Localisation-Resistant Random Words with Small Alphabets

Cyril GAVOILLE ${ }^{2}$ Ghazal KACHIGAR ${ }^{1,2}$ Gilles ZÉMOR ${ }^{1}$

${ }^{1}$ Institut de Mathématiques de Bordeaux, ${ }^{2}$ LaBRI
University of Bordeaux, France

WORDS 2019, Loughborough - 09/09/2019

Introduction

Object of study: Probability distributions on (some subset of) $\{1, \ldots, q\}^{n}$ and $\{0,1\}^{n}$.

Examples

q-coloured words: $\mathfrak{C}_{q, n}=\left\{x_{1} \ldots x_{n} \in\{1, \ldots, q\}^{n} \mid x_{i} \neq x_{i+1}\right\}$.
Independent-set words: $\mathcal{J}_{n}=\left\{y_{1} \ldots y_{n} \in\{0,1\}^{n} \mid y_{i}=1 \Rightarrow y_{i-1}=y_{i+1}=0\right\}$.
Localisation resistance: No information is revealed about location of subword(s).

all occur with the same probability.

Introduction

Main results (informal)

- Complete description of localisation-resistant probability distributions on independent-set words.
- We need $q \geq 4$ for n large enough in order for a localisation-resistant probability distribution on q-coloured words to exist.

Motivation

- q-colouring using local resources is a fundamental problem in Distributed Computing [Pettie et al.- STOC '18].
- Open question: are there faster algorithms if we have access to quantum resources ?
- q-colouring using quantum resources must be localisation-resistant [Gavoille, Kosowki \& Markiewicz '09].

Some definitions

$x_{1} \ldots x_{n}$ a random word on a small alphabet.
Stationarity: "Shift invariance for probability distributions".
For all $I, J \subset\{1, \ldots, n\}$ intervals at distance at least k of each other:
k-dependence: $\operatorname{Pr}\left(x_{l}, x_{J}\right)=\operatorname{Pr}\left(x_{l}\right) \cdot \operatorname{Pr}\left(x_{J}\right)$
k-localisability: $\operatorname{Pr}\left(x_{l}, x_{J}\right)$ depends only on $|I|,|J|$.

Facts

- 0-dependence $=$ independence.
- 0-localisability = exchangeability.
- k-localisability \Rightarrow stationarity.
- k-dependence + stationarity $\Rightarrow k$-localisability.

k-dependence VS k-localisability

k-dependence + stationarity $\Rightarrow k$-localisability.

BUT

k-localisability $\nRightarrow m$-dependence for some m.

Example

$S=\{$ all permutations of $\{1, \ldots, n\}\}$
Pr: uniform distribution on S.
This distribution is 0-localisable since

$$
\operatorname{Pr}\left(x_{I}, x_{J}\right)=\frac{(n-|I|-|J|)!}{n!}
$$

But not k-dependent for any $k \leq n$ because

$$
\operatorname{Pr}\left(x_{l}\right) \cdot \operatorname{Pr}\left(x_{J}\right)=\frac{(n-|l|)!}{n!} \cdot \frac{(n-|J|)!}{n!} \neq \operatorname{Pr}\left(x_{l}, x_{J}\right)
$$

The q-colouring problem

Recall that the set of q-coloured words of length n is:

$$
\mathcal{C}_{q, n}=\left\{x_{1} \ldots x_{n} \in\{1, \ldots, q\}^{n} \mid x_{i} \neq x_{i+1}\right\}
$$

1-dependent colouring

[Holroyd \& Liggett '15, '16]:

- There is a stationary 1 -dependent q-colouring for all $q \geq 4$ for every $n \in \mathbb{N}$.
- There is no stationary 1 -dependent 3 -colouring for n large enough.

Because " k-dependent + stationary $\Rightarrow k$-localisable", this implies

1-localisable colouring

There is a 1 -localisable q-colouring for all $q \geq 4$ for every $n \in \mathbb{N}$.

