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Abstract. We consider a distributed representation scheme for trees,
supporting some special relationships between nodes at small distance.
For instance, we show that for a tree T and an integer k we can assign
local information on nodes such that we can decide for any two nodes u
and v if the distance between u and v is at most k and if so, compute
it only using the local information assigned. For trees with n nodes,
the local information assigned by our scheme are binary labels of
log n + O(k log(k log(n/k))) bits, improving the results of Alstrup, Bille,
and Rauhe (SODA ’03).
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1 Introduction

A distributed representation scheme is a scheme maintaining global information
on a network using local data structures (or labels) assigned to nodes of the
network. Such schemes play an important role in the fields of distributed com-
puting. Their goal is to locally store some useful information about the network
and make it conveniently accessible. For instance, implicit representation of net-
works is a distributed representation scheme that supports adjacency queries,
i.e., adjacency between two nodes can be determined only by examining the lo-
cal information stored by the two nodes. So, the network can be manipulated
by keeping only its labels in memory, any other global information on the graph
(like its matrix) can be removed. The goal is to minimize the maximum length
of a label associated with a vertex while keeping fast queries.

Distributed representation is widely used in distributed computing, e.g.
in [14,18]. Kannan, Naor and Rudich [17] investigated in particular implicit rep-
resentation for several families of graphs, including trees with labels of 2 logn
bits1 where n is the number of nodes of the tree. Actually, parent and ancestry
queries for rooted trees can be done with 1.5 logn + O(log log n) bit labels [2],
and this has been improved to log n+O(

√
log n ) [1]. If we insist only on implicit

representation of trees, the label length can be reduced. Chung [9] improved
in a non-trivial way to log n + log log n + O(1) bits, and further improved to
log n + O(log∗ n) bits2 by Alstrup et al. [6].
� Both authors are supported by the project CÉPAGE of INRIA Futur, and the ANR-

projects GEOCOMP and GRAAL.
1 The log function denotes the logarithm in base two.
2 log∗ n denotes the number of times log should be iterated to get a constant.
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1.1 Related Works

Motivated by applications in XML search engines, and distributed applications
as peer-to-peer networks or network routing, several queries on distributed data-
structures have been investigated recently. In this framework, distributed data-
structure can be seen as a label assigned to each node such that queries can be
answered by inspecting the labels only, without any other source of information.
For instance, address-based routing in trees [11,19,21] or in a specific class of
networks [8,10], distance queries for cycles [20], for interval and permutation
graphs [7,13], or for hyperbolic graphs [3,12], ancestry in rooted trees [1], etc.
have optimal O(log n)-bit distributed data-structures.

In this paper, we consider labeling scheme for various relationships between
nodes of small distance in trees. For instance, we construct a simple distributed
representation scheme supporting parent and sibling queries with labels of size
log n + 2 log log n + O(1), the best bound was log n + 5 log log n + O(1) [5]. The
current lower bound on the label length for schemes supporting sibling queries
in trees is log n + log log n + O(1) [4].

We stress that improving the second order term on the label length com-
plexity is not only of theoretical interest. It does matter in practice because,
as mentioned in [2], engines for indexing XML files use such schemes for huge
database in which each item is associated with a label. Therefore decreasing by
one byte the length of the labels results a save of gigabytes of main memory
for large database. Moreover and interestingly, every distributed representation
can be interpreted as a universal matrix [20]: row and column indexes of the
matrix correspond to all the labels of the scheme, and the value of entry (i, j) in
the matrix is the answer of the query applied to two nodes labeled respectively
i and j by the scheme. In the case of implicit representation for instance, the
universal matrix is Boolean and corresponds to the adjacency matrix of a graph,
called induced-universal graph, having the property of containing all graphs of
the family as induced subgraph. So, proving a complexity of f(n) for label length
transfers to the existence of universal matrix of dimension O(2f(n)). So improv-
ing the second order term in the label length actually improves the complexity
of the matrix dimension. For concreteness, the difference between the 2 log n-bit
labeling scheme of [17] and the log n+log log n+O(1) scheme of [9] corresponds
to an improvement from O(n2) to O(n log n) on the size of the smallest induced-
universal graphs containing all n-node trees as induced subgraphs.

