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LaBRI, Université de Bordeaux, France
{gavoille,labourel}@labri.fr

Abstract. Implicit representation of graphs is a coding of the structure
of graphs using distinct labels so that adjacency between any two vertices
can be decided by inspecting their labels alone. All previous implicit rep-
resentations of planar graphs were based on the classical three forests de-
composition technique (a.k.a. Schnyder’s trees), yielding asymptotically
to a 3 log n-bit1 label representation where n is the number of vertices of
the graph.

We propose a new implicit representation of planar graphs using
asymptotically 2 log n-bit labels. As a byproduct we have an explicit
construction of a graph with n2+o(1) vertices containing all n-vertex pla-
nar graphs as induced subgraph, the best previous size of such induced-
universal graph was O(n3).

More generally, for graphs excluding a fixed minor, we construct a
2 log n + O(log log n) implicit representation. For treewidth-k graphs we
give a log n + O(k log log(n/k)) implicit representation, improving the
O(k log n) representation of Kannan, Naor and Rudich [18] (STOC ’88).

Our representations for planar and treewidth-k graphs are easy to
implement, all the labels can be constructed in O(n log n) time, and
support constant time adjacency testing.

1 Introduction

How to represent a graph in memory is a basic and fundamental data structure
question. The two basic ways are adjacency matrices and adjacency lists. The
latter representation is space efficient for sparse graphs, but adjacency queries
require searching in the list, whereas matrices allow fast queries to the price of
a super-linear space. Another technique, called implicit representation or adja-
cency labeling scheme, consists in assigning distinct labels to each vertex such
that adjacency queries can be computed alone from the labels of the two involved
vertices without any extra information source. So the graph can be manipulated
by keeping only its labels in memory, any other global information on the graph
(like its matrix) can be removed. The goal is to minimize the maximum length
of a label associated with a vertex while keeping fast adjacency queries.
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The notion of adjacency labeling scheme is closely related to that of induced-
universal graphs, introduced by [12] for VLSI circuit design. A graph U is said to
be induced-universal for a given graph family F, if every graph of F is isomorphic
to some induced subgraph of U. Kannan, Naor and Rudich [18] established that
there is an adjacency labeling scheme with labels of k bits for F if and only if there
exists an induced-universal graph with 2k vertices. Therefore, the combinatorial
problem of constructing a small induced-universal graph for F is equivalent in
designing a labeling scheme with short labels for every graph of F, any result
on one of the problems transferring on the other. For instance, the best known
induced-universal graph for the class of n-node forests, namely n · 2O(log∗ n), is
actually derived from a labeling scheme with log n + O(log∗ n)-bit2 labels [3].

We note that a labeling scheme transfers to an effective construction of the
corresponding induced-universal graph: the vertex-set of the universal graph is
the set of all possible labels, and an edge is added if the adjacency test between
the two corresponding vertices/labels is positive. However, converting a small
induced-universal graph into a compact labeling scheme does not give, in general,
any efficient representation in term of computation of all the labels for a graph
and adjacency testing time.

1.1 Related Works

Motivated by applications in XML search engines, and distributed applications
as peer-to-peer overlay networks or network routing, several queries on dis-
tributed data-structures have been investigated recently. In this framework, dis-
tributed data-structure can be seen as a label assigned to each node such that
queries can be answered by inspecting the labels only, without any other source
of information. For instance, address-based routing in trees [13,19,25], distance
queries for interval and permutation graphs [5,14], sibling and ancestry in rooted
trees [1], etc. have O(log n)-bit distributed data-structures.

Representation of graphs with short labels, introduced by Breuer [8], have
been investigated by Kannan, Naor and Rudich [18]. They construct adjacency
labeling schemes for several families of graphs including treewidth3-k and ar-
boricity4-α graphs using respectively O(k log n)-bit and (α+1) logn-bit labels. In
particular, this latter scheme gives an induced-universal graph for trees (α = 1)
of size O(n2), and combined with the linear time Schnyder’s tree decomposi-
tion [24], this leads to the first effective 4 log n-bit labeling for planar graphs
(α = 3).