The q－colouring problem

1－localisable colouring
There is a 1 －localisable q－colouring for all $q \geq 4$ for every $n \in \mathbb{N}$ ．

Is 1－localisable 3－colouring possible？

Main result
Every 1－localisable probability distribution for random q－coloured words of length n requires $q \geq 4$ for n large enough．

q-coloured words and independent-set words

Recall

q-coloured words: $\mathcal{C}_{q, n}=\left\{x_{1} \ldots x_{n} \in\{1, \ldots, q\}^{n} \mid x_{i} \neq x_{i+1}\right\}$. Independent-set words: $\mathcal{J}_{n}=\left\{y_{1} \ldots y_{n} \in\{0,1\}^{n} \mid y_{i}=1 \Rightarrow y_{i-1}=y_{i+1}=0\right\}$.

Choose any colour c and define a function $f=\left(f_{1}, \ldots, f_{n}\right)$ on $\mathcal{C}_{q, n}$ as follows:

$$
y_{i}=f_{i}\left(x_{i}\right)=1 \text { if } x_{i}=c \quad \text { and } \quad y_{i}=f_{i}\left(x_{i}\right)=0 \text { if } x_{i} \neq c
$$

Then

- The image of f is exactly \mathcal{J}_{n}.
- f preserves k-dependence, k-localisability, stationarity.
- $\operatorname{Pr}\left(y_{i}=1\right) \geq 1 / q$.

Goal

Find $\max \operatorname{Pr}\left(y_{i}=1\right)$ for a 1-localisable probability distribution on \mathcal{J}_{n}.

An example

We aim to find $\max \operatorname{Pr}\left(y_{i}=1\right)$ for a 1－localisable probability distribution on \mathcal{J}_{4} ．
Let $p_{1}=\operatorname{Pr}\left(y_{i}=1\right), p_{2}=\operatorname{Pr}\left(y_{i}=1, y_{i+2}=1\right)$ ．

$y_{1} y_{2} y_{3} y_{4}$	$\operatorname{Pr}\left(y_{1} y_{2} y_{3} y_{4}\right)$
0101	
1010	
1001	
0100	
0010	
1000	
0001	
0000	

$$
\operatorname{Pr}(1010)=\operatorname{Pr}(1010)=\operatorname{Pr}(1001)=p_{2} .
$$

An example

We aim to find $\max \operatorname{Pr}\left(y_{i}=1\right)$ for a 1－localisable probability distribution on \mathcal{J}_{4} ．
Let $p_{1}=\operatorname{Pr}\left(y_{i}=1\right), p_{2}=\operatorname{Pr}\left(y_{i}=1, y_{i+2}=1\right)$ ．

$y_{1} y_{2} y_{3} y_{4}$	$\operatorname{Pr}\left(y_{1} y_{2} y_{3} y_{4}\right)$
0101	p_{2}
1010	p_{2}
1001	p_{2}
0100	
0010	
1000	
0001	
0000	

$$
\operatorname{Pr}(0100)+p_{2}=\operatorname{Pr}(0100)+\operatorname{Pr}(0101)=\operatorname{Pr}(010 \star)=p_{1} .
$$

An example

We aim to find $\max \operatorname{Pr}\left(y_{i}=1\right)$ for a 1－localisable probability distribution on \mathcal{J}_{4} ．
Let $p_{1}=\operatorname{Pr}\left(y_{i}=1\right), p_{2}=\operatorname{Pr}\left(y_{i}=1, y_{i+2}=1\right)$ ．

$y_{1} y_{2} y_{3} y_{4}$	$\operatorname{Pr}\left(y_{1} y_{2} y_{3} y_{4}\right)$
0101	p_{2}
1010	p_{2}
1001	p_{2}
0100	$p_{1}-p_{2}$
0010	$p_{1}-p_{2}$
1000	
0001	
0000	

$$
\operatorname{Pr}(1000)+2 p_{2}=\operatorname{Pr}(1000)+\operatorname{Pr}(1010)+\operatorname{Pr}(1001)=\operatorname{Pr}(10 \star \star)=p_{1} .
$$