1.2 Our Contribution

In a rooted tree, two nodes u and v with nearest common ancestor z are (k1, k2)-
related if the distance from u to z is k1 and the distance from v to z is k2. For
any integer k, a k-relationship scheme is a distributed representation scheme
that supports tests for whether u and v are (k1, k2)-related for all nodes u and
v, and all integers k1, k2 � k.

For instance, a 1-relationship scheme supports tests for whether two nodes are
(0, 0), (1, 0), (0, 1) or (1, 1)-related, and so supporting parent and sibling queries.
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Let us observe that a k-relationship scheme supports also distance queries for
nodes at distance at most k.

In this paper we propose a k-relationship scheme for trees of n nodes with la-
bels of size log n+O(k log(k log(n/k))) bits. This improves the scheme presented
in [4,5] that uses labels of log n + O(k2 log(k log n)) bits. Our scheme is simple
and easy to implement, and we show3 that the time to preprocess the tree and
for constructing the n labels is O(kn + n log n). Our scheme also implies that
distance between nodes at distance o(log n/ log log n) can be determined with
labels of log n + o(log n) bits. In contrast, it has been proved in [15] that labels
of Ω(log2 n) bits are required for arbitrary distance queries in trees.

A k-relationship scheme has query time complexity t if one can check whether
a pair of nodes is (k1, k2)-related or not, in time at most t, for any pair of nodes
and all integers k1, k2 � k.

Our result is summarized in the following statement:

Theorem 1. The family of n-node rooted trees enjoys a k-relationship scheme
with labels of log n + O(k log(k log(n/k))) bits with constant query time.

For k = 1, we show that labels are of length log n+2 log log n+O(1), improving
the log n + 5 log log n + O(1) scheme of [5]. Moreover, for k = o(log n/ log log n),
we derive directly from Theorem 1 that:

Corollary 1. The family of n-node trees enjoys a distributed representation
supporting distance with labels of log n + o(log n) bits for nodes at distance
o(log n/ log log n) .

In Section 2, we present the k-relationship scheme, and we conclude in Section 3
with some open problems.

2 A Relationship Scheme

2.1 Preliminaries

The basic idea of our scheme is to store into the label of each node u, some
identifiers for u and for its k closest ancestors. Indeed, to test if u and v are
(k1, k2)-related, it suffices to test if the ancestor at distance k1 of u is equal to
the ancestor at distance k2 of v, and the ancestor at distance k1 − 1 of u differs
from the ancestor at distance k2 − 1 of v. A naive implementation would lead to
O(k log n)-bit labels for arbitrary identifiers. We can significantly decrease this
complexity with a better choice of the identifiers exploiting correlations between
nodes.

Let T be a rooted tree of n nodes. We define the k-ancestry of a node u as the
set of ancestors of u at distance at most k, u included. A branch of T is a path
leading from the root to a leaf of T . We denote by G[X ] the subgraph induced
by the set of nodes X .

The main notion we introduce below is illustrated on Fig. 2.1.
3 Due to space limitation the time complexity of the scheme is detailed in the full

version only.
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Fig. 1. An example of a k-ancestor decomposition B of an input tree T where the
4-ancestry of u, the set Au = {u, x, au, y, z}, lies on the branch ”010” of B

Definition 1. A k-ancestor decomposition of a rooted tree T is a rooted binary
tree B where nodes, called parts, form a partition of V (T ) such that, for any
k-ancestry A of T , the set of parts containing a node of A is contained in a
branch of B.

2.2 Finding an Nice Ancestor Decomposition

This paragraph is devoted to the proof of the following key lemma for our result.

Lemma 1. Every n-node tree T has a k-ancestor decomposition such that every
part of depth h contains at most (k + 1) · (log(2n/(k + 1)) − h) nodes of T .

