Distance Labeling in Hyperbolic Graphs

Cyril Gavoille \& Olivier Ly
LaBRI - Bordeaux University
FRANCE

ISAAC 2005

Plan

Plan

(1) Distance Labeling Problem

- Preliminaries
- Exact Distance Labeling Scheme
- State of the Art
- Approximate Distance Labeling Scheme
- Our result

Plan

Plan

(1) Distance Labeling Problem

- Preliminaries
- Exact Distance Labeling Scheme
- State of the Art
- Approximate Distance Labeling Scheme
- Our result
(2) Hyperbolic Graphs
- A Bit of History
- Definition

Plan

(1) Distance Labeling Problem

- Preliminaries
- Exact Distance Labeling Scheme
- State of the Art
- Approximate Distance Labeling Scheme
- Our result
(2) Hyperbolic Graphs
- A Bit of History
- Definition
(3) Distance Labeling in Hyperbolic Graphs
- A $\delta \log n$-Additive Error Labeling Scheme
- Lower Bound

Plan

(1) Distance Labeling Problem

- Preliminaries
- Exact Distance Labeling Scheme
- State of the Art
- Approximate Distance Labeling Scheme
- Our result
(2) Hyperbolic Graphs
- A Bit of History
- Definition

3 Distance Labeling in Hyperbolic Graphs

- A $\delta \log n$-Additive Error Labeling Scheme
- Lower Bound
(4) Open Problems

Distance Labeling Problem
Hyperbolic Graphs
Distance Labeling in Hyperbolic Graphs
Open Problems

1 Distance Labeling Problem

- Preliminaries
- Exact Distance Labeling Scheme
- State of the Art
- Approximate Distance Labeling Scheme
- Our result
(2) Hyperbolic Graphs
- A Bit of History
- DefinitionDistance Labeling in Hyperbolic Graphs
- A $\delta \log n$-Additive Error Labeling Scheme
- Lower BoundOpen Problems

Cyril Gavoille \& Olivier Ly

We consider undirected, unweighted, simple, connected graphs defined by pairs of form (V, E) where V denotes the set of vertices and E the set of undirected edges.

Definition

The distance between two vertices x and y of a graph G :
$d_{G}(x, y)=$ the length of a shortest path between x and y in G.

$$
d_{G}(x, y)=3
$$

Distance Labeling Problem
Hyperbolic Graphs
Distance Labeling in Hyperbolic Graphs
Open Problems

Preliminaries
Exact Distance Labeling Scheme
State of the Art
Approximate Distance Labeling Scheme Our result

Distributed data structure

Let G be a graph (a network)

Cyril Gavoille \& Olivier Ly

Distance Labeling Problem
Hyperbolic Graphs
Distance Labeling in Hyperbolic Graphs Open Problems

Distributed data structure

Put on each vertex some information depending on itself and G such that one can compute $d_{G}(x, y)$ just from information put on x and y.

Let G be a graph (a network) Minimize the quantity of information

Distributed data structure

Put on each vertex some information

 depending on itself and G such that one can compute $d_{G}(x, y)$ just from information put on x and y.No centralized data structure to compute distances.

Minimize the quantity of information

Distributed data structure

Put on each vertex some information depending on itself and G such that one can compute $d_{G}(x, y)$ just from information put on x and y.

No centralized data structure to compute distances.

Goal

Minimize the quantity of information

Let G be a graph (a network)

Distance Labeling Problem
Hyperbolic Graphs
Distance Labeling in Hyperbolic Graphs
Open Problems

Preliminaries
Exact Distance Labeling Scheme

State of the Art

Approximate Distance Labeling Scheme Our result

Definition (Distance Labeling Scheme - Peleg'00)

Let \mathfrak{F} be a family of graphs.
A distance labeling scheme for \mathfrak{F} is a pair $\langle L, f\rangle$ of functions such that

- $\forall G \in \mathfrak{F}$ and $\forall x \in V_{G}, L(x, G)$ is a binary string (the data attached to x).
- $\forall G \in \mathfrak{F}$ and $\forall x, y \in V_{G}$,

$$
f(L(x, G), L(y, G))=d_{G}(x, y)
$$

f computes the distance between x and y in G only from the data put on x and y.