An example

We aim to find $\max \operatorname{Pr}\left(y_{i}=1\right)$ for a 1－localisable probability distribution on \mathcal{J}_{4} ．
Let $p_{1}=\operatorname{Pr}\left(y_{i}=1\right), p_{2}=\operatorname{Pr}\left(y_{i}=1, y_{i+2}=1\right)$ ．

$y_{1} y_{2} y_{3} y_{4}$	$\operatorname{Pr}\left(y_{1} y_{2} y_{3} y_{4}\right)$
0101	p_{2}
1010	p_{2}
1001	p_{2}
0100	$p_{1}-p_{2}$
0010	$p_{1}-p_{2}$
1000	$p_{1}-2 p_{2}$
0001	$p_{1}-2 p_{2}$
0000	

$\operatorname{Pr}(0000)=1$ minus the rest．

An example

We aim to find $\max \operatorname{Pr}\left(y_{i}=1\right)$ for a 1－localisable probability distribution on \mathcal{J}_{4} ．
Let $p_{1}=\operatorname{Pr}\left(y_{i}=1\right), p_{2}=\operatorname{Pr}\left(y_{i}=1, y_{i+2}=1\right)$ ．

$y_{1} y_{2} y_{3} y_{4}$	$\operatorname{Pr}\left(y_{1} y_{2} y_{3} y_{4}\right)$
0101	p_{2}
1010	p_{2}
1001	p_{2}
0100	$p_{1}-p_{2}$
0010	$p_{1}-p_{2}$
1000	$p_{1}-2 p_{2}$
0001	$p_{1}-2 p_{2}$
0000	$1-4 p_{1}+3 p_{2}$

An example

We aim to find $\max \operatorname{Pr}\left(y_{i}=1\right)$ for a 1-localisable probability distribution on \mathcal{J}_{4}.
Let $p_{1}=\operatorname{Pr}\left(y_{i}=1\right), p_{2}=\operatorname{Pr}\left(y_{i}=1, y_{i+2}=1\right)$.

$y_{1} y_{2} y_{3} y_{4}$	$\operatorname{Pr}\left(y_{1} y_{2} y_{3} y_{4}\right)$
0101	p_{2}
1010	p_{2}
1001	p_{2}
0100	$p_{1}-p_{2}$
0010	$p_{1}-p_{2}$
1000	$p_{1}-2 p_{2}$
0001	$p_{1}-2 p_{2}$
0000	$1-4 p_{1}+3 p_{2}$

Solving $p_{i} \geq 0$ and $\operatorname{Pr}\left(y_{1} y_{2} y_{3} y_{4}\right) \geq 0$ we find the maximum value to be $p_{1}=2 / 5$.

General case

Set $p_{1}:=\operatorname{Pr}(1 \star \cdots \star), p_{2}:=\operatorname{Pr}(1 \star 1 \star \cdots \star), \ldots, p_{\ell}$.
Find maximum value of p_{1} such that $p_{i} \geq 0$ and $\operatorname{Pr}\left(y_{1} \ldots y_{n}\right) \geq 0$ (where $n=2 \ell-1$ or $n=2 \ell$).

- Each $\operatorname{Pr}\left(y_{1} \ldots y_{n}\right) \geq 0$ is uniquely determined as a linear function of p_{1}, \ldots, p_{ℓ}.
- We thus need to solve a linear programming problem.
- Problem: Exponential (in ℓ) number of constraints.

Equivalent subsystem

$$
\begin{aligned}
& \operatorname{Pr}\left(0^{n}\right) \geq 0 \\
& \operatorname{Pr}\left((10) 0^{n-2} \geq 0\right. \\
& \operatorname{Pr}\left((10)^{2} 0^{n-4}\right) \geq 0 \\
& \ldots \\
& \operatorname{Pr}\left((10)^{\ell-1} 0^{n-2 \ell+2)} \geq 0\right.
\end{aligned}
$$

\Rightarrow Linear programming problem in ℓ constraints and ℓ variables.