Before the formal proof of this result, let us give an overview. The idea is to
construct from T a graph G, called hereafter k-augmentation of T , obtained
by adding an edge between every u and its proper ancestors at distance � k.
We then observe that every subgraph H of G has a subset of k + 1 nodes,
called half-separator, whose removal leaves H in connected components with less
than |V (H)|/2 nodes. The root of the willing decomposition B is constructed
by finding iteratively O(log(n/k)) half-separators in G, and by grouping all the
resulting connected components in two sets V1, V2, each with less than n/2 nodes.
By this way we can guarantee that there are no edges of G between V1 and V2
since these two sets are separated by an union of separators in G. The tree B is
completed by performing similarly and recursively the subgraphs of G[V1] and
G[V2]. Eventually, B is a k-ancestor decomposition since we observe that:

1. k-ancestries of T induce cliques in G; and
2. all edges of G belong to the same branch in B.
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Let us now formalize the proof, and let us first show that:

Property 1. Every induced subgraph of the k-augmentation of T has a half-
separator of size at most k + 1 that is a clique.

Proof. It is known [16] that every chordal graph G, that is a graph without any
induced cycle of length greater than three, has a half-separator of size at most
the maximum clique size of G. Moreover, such a half-separator can be computed
in linear time, i.e., O(|V (G)| + |E(G)|) time.

So Property 1 is derived from the fact that every induced subgraph of a chordal
graph is a chordal graph as well, and that the k-augmentation of T is a chordal
graph of maximum clique size k + 1.

Let G be the k-augmentation of T . Assume G has a clique K of size > k + 1.
Observe that in G there is no edge between unrelated nodes of T . (Two nodes
of a rooted tree are said related if one is the ancestor of the other. They are
unrelated otherwise.) In other words, all the nodes of K belong to the same
branch of T . It follows that the distance in T between the closest node (from
the root of T ), say u, and the farthest node, say v, of K is � k + 1. Because u
and v are related and are at distance > k in T , they are not adjacent in G: a
contradiction with the fact that u and v belong to a clique of G.

Assume now G has a induced cycle C length > 3. Since G has no edges
between unrelated nodes, there must exist three consecutive nodes in C, say
u, v, w, such that u is ancestor of v, and w is ancestor of v (otherwise C would
be a path). Either w is ancestor of u, or u is ancestor of w. In both cases, u and w
are related and at distance � k in T , so there are adjacent in G: a contradiction
with the fact that C is an induced cycle of length > 3.

We have therefore proved that G is chordal and of maximum clique size � k+1.
��

In the following let us denote by G the k-augmentation of T , and let us denote
by Half-Separator(H) a function that returns a half-separator for a subgraph
H satisfying Property 1, that is a separator whose size is at most the maximum
clique size of H .

We now restrict our attention on specific half-separators. A half-separator S of
a graph H is said binary if the connected components of H \S can be partitioned
in at most two sets, each with a total number of nodes at most |V (H)|/2.

We consider the following procedure (Algorithm 1) that given a graph satis-
fying Property 1 returns a binary half-separator R and the resulting partition
(V1, V2) for the nodes of H \ R.

To construct the k-ancestor decomposition B for T we apply Algorithm 1 on
G, and we select R as the root of B. The tree B is then completed by applying
recursively Algorithm 1 on G[V1] and G[V2], and linking to R the resulting
decompositions if they are non-empty. Such a recursive approach is possible
because Property 1 holds for any induced subgraph of G, so in particular for
G[V1] and G[V2].

Eventually B is a k-ancestor decomposition of T because every k-ancestry
of T induces a clique in G, and no edge connects G[V1] to G[V2] since R is a
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Algorithm 1: Binary Half-Separator

Input : a subgraph G satisfying Property 1
Output: a binary half-separator R and the associated node partition (V1, V2)

H := G; V1 := V2 := R := ∅

while |V (H)| > k + 1 do
S := Half-Separator(H); H := H \ S; R := R ∪ S
forall connected component C of H except the largest do

H := H \ C;
if |V1| > |V2| then V2 := V2 ∪ V (C) else V1 := V1 ∪ V (C)

R := R ∪ H

half-separator. So, every k-ancestry of T belongs to parts contained in a same
branch of B.

It remains to estimate the size of R, V1, and V2 returned by Algorithm 1.
At each iteration of the while-main the size of H is divided by at least two since

all the resulting components of H \ S are removed from H , and the remaining
largest component is of size at most |V (H)|/2. So, there is at most log(n/(k+1))
iterations where n = |V (G)|.

