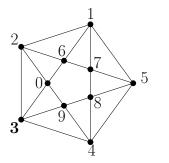
Smaller Universal Graphs for Caterpillars and Graphs of Bounded Path-Width

Cyril Gavoille and Arnaud Labourel

ICGT '22 – Montpellier – July 5th, 2022

Representation of Graphs



adj	list			
0	2	3	6	9
1	$ \begin{array}{c} 2 \\ 2 \\ 0 \end{array} $	5	6	7
2	0	1	3	6
3	$\begin{array}{c} 0 \\ 3 \end{array}$	2	4	9
4	3	5	8	9
5	1	4	$\overline{7}$	8
0 1 2 3 4 5 6 7 8	0	1	2	7
7	1	5	6	8
8	4	$\frac{5}{5}$	7	9
9	0	3	4	8

adjacency matrix

	0			3						
0	0	0	1	1	0	0	1	0		
1	0	0	1	0	0	1	1	1	0	0
2	1	1	0	1	0	0	1	0	0	0
3	1	0	1	0	1	0	0	0	0	1
4	0	0	0	1	0	1	0	0	1	1
5	0	1	0	0	1	0	0	1	1	0
6	1	1	1	0	0	0	0	1	0	0
7	0	1	0	0	0	1	1	0	1	0
8	0	0	0	0	1	1	0		0	
9	1	0	0	1	1	0	0	0	1	0

1 node = 1 pointer in the data-structure

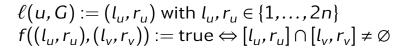
Idea: Associate with each node some information and only use the information of any two nodes to determine if they are adjacent.

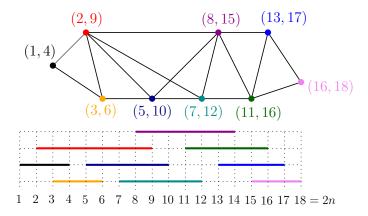
An adjacency labeling scheme for a graph family \mathscr{F} pair of functions (ℓ, f) such that $\forall G \in \mathscr{F}, \forall u, v \in V(G)$

- Encoder: $\ell(u, G)$ is a label (binary string)
- Decoder: $f(\ell(u, G), \ell(v, G))$ is true $\Leftrightarrow uv \in E(G)$

Goal: minimize label size (in bits) ... and time complexities of ℓ , *f*

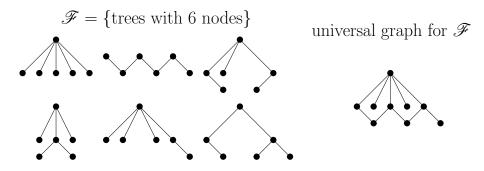
Ex: Interval Graphs



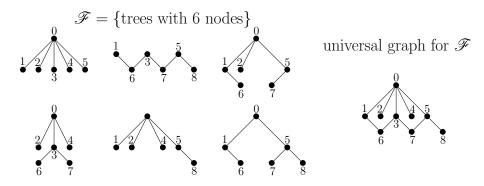


 \Rightarrow labels of 2[log(2n)] bits

Babai, Chung, Erdös, Graham, Spencer 1982 A graph U is an induced-universal graph for \mathscr{F} if every graph of \mathscr{F} is isomorphic to some induced subgraph of U.



Universal Graphs / Labeling Schemes



k-bit labels \Leftrightarrow universal graph of 2^{*k*} nodes

family	label size	U. graph size	refs.
	$\log n + O(k \lg \lg n)$	$n \cdot (\log n)^{O(k)}$	[GL07]
planar, $H \boxtimes P$	$\log n + \tilde{O}(\sqrt{\lg n})$	$n^{1+o(1)}$	[DEGJx21]