Goal

Minimize $\max _{x}|L(x, G)|$ relatively to $|G|$

Distance Labeling Problem
Hyperbolic Graphs
Distance Labeling in Hyperbolic Graphs Open Problems

Preliminaries
Exact Distance Labeling Scheme
State of the Art
Approximate Distance Labeling Scheme
Our result

\mathfrak{F}	Maximal label length	Lower bound	
Arbitrary graphs	$O(n)$	optimal	Gavoille-Peleg-Pérennès-Raz'04
Trees	$O\left(\log ^{2} n\right)$	optimal	Peleg'00, Alstrup-Bille-Rauhe'03
Bounded tree-width graphs	$O\left(\log ^{2} n\right)$	optimal	Gavoille-Peleg-Pérennès-Raz'04
Distance-hereditary graphs	$O\left(\log ^{2} n\right)$	optimal	Gavoille-Paul'03
Interval graphs	$O\left(\log ^{2} n\right)$	optimal	Gavoille-Paul'03

- $O(g(n))$ means that the DLS assigns to vertices of any graph G labels of length at most $O\left(g\left(\left|V_{G}\right|\right)\right)$
- "optimal" means that any other DLS suitable for the family of all the graphs has maximal-length labels in $\Omega(g(n))$.

Definition (Approximate Distance Labeling Scheme -Gavoille-Katz-Katz-Paul-Peleg'01)

Let \mathfrak{F} be a family of graphs.
An (s, r)-approximate distance labeling scheme for \mathfrak{F} is a pair $\langle L, f\rangle$ of functions such that

- $\forall G \in \mathfrak{F}$ and $\forall x \in V_{G}, L(x, G)$ is the information of $x \rightsquigarrow$ a binary string.
- $\forall G \in \mathfrak{F}$ and $\forall x, y \in V_{G}$,

$$
d_{G}(x, y) \leq f(L(x, G), L(y, G)) \leq s \cdot d_{G}(x, y)+r
$$

Distance Labeling Problem
Hyperbolic Graphs
Distance Labeling in Hyperbolic Graphs Open Problems

Preliminaries
Exact Distance Labeling Scheme
State of the Art
Approximate Distance Labeling Scheme Our result

\mathfrak{F}	Approximation	Maximal label length	Lower bound	
Arbitrary graphs	$(2 k-1)$ mult.	$O\left(n^{1 / k} \log ^{2} n\right)$	$\Omega\left(n^{1 / k}\right)$	T-Z'05
Trees	$(1+1 / \log n)$ mult.	$O(\log n \cdot \log \log n)$	optimal	G-K-K-P-P'01
Bounded Tree-Length	$O(1)$ add.	$O\left(\log ^{2} n\right)$	optimal	G-K-K-P-P'01
α Doubling Dimension	$(1+\varepsilon)$ mult.	$O\left(\varepsilon^{-O(\alpha)} \log n \cdot \log \log n\right)$	optimal	S.'05

Distance Labeling Problem
Hyperbolic Graphs
Distance Labeling in Hyperbolic Graphs Open Problems

Theorem

The family of δ-hyperbolic graphs support a $\delta \log n$-additive approximate DLS which uses $O\left(\log ^{2} n\right)$ bits per vertex.

Theorem (Lower Bound)

There exists a family \mathfrak{F} of graphs of bounded hyperbolicity such that for any (s, r)-approximated $D L S\langle L, f\rangle$ on it:

$$
|L|=O\left(\log ^{a} n\right) \Rightarrow s+r=\Omega(\log \log n)
$$

A Bit of History
Definition

Plan

(1) Distance Labeling Problem

- Preliminaries
- Exact Distance Labeling Scheme
- State of the Art
- Approximate Distance Labeling Scheme
- Our result
(2) Hyperbolic Graphs
- A Bit of History
- Definition
(3) Distance Labeling in Hyperbolic Graphs
- A $\delta \log n$-Additive Error Labeling Scheme
- Lower Bound
(4) Open Problems

Lobachevski - beginning of XIXth century: Hyperbolic Geometry

\rightsquigarrow independency of the 5th Euclid's Axiom.