The size of the induced-universal graph for trees was later improved in a
non-trivial way to O(n log n) by Chung [9]. This transfers to a non-constructive
adjacency labeling with labels of log n+ log log n+O(1) bits for trees, and more
generally of α log n + O(α log log n) bits for arboricity-α graphs. This result has
2 log∗ n denotes the number of times log should be iterated to get a constant.
3 The original result was stated for c-decomposable graphs which are exactly the

graphs of treewidth k = Θ(c).
4 Which is the smallest number of forests in which the edge-set of the graph can be

partitioned.
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been further improved by the use of an efficient labeling scheme to α log n +
O(log∗ n) bits [3], complemented with a α log n − O(α2) lower bound. This best
to date result yields to an adjacency labeling scheme for trees of log n+O(log∗ n).
For planar graphs, the resulting 3 log n + O(log∗ n)-bit labeling can be slightly
improved by observing that: 1) planar graphs can be decomposed into three
forests those one is spanning and of bounded degree [17]; and 2) adjacency in
bounded degree forests can be done efficiently in log n+O(1) [7]. Thus, a vertex
can store its label in the bounded degree forest plus the label of its parent in
each of the two other forests, leading to a 3 logn + O(1) labeling with constant
time adjacency. This converts into an induced-universal graph of size O(n3).

Finally, we remark that the best up to date planar representation essentially
uses the three forests decomposition.

1.2 Our Contributions

1. Surpassing the three forests decomposition of planar graph, we propose a
new 2 logn+O(log log n) bit adjacency labeling scheme supporting constant
query time.

2. More generally, for graphs excluding a fixed graph H as minor5 (e.g., planar
graphs exclude K5), we propose a 2 log n + O(h log log(n/h)) bit labeling
scheme where h is a constant only depending on H .

3. For treewidth-k graphs, a subclass of graphs excluding Kk+2-minor, we im-
prove the label length to log n+O(k log log(n/k)) supporting adjacency test-
ing in constant time (independent of k).

4. We also show that every adjacency labeling scheme for treewidth-k graphs
requires labels of log n+Ω(k) bits, proving that the linearity dependency on
k in the second order term of our scheme is necessary.

5. All these results transfer also to effective construction of smaller induced-
universal graphs of size n2+o(1) for minor-free graphs, and of n1+o(1) for
bounded treewidth graphs, previous bounds were O(n3) for planar graphs
and nO(k) for treewidth-k graphs.

1.3 Techniques

In fact our results on planar and minor-free graphs are derived from our (1 +
o(1)) log n-bit label scheme for bounded treewidth graphs using suitable edge-
partitions. Although planar graphs can be decomposed into three treewidth-1
graphs (forests), they can also be decomposed, in linear time as well, in two
bounded treewidth graphs as follows: 1) partition the vertices into layers Li at
distance i from an arbitrary vertex; 2) the graph Hi, i > 0, induced by the
edge {u, v} with u, v ∈ Li or with u ∈ Li and v ∈ Li−1 has bounded treewidth
(actually at most three from [11]); 3) the two graphs composed as the union of
the Hi’s for respectively odd and even i are therefore of bounded treewidth since
no edges lie between Hi and Hi+2.
5 That are graphs for which H can be obtained by edge contractions and taking

subgraphs.
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From the above discussion, a λ-bit labeling for treewidth-k graphs yields a
2λ-bit labeling scheme for planar graphs, because it suffices to assign to each
vertex the label for each subgraph and to test adjacency in the two subgraphs.
Actually, it has been recently proved that planar graphs can be edge-partitioned
into two outerplanars [16] (that are of treewidth two), and in linear time [17].
It has been proved a similar result for graphs excluding a fixed minor [10]: they
can be edge-partitioned into two subgraphs of treewidth only depending on the
excluded minor.