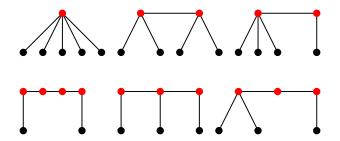
family	label size	U. graph size	refs.
treewidth k	$\log n + O(k \lg \lg n)$	$n \cdot (\log n)^{O(k)}$	[GL07]
planar, H ⊠ P	$\log n + \tilde{O}(\sqrt{\lg n})$	$n^{1+o(1)}$	[DEGJx21]
outerplanar Δ	$\log n + O(1)$	<i>O</i> (<i>n</i>)	[C90][AR14]
trees	$\log n + O(1)$	<i>O</i> (<i>n</i>)	[ADK17]
$\Delta \leq 2$	$\log n + O(1)$	2n	[AAHKS20]

family	label size	U. graph size	refs.	
treewidth k	$\log n + O(k \lg \lg n)$	$n \cdot (\log n)^{O(k)}$	[GL07]	
planar, $H \boxtimes P$	$\log n + \tilde{O}(\sqrt{\lg n})$	$n^{1+o(1)}$	[DEGJx21]	
outerplanar Δ	$\log n + O(1)$	<i>O</i> (<i>n</i>)	[C90][AR14]	
trees	$\log n + O(1)$	<i>O</i> (<i>n</i>)	[ADK17]	
$\Delta \leqslant 2$	$\log n + O(1)$	2n	[AAHKS20]	
caterpillars	$\log n + O(1)$	256n	[BGL06]	
caterpillars	$\log n + O(1)$	384n	[ADK17]	

family	label size	U. graph size	refs.
treewidth k	$\log n + O(k \lg \lg n)$	$n \cdot (\log n)^{O(k)}$	[GL07]
planar, H ⊠ P	$\log n + ilde{O}(\sqrt{\lg n})$	$n^{1+o(1)}$	[DEGJx21]
outerplanar Δ	$\log n + O(1)$	<i>O</i> (<i>n</i>)	[C90][AR14]
trees	$\log n + O(1)$	<i>O</i> (<i>n</i>)	[ADK17]
$\Delta \leq 2$	$\log n + O(1)$	2n	[AAHKS20]
caterpillars	$\log n + O(1)$	256 <i>n</i>	[BGL06]
caterpillars	$\log n + O(1)$	384n	[ADK17]
caterpillars	$\log n + O(1)$	8n	new
bounded pw	$\log n + O(1)$	<i>O</i> (<i>n</i>)	new

I. Universal Graph for Caterpillars

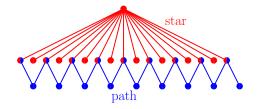
A caterpillar forest is a forest in which the nodes of degree at least two induce paths.



Theorem 1

Caterpillar forests with *n* nodes have a universal graph \mathcal{U}_n with 8*n* nodes.

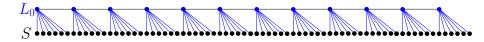
Every universal graph for the star and the path with n nodes requires $\lfloor 3n/2 \rfloor$ nodes.



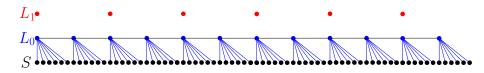
- independent set S of 6n nodes
- layers L_i of $n/2^i$ nodes for *i* from 0 to $\lceil \log(n/6) \rceil$
- $\Rightarrow 6n + \sum_{i \ge 0} n/2^i < 8n$ nodes in total
- Each node u of layer L_i is adjacent to:
 - an interval I(u) of $6 \cdot 2^i$ nodes of S
 - its predecessor and successor in *L_i* and all nodes vertically below

- independent set S of 6n nodes
- layers L_i of $n/2^i$ nodes for *i* from 0 to $\lceil \log(n/6) \rceil$
- $\Rightarrow 6n + \sum_{i \ge 0} n/2^i < 8n$ nodes in total
- Each node u of layer L_i is adjacent to:
 - an interval I(u) of $6 \cdot 2^i$ nodes of S
 - its predecessor and successor in *L_i* and all nodes vertically below

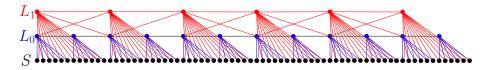
- independent set S of 6n nodes
- layers L_i of $n/2^i$ nodes for *i* from 0 to $\lceil \log(n/6) \rceil$
- $\Rightarrow 6n + \sum_{i \ge 0} n/2^i < 8n$ nodes in total
- Each node u of layer L_i is adjacent to:
 - an interval I(u) of $6 \cdot 2^i$ nodes of S
 - its predecessor and successor in *L_i* and all nodes vertically below