Mostov 1968: Rigidity of Hyperbolic Manifolds
Hyperbolic manifold are characterized by their fundamental groups.
\rightsquigarrow Particular case of Poincarre's conjecture

Gromov 1987: Hyperbolic Groups

Generalization of fundamental groups of hyperbolic manifolds

Strong algorithmic properties

- Hyperbolic groups are automatic [Cannon 1984]
- Isomorphism Problem is decidable [Sela 1995]

Distance Labeling Problem
 Hyperbolic Graphs
 Distance Labeling in Hyperbolic Graphs
 Open Problems

A Bit of History

Definition

Definition (Gromov 1987)

A metric space X is said to be δ-hyperbolic if and only if: $\forall x, y, w, z \in X$, the two larger of the three sums

$$
\begin{aligned}
& d(x, y)+d(w, z) \\
& d(x, w)+d(z, y) \\
& d(x, z)+d(w, y)
\end{aligned}
$$

differs of at most δ

Rips characterization

A metric space X is said to be δ-hyperbolic if and only if for any geodesic triangle $x y z$,

$$
[x z] \subset \delta-\operatorname{neigh}([x y] \cup[y z])
$$

Rips's $\delta \sim$ Gromov's δ.

The euclidian space is not hyperbolic

Cyril Gavoille \& Olivier Ly
Distance Labeling in Hyperbolic Graphs

Trees are 0-hyperbolic

This part of [xz] is not in the δ-neighbourhood δ-neighbourhood
of $[x y] \cup[y z]$ of the two other segments

For any δ there exists a grid which is not δ-hyperbolic

Definition（Hyperbolic graphs）

A graph is said to be δ－hyperbolic if it is δ－hyperbolic as a metric space for the metric of shortest paths．
The hyperbolicity of a graph G is the minimum δ such that G is δ－hyperbolic．

Hyperbolicity：A Treelikeness Measure

－0－hyperbolic graphs are exactly the block graphs ［Brinkmann－Koolen－Moulton 2001］． In particular trees are 0－hyperbolic．
－Chordal graphs are 2－hyperbolic［BKM＇2001］
－ $\operatorname{Hyp}(G)=O(T L(G))$ and $T L(G)=O(\operatorname{Hyp}(G) \log |G|)$［G．－L．＇2004］
－For any δ ，there exists a square grid which is not δ－hyperbolic．

Plan

Distance Labeling Problem

- Preliminaries
- Exact Distance Labeling Scheme
- State of the Art
- Approximate Distance Labeling Scheme
- Our resultHyperbolic Graphs
- A Bit of History
- Definition

3 Distance Labeling in Hyperbolic Graphs

- A $\delta \log n$-Additive Error Labeling Scheme
- Lower Bound

Cyril Gavoille \& Olivier Ly

Method

(1) Approximation of a δ-hyperbolic graph by a tree with $O(\delta \log n)$ additive error
(2) Exact distance labeling scheme on the tree $\left(\log ^{2} n\right.$ bits)

A $\delta \log n$-Additive Error Labeling Scheme Lower Bound

Lemma (Approximation by trees - Gromov 1987)

Let G be a δ-hyperbolic graph. Then there exists a tree T and a mapping $\sigma: V_{G} \rightarrow V_{T}$ such that

$$
\forall x, y \in V_{G}: \quad d_{T}(\sigma(x), \sigma(y)) \leq d_{G}(x, y) \leq d_{T}(\sigma(x), \sigma(y))+2 \delta \log |G|
$$

Definition (Gromov Product)

Let G be a graph and $x, y, r \in V_{G}$. We call Gromov product of x and y regarding r the following number:

$$
(x \mid y)_{r}=\frac{1}{2}\left(d_{G}(x, r)+d_{G}(y, r)-d_{G}(x, y)\right)
$$

Lemma

G is δ-hyperbolic if and only if $\forall x, y, z \in V_{G}:(x \mid y)_{r} \geq \min \left\{(x \mid z)_{r},(z \mid y)_{r}\right\}-\delta$.