At each step the size of R increases by at most k+1 vertices, and the final step
add at most k + 1 vertices to R. Therefore, |R| � (k + 1) · (log(n/(k + 1))+1) =
(k + 1) · (log(2n/(k + 1)) − h) with h = 0.

In order to insure the correctness of the decomposition, we need to show the
following loop invariant (P ).

(P ) : |V1|, |V2| � n/2 and V (H) ∪ V1 ∪ V2 ∪ R = V (G)

It is straightforward to verify that (P ) is true at the beginning of the main
loop. Let us show that (P ) remains true at the end of the nested loop. The loop
invariant clearly remains true after computation of half-separator and statement
H := H \ S and R := R ∪ S. Assume w.l.o.g. that |V1| � |V2|. We have V (H) ∪
V1 ∪ V2 ⊆ V (G) since (P ) is true. We obtain the following relation for the size
of the sets.

|V (H)| + |V1| + |V2| � n

|V (H)| � n − |V1| − |V2| � n − 2|V2| (|V1| � |V2|)
|V (H)|/2 � n/2 − |V2|

|V (C)| � n/2 − |V2| (there is yet another larger component in H)
|V (C)| + |V2| � n/2

Property (P ) remains true at the end of the nested loop. Property (P ) is a loop
invariant and so is true at the end of the main loop. We have that |V1|, |V2| � n/2.
Moreover, there is no edge linking vertices of V1 to vertices of V2 since what we
add to V1 or V2 is a full connected component of H .

Since the size of V1 and V2 are � n/2, by induction, the size of the root part
in the decomposition of G[V1] and G[V2] (so parts of depth h = 1 in B) would
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be at most (k + 1) · (log(2(n/2)/(k + 1))) = (k + 1) · (log(2n/(k + 1)) − 1). And
more generally, for an arbitrary depth h � 0, the parts of depth h are of size at
most (k +1) · (log(2(n/2h)/(k +1)))) = (k +1) · (log(2n/(k+1))−h) as claimed.

This completes the proof of Lemma 1.

2.3 The Labels

Let X be a part of B at depth h. We denote by path(X) the binary word of
length h defining the unique path from the root of T to X . We associated with
each u ∈ X its rank, a unique integer rank(u) ∈ [0, |X |), and its position, defined
by the pair pos(u) = (h, rank(u)).

The apex of a k-ancestry A is the node a ∈ A with the deepest part and, if
equality, with the largest rank (see the yellow node of Fig. 2.1). Observe that
the positions are relative to a branch of B: every pair of nodes whose parts are
on the same branch have distinct positions, and thus the parts of any two nodes
having the same positions cannot be related.

Let u be a node of T , let Au be its k-ancestry, au the apex of Au, and Bau the
part in B that contains au. The label of u is defined by the following quadruple:

label(u) = (path(Bau), rank(au), dau , Pu)

where:

– dau is the distance in T from u to au; and
– Pu = {pos(v) | v ∈ Au, v �= au}.

In order to optimize the query time, we assume that Pu is implemented as an
array ordered by distances from u. For concreteness, the label of u in the example
of Fig. 2.1 is4:

label(u) = (”010”, 0, 2, {(1, 5), (2, 0), (1, 3), (0, 9)}) .

Let pos(Au) = {pos(v) | v ∈ Au}. It is not difficult to see that any k-ancestry
Au is uniquely defined by the pair (pos(Au), path(Bau)), i.e., the set of its posi-
tions and the path leading to its apex. Indeed, as said previously, nodes lying on
a same branch of B have pairwise distinct positions, and nodes lying on differ-
ent branches can be identified from the path of their apices (that must therefore
differ). The set pos(Au) is not a field of label(u), Pu misses pos(au). However, it
can be computed since pos(au) = (|path(Bau)|, rank(au)).

We first bound the length of the labels. Then we will explain how to solve a
(k1, k2)-relation query, and we will detail an efficient implementation.

Lemma 2. The label length is log n+O(k log (k log(n/k))). For k = 1, the label
length is log n + 2 log log n + O(1).