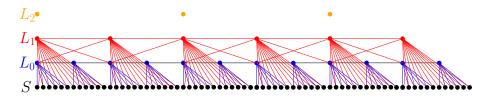
- independent set S of 6n nodes
- layers L_i of $n/2^i$ nodes for *i* from 0 to $\lceil \log(n/6) \rceil$
- $\Rightarrow 6n + \sum_{i \ge 0} n/2^i < 8n$ nodes in total
- Each node u of layer L_i is adjacent to:
 - an interval I(u) of $6 \cdot 2^i$ nodes of S
 - its predecessor and successor in *L_i* and all nodes vertically below



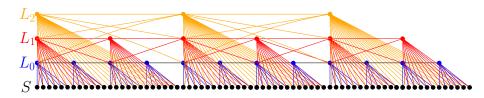
- independent set S of 6n nodes
- layers L_i of $n/2^i$ nodes for *i* from 0 to $\lceil \log(n/6) \rceil$
- $\Rightarrow 6n + \sum_{i \ge 0} n/2^i < 8n$ nodes in total
- Each node u of layer L_i is adjacent to:
 - an interval I(u) of $6 \cdot 2^i$ nodes of S
 - its predecessor and successor in *L_i* and all nodes vertically below



- independent set *S* of 6*n* nodes
- layers L_i of $n/2^i$ nodes for *i* from 0 to $\lceil \log(n/6) \rceil$ $\Rightarrow 6n + \sum_{i \ge 0} n/2^i < 8n$ nodes in total Each node *u* of layer L_i is adjacent to:
 - an interval I(u) of $6 \cdot 2^i$ nodes of S
 - its predecessor and successor in *L_i* and all nodes vertically below

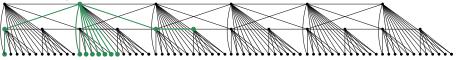


- independent set *S* of 6*n* nodes
- layers L_i of $n/2^i$ nodes for *i* from 0 to $\lceil \log(n/6) \rceil$ $\Rightarrow 6n + \sum_{i \ge 0} n/2^i < 8n$ nodes in total Each node *u* of layer L_i is adjacent to:
 - an interval I(u) of $6 \cdot 2^i$ nodes of S
 - its predecessor and successor in *L_i* and all nodes vertically below

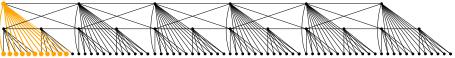


Embedding Caterpillars Forests in \mathscr{U}_{12}

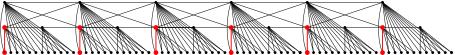
Some caterpillar of 12 nodes



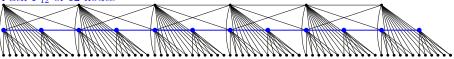
Star of 12 nodes



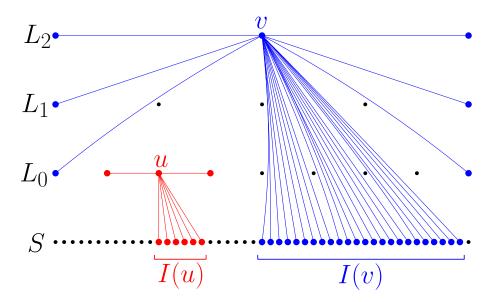
Matching of 6 edges



Path P_{12} of 12 nodes



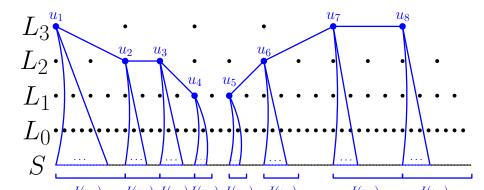
Adjacency in \mathscr{U}_n

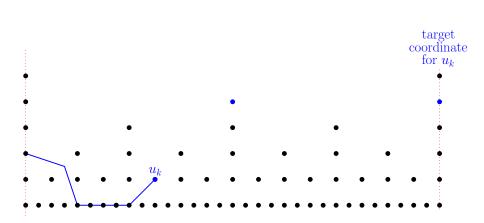


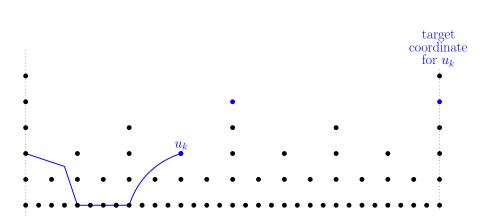
Embedding in \mathscr{U}_n

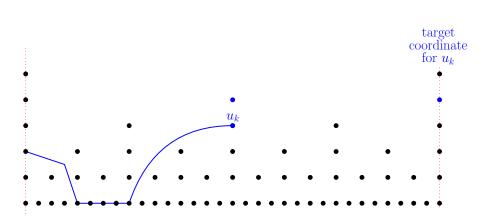
 $\delta(u) :=$ number of leaves adjacent to internal node u