Therefore, our log n + O(log log n) labeling scheme for bounded treewidth
graphs implies a 2 log n + O(log log n) not only for planar graphs but also for all
minor-free graphs (including bounded genus graphs for instance). All previous
schemes were based on the bounded arboricity of bounded treewidth or minor-
free graphs. Unfortunately, arboricity-α graphs require labels of at least α log n−
O(α2) bits from the lower bound of [3], and outerplanar graphs (which exclude
K4) have already arboricity two. So there is no advantage of decomposing a graph
into low arboricity subgraphs, unlike decomposing into low treewidth subgraphs:
2 treewidth-2 graphs is better than 3 treewidth-1 graphs.

From the above discussion, we detail our scheme only for treewidth-k graphs.
A graph has treewidth k if and only if it is a subgraph of a chordal (or trian-
gulated) graph6 of maximum clique size k + 1. Chordal graphs, and therefore
treewidth-k graphs, have a natural clique tree structure, and they can also be
defined as graphs having a Robertson-Seymour’s tree-decomposition [23] in sub-
graphs of at most k + 1 vertices, called bags. Informally, the set of bags forms a
cover of the graph (each vertex and edge belongs to at least one bag), and they
must be one-to-one mapped to the nodes of a tree T such that the set of bags
containing a given vertex of the graph induces a connected component of T .

Let us first observe that an efficient labeling scheme on trees (like the one
of [3]) does not transfer to a labeling scheme for graphs having some “good”
tree-decomposition because bags may intersect in a non trivial way.

The next section present our labeling scheme. Due to lack of space the lower
bound appears in the full version.

2 A Simple Adjacency Labeling Scheme

In this section we prove the main result of this paper that is:

Theorem 1. The family of n-vertex treewidth-k graphs enjoys an adjacency
labeling scheme with labels of log n + O(k log log(n/k)) bits, and with a constant
adjacency query time. Moreover, for every fixed k, all the labels of such a graph
can be computed in O(n log n) time.

The construction of the labels relies on finding a chordal supergraph with min-
imum maximal clique (i.e., k + 1), whose the associated decision problem is
NP-complete [4]. For each fixed k, linear time algorithms are known [6]. We

6 I.e., a graph whose the length of the longest induced cycle is at most three.
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also note that for trees, outerplanar and series-parallel graphs (i.e., for k � 2)
efficient and simple algorithms exist, and our compact representation for planar
graph is based on outerplanar graphs only.

As said previously, the results for the 2 logn + O(log log n) bit labeling for
planar graphs, and more generally minor-free graphs, and the small induced-
universal graphs, are simple corollaries of Theorem 1.

2.1 Preliminaries

Our scheme relies on the chordal representation: every treewidth-k graph is
the spanning subgraph of a chordal graph, called triangulation, whose maximal
cliques have no more than k + 1 vertices. Chordal graphs of maximum clique
size k + 1 have two important properties. Firstly, there exists a clique whose
its removal leaves the graph with connected components at most half the size
of the original graph [15]. Secondly, there is an elimination ordering scheme of
the vertices, called simplicial elimination scheme, such that the neighborhood of
each just removed vertex is a clique in the remaining graph. Our scheme strongly
relies on graphs having these both properties we formalize hereafter.

A graph G is s-separable if every subgraph H has a half-separator of size at
most s, i.e., a subset of at most s vertices whose removal leaves H in connected
components of at most |V (H)|/2 vertices. A graph is k-clique orientable if its
edges can be oriented such that the out-neighborhood of every vertex induces a
clique of size at most k. Such an orientation is called a k-clique orientation.

Definition 1. A (k, s)-triangulation is a graph that is k-clique orientable and
s-separable. A (k, s)-graph is a subgraph of a (k, s)-triangulation.