Cyril Gavoille \& Olivier Ly

Distance Labeling Problem

A $\delta \log n$-Additive Error Labeling Scheme

Lower Bound

$$
\left.\left(x_{0} \mid x_{d}\right)_{r} \geq \min \left\{\left(x_{0} \mid x_{d / 2}\right)_{r},\left(x_{d / 2} \mid x_{d}\right)_{r}\right)\right\}-\delta
$$

Distance Labeling Problem

A $\delta \log n$-Additive Error Labeling Scheme

Lower Bound

$$
\left.\left(x_{0} \mid x_{d}\right)_{r} \geq \min \left\{\left(x_{0} \mid x_{d / 2}\right)_{r},\left(x_{d / 2} \mid x_{d}\right)_{r}\right)\right\}-\delta
$$

$$
\left(x_{0} \mid x_{d / 2}\right)_{r} \geq \min _{i<d / 2}\left\{\left(x_{i} \mid x_{i+1}\right)_{r}\right\}-\delta \log d / 2
$$

Distance Labeling Problem

A $\delta \log n$-Additive Error Labeling Scheme

 Lower Bound$$
\left.\left(x_{0} \mid x_{d}\right)_{r} \geq \min \left\{\left(x_{0} \mid x_{d / 2}\right)_{r},\left(x_{d / 2} \mid x_{d}\right)_{r}\right)\right\}-\delta
$$

$$
\begin{aligned}
& \left(x_{0} \mid x_{d / 2}\right)_{r} \geq \min _{i<d / 2}\left\{\left(x_{i} \mid x_{i+1}\right)_{r}\right\}-\delta \log d / 2 \\
& \left(x_{d / 2} \mid x_{d}\right)_{r} \geq \min _{i \geq d / 2}\left\{\left(x_{i} \mid x_{i+1}\right)_{r}\right\}-\delta \log d / 2
\end{aligned}
$$

Cyril Gavoille \& Olivier Ly

$$
\left.\left(x_{0} \mid x_{d}\right)_{r} \geq \min \left\{\left(x_{0} \mid x_{d / 2}\right)_{r},\left(x_{d / 2} \mid x_{d}\right)_{r}\right)\right\}-\delta
$$

$$
\begin{aligned}
& \left(x_{0} \mid x_{d / 2}\right)_{r} \geq \min _{i<d / 2}\left\{\left(x_{i} \mid x_{i+1}\right)_{r}\right\}-\delta \log d / 2 \\
& \left(x_{d / 2} \mid x_{d}\right)_{r} \geq \min _{i \geq d / 2}\left\{\left(x_{i} \mid x_{i+1}\right)_{r}\right\}-\delta \log d / 2 \\
& \Rightarrow\left(x_{0} \mid x_{d}\right)_{r} \geq \min _{i}\left\{\left(x_{i} \mid x_{i+1}\right)_{r}\right\}-\delta(\log d-1)-\delta
\end{aligned}
$$

$$
\left.\left(x_{0} \mid x_{d}\right)_{r} \geq \min \left\{\left(x_{0} \mid x_{d / 2}\right)_{r},\left(x_{d / 2} \mid x_{d}\right)_{r}\right)\right\}-\delta
$$

$$
\begin{aligned}
& \left(x_{0} \mid x_{d / 2}\right)_{r} \geq \min _{i<d / 2}\left\{\left(x_{i} \mid x_{i+1}\right)_{r}\right\}-\delta \log d / 2 \\
& \left(x_{d / 2} \mid x_{d}\right)_{r} \geq \min _{i \geq d / 2}\left\{\left(x_{i} \mid x_{i+1}\right)_{r}\right\}-\delta \log d / 2 \\
& \Rightarrow\left(x_{0} \mid x_{d}\right)_{r} \geq \min _{i}\left\{\left(x_{i} \mid x_{i+1}\right)_{r}\right\}-\delta(\log d-1)-\delta \\
& \Rightarrow\left(x_{0} \mid x_{d}\right)_{r} \geq \min _{i}\left\{\left(x_{i} \mid x_{i+1}\right)_{r}\right\}-\delta \log d
\end{aligned}
$$

$$
\left.\left(x_{0} \mid x_{d}\right)_{r} \geq \min \left\{\left(x_{0} \mid x_{d / 2}\right)_{r},\left(x_{d / 2} \mid x_{d}\right)_{r}\right)\right\}-\delta
$$

