## Shorter Implicit Representation for Planar Graphs and Bounded Treewidth Graphs

C. Gavoille A. Labourel

University of Bordeaux (LaBRI)

ESA, 8-10 October 2007

A > < > > < >

## The problem: implicit graph representation

#### Problem

Give local information to vertices of graphs of a given graph family  $\mathcal{F}$  such that adjacency between two vertices can be tested using only the local information.

Local information are viewed as binary labels.

#### Goal

Minimize the size of the labels and also the time complexity of adjacency test and labeling.

医尿道 医医尿道

#### An example of a small scheme for trees $(2 \log n \text{ bits labels})$



#### An example of a small scheme for trees $(2 \log n \text{ bits labels})$



/⊒ > < ∃ >

#### An example of a small scheme for trees (2 log *n* bits labels)



(日) (同) (三) (三)

#### Induced universal graphs

A graph is  $\mathcal{F}$ -universal if it contains all graphs of  $\mathcal{F}$  as induced subgraphs.



# The link between adjacency scheme and induced-universal graphs

[Kannan, Naor et Rudich 1992]: adjacency scheme for  $\mathcal{F}$  with labels of  $\lambda$  bits  $\Leftrightarrow \mathcal{F}$ -induced-universal graphs with  $2^{\lambda}$  vertices.

 $\Rightarrow$  Any result for adjacency labeling scheme implies a result for induced-universal graphs and conversely.

Our result Edge partition into graphs of bounded treewidth

#### Our result

#### Theorem

The family of n-vertex planar graphs enjoys an adjacency labeling scheme with labels of  $2 \log n + O(\log \log n)$  bits.

Labels: [Chung 1994, AR 2002]  $(3 + o(1)) \log n$  bits  $\rightarrow 2 \log n + O(\log \log n)$ Universal graphs:  $\tilde{O}(n^3) \rightarrow \tilde{O}(n^2)$ 

A > < > > < >

Our result Edge partition into graphs of bounded treewidth

## Key lemma

#### Lemma

The family of n-vertex treewidth-k graphs enjoys an adjacency labeling scheme with labels of  $\log n + O(k \log \log(n/k))$  bits.

Labels: [KNR 1992]  $O(k \log n)$  bits  $\rightarrow \log n + O(k \log \log(n/k))$ Universal graphs:  $n^{O(k)} \rightarrow n \cdot \log^{O(k)}(n/k)$ 

< 同 > < 三 > < 三 >

### Edge partition of planar graphs

#### Theorem (Gonçalves 2006)

Every planar graph can be edge partitioned into two outerplanar graphs (that have treewidth at most two).

#### Principle

Use a scheme of  $\lambda$  bits for the two outerplanar graphs and concatenate the labels to obtain a scheme of  $2\lambda$  bits for planar graphs.

#### Edge partition of bounded genus graphs

Theorem (Ding, Oporowski, Sanders et Vertigan 2000) Every bounded genus graph can be edge partitioned into two bounded treewidth graphs ( $\leq 6g + 3$  for graphs of genus g).

Labels:  $O(\sqrt{g} \log n) \rightarrow 2 \log n + O(g \log \log(n/g))$ 

・ 同 ト ・ ヨ ト ・ ヨ ト

#### Edge partition of graphs with no K minor

- Theorem (DeVos, Ding, Oporowski, Sanders, Reed, Seymour et Vertigan 2004)
- Every graph with no K minor can be edge partitioned into two graphs of treewidth depending only on K.
- Labels:  $2 \log n + O(\log \log n)$  bits for fixed K
- Ex: Planar graphs exclude  $K_5$

伺い イヨト イヨト

k-orientation Adjacency test Bidecomposition

#### Treewidth

A graph of treewidth k is a subgraph of a graph with no induced cycle of size > 3 and with max clique size equal to k + 1.



Example of a graph of treewidth 2.

#### Treewidth

A graph of treewidth k is a subgraph of a graph with no induced cycle of size > 3 and with max clique size equal to k + 1.



Example of a graph of treewidth 2.

#### k-orientation

*k*-orientation: orientation of edges of the graph such that out degree is at most k.

 $N^+[u]$ : *u* plus its out neighborhood.

u and v are adjacent  $\Leftrightarrow u \neq v$  and  $(u \in N^+[v] \text{ or } v \in N^+[u])$ .



A (1) > A (1) > A

## Adjacency test

The idea is to store for each vertex v identifiers of vertices of  $N^+[v]$ .

Using a naive approach, this can be done with  $(k + 1) \log n$  bits.

Actually, we can achieve much more compact scheme with a special partition for bounded treewidth graphs.

・ 同 ト ・ ヨ ト ・ ヨ ト

## Bidecomposition

#### Lemma (Bidecomposition)

For every n-vertex treewidth-k graph G, there exists a k-orientation and a vertex partition such that:

- ► the parts are the nodes of a rooted binary tree T of depth ≤ log(n/k);
- each part has O(k log n) vertices of G;
- For every vertex u ∈ V(G), all the parts of N<sup>+</sup>[u] belong to a path from the root to a leaf of T.

- 4 同 2 4 日 2 4 日 2

*k*-orientation Adjacency test Bidecomposition

#### Outline of the bidecomposition

Step 1: Add edges to obtain a graph with no induced cycle of size > 3.

Step 2: Recursively cut the graph into two parts using a special separator.

Step 3: orient the augmented graph such that for every  $u \in V(G)$  $N^+(u)$  induces a clique.

- < 同 > < 三 > < 三 >

*k*-orientation Adjacency test Bidecomposition

#### Example of bidecomposition



A. Labourel Shorter Implicit Representation for Planar Graphs

*k*-orientation Adjacency test Bidecomposition

#### Example of bidecomposition



A. Labourel Shorter Implicit Representation for Planar Graphs

*k*-orientation Adjacency test Bidecomposition

#### Example of bidecomposition



*k*-orientation Adjacency test Bidecomposition

#### Encode using bidecomposition



#### Encoding using bidecomposition

Identifier of u: path from the root to its part plus its position in the part.

Label of u: path from the root containing all the parts of  $N^+[u]$  plus depth and position of each vertex of  $N^+[u]$ .

From the label of u, we can extract identifiers of all vertices of  $N^+[u]$ .

< 同 > < 三 > < 三 >

*k*-orientation Adjacency test Bidecomposition

#### Encode using bidecomposition



*k*-orientation Adjacency test Bidecomposition

#### Encoding using bidecomposition



label of w branch "0" depth(w)=1 pos(u)=1depth(x)=0 pos(x)=6depth(y)=0 pos(y)=3label of u branch "01" depth(u)=2 pos(u)=2depth(v)=1 pos(v)=4depth(w)=1 pos(w)=1

- < 同 > < 三 > < 三 >

#### Open problems

- ► Does there exist a scheme of (1 + o(1)) log n bits for planar graphs (Universal planar graph Õ(n))?
- Does there exist a scheme of log n + O(k) bits for graphs of treewidth k?

- 4 同 2 4 日 2 4 日 2

#### Perspectives

In our model, adding a vertex in the graph generally implies a complete relabeling of the graph to maintain the encoding.

#### Dynamic encoding

An adjacency labeling scheme that maintains the labels with  $O(\log n)$  amortized message complexity, per topology change.

・ 同 ト ・ ヨ ト ・ ヨ ト

## Thank you

A. Labourel Shorter Implicit Representation for Planar Graphs

æ