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Abstract

We give an explicit construction of a graph Un with at most 8n vertices with the property
that every n-vertex caterpillar graph is isomorphic to some induced-subgraph of Un. Previous
constructions of so-called induced-universal graph for caterpillars used 256n vertices in the best
(Bonichon et al. SIROCCO’06 and Alstrup et al. FOCS’15).

We extended this result to path-width-p graphs with an induced-universal graph of n · 2O(p)

vertices. This is complemented with a n · 2Ω(p) lower bound. With bounded path-width graphs,
our construction considerably enlarge the family of n-vertex graphs having an induced-universal
graph of O(n) vertices, which is optimal. Such unexpected property was known only for trees,
bounded maximum degree outerplanar graphs and maximum degree-2 graphs.

The extended result is obtained from an algorithmic approach by designing an adjacency
labeling scheme for these graphs using log n + O(p) bit vertex labels and with a constant time
adjacency test.

1 Introduction

A graph containing as induced subgraph all the graphs of a given family is called induced-universal
graph. In a famous paper, Alstrup et al. [ADBTK15] have proved that trees2 with n vertices has
an induced-universal graph with only O(n) vertices. This optimal result is ultimately based on a
small induced-universal graph for caterpillars, a subfamily of trees where non-leaf vertices induce a
path, and for which the design of an induced-universal graph with O(n) is already very challenging.
This latter challenge has been tackled by Bonichon et al. [BGL06] who proved an upper bound of
256n for an induced-universal graph of n-vertex caterpillars3. This involved construction has been
simplified in [ADBTK15, ADBTK17] and generalized in order to apply to trees. For caterpillars,
their construction leads to a bound of 384n vertices4.

A part for trees [ADBTK15], optimal O(n)-vertex induced-universal graphs are known
only for bounded maximum degree outerplanar graphs [Chu90, AR14] and maximum degree-2
graphs [But06, ELO08, AAH+20]. Earlier constructions with this unexpected property were known
for subfamily of trees: caterpillars [BGL06], bounded degree trees [Chu90], and bounded depth
trees [FK10].

1Supported by the French ANR project ANR-17-CE40-0015 Metric Graph Theory (DISTANCIA).
2Actually this holds for forest since every forest on n vertices is an induced subgraph of some tree with n + 1

vertices.
3Based on a labeling scheme, the original construction used 26n labels, but the analysis of the construction has

been corrected latter to 28n, cf. [Gav20].
4Based on a labeling scheme as in [BGL06], their scheme constructs labels composed of 5 specific bits (for a degree-

2 vertex) plus some ID, an integer taken from [0, 12n). This leads to 25 ·12n = 384n vertices for the induced-universal
graph.



2 Caterpillars

Our first contribution is an improved construction by an order of magnitude. Our construction
actually holds for path-width one graphs, a slightly more larger graph family, caterpillars being
exactly maximal graphs of path-width one.

Theorem 1. Graphs of path-width one with n > 3 vertices have an induced-universal graph Un

with less than 8n vertices and 6n dlog (2n/3)e edges.

Both bounds are optimal up to a multiplicative constant. Indeed, the number of vertices must
be at least b3n/2c since such universal graph must contain a path and a star that can share at
most an independent set of size dn/2e (for n > 4). And by considering all regular caterpillars with
power-two degree vertices, the number of edges is at least n log n−O(n).

The vertex set of Un consists of 1 + dlog (n/3)e layers L0, L1, L2, . . . , Ldlog (n/3)e, n > 3. Each
vertex v of Un is associated with some point (x, y) of the plane with integral coordinates, where
y is the index of the layer containing v. More precisely, the layers and the edges are defined as
follows (see Fig. 1(a)), where f(y) := 3 · 2y:

• L0 := {(x, 0) : x ∈ [0, 6n) ∩ N} and Ly :=
{

(i · f(y), y) : i ∈ [0,
⌊
n/2y−1

⌋
) ∩ N

}
for y > 1.

• Each vertex (i · f(y), y) ∈ Ly, for y > 1, is connected to each vertices of
{(x, 0) ∈ L0 : i · f(y) 6 x < (i + 1) · f(y)} ∪ {((i± 1) · f(y), j) ∈ Lj : 1 6 j 6 y}.
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Figure 1: (a) The neighbors of u in L1∪L0 and of v in L3∪L2∪L1∪L0. Layer L0 is a stable of 6n
vertices. (b) A graph G (with blue vertices) embedded in U48 (that has 288 points). No edges are
represented, but the edges of G between its internal vertices. The internal vertices of G induced
two paths: u1, ..., u4 and u5, ..., u8. All the leaves attached to a vertex ui embedded in Ly falls into
an interval I(ui) ⊂ L0 of length f(y) large enough.