$$
\begin{aligned}
& \left(x_{0} \mid x_{d / 2}\right)_{r} \geq \min _{i<d / 2}\left\{\left(x_{i} \mid x_{i+1}\right)_{r}\right\}-\delta \log d / 2 \\
& \left(x_{d / 2} \mid x_{d}\right)_{r} \geq \min _{i \geq d / 2}\left\{\left(x_{i} \mid x_{i+1}\right)_{r}\right\}-\delta \log d / 2 \\
& \Rightarrow\left(x_{0} \mid x_{d}\right)_{r} \geq \min _{i}\left\{\left(x_{i} \mid x_{i+1}\right)_{r}\right\}-\delta(\log d-1)-\delta \\
& \Rightarrow\left(x_{0} \mid x_{d}\right)_{r} \geq \min _{i}\left\{\left(x_{i} \mid x_{i+1}\right)_{r}\right\}-\delta \log d \\
& \Rightarrow d \leq 1 / 2+2 \delta \log d \leq 1 / 2+2 \delta \log n
\end{aligned}
$$

Goal

Quantify the following principle:
If one does not store enough information, then one makes errors.

Goal

Quantify the following principle:
If one does not store enough information, then one makes errors.

Theorem (Lower Bound)

There exists a family \mathfrak{F} of graphs of bounded hyperbolicity such that for any (s, r)-approximated $D L S\langle L, f\rangle$ on it:

$$
|L|=O\left(\log ^{a} n\right) \Rightarrow s+r=\Omega(\log \log n)
$$

Lemma

There exists a family $\mathfrak{F}_{n, k}$ of graphs of bounded hyperbolicity such that for any (s, r)-approximated $D L S\langle L, f\rangle$ on it:

$$
s+r<2 \log (4 k / 3+2)-3 \Rightarrow|L|=\Omega\left((n / \log k)^{1 / k}\right)
$$

Lemma (Lazebnik-Ustimenko-Voldar 1995)
For any n there is a graph of girth $4 k / 3+3$ with n vertices and a maximal
number of edges $\Omega(n$
(Related to Erdös's conjecture)

Lemma

There exists a family $\mathfrak{F}_{n, k}$ of graphs of bounded hyperbolicity such that for any (s, r)-approximated $D L S\langle L, f\rangle$ on it:

$$
s+r<2 \log (4 k / 3+2)-3 \Rightarrow|L|=\Omega\left((n / \log k)^{1 / k}\right)
$$

Lemma (Lazebnik-Ustimenko-Voldar 1995)

For any n there is a graph of girth $4 k / 3+3$ with n vertices and a maximal number of edges $\Omega\left(n^{1+1 / k}\right)$.
(Related to Erdös's conjecture)