Fig. 1. A (1, 2)-triangulation, a (1, 2)-triangulation, and a (1, 2)-triangulation

According to this definition, treewidth-k are (k, k + 1)-graphs, since their tri-
angulations are (k +1)-separable and the simplicial elimination scheme provides
a k-clique orientation. However, forests are (1, 1)-graphs whereas they are of
treewidth one. Cycles (treewidth 2) are 1-clique orientable and 2-separable, and
thus are (1, 2)-graphs (they are also (1, 2)-triangulations, see Fig. 1). We can
also check that cliques of k vertices are (�k/2� , �k/2�)-graphs whereas they are
of treewidth k − 1. So, (k, k + 1)-graphs are a strictly wider family of graphs
than treewidth-k graphs.

A k-complex of a graph G is a subgraph K isomorphic to depth-1 tree with
at most k leaves. Its root, denoted by root(K), is the non-leaf node of K. Two
complexes K and K ′ of G are said adjacent if root(K) �= root(K ′), and if either
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root(K) ∈ V (K ′) or root(K ′) ∈ V (K). Clearly, if two complexes are adjacent,
then their roots are adjacent in G.

With each vertex u of a (k, s)-graph G one can associate a k-complex Ku of
root u such that each edge of G is covered by exactly one k-complex, as follows:
Ku is formed by u and its neighbors in G that are out-neighbors in the (k, s)-
triangulation of G. Then, there is a trivial adjacency labeling scheme consisting
in labeling u by a coding V (Ku). It is clear that u and v are adjacent if and only
if their associated complexes Ku and Kv are. This trivially yields to labels of
(k + 1) �log n� bits. We shall see that a much better implementation (or coding)
of complexes can be achieved using the fact that, in the triangulation of G, Ku

is a clique.
For this purpose we need a particular partition of the vertices of G.

Definition 2. A bidecomposition of a graph G is a rooted binary tree T where
nodes, called parts, form a partition of V (G) such that the parts of the endpoints
of every edge of G are related7 in T .

The part of T containing vertex u is denoted by Tu. A straightforward observa-
tion from the definition of T is that the parts of all the vertices of a subgraph
K are pairwise related if K is a clique.

2.2 Finding a Suitable Bidecomposition

Lemma 1. Let G̃ be an s-separable graph of n vertices. Then, G̃ has a bidecom-
position such that the parts of depth h have at most s �log(2n/s) − h� vertices.

Moreover, such a bidecomposition can be computed in O(sn log(n/s)) time if
we assume that a half-separator of size s for any subgraph of G̃ can be computed
in time linear in the size of the subgraph.

Proof. Let G̃ be an s-separable graph with n vertices. Since every subgraph of
an s-separable graph is also s-separable, we essentially need to construct the
root of the willing bidecomposition T , i.e., to prove the result for depth h = 0,
and repeat recursively the process on the remaining subgraphs. In the following,
the root of the bidecomposition is called biseparator.

The root B of T (the biseparator) and the partition (V1, V2) of V (G̃) \ B
are computed thanks to the following simple procedure called Biseparator

(Algorithm 1), where Half-Separator(H, s) is a subroutine computing a half-
separator of size at most s for the graph H .

At each iteration of the while-main of Biseparator the size of H is divided
by at least two since all the resulting components of H \ S are removed from H ,
and the remaining largest component is of size at most |V (H)|/2. So, there is at
most log(n/s) iterations.

At each step the size of B increases by at most s vertices, and the final step
(last statement) adds at most s vertices to B. Therefore, |B| � s·�log(n/s)�+s =
s · �log(2n/s) − h� with h = 0.

7 Two nodes of a rooted tree are related if one is ancestor of the other.
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Algorithm 1. Biseparator

Input : an s-separable graph G̃

Output: A biseparator B for G̃ and the associated vertex partition (V1, V2)

H := G̃; V1 := V2 := B := ∅

while |V (H)| > s do
S := Half-Separator(H,s); H := H \ S; B := B ∪ S
forall connected component C of H except the greatest do

H := H \ C;
if |V1| > |V2| then V2 := V2 ∪ V (C) else V1 := V1 ∪ V (C)

B := B ∪ H

In order to insure the correctness of the bidecomposition, we show the follow-
ing loop invariant.