The leaves of G are embedded into some points of L0 whereas its internal vertices (of degree
> 2) are embedded to some points of Ly for some level y > 1. The larger the degree of an internal
vertex ui, the higher the level y where ui embeds in is. Whereas the embedding of ui is quite simple
whenever ui has a lower degree than ui−1 (in a greedy manner from left to right), the embedding
requires some backtracking in the embeddings of the uj ’s, j < i, if the degree of ui increases w.r.t.
ui−1.



3 Bounded Path-Width

Our second contribution is much more general, since it proposes a tight bound for an induced-
universal graphs for path-width p graphs. Actually, our result is expressed as an adjacency labeling
scheme.

Recall that an adjacency labeling scheme for a graph family F is a pair (L, f) of algorithms
where L is in charge of assigning a label L(u,G) with each vertex u of every graph G in F, and where
f is in charge of decoding adjacency from labels. More precisely given any two labels `1 = L(u,G)
and `2 = L(v,G), f(`1, `2) is true if and only if u, v are adjacent.

It is well-known (see [KNR92]) that a graph family F has an adjacency labeling scheme with
k-bit labels5 if and only if F has an induced-universal U of 2k vertices. The labeling can be seen as
the embedding of each vertex of each graph in the induced-universal graph whose vertex set is the
label set used for the family F. So, small induced-universal graphs can be derived from labeling
schemes with short labels.

As we will now see, it is not very hard to design a labeling scheme for path-width-p graphs
with 2 log n + O(p) bits, so leading to an induced-universal graph of n2 · 2O(p) vertices. For this,
one can triangulate the input graph by replacing each bag of any path-decomposition of width p
by a clique. This latter graph is an interval graph with maximal clique size p + 1. Consider an
interval representation for this graph where intervals associated with vertices have boundaries that
are distinct integers taken from [1, 2n]. (This can be done by sorting all together the 2n boundaries
and by considering their ranks.) Then, one can orient each edge u → v if v is a right neighbor of
u, i.e., if v is a neighbor of u whose right boundary is greater than u’s right boundary. It follows
that u has at most p right neighbors because the intervals of its right neighbors share a common
point (the u’s right boundary) and the clique size is at most p + 1 (including u). Lastly, one can
compute a (p+1)-coloring of the interval graph, say in a greedy manner by scanning all the intervals
from right to left. Eventually, one store in the label of each vertex u the following three pieces of
information:

• the two interval boundaries (on 2 dlog (2n)e bits);
• its color (on dlog pe bits); and
• a binary string indicating, for each vertex color i, whether the colored-i right neighbor of u is

a neighbor in the original graph (this can be implemented with p bits given the color of u).

Overall, this leads to a simple 2 dlog (2n)e+dlog pe+p bit labeling scheme whose adjacency decoder is
straightforward. We observe that the implementation of this construction is essentially best possible
because, from theoretic-information lower bounds, general interval graphs with n vertices require
asymptotically 2 log n bits per label [GP08] and general graphs on p + 1 vertices, so of path-width
at most p, require p/2 bits per label, see [Alo17] for instance. But these lower bounds do not imply
anything about the tightness of the construction it-self. For example, there is no reason why the
optimal construction should be based on interval representation.

Unfortunately, this above construction is far to be optimal, since it leads to an induced-universal
of O(n2) vertices for caterpillars (p = 1) whereas from Theorem 1, we know that induced-universal
graphs with 8n vertices do exist for this family.

Our main result is:

5Assuming that in each graph no two vertices can receive the same label.



Theorem 2. Graphs with n vertices and path-width at most p have an adjacency labeling scheme
with log n + O(p) bit labels supporting constant time adjacency test.

It follows that n-vertex path-width-p graphs have an induced-universal graph with n · 2O(p)

vertices. Using an Information-Theoretical lower bound derived counting the number of labeled
n-vertex of path-width-p graphs, we can show that:

Theorem 3. Every adjacency labeling scheme for n-vertex graphs of path-width p requires labels
of log n + p− o(p) bits for every p = o(n).
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