4 Ranks of nodes in each part are ordered by rows from left to right and then from
top to bottom rows.
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Proof. Let M = 	(k + 1) log(2n/(k + 1))
. By Lemma 1, the parts of B have at
most M nodes. Consider label(u), and let h = |path(Bau)| be the depth of Bau .

The binary word path(Bau) is of length exactly h. We have rank(au) ∈ [0, M),
so log M + O(1) bits suffice. The value dau ∈ [0, k], so O(log k) bits suffice. Each
position (h′, r′) ∈ Pu can be stored with log h + log M + O(1) bits since h′ � h
and r′ < M . Moreover, |Pu| = k, so k · (log h + log M) + O(k) bits suffices for
Pu.

Overall, given h, the length of label(u) is at most:

|label(u)| � h + log M + k · (log h + log M) + O(k) .

We will now upper bound the length of each term by a function depending
only on the parameters of the problem (here n and k), and not on parameters
depending on a tree or a particular node, like h. Therefore, each of the four
fields of label(u) can be coded by a binary string of predefined length, and do
not require extra field separators.

By Lemma 1, the size of the parts in B that are at depth log(n/(k + 1)) are
of size at most (k + 1) · (log(2n/(k + 1)) − log(n/(k + 1))) � k + 1. From the
while-condition in Algorithm 1, if |V (H)| � k + 1, then the input graph is not
separated at all, implying that the part is actually a leaf of B. Therefore B has
depth at most h0 � log(n/(k + 1)) < log(n/k). So bounding h � h0 we obtain:

|label(u)| � h0 + log M + k · (log h0 + log M) + O(k)
� h0 + k log h0 + (k + 1) log M + O(k)
� log(n/k)+k log log(n/k)+(k + 1) log((k+1) log(2n/(k+1)))+O(k)
� log(n/k) + (2k + 1) log log(n/k) + O(k log k)
� log(n/k) + O(k) · (log log(n/k) + log k)
� log n + O(k log(k log(n/k))) .

For k = 1, the above formula gives log n + 3 log log n + O(1) from the above
4th equation. We can slightly improved the above analysis by observing that
the two first fields of label(u), namely path(Bau) and rank(au), can be jointly
encoded with log n + O(1) bits instead of h0 + log M ∼ log(n/k) + log log(n/k)
bits.

We remark that for k = 1, the k-augmentation G of T is T itself. As a
consequence, the size of the half-separator in Property 1 can be reduced since it
is well-known that every forest has a single node that halves the forest, rather
than a clique separator of size k + 1 = 2. It follows that in such 1-ancestor
decomposition of T the parts of depth h contain at most α = log n − h + O(1)
nodes instead of (k+1)(log(2n/(k+1))−h) = 2(log n−h) as claimed in Lemma 1.
A direct consequence is that the two first terms of label(u) can be coded jointly
by a string W of log n + O(1) bits as follows: W is composed of path(Bau) of
length h concatenated to the word 1 ◦ 0rank(au), i.e., the unary representation
of rank(au) preceded with a 1. The length of this word is h + 1 + α = log n +
O(1), and clearly the two fields can be extracted by seeking the least significant
bit of W . The two remaining fields of label(u) still have a length bounded by
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2k log log(n/k)+ O(k log k). Overall, the label length of label(u), for k = 1, is at
most log n + 2 log log n + O(1).

This completes the proof of Lemma 2. ��

Actually a finer analysis shows that the label length for k = 1 is no more than
log n + 2 log log n + 2 for every n � 16.

2.4 Relationship Testing

Let u, v be two nodes of T with k-ancestry Au and Av respectively. Consider
any pair (k1, k2) of integers � k. Recall that to check whether (u, v) is (k1, k2)-
related or not it suffices to check if the nearest common ancestor between u and
v (which is a node z ∈ Au ∩ Av) is at distance k1 from u and k2 from v.

Observing that there is exactly one ancestor zu ∈ Au at distance k1 from u,
and one ancestor zv ∈ Av at distance k2 from v, it suffices to check that zu = zv,
and that zu is the least common ancestor, that is there is no z ∈ Au ∩ Av at
distance k1 − 1 from u and k2 − 1 from v.

