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Representation of Graphs
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0 2 3 6 9
1 2 5 6 7
2 0 1 3 6
3 0 2 4 9
4 3 5 8 9
5 1 4 7 8
6 0 1 2 7
7 1 5 6 8
8 4 5 7 9
9 0 3 4 8

0 1 2 3 4 5 6 7 8 9
0 0 0 1 1 0 0 1 0 0 1
1 0 0 1 0 0 1 1 1 0 0
2 1 1 0 1 0 0 1 0 0 0
3 1 0 1 0 1 0 0 0 0 1
4 0 0 0 1 0 1 0 0 1 1
5 0 1 0 0 1 0 0 1 1 0
6 1 1 1 0 0 0 0 1 0 0
7 0 1 0 0 0 1 1 0 1 0
8 0 0 0 0 1 1 0 1 0 1
9 1 0 0 1 1 0 0 0 1 0

adjacency lists
adjacency matrix

1 node = 1 pointer in the data-structure



Implicit Representation

Idea: Associate with each node some information
and only use the information of any two nodes to
determine if they are adjacent.

An adjacency labeling scheme for a graph family F
pair of functions (`, f) such that ∀G ∈F ,∀u ,v ∈ V(G)

Encoder: `(u ,G) is a label (binary string)
Decoder: f(`(u ,G), `(v ,G)) is true⇔ uv ∈ E(G)

Goal: minimize label size (in bits)
... and time complexities of `, f



Ex: Interval Graphs
`(u ,G) := (lu ,ru) with lu ,ru ∈ {1, . . . ,2n}
f((lu ,ru),(lv ,rv)) := true⇔ [lu ,ru ]∩ [lv ,rv ] , ∅

(1, 4)

(2, 9)

(3, 6) (5, 10)

10 11 12 13 14 15 16 17

(8, 15)

(7, 12) (11, 16)

(16, 18)

(13, 17)

18 = 2n1 2 3 4 5 6 7 8 9

⇒ labels of 2dlog (2n)e bits



Universal Graph

Babai, Chung, Erdös, Graham, Spencer 1982
A graph U is an induced-universal graph for F if
every graph of F is isomorphic to some induced
subgraph of U .

F = {trees with 6 nodes}
universal graph for F



Universal Graphs / Labeling Schemes

F = {trees with 6 nodes}
universal graph for F
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k -bit labels⇔ universal graph of 2k nodes



Results

family label size U. graph size refs.

treewidth k logn +O(k lg lgn) n · (logn)O(k) [GL07]
planar, H � P logn + Õ(

√
lgn ) n1+o(1) [DEGJx21]

logn +O(1) O(n) [C90][AR14]
trees logn +O(1) O(n) [ADK17]
∆ 6 2 logn +O(1) 2n [AAHKS20]

logn +O(1) 256n [BGL06]
caterpillars logn +O(1) 384n [ADK17]

logn +O(1) 8n new

bounded pw logn +O(1) O(n) new
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I. Universal Graph for Caterpillars

A caterpillar forest is a forest in which the nodes of
degree at least two induce paths.

Theorem 1
Caterpillar forests with n nodes have a universal
graph Un with 8n nodes.



Lower Bound (Folk)

Every universal graph for the star and the path with n
nodes requires b3n/2c nodes.

star

path



Universal Graph Un for Caterpillar
Nodes:

independent set S of 6n nodes
layers Li of n/2i nodes for i from 0 to dlog (n/6)e

⇒ 6n +
∑

i>0n/2
i < 8n nodes in total

Each node u of layer Li is adjacent to:
an interval I(u) of 6 ·2i nodes of S
its predecessor and successor in Li and all nodes
vertically below

S
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Embedding Caterpillars Forests in U12

Star of 12 nodes

Some caterpillar of 12 nodes

Matching of 6 edges

Path P12 of 12 nodes



Adjacency in Un

S

L0

L1

L2
v

u

I(v)I(u)



Embedding in Un

δ(u) := number of leaves adjacent to internal node u

Basic idea: Embed each internal node uk in
u ∈ V(Un) such that I(u) contains at least δ(u)
nodes.

L1

L2

L3

S

L0

u1

u2 u3

u4 u5

u6

u7 u8

I(u1) I(u2) I(u3)I(u4) I(u5) I(u6) I(u7) I(u8)

. . . . . . . . . . . . . . . . . . . . . . . .