(P ) : |V1|, |V2| � n/2 and V (H) ∪ V1 ∪ V2 ∪ B = V (G̃)

It is straightforward to verify that (P ) is true at the beginning of the main loop.
Let us show that (P ) remains true at the end of the imbricated loop. The loop
invariant clearly remains true after computation of the half-separator and the
statement H := H \ S and B := B ∪ S. Assume w.l.o.g. that |V1| � |V2|. We
have V (H) ∪ V1 ∪ V2 ⊆ V (G̃) since (P ) is true. We obtain the following relation
for the size of the sets.

|V (H)| + |V1| + |V2| � n

|V (H)| � n − |V1| − |V2| � n − 2|V2| (|V1| � |V2|)
|V (H)|/2 � n/2 − |V2|

|V (C)| � n/2 − |V2| (there is yet another larger component in H)
|V (C)| + |V2| � n/2

The property (P ) remains true at the end of the imbricated loop. The property
(P ) is loop invariant and so is true at the end of the main loop. We have that
|V1|, |V2| � n/2. Moreover, there is no edge linking vertices of V1 to vertices of
V2 since what we add to V1 or V2 is a full connected component of H .

The bidecomposition T of G̃ is obtained by applying recursively the process
on the graphs induced by V1 and V2. We then link to B (the root of T ) the
resulting bidecompositions if there are non-empty.

Since the size of V1 and V2 are � n/2, by induction, the size of their bisep-
arators (so parts of depth h = 1 in T ) would be at most s · �log(2(n/2)/s))� =
s · �log(2n/s) − 1�. More generally, for an arbitrary depth h � 0, the parts are
of size s ·

⌊
log(2(n/2h)/s))

⌋
= s · �log(2n/s) − h� as claimed.

Before computing the time complexity, let us observe that every subgraph
H of G̃ has O(s|V (H)|) edges. Indeed, it is known [22] that every s-separable
graph has treewidth at most 4s. Moreover, treewidth-k n-vertex graphs have no
more than kn edges, due to the simplicial elimination scheme of their minimal
triangulation. It follows that H has at most 4s|V (H)| edges.
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Let us show now that it takes a linear time to compute the biseparator B, the
root of T . At each iteration of the main loop, a separator of H is computed in
O(|V (H)| + |E(H)|) time by assumption. The updates of V1, V2, and H are also
determined in O(|V (H)| + |E(H)|). We have seen that |E(H)| � 4s|V (H)|. At
the i-th iteration of the main loop, |V (H)| � n/2i. So, the i-th iteration takes
O(|V (H)| + |E(H)|) = O(sn/2i) time. The time for computing the biseparator
is therefore

∑log(n/s)
i=0 O(sn/2j) � c · sn for some constant c > 0.

In total, the bidecomposition T is computed recursively in time t(n) � c ·sn+
2t(n/2) if n > s, and t(n) = O(1) in if n � s, which is t(n) = O(sn log(n/s)). 
�

2.3 The Labels

Let us fix a (k, s)-graph G with n vertices. So G has a spanning (k, s)-
triangulation G̃ that is s-separable. Let T be a bidecomposition for G̃ satisfying
Lemma 1. For every vertex u of G, let Ku be a complex rooted at u obtained
by adding to u every incident edge leading to a neighbors of u in G that is an
out-neighbor in G̃. By construction, V (Ku) induces a clique of at most k + 1
vertices in G̃. Hence, the parts of each vertex of Ku are pairwise related in T .

We define the function β(h) =
∑h

i=0 s �log(2n/s) − i�. Intuitively, β(h) repre-
sents the maximum number of vertices of G contained in the parts of a branch8

of T of length h + 1. We have also β(h) = s(h + 1)(�log(2n/s)� − h/2).
Let X be a part of T at depth h. Te root of T is at depth h = 0. By Lemma 1,

|X | � β(h) − β(h − 1). We denote by path(X) the binary word defining the
unique path from the root of T to X . The length of path(X) is |path(X)| = h.
We associated with each u ∈ X , its rank, a unique integer rank(u) ∈ [0, |X |), and
its position, defined by pos(u) = rank(u) + β(h − 1). The apex of u is the vertex
au of Ku with maximum position, i.e., such that pos(au) = maxv∈V (Ku) pos(v).

