests come from averaging 2000 experiments (for the small values of s) and
up to 50 experiments (for the larger values of s).

4 Conclusion and Further Works

We leave several open questions, and further directions for the study of compact
routing in reliability networks.

1. Extension to arbitrary routing strategies. It would be interesting to prove
similar lower bounds in a general encoding model, so applicable to any
encoding of the routing scheme rather than the interval routing model.
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Figure 4: A 40 ^ 40 random mesh with p � 0 � 5. Edges are horizontal and vertical
segments, isolated nodes have been removed. The largest biconnected component,
in bold, has 116 nodes.

2. Extension to random B-graphs with different edge probabilities. For in-
stance a model �8� B � pr � pc � where B is a mesh and where pr applies to rows
and pc to the columns would be interesting. In particular find the shortest-
path routing table complexity of G (N��� B � 0 � 5 � 1 � is of particular interest.
This could also be a tool for the study of augmented random graphs for
Small World (cf. Kleingberg’s model).

3. We know that w.h.p. random Kn-graphs (the ��� n � p � model) have constant
compactness ~ [17], and that random meshes have compactness Ω � > logn �
(this paper). Complete graphs and meshes having compactness 1. However,
can we have a base graph B of high compactness, say Ω � nε � , such that
random B-graphs have low compactness (w.h.p.)?

4. What is the compactness of a general n-node random B-graph for p � 0 � 5
(still w.h.p.)? Is Ω � n � possible? Same question if B is a bounded degree�

That is the minimum number of intervals for shortest-path interval routing scheme.
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Figure 5: A 160 ^ 160 random mesh with p � 0 � 5, depicted without trees (i.e.,
nodes of degree H 1 have been successibvely removed). The largest biconnected
component has 672 nodes. Observe that this random mesh contains the H 2

3 graph
(circled) as isolated subgraph.

graph? or a planar graph? or if B is the hypercube (our lower bound on
r-dimensional meshes just give a constant is this case).

5. Is H2
t the worst-case sub-mesh for the compactness? If the answer is

“yes”, then it would clearly improve our O � n0 A 827 � upper bound for random
meshes. They would have compactness at most O � > n � .

6. But maybe, the most interesting question remains: is there an n-node planar
graph with compactness larger than > n?
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versity of Technology, Ilkovičova 3, 812 19 Bratislava. E-mail: nehez@elf.stuba.sk