- $G_{n, k} \rightsquigarrow$ a graph of girth $4 k / 3+3$ with n vertices and $\Omega\left(n^{1+1 / k}\right)$ edges.
- $G_{n, k} \rightsquigarrow$ a graph of girth $4 k / 3+3$ with n vertices and $\Omega\left(n^{1+1 / k}\right)$ edges.
- $\mathfrak{F}_{n, k} \rightsquigarrow$ the family of subgraphs of $G_{n, k}$ with the same vertices and a subset of edges.
- $G_{n, k} \rightsquigarrow$ a graph of girth $4 k / 3+3$ with n vertices and $\Omega\left(n^{1+1 / k}\right)$ edges.
- $\mathfrak{F}_{n, k} \rightsquigarrow$ the family of subgraphs of $G_{n, k}$ with the same vertices and a subset of edges.
$\rightarrow\left|\mathfrak{F}_{n, k}\right|=\Omega\left(2^{n^{1+1 / k}}\right)$.
- $G_{n, k} \rightsquigarrow$ a graph of girth $4 k / 3+3$ with n vertices and $\Omega\left(n^{1+1 / k}\right)$ edges.
- $\mathfrak{F}_{n, k} \rightsquigarrow$ the family of subgraphs of $G_{n, k}$ with the same vertices and a subset of edges.
$\rightarrow\left|\mathfrak{F}_{n, k}\right|=\Omega\left(2^{n^{1+1 / k}}\right)$.
Let $\langle L, F\rangle$ be an DLS on $\mathfrak{F}_{n, k}$ such that $|L|=o\left(n^{1 / k}\right)$.
- $G_{n, k} \rightsquigarrow$ a graph of girth $4 k / 3+3$ with n vertices and $\Omega\left(n^{1+1 / k}\right)$ edges.
- $\mathfrak{F}_{n, k} \rightsquigarrow$ the family of subgraphs of $G_{n, k}$ with the same vertices and a subset of edges.
$\rightarrow\left|\mathfrak{F}_{n, k}\right|=\Omega\left(2^{n^{1+1 / k}}\right)$.
Let $\langle L, F\rangle$ be an DLS on $\mathfrak{F}_{n, k}$ such that $|L|=o\left(n^{1 / k}\right)$.
- For each $H \in \mathfrak{F}_{n, k}$ let us consider the word $\bar{L}(H)=L(1, H) \# L(2, H) \# \ldots \# L(n, H)$
- $G_{n, k} \rightsquigarrow$ a graph of girth $4 k / 3+3$ with n vertices and $\Omega\left(n^{1+1 / k}\right)$ edges.
- $\mathfrak{F}_{n, k} \rightsquigarrow$ the family of subgraphs of $G_{n, k}$ with the same vertices and a subset of edges.
$\rightarrow\left|\mathfrak{F}_{n, k}\right|=\Omega\left(2^{n^{1+1 / k}}\right)$.
Let $\langle L, F\rangle$ be an DLS on $\mathfrak{F}_{n, k}$ such that $|L|=o\left(n^{1 / k}\right)$.
- For each $H \in \mathfrak{F}_{n, k}$ let us consider the word $\bar{L}(H)=L(1, H) \# L(2, H) \# \ldots \# L(n, H)$
- $\left|\left\{\bar{L}(H) \mid H \in \mathfrak{F}_{n, k}\right\}\right|=o\left(2^{2^{1 / k}}\right)$
- $G_{n, k} \rightsquigarrow$ a graph of girth $4 k / 3+3$ with n vertices and $\Omega\left(n^{1+1 / k}\right)$ edges.
- $\mathfrak{F}_{n, k} \rightsquigarrow$ the family of subgraphs of $G_{n, k}$ with the same vertices and a subset of edges.
$\rightarrow\left|\mathfrak{F}_{n, k}\right|=\Omega\left(2^{n^{1+1 / k}}\right)$.
Let $\langle L, F\rangle$ be an DLS on $\mathfrak{F}_{n, k}$ such that $|L|=o\left(n^{1 / k}\right)$.
- For each $H \in \mathfrak{F}_{n, k}$ let us consider the word $\bar{L}(H)=L(1, H) \# L(2, H) \# \ldots \# L(n, H)$
- $\left|\left\{\bar{L}(H) \mid H \in \mathfrak{F}_{n, k}\right\}\right|=o\left(2^{n^{1 / k}}\right)$
$\rightarrow \exists H_{1} \neq H_{2}$ such that $\bar{L}\left(H_{1}\right)=\bar{L}\left(H_{2}\right)$.
- $G_{n, k} \rightsquigarrow$ a graph of girth $4 k / 3+3$ with n vertices and $\Omega\left(n^{1+1 / k}\right)$ edges.