Let label(u) = (path(Bau), rank(au), dau , Pu) and label(v)= (path(Bav ),
rank(av), dav , Pv). We denote by path(X)[0..h] the prefix of length h of5 path(X).

The following lemma tell us how to check that z ∈ Au∩Av from the position of
z and the labels of u and v. Recall that positions are relative to the branches of B,
so a given position (h, r) may correspond to different nodes of T . Unfortunately,
we cannot simply check that pos(z) ∈ pos(Au) ∩ pos(Av).

Property 2. Assume z ∈ Au, and pos(z) = (h, r). Then, z ∈ Av if and only if
pos(z) ∈ pos(Av) and path(Bau)[0..h] = path(Bav )[0..h].

Proof. Let z ∈ Au, and let Bz be its part in the decomposition B. We have
that path(Bz) is a prefix of path(Bau) since z ∈ Au. If the depth of z is h,
then path(Bz) = path(Bau)[0..h]. Similarly, z ∈ Av implies that path(Bz) =
path(Bav )[0..h]. Obviously, z ∈ Av implies pos(z) ∈ pos(Av). Therefore, we
have shown that z ∈ Av implies pos(z) ∈ pos(Av) and path(Bau)[0..h] =
path(Bav )[0..h] = path(Bz).

Conversely, if pos(z) = (h, r) ∈ pos(Av) and path(Bau)[0..h] =
path(Bav )[0..h], then, since z ∈ Au, the part of z, Bz is given by path(Bz) =
path(Bau)[0..h] = path(Bav )[0..h]. It follows that the position (h, r) corresponds
to a node of Bz which is moreover in Av. In Bz, there is a unique node whose
rank is r: node z. So z ∈ Av. ��

For every distance i ∈ {0, . . . , k}, let us denote by pos(Au)[i] the position of the
ith ancestor of u, i.e., at distance i from u. Note that pos(Au)[i] can be extracted
from label(u) in constant time as follows (assuming that Pu is ordered according
to the distance from u):

Extract pos(Au)[i] (given label(u)):
5 Such prefix can be extracted (shift) in constant time in the word RAM model,

because path(X) is a binary word of length � log n.
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1. If i = dau , then return pos(au), i.e., (|path(Bau)|, rank(au)).
2. If i > dau , then i = i − 1.
3. Return Pu[i].

According to Lemma 2, to check whether z ∈ Au ∩ Av we have to check that
pos(z) = (h, r) ∈ pos(Au) ∩ pos(Av) and that the two prefixes of length h
corresponds. This leads to the following test procedure:

Final Test (whether (u, v) is (k1, k2)-related given label(u) and label(v)):

1. Extract (hu, ru) = pos(Au)[k1] and (hv, rv) = pos(Av)[k2].
2. If (hu, ru) �= (hv, rv), then return False.
3. If path(Bau)[0..hu] �= path(Bav )[0..hv], then return False.
4. If k1 = 0 or k2 = 0, then return True.
5. Extract (h′

u, r′u) = pos(Au)[k1 − 1] and (h′
v, r′v) = pos(Av)[k2 − 1].

6. If (h′
u, r′u) �= (h′

v, r′v), then return True.
7. If path(Bau)[0..h′

u] �= path(Bav )[0..h′
v], then return True.

8. Return False.

Lemma 3. Any k-relationship can be tested in constant time.

Proof. The above procedure clearly takes a constant time, and its validity is
derived from Property 2. ��

Combining Lemma 1, Lemma 2, and Lemma 3, we have proved Theorem 1.

3 Conclusion and Further Works

We have constructed in this paper a k-relationship scheme for n-node trees with
log n + O(k log(k log(n/k))) bit labels. This scheme implies that distances in
trees can be computed as well with labels of log n + o(log n) bits if the distance
is o(log n/ log log n). We leave open the following two questions:

– Design a distance labeling scheme for trees with log n + o(log n) bit labels
and for larger distances, say for distances up to log n.

– Design a distance labeling scheme for small distances for bounded treewidth
graphs.
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