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We consider undirected, unweighted, simple, connected graphs defined by
pairs of form (V , E) where V denotes the set of vertices and E the set of
undirected edges.

x

y

dG(x , y) = 3

Definition

The distance between two vertices x and y
of a graph G:

dG(x , y) = the length of a shortest path
between x and y in G.
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Let G be a graph (a network)

Distributed data structure

Put on each vertex some information
depending on itself and G such that one can
compute dG(x , y) just from information put on
x and y .

No centralized data structure to compute
distances.

Goal

Minimize the quantity of information
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Definition (Distance Labeling Scheme – Peleg’00)

Let F be a family of graphs.

A distance labeling scheme for F is a pair 〈L, f 〉 of functions such that

∀G ∈ F and ∀x ∈ VG, L(x , G) is a binary string (the data attached to x).

∀G ∈ F and ∀x , y ∈ VG,

f (L(x , G), L(y , G)) = dG(x , y)

f computes the distance between x and y in G only from the data put
on x and y .

Goal

Minimize max
x
|L(x , G)| relatively to |G|
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F Maximal label length Lower bound

Arbitrary graphs O(n) optimal Gavoille-Peleg-Pérennès-Raz’04

Trees O(log2 n) optimal Peleg’00, Alstrup-Bille-Rauhe’03

Bounded tree-width graphs O(log2 n) optimal Gavoille-Peleg-Pérennès-Raz’04

Distance-hereditary graphs O(log2 n) optimal Gavoille-Paul’03

Interval graphs O(log n) optimal Gavoille-Paul’03

O(g(n)) means that the DLS assigns to vertices of any graph G labels of length at most O(g(|VG|))

“optimal” means that any other DLS suitable for the family of all the graphs has maximal-length labels in
Ω(g(n)).
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Definition (Approximate Distance Labeling Scheme –
Gavoille-Katz-Katz-Paul-Peleg’01)

Let F be a family of graphs.

An (s, r)-approximate distance labeling scheme for F is a pair 〈L, f 〉 of
functions such that

∀G ∈ F and ∀x ∈ VG, L(x , G) is the information of x  a binary string.

∀G ∈ F and ∀x , y ∈ VG,

dG(x , y) ≤ f (L(x , G), L(y , G)) ≤ s · dG(x , y) + r

Cyril Gavoille & Olivier Ly Distance Labeling in Hyperbolic Graphs



Distance Labeling Problem
Hyperbolic Graphs

Distance Labeling in Hyperbolic Graphs
Open Problems

Preliminaries
Exact Distance Labeling Scheme
State of the Art
Approximate Distance Labeling Scheme
Our result

F Approximation Maximal label length Lower bound

Arbitrary graphs (2k − 1) mult. O(n1/k log2 n) Ω(n1/k ) T-Z’05

Trees (1 + 1/ log n) mult. O(log n · log log n) optimal G-K-K-P-P’01

Bounded Tree-Length O(1) add. O(log2 n) optimal G-K-K-P-P’01

α Doubling Dimension (1 + ε) mult. O(ε−O(α) log n · log log n) optimal S.’05
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Theorem

The family of δ-hyperbolic graphs support a δ log n-additive approximate DLS
which uses O(log2 n) bits per vertex.

Theorem (Lower Bound)

There exists a family F of graphs of bounded hyperbolicity such that for any
(s, r)-approximated DLS 〈L, f 〉 on it:

|L| = O(loga n) ⇒ s + r = Ω(log log n)
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Lobachevski – beginning of XIXth century: Hyperbolic Geometry

 independency of the 5th Euclid’s Axiom.

Mostov 1968: Rigidity of Hyperbolic Manifolds

Hyperbolic manifold are characterized by their fundamental groups.
 Particular case of Poincarre’s conjecture

Gromov 1987: Hyperbolic Groups

Generalization of fundamental groups of hyperbolic manifolds

Strong algorithmic properties

Hyperbolic groups are automatic [Cannon 1984]

Isomorphism Problem is decidable [Sela 1995]

Cyril Gavoille & Olivier Ly Distance Labeling in Hyperbolic Graphs



Distance Labeling Problem
Hyperbolic Graphs

Distance Labeling in Hyperbolic Graphs
Open Problems

A Bit of History
Definition

Definition (Gromov 1987)

A metric space X is said to be δ-hyperbolic if and only if:
∀x, y, w, z ∈ X , the two larger of the three sums

d(x, y) + d(w, z)
d(x, w) + d(z, y)
d(x, z) + d(w, y)

differs of at most δ

Rips characterization

A metric space X is said to be δ-hyperbolic if and only if for any
geodesic triangle xyz,

[xz] ⊂ δ-neigh([xy ] ∪ [yz])

Rips’s δ ∼ Gromov’s δ.

x

y

w

z

x

y

z

δ

δ
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x

y z

The euclidian space is not hyperbolic
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z

Trees are 0-hyperbolic
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δ=2

This part of [xz] is not in the δ-neighbourhood 
of the two other segments

x

y z

δ-neighbourhood
of [xy] U [yz]

For any δ there exists a grid which is not δ-hyperbolic
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Definition (Hyperbolic graphs)

A graph is said to be δ-hyperbolic if it is δ-hyperbolic as a metric space for the
metric of shortest paths.
The hyperbolicity of a graph G is the minimum δ such that G is δ-hyperbolic.