Observe that the positions are relative to a branch of T : every pair of vertices
whose parts are on the same branch have distinct positions, and thus the parts
of any two vertices having the same positions cannot be related.

Let u be a vertex of G, and let au be the apex of Ku in T . The label of vertex
u is defined by the following quadruple:

label(u) = (path(Tau), rank(au), Pu, ru)

where Pu = {pos(v) | v ∈ V (Ku), v �= au} and ru = | {p ∈ Pu | p < pos(u)} |.
Roughly speaking, Pu is the set of positions of all the vertices of Ku but its
apex, and ru is the rank of the root of Ku in Pu. So ru = 0 if pos(u) is the
smallest position in Pu; ru = |Pu| if u = au is the apex itself.

Let pos(Ku) = {pos(v) | v ∈ V (Ku)}. It is not difficult to see that the complex
Ku is uniquely defined by the pair (pos(Ku), path(Tau)), i.e., the set of its posi-
tions and the path leading to its apex. Indeed, as said previously, vertices lying on
the same branch of T have pairwise distinct positions, and vertices lying on differ-
ent branches can be identified from the path of their apices (that must therefore
differ). The set pos(Ku) is not a field of label(u), Pu misses pos(au). However,
8 A path that leads to the root of T .
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Fig. 2. A bidecomposition with a complex Ku of root u and apex au

it can be computed since pos(au) = rank(au) + β(|path(Tau)|). It follows that
label(u) is a (one-to-one) coding of Ku. In particular, label(u) �= label(v) since
Ku �= Kv for distinct vertices u �= v.

Lemma 2. The labels are of log n + 2k log log(n/s) + O(k log(s/k)) bits.

Proof. We assume that n, k, s are given. Let w = �log(2n/s)�, and let h =
|path(Tau)|. The binary word path(Tau) is of length exactly h, and rank(au) ∈
[0, β(h) − β(h − 1)). We have β(h) − β(h − 1) = s �log(2n/s) − h� = s(w − h).

We write rank(au) = x · (w − h) + y where x ∈ [0, s) and y ∈ [0, w − h):
x = �rank(au)/(w − h)� and y = rank(au) mod (w − h). We represent the two
first fields path(Tau), rank(au) by the binary string9:

S = 0y ◦ 1 ◦ σx ◦ path(Tau)

where σx denotes the standard binary representation of x on �log s� bits. Given
S (but ignoring h), one can extract, y and σx, thus path(Tau), h, and rank(au) =
x·(w−h)+y. The length of S is |S| � (w−h−1)+1+�log s�+h = w+�log s� =
�log(2n/s)� + �log s� � log n + O(1). All the positions in Pu range in [0, β(h)).
It follows that there are at most

(β(h)
|Pu|

)
�

(
β(h)

k

)
possible ways to select the set

Pu having at most k positions. This can be coded with log
(
β(h)

k

)
+ O(1) bits.

Finally, ru ∈ [0, |Pu|], thus there are k + 1 possible values. This can be coded
with �log(k + 1)� bits. In total, the length of label(u) is at most:

|label(u)| � log n + log
(

β(h)
k

)
+ O(log k) (1)

9 We denote by ◦ the word concatenation.
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By Lemma 1, the size of the parts in T of depth log(n/s) are of size at most
s ·(log(2n/s)− log(n/s)) = s. From the while-condition in Algorithm Bisepara-

tor, if |V (H)| � s, then the input graph is not separated at all, implying that
the part is actually a leaf of T . Therefore h � log(n/s).