- $\mathfrak{F}_{n, k} \rightsquigarrow$ the family of subgraphs of $G_{n, k}$ with the same vertices and a subset of edges.
$\rightarrow\left|\mathfrak{F}_{n, k}\right|=\Omega\left(2^{n^{1+1 / k}}\right)$.
Let $\langle L, F\rangle$ be an DLS on $\mathfrak{F}_{n, k}$ such that $|L|=o\left(n^{1 / k}\right)$.
- For each $H \in \mathfrak{F}_{n, k}$ let us consider the word $\bar{L}(H)=L(1, H) \# L(2, H) \# \ldots \# L(n, H)$
- $\left|\left\{\bar{L}(H) \mid H \in \mathfrak{F}_{n, k}\right\}\right|=o\left(2^{n^{1 / k}}\right)$
$\rightarrow \exists H_{1} \neq H_{2}$ such that $\bar{L}\left(H_{1}\right)=\bar{L}\left(H_{2}\right)$.
- let $(x, y) \in\left(E_{H_{1}} \backslash E_{H_{2}}\right)$
- But the girth of $G_{n, k}$
is $4 k / 3+3$ thus $d_{H_{2}}(x, y)$
- $G_{n, k} \rightsquigarrow$ a graph of girth $4 k / 3+3$ with n vertices and $\Omega\left(n^{1+1 / k}\right)$ edges.
- $\mathfrak{F}_{n, k} \rightsquigarrow$ the family of subgraphs of $G_{n, k}$ with the same vertices and a subset of edges.
$\rightarrow\left|\mathfrak{F}_{n, k}\right|=\Omega\left(2^{n^{1+1 / k}}\right)$.
Let $\langle L, F\rangle$ be an DLS on $\mathfrak{F}_{n, k}$ such that $|L|=o\left(n^{1 / k}\right)$.
- For each $H \in \mathfrak{F}_{n, k}$ let us consider the word $\bar{L}(H)=L(1, H) \# L(2, H) \# \ldots \# L(n, H)$
- $\left|\left\{\bar{L}(H) \mid H \in \mathfrak{F}_{n, k}\right\}\right|=o\left(2^{n^{1 / k}}\right)$
$\rightarrow \exists H_{1} \neq H_{2}$ such that $\bar{L}\left(H_{1}\right)=\bar{L}\left(H_{2}\right)$.
- let $(x, y) \in\left(E_{H_{1}} \backslash E_{H_{2}}\right)$
- $\bar{L}\left(H_{1}\right)=\bar{L}\left(H_{2}\right) \Rightarrow x$ and y have the same labels in H_{1} and $H_{2} \Rightarrow$ the DLS gives the same distance between them for H_{1} and for H_{2}.
- $G_{n, k} \rightsquigarrow$ a graph of girth $4 k / 3+3$ with n vertices and $\Omega\left(n^{1+1 / k}\right)$ edges.
- $\mathfrak{F}_{n, k} \rightsquigarrow$ the family of subgraphs of $G_{n, k}$ with the same vertices and a subset of edges.
$\rightarrow\left|\mathfrak{F}_{n, k}\right|=\Omega\left(2^{n^{1+1 / k}}\right)$.
Let $\langle L, F\rangle$ be an DLS on $\mathfrak{F}_{n, k}$ such that $|L|=o\left(n^{1 / k}\right)$.
- For each $H \in \mathfrak{F}_{n, k}$ let us consider the word
$\bar{L}(H)=L(1, H) \# L(2, H) \# \ldots \# L(n, H)$
- $\left|\left\{\bar{L}(H) \mid H \in \mathfrak{F}_{n, k}\right\}\right|=o\left(2^{n^{1 / k}}\right)$
$\rightarrow \exists H_{1} \neq H_{2}$ such that $\bar{L}\left(H_{1}\right)=\bar{L}\left(H_{2}\right)$.
- let $(x, y) \in\left(E_{H_{1}} \backslash E_{H_{2}}\right)$
- $\bar{L}\left(H_{1}\right)=\bar{L}\left(H_{2}\right) \Rightarrow x$ and y have the same labels in H_{1} and $H_{2} \Rightarrow$ the DLS gives the same distance between them for H_{1} and for H_{2}.
- But the girth of $G_{n, k}$ is $4 k / 3+3$ thus $d_{H_{2}}(x, y) \geq 4 k / 3+2$.
- $G_{n, k} \rightsquigarrow$ a graph of girth $4 k / 3+3$ with n vertices and $\Omega\left(n^{1+1 / k}\right)$ edges.
- $\mathfrak{F}_{n, k} \rightsquigarrow$ the family of subgraphs of $G_{n, k}$ with the same vertices and a subset of edges.