Hyperbolicity: A Treelikeness Measure

0-hyperbolic graphs are exactly the block graphs
[Brinkmann-Koolen-Moulton 2001].
In particular trees are 0-hyperbolic.

Chordal graphs are 2-hyperbolic [BKM’2001]

Hyp(G) = O(TL(G)) and TL(G) = O(Hyp(G) log |G|) [G.-L.’2004]

For any δ, there exists a square grid which is not δ-hyperbolic.
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Method

1 Approximation of a δ-hyperbolic graph by a tree with O(δ log n) additive
error

2 Exact distance labeling scheme on the tree (log2 n bits)
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Lemma (Approximation by trees – Gromov 1987)

Let G be a δ-hyperbolic graph. Then there exists a tree T and a mapping
σ : VG → VT such that

∀x , y ∈ VG : dT (σ(x), σ(y)) ≤ dG(x , y) ≤ dT (σ(x), σ(y)) + 2δ log |G|

1

1/2
r

σ(r)
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Definition (Gromov Product)

Let G be a graph and x , y , r ∈ VG. We call Gromov product of x and y
regarding r the following number:

(x |y)r =
1
2

(dG(x , r) + dG(y , r)− dG(x , y))

Lemma

G is δ-hyperbolic if and only if ∀x , y , z ∈ VG: (x |y)r ≥ min{(x |z)r , (z|y)r} − δ.
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r

x
d/2

h

d

d/2 d/2

x
0

x
d

(x0|xd)r ≥ min{(x0|xd/2)r , (xd/2|xd)r )} − δ

(x0|xd/2)r ≥ min
i<d/2

{(xi |xi+1)r} − δ log d/2

(xd/2|xd)r ≥ min
i≥d/2

{(xi |xi+1)r} − δ log d/2

⇒ (x0|xd)r ≥ min
i
{(xi |xi+1)r}−δ(log d−1)−δ

⇒ (x0|xd)r ≥ min
i
{(xi |xi+1)r} − δ log d

⇒ d ≤ 1/2 + 2δ log d ≤ 1/2 + 2δ log n
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Goal

Quantify the following principle:

If one does not store enough information, then one makes errors.

Theorem (Lower Bound)

There exists a family F of graphs of bounded hyperbolicity such that for any
(s, r)-approximated DLS 〈L, f 〉 on it:

|L| = O(loga n) ⇒ s + r = Ω(log log n)
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Lemma

There exists a family Fn,k of graphs of bounded hyperbolicity such that for any
(s, r)-approximated DLS 〈L, f 〉 on it:

s + r < 2 log(4k/3 + 2)− 3 ⇒ |L| = Ω((n/ log k)1/k )

Lemma (Lazebnik-Ustimenko-Voldar 1995)

For any n there is a graph of girth 4k/3 + 3 with n vertices and a maximal
number of edges Ω(n1+1/k ).

(Related to Erdös’s conjecture)
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Gn,k  a graph of girth 4k/3 + 3 with n vertices and Ω(n1+1/k ) edges.
Fn,k  the family of subgraphs of Gn,k with the same vertices and a
subset of edges.

→ |Fn,k | = Ω(2n1+1/k
).

Let 〈L, F 〉 be an DLS on Fn,k such that |L| = o(n1/k ).
For each H ∈ Fn,k let us consider the word
L̄(H) = L(1, H)#L(2, H)# . . . #L(n, H)

|{L̄(H)|H ∈ Fn,k}| = o(2n1/k
)

→ ∃H1 6= H2 such that L̄(H1) = L̄(H2).
let (x , y) ∈ (EH1\EH2)

L̄(H1) = L̄(H2) ⇒ x and y have the same labels in H1 and H2 ⇒ the
DLS gives the same distance between them for H1 and for H2.
But the girth of Gn,k is 4k/3 + 3 thus dH2(x , y) ≥ 4k/3 + 2.
And (x , y) ∈ EH1 ⇒ dH1(x , y) = 1

Finally Our DLS makes errors of at least 4k/3 + 2.
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subset of edges.

→ |Fn,k | = Ω(2n1+1/k
).

Let 〈L, F 〉 be an DLS on Fn,k such that |L| = o(n1/k ).
For each H ∈ Fn,k let us consider the word
L̄(H) = L(1, H)#L(2, H)# . . . #L(n, H)

|{L̄(H)|H ∈ Fn,k}| = o(2n1/k
)

→ ∃H1 6= H2 such that L̄(H1) = L̄(H2).
let (x , y) ∈ (EH1\EH2)

L̄(H1) = L̄(H2) ⇒ x and y have the same labels in H1 and H2 ⇒ the
DLS gives the same distance between them for H1 and for H2.
But the girth of Gn,k is 4k/3 + 3 thus dH2(x , y) ≥ 4k/3 + 2.
And (x , y) ∈ EH1 ⇒ dH1(x , y) = 1

Finally Our DLS makes errors of at least 4k/3 + 2.
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G
n,k

All the distances > 5 are shorten
by log

Hyperbolicity is bounded
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Distance Labeling in Hyperbolic Graphs
Open Problems

Fill the gap between upper and lower bound
(somewhere in between log n and log log n ...)

Collective tree spanners for hyperbolic graphs ?
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Thank you for your attention
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