We have β(h) � β(log(n/s)) � (log(n/s) + 1) · s · log(2n/s)) = s · log2(2n/s).
Thus log

(
β(h)

k

)
� k log(β(h)/k) + O(k) � k log(s/k · log2(2n/s)) + O(k) �

2k log log(n/s) + O(k log(s/k)). Plugging this latter bound in Eq. (1), we get
the desired result. 
�

So, for treewidth-k graphs, that are (k, k + 1)-graphs, we obtain labels of
length roughly log n + 2k log log(n/k). For (1, 1)-graphs (forests), this is log n +
2 log log n. Actually, a finer analysis shows that for trees the label length is no
more than log n + 2 log log n + 2 for every n � 5, a competitive bound with the
log n + 4 log log n scheme of [3].

We finally observe that our scheme support parent and sibling queries in
rooted trees since we associate with each node a coding of itself and its parent.
The label length is log n+O(log log n) which is not optimal for parent but optimal
for sibling queries due to the lower bound of log n + Ω(log log n) of [2].

2.4 Adjacency Test

Let u and v be two vertices of G. We denote by M = β(h) where h is the length
of the longest common prefix between path(Tau) and path(Tav). The proof of
the next result appears in the full version.

Lemma 3. The vertices u and v are adjacent if and only if label(u) �= label(v)
and if either pos(u) ∈ pos(Kv) ∩ [0, M) or pos(v) ∈ pos(Ku) ∩ [0, M).

We now briefly explain how to implement the adjacency test given by Lemma 3
to perform in constant time under the standard Ω(log n)-bit word RAM com-
puter model. First we observe that β(h) can be computed in constant time
using its closed formula: β(h) = s(h + 1)(�s log(2n/s)� − h/2). Thus M can be
computed in constant time, because the length of the common prefix between
two O(log n)-bit words can be computed using constant number of MSB10, bi-
nary masks, and shifting operations. Now, to test if pos(v) ∈ pos(Ku), we
can test if pos(v) = pos(au) or if pos(v) ∈ Pu. The position of the apex is
pos(au) = rank(au) + β(|path(Tau)|). The position of u can be also determined
from label(u), since pos(u) is pos(au) if ru = |Pu|, or the ru-th element of
Pu. It follows that testing if label(u) �= label(v) can be done by checking that
(pos(u), path(Tau)) �= (pos(v), path(Tav)). Finally, computing pos(u) and test-
ing whether pos(u) ∈ Pv rely on membership and select query in an integer
subset Pu ⊂ {0, . . . , β(h)}.

Using a compact static dictionary, one can implement such queries in constant
time using a data-structure of (1 + o(1)) log

(β(h)
|Pu|

)
) bits [21]. We have already

seen in the proof of Lemma 2 that log
(
β(h)

k

)
� 2k log log(n/s) + O(k log(s/k)).

10 Most Significant Bit, or integer log function.
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Lemma 4. The family of n-vertex (k, s)-graphs enjoys an adjacency labeling
scheme with label of log n + (2k + o(1)) log log(n/s) bits, and with a constant
adjacency query time.

We prove Theorem 1 by plugging s = k+1 and combining all lemmas, and using
the fact that a (k, k + 1)-triangulation for treewidth-k graphs can be computed
in linear time for fixed k [6].

3 Concluding Remarks and Open Problems

We have proposed a new implicit representation for planar graphs, and more
generally to graphs excluding a fixed minor, with asymptotically 2 logn bits per
vertex. Improving this bound would require a totally different approach, since
decomposing into two or more subgraphs inevitably leads to a c log n represen-
tation with c � 2.

From the lower bound side, the number ψ(n, H) of n-vertex labeled H-minor-
free graphs is n!·2hn+o(n), where h depends only on H [20]. Therefore, the trivial
information-theoretic lower bound for adjacency is 1

n log ψ(n, H) ∼ log n+h bits
for at least one label. This leads to the natural question we propose as open
problem:

Conjecture. The family of H-minor-free graphs supports an adjacency labeling
scheme with log n + h bit labels where h = h(H).

Proving a labeling scheme of log n+O(k) for treewidth-k graphs would be already
very interesting, since not only if would match our lower bound of log n + Ω(k),
but also prove an optimal bound for trees (up to an additive constant) which is
still open.
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