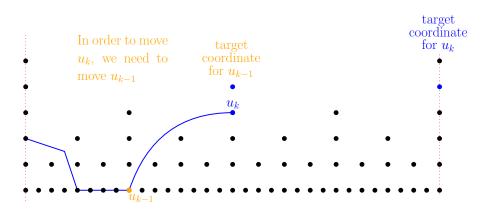
Basic idea: Embed each internal node u_k in $u \in V(\mathcal{U}_n)$ such that I(u) contains at least $\delta(u)$ nodes.

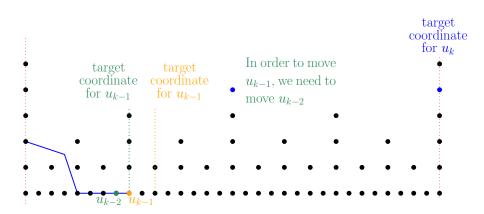


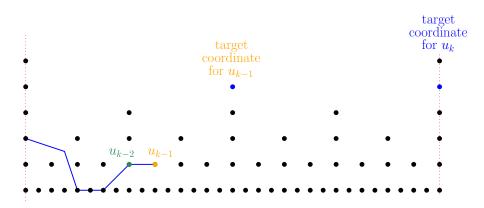


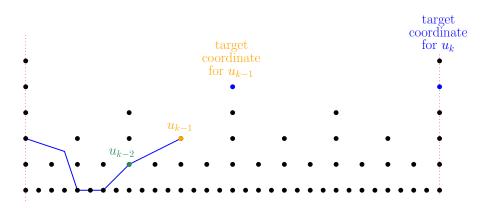


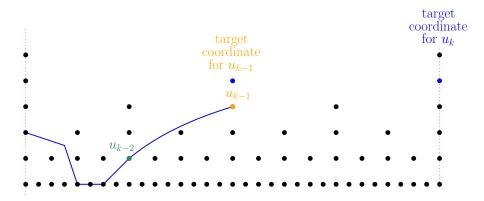


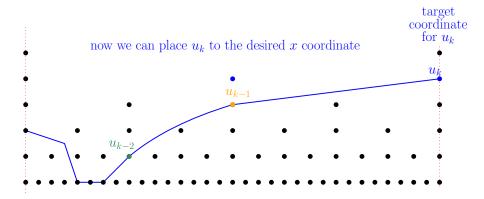








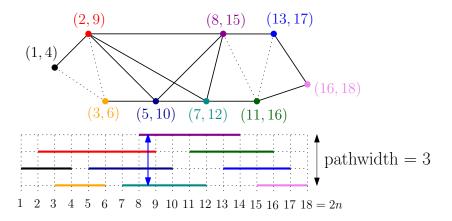




II. Graphs of Pathwidth p

The pathwidth of G is the maximum clique size minus one of an interval graph containing G as subgraph.

 $(p = 1 \Leftrightarrow G \text{ is a caterpillar forest})$



Adjacency Labeling Scheme

Theorem 2

There is an adjacency labeling scheme for graphs of n nodes and pathwidth p with $\log n + O(p)$ -bit labels. \Rightarrow universal graph of $n \cdot 2^{O(p)}$ nodes.

- previous upper bound: $\log n + O(p \log \log n)$ bits
- matching lower bound: $\log n + \Omega(p)$ bits

 $[\ge \frac{1}{n} \log (\mathscr{L}_{n,p}) \text{ bits where } \mathscr{L}_{n,p} = n! \cdot 2^{\Theta(np)} \text{ is the number of pathwidth-} p \text{ labeled graphs with } n \text{ nodes }]$

Dominating Path Decomposition

- start with the interval with the leftmost left end
- at each step, take as the next interval the neighbor with the rightmost right end

Dominating Path Decomposition

- start with the interval with the leftmost left end
- at each step, take as the next interval the neighbor with the rightmost right end