Linear programming

Formulation using matrices and vectors

Maximise $\mathbf{c}^{\top} \mathbf{p}\left(=p_{1}\right)$, subject to $\mathbf{A p} \leq \mathbf{b}$ and $\mathbf{p} \geq \mathbf{0}$.
Here the matrix and the vectors are of the form:

$$
\mathbf{A}=\left[\begin{array}{cccccc}
a_{1,1} & a_{1,2} & \ldots & \ldots & a_{1, \ell-1} & a_{1, \ell} \\
-1 & a_{2,2} & \ldots & \ldots & a_{2, \ell-1} & a_{2, \ell} \\
0 & -1 & \ddots & \ddots & \vdots & \vdots \\
\vdots & \vdots & \ddots & \ddots & \vdots & \vdots \\
0 & 0 & \ldots & -1 & a_{\ell-1, \ell-1} & a_{\ell-1, \ell} \\
0 & 0 & \ldots & 0 & -1 & a_{\ell, \ell}
\end{array}\right]
$$

$$
a_{i, j}=(-1)^{i+j}\binom{2 \ell+2-(i+j)}{j-i+1}, \mathbf{c}=(1,0, \ldots, 0), \mathbf{b}=(1,0, \ldots, 0), \mathbf{p}=\left(p_{1}, \ldots, p_{\ell}\right)
$$

Linear programming

Theorem

For linear programming problems that have the general form above, the optimal value for $\mathbf{c}^{\top} \mathbf{p}\left(=p_{1}\right)$ is $\frac{u_{\ell}}{u_{\ell+1}}$ where the sequence $\left(u_{k}\right)_{k \geq 1}$ is defined by $u_{1}=1$ and

$$
u_{k+1}=\sum_{i=1}^{k} a_{\ell-k+1, \ell-k+i} u_{k+1-i}
$$

This optimal value is obtained by solving the special case $\mathbf{A p}=\mathbf{b}$.
We prove this theorem using the duality theorem for linear programming.

Linear programming

Applying the theorem on the previous slide to our problem $\left(a_{i, j}=(-1)^{i+j}\binom{2 \ell+2-(i+j)}{j-i+1}\right.$ we get

Theorem

The optimal value for p_{1} is $\frac{u_{\ell}}{u_{\ell+1}}$ where $u_{1}=1$ and $u_{k+1}=\sum_{i=1}^{k}(-1)^{i+1}\binom{2 k+1-i}{i} u_{k+1-i}$.
This is exactly the sequence of Catalan numbers $\left(\mathrm{c}_{n}\right)_{n \in \mathbb{N}}, \mathrm{c}_{n}=\frac{1}{n+1}\binom{2 n}{n}$.

Finally

$$
\frac{c_{\ell}}{c_{\ell+1}}=(\ell+2) /(4 \ell+2) \text {, hence the optimal value of } p_{1} \rightarrow 1 / 4 \text { as } \ell \rightarrow \infty .
$$

Further results and questions

1. (In paper) If we plug in a feasible value for p_{1}, we get a linear programming problem for maximising p_{2} that has the same general form and we may apply the same theorem and so on for p_{3}, etc. This way we get $p_{i} \leq\left(c_{\ell-i+1} / c_{\ell+1}\right) \rightarrow 1 / 4^{i}$ as $\ell \rightarrow \infty$.
2. (Proven, not in paper) Let

$$
J_{k, n}=\left\{y_{1} \ldots y_{n} \in\{0,1\}^{n} \mid y_{i}=1 \Rightarrow y_{i-j}=y_{i+j}=0,1 \leq j \leq k\right\}
$$

We have a similar result for k-localisable probability distributions on $\mathcal{J}_{k, n}$ with the sequence of Fuss-Catalan numbers.
3. (Open questions) What about combinatorial structures other than words? E.g. labellings on graphs?