How to embed uk?

uk

coordinate
target

for uk
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uk−1

coordinate
target

for uk−1

In order to move

uk, we need to

move uk−1



How to embed uk?

coordinate
target

for uk

uk−1

coordinate
target

for uk−1

In order to move

uk−1, we need to

move uk−2

coordinate
target

for uk−1

uk−2
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target

for uk−1
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How to embed uk?

coordinate
target
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How to embed uk?

coordinate
target

for uk

uk−2

uk−1

uk

now we can place uk to the desired x coordinate



II. Graphs of Pathwidth p

The pathwidth of G is the maximum clique size minus
one of an interval graph containing G as subgraph.

(p = 1⇔ G is a caterpillar forest)

(1, 4)

(2, 9)

(3, 6) (5, 10)

(8, 15)

(7, 12) (11, 16)

(16, 18)

(13, 17)

pathwidth = 3

10 11 12 13 14 15 16 17 18 = 2n1 2 3 4 5 6 7 8 9



Adjacency Labeling Scheme

Theorem 2
There is an adjacency labeling scheme for graphs of
n nodes and pathwidth p with logn +O(p)-bit labels.
⇒ universal graph of n ·2O(p) nodes.

previous upper bound: logn +O(p log logn) bits
matching lower bound: logn +Ω(p) bits

[ > 1
n log

(
Ln ,p

)
bits where Ln ,p = n! ·2Θ(np) is the

number of pathwidth-p labeled graphs with n
nodes ]
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neighbor with the rightmost right end
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Dominating Path Decomposition

start with the interval with the leftmost left end
at each step, take as the next interval the
neighbor with the rightmost right end

⇒ every interval is contained in the union of two con-
secutive intervals of the blue path



Dominating Path Decomposition
Three kinds of intervals:

the blue intervals B of the dominating path
the red intervals R that contain at least one end
of a blue interval
the remaining green intervals

B

R



Dominating Path Decomposition

green intervals have thickness strictly less than
the original
repeat this process to obtain a decomposition
into (B1,R1),(B2,R2), ...,(Bp+1,Rp+1)

B1

R1

B2

R2



Blue Node Encoding

Enlarge the spaces between two consecutive ends of
the path such that:

the spaces between ends are power of two
two consecutive spaces differ only by a
multiplicative factor at most 2



Blue Node Encoding

In the label of each blue interval, we encode:
the new left end l
the integers k0, k1 and k2

the layer index (= index i of Bi containing it)
some more information (more details later)

l

2k0 2k1 2k2



Red Node Encoding
In the label of each red interval, we encode
information relative to the two blue intervals
containing it:

the left end l of the first blue interval
the integers k0,k1,k2,k3 and k4

the range ⊆ [0,4] where the interval falls into
the layer index
some more information (more details later)

l

2k0 2k1 2k2 2k3 2k4

0 1 2 3 4



Adjacency: Easy Case

The node with the smaller layer index is blue

⇒ adjacency is easy since one can compute exactly
the ends of the blue interval

l

2k0 2k1 2k2

0 1 2

subcase 1: red interval of the same layer

subcase 2: interval (blue or red) with greater layer



Adjacency: Hard Case

If the node with the smaller layer index is red

⇒ adjacency is harder to compute since one can only
compute some range containing the ends of the
interval

uncertainty



Adjacency: Hard Case
Each red interval stores the rank for each of its ends
(order by length)

1
rank

3
2

1

3
2

1

3
2

layer

1

2

3

0

3

2

encode for each layer
the number of inter-
secting red intervals of
this layer: 0,3,2

⇒ the node (blue or red) can check if the red interval
corresponds to an interval intersecting it



Conclusion and Open Problems

Summary
Universal graph Un for caterpillar forests
3n/2 6 |V(Un)| < 8n (pathwidth p = 1)
Universal graph for graphs of pathwidth p with
n ·2Θ(p) nodes (logn +Θ(p)-bit labels)

Open Problems
Improve bounds for universal graph for
caterpillars
logn +Θ(logp)-bit labels for interval graphs of
maximum clique size p
logn +Θ(t)-bit labels for graphs of treewidth t