- start with the interval with the leftmost left end
- at each step, take as the next interval the neighbor with the rightmost right end

- start with the interval with the leftmost left end
- at each step, take as the next interval the neighbor with the rightmost right end

- start with the interval with the leftmost left end
- at each step, take as the next interval the neighbor with the rightmost right end

- start with the interval with the leftmost left end
- at each step, take as the next interval the neighbor with the rightmost right end

- start with the interval with the leftmost left end
- at each step, take as the next interval the neighbor with the rightmost right end

- start with the interval with the leftmost left end
- at each step, take as the next interval the neighbor with the rightmost right end

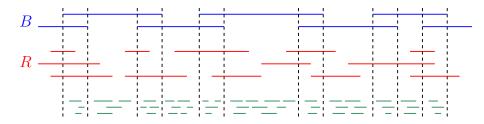
- start with the interval with the leftmost left end
- at each step, take as the next interval the neighbor with the rightmost right end

- start with the interval with the leftmost left end
- at each step, take as the next interval the neighbor with the rightmost right end

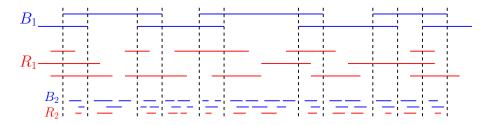
 \Rightarrow every interval is contained in the union of two consecutive intervals of the blue path

Three kinds of intervals:

- the blue intervals *B* of the dominating path
- the red intervals *R* that contain at least one end of a blue interval
- the remaining green intervals

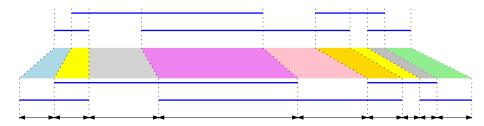


- green intervals have thickness strictly less than the original
- repeat this process to obtain a decomposition into (B₁, R₁), (B₂, R₂), ..., (B_{p+1}, R_{p+1})



Enlarge the spaces between two consecutive ends of the path such that:

- the spaces between ends are power of two
- two consecutive spaces differ only by a multiplicative factor at most 2



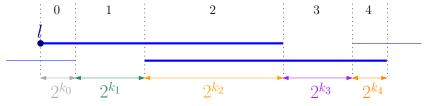
In the label of each blue interval, we encode:

- the new left end *l*
- the integers k_0 , k_1 and k_2
- the layer index (= index *i* of *B_i* containing it)
- some more information (more details later)

Red Node Encoding

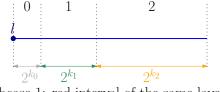
In the label of each red interval, we encode information relative to the two blue intervals containing it:

- the left end *l* of the first blue interval
- the integers k_0, k_1, k_2, k_3 and k_4
- the range $\subseteq [0, 4]$ where the interval falls into
- the layer index
- some more information (more details later)



The node with the smaller layer index is blue

 \Rightarrow adjacency is easy since one can compute exactly the ends of the blue interval



subcase 1: red interval of the same layer

subcase 2: interval (blue or red) with greater layer

Adjacency: Hard Case

If the node with the smaller layer index is red

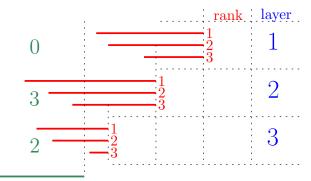
 \Rightarrow adjacency is harder to compute since one can only compute some range containing the ends of the interval



Adjacency: Hard Case

Each **red** interval stores the rank for each of its ends (order by length)

encode for each layer the number of intersecting red intervals of this layer: 0,3,2



 \Rightarrow the node (blue or red) can check if the red interval corresponds to an interval intersecting it

Conclusion and Open Problems

Summary

- Universal graph \mathcal{U}_n for caterpillar forests $3n/2 \leq |V(\mathcal{U}_n)| < 8n$ (pathwidth p = 1)
- Universal graph for graphs of pathwidth p with $n \cdot 2^{\Theta(p)}$ nodes (log $n + \Theta(p)$ -bit labels)

Open Problems

- Improve bounds for universal graph for caterpillars
- $\log n + \Theta(\log p)$ -bit labels for interval graphs of maximum clique size p
- $\log n + \Theta(t)$ -bit labels for graphs of treewidth t