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Implicit Representation

Idea: Associate with each node some information
and only use the information of any two nodes to
determine if they are adjacent.

An adjacency labeling scheme for a graph family %#
pair of functions (¢, f) such that VG € .%#,Yu,v € V(G)

e Encoder: ¢(u, G) is a label (binary string)
@ Decoder: f(¢(u, G),€(v,G)) is true © uv € E(G)

Goal: minimize label size (in bits)
... and time complexities of ¢, f



Ex: Interval Graphs

¢(u,G) := (L, r,) withl,r,€{1,...,2n}
f((Lyry), (L, 1)) :=true o [l, r, N[, r] =@

(2,9) (8,15) (13,17)

(5,10) (7,12) (11,16)

123 4567 8 9101112131415161718=2n

= labels of 2[log(2n)] bits



Universal Graph

Babai, Chung, Erd6s, Graham, Spencer 1982
A graph U is an induced-universal graph for . if
every graph of .% is isomorphic to some induced
subgraph of U.

F = {trees with 6 nodes}
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Universal Graphs / Labeling Schemes

F = {trees with 6 nodes}
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family H label size ‘ U. graph size ‘ refs.
treewidth k logn+ O(klglgn) | n-(logn)°®) | [GLO7]
planar, HRP | logn+O(ylgn) | ntte(d) [DEGJx21]
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family H label size ‘ U. graph size ‘ refs.
treewidth k logn+ O(klglgn) | n-(logn)°®) | [GLO7]
planar, H'P | logn+ O(\ign) | ntte() [DEGJx21]
outerplanar A | logn+ O(1) O(n) [C90][AR14]
trees logn+ O(1) O(n) [ADK17]
A<2 logn + O(1) 2n [AAHKS20]
caterpillars logn+ O(1) 256n [BGLO6]
caterpillars logn+ O(1) 384n [ADK17]
caterpillars logn+ O(1) 8n new
bounded pw logn+ O(1) O(n) new




|. Universal Graph for Caterpillars

A caterpillar forest is a forest in which the nodes of
degree at least two induce paths. J
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Theorem 1
Caterpillar forests with n nodes have a universal
graph %, with 8n nodes.




Lower Bound (Folk)

Every universal graph for the star and the path with n
nodes requires | 3n/2| nodes.

path



Universal Graph %, for Caterpillar

Nodes:

@ independent set S of 6n nodes

e layers L; of n/2' nodes for i from O to [log (n/6)]
= 6n+) ,5on/2' <8n nodes in total
Each node u of layer L; is adjacent to:

e aninterval I(u) of 6-2' nodes of S

@ its predecessor and successor in L; and all nodes

vertically below

S 000000000000000000000000000000000000000000000000000000000000000000000000
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Embedding Caterpillars Forests in %4>
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Adjacency in %,
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Embedding in %,

o(u) := number of leaves adjacent to internal node u

u € V(%,) such that I(u) contains at least 6(u)

Basic idea: Embed each internal node uy in
nodes.




How to embed u,?

target
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How to embed u,?

¢ target
coordinate

¢ for uj_y
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How to embed u,?

target
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for wuy,
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How to embed u,?

target
coordinate

. . for wuy,
now we can place uy to the desired x coordinate
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ll. Graphs of Pathwidth p

The pathwidth of G is the maximum clique size minus
one of an interval graph containing G as subgraph.

(p =1 < Gis a caterpillar forest)

(2,9) (8,15)  (13,17)

o+ | pathwidth = 3

1 23 45 6 7 8 910111213141516 17 18=2n




Adjacency Labeling Scheme

Theorem 2

There is an adjacency labeling scheme for graphs of
n nodes and pathwidth p with log n + O(p)-bit labels.
= universal graph of n - 29(P) nodes.

@ previous upper bound: logn + O(ploglogn) bits
e matching lower bound: logn + Q(p) bits
[ > %log (Xn,p) bits where £, , = n!- 29(P) is the

number of pathwidth-p labeled graphs with n
nodes |



Dominating Path Decomposition

@ start with the interval with the leftmost left end

@ at each step, take as the next interval the
neighbor with the rightmost right end
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Dominating Path Decomposition

@ start with the interval with the leftmost left end

@ at each step, take as the next interval the
neighbor with the rightmost right end

= every interval is contained in the union of two con-
secutive intervals of the blue path



Dominating Path Decomposition

Three kinds of intervals:
@ the blue intervals B of the dominating path

@ the redintervals R that contain at least one end
of a blue interval

@ the remaining green intervals




Dominating Path Decomposition

@ green intervals have thickness strictly less than
the original

@ repeat this process to obtain a decomposition
into (B, R1), (B2, R2), s (Bpy1, Rp11)




Blue Node Encoding

Enlarge the spaces between two consecutive ends of
the path such that:

@ the spaces between ends are power of two

@ two consecutive spaces differ only by a
multiplicative factor at most 2




Blue Node Encoding

In the label of each blue interval, we encode:
e the new leftend [
@ the integers kg, k; and k>
e the layer index (= index i of B; containing it)

@ some more information (more details later)




Red Node Encoding

In the label of each red interval, we encode
information relative to the two blue intervals
containing it:

o the left end [ of the first blue interval

e the integers kg, k1, k>, ks and k4

e the range C [0,4] where the interval falls into
@ the layer index
°

some more information (more details later)
0 1 3 2 3 3 4




Adjacency: Easy Case

The node with the smaller layer index is blue

= adjacency is easy since one can compute exactly
the ends of the blue interval

o 1 2

T

2h
subcase 1: red interval of the same layer

subcase 2: interval (blue or red) with greater layer



Adjacency: Hard Case

If the node with the smaller layer index is red

= adjacency is harder to compute since one can only
compute some range containing the ends of the
interval

uncertainty




Adjacency: Hard Case

Each red interval stores the rank for each of its ends
(order by length)

.......................

3
: L
encode for each layer 3 ' 2 )
the number of inter- T .. 3 ________
secting red intervals of 1 : ; :
this layer: 0,3,2 9 _':g 3

= the node (blue or red) can check if the red interval
corresponds to an interval intersecting it



Conclusion and Open Problems

Summary
e Universal graph %, for caterpillar forests
3n/2 <|V(%,)| < 8n (pathwidth p = 1)
@ Universal graph for graphs of pathwidth p with
n - 2°(P) nodes (log n + ©(p)-bit labels)

Open Problems
@ Improve bounds for universal graph for
caterpillars

@ logn + O(logp)-bit labels for interval graphs of
maximum clique size p

@ logn + O(t)-bit labels for graphs of treewidth t

v