$\rightarrow\left|\mathfrak{F}_{n, k}\right|=\Omega\left(2^{n^{1+1 / k}}\right)$.
Let $\langle L, F\rangle$ be an DLS on $\mathfrak{F}_{n, k}$ such that $|L|=o\left(n^{1 / k}\right)$.
- For each $H \in \mathfrak{F}_{n, k}$ let us consider the word
$\bar{L}(H)=L(1, H) \# L(2, H) \# \ldots \# L(n, H)$
- $\left|\left\{\bar{L}(H) \mid H \in \mathfrak{F}_{n, k}\right\}\right|=o\left(2^{n^{1 / k}}\right)$
$\rightarrow \exists H_{1} \neq H_{2}$ such that $\bar{L}\left(H_{1}\right)=\bar{L}\left(H_{2}\right)$.
- let $(x, y) \in\left(E_{H_{1}} \backslash E_{H_{2}}\right)$
- $\bar{L}\left(H_{1}\right)=\bar{L}\left(H_{2}\right) \Rightarrow x$ and y have the same labels in H_{1} and $H_{2} \Rightarrow$ the DLS gives the same distance between them for H_{1} and for H_{2}.
- But the girth of $G_{n, k}$ is $4 k / 3+3$ thus $d_{H_{2}}(x, y) \geq 4 k / 3+2$.
- And $(x, y) \in E_{H_{1}} \Rightarrow d_{H_{1}}(x, y)=1$
- $G_{n, k} \rightsquigarrow$ a graph of girth $4 k / 3+3$ with n vertices and $\Omega\left(n^{1+1 / k}\right)$ edges.
- $\mathfrak{F}_{n, k} \rightsquigarrow$ the family of subgraphs of $G_{n, k}$ with the same vertices and a subset of edges.
$\rightarrow\left|\mathfrak{F}_{n, k}\right|=\Omega\left(2^{n^{1+1 / k}}\right)$.
Let $\langle L, F\rangle$ be an DLS on $\mathfrak{F}_{n, k}$ such that $|L|=o\left(n^{1 / k}\right)$.
- For each $H \in \mathfrak{F}_{n, k}$ let us consider the word
$\bar{L}(H)=L(1, H) \# L(2, H) \# \ldots \# L(n, H)$
- $\left|\left\{\bar{L}(H) \mid H \in \mathfrak{F}_{n, k}\right\}\right|=o\left(2^{1^{1 / k}}\right)$
$\rightarrow \exists H_{1} \neq H_{2}$ such that $\bar{L}\left(H_{1}\right)=\bar{L}\left(H_{2}\right)$.
- let $(x, y) \in\left(E_{H_{1}} \backslash E_{H_{2}}\right)$
- $\bar{L}\left(H_{1}\right)=\bar{L}\left(H_{2}\right) \Rightarrow x$ and y have the same labels in H_{1} and $H_{2} \Rightarrow$ the DLS gives the same distance between them for H_{1} and for H_{2}.
- But the girth of $G_{n, k}$ is $4 k / 3+3$ thus $d_{H_{2}}(x, y) \geq 4 k / 3+2$.
- And $(x, y) \in E_{H_{1}} \Rightarrow d_{H_{1}}(x, y)=1$

Finally Our DLS makes errors of at least $4 k / 3+2$.

$G_{n, k}$

$G_{n, k}$

$G_{n, k}$

$G_{n, k}$


```
A \delta log n-Additive Error Labeling Scheme
Lower Bound
```


> All the distances >5 are shorten by log

Hyperbolicity is bounded

```
A \delta log n-Additive Error Labeling Scheme
Lower Bound
```


> All the distances >5 are shorten by log

Hyperbolicity is bounded

```
A \delta log n-Additive Error Labeling Scheme
Lower Bound
```


> All the distances >5 are shorten by log

Hyperbolicity is bounded

Plan

(1) Distance Labeling Problem

- Preliminaries
- Exact Distance Labeling Scheme
- State of the Art
- Approximate Distance Labeling Scheme
- Our result
(2) Hyperbolic Graphs
- A Bit of History
- Definition
(3) Distance Labeling in Hyperbolic Graphs
- A $\delta \log n$-Additive Error Labeling Scheme
- Lower Bound
(4) Open Problems

Cyril Gavoille \& Olivier Ly

Fill the gap between upper and lower bound (somewhere in between $\log n$ and $\log \log n \ldots$...)

Collective tree spanners for hyperbolic graphs?

