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Examples

Introduction
Object of study: Probability distributions on (some subset of) {1,...,q}" and {0,1}".

g-coloured words: Cq = {x1...xp € {1,...,9}" | X; # Xi31 }.

Independent-set words: I, = {y1...y, € {0,1}" | yi=1= yi_1 = yjs1 =0}
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all occur with the same probability.

Localisation resistance: No information is revealed about location of subword(s)




Introduction

e Complete description of localisation-resistant
probability distributions on independent-set words.
e We need q > 4 for n large enough in order for a

localisation-resistant probability distribution on
g-coloured words to exist.



Motivation

e g-colouring using local resources is a fundamental problem in Distributed Computing [Pettie et
al.- STOC °18].

e Open question: are there faster algorithms if we have access to quantum resources ?

e g-colouring using quantum resources must be localisation-resistant [Gavoille, Kosowki &
Markiewicz ’09].



e
Some definitions

X1 ...Xp @ random word on a small alphabet.

Stationarity: "Shift invariance for probability distributions”.
Forall I,J C {1,...,n} intervals at distance at least k of each other:

k-dependence: Pr(x;,x;) = Pr(x;) - Pr(xy).
k-localisability: Pr(x;, x,) depends only on |/|, |J|.

Facts

0-dependence = independence.

0-localisability = exchangeability.
k-localisability = stationarity.

k-dependence + stationarity = k-localisability.



k-dependence VS k-localisability

k-dependence + stationarity = k-localisability.
BUT
k-localisability & m-dependence for some m.

Example

S = {all permutations of {1,...,n}}
Pr: uniform distribution on S.
This distribution is 0-localisable since

_ (n=11=1J0)!
Pr(xi, xs) = —
But not k-dependent for any k < n because

Pr(x;)-Pr(x,)) = (n=liDt (n |J|) # Pr(xi, xs)

n!



The g-colouring problem
Recall that the set of g-coloured words of length n is:

Con={x1...xne{1,...,q}" | Xi # Xit1}
[Holroyd & Liggett ’15, ’16]:

e There is a stationary 1-dependent g-colouring for all g > 4 for every n € N.

e There is no stationary 1-dependent 3-colouring for n large enough.
Because "k-dependent + stationary = k-localisable”, this implies

1-localisable colouring

There is a 1-localisable g-colouring for all g > 4 for every n € N.



T
The g-colouring problem

1-localisable colouring

Is 1-localisable 3-colouring possible?

Every 1-localisable probability distribution for random g-coloured words of length
nrequires q > 4 for n large enough.

There is a 1-localisable g-colouring for all g > 4 for every n € N.



g-coloured words and independent-set words
Recall
g-coloured words: Cqp = {X1...x, € {1,...,9}" | Xi # Xit1}.

Independent-set words: I, = {y1... ¥, €{0,1}" | yi=1=yi_1 = yis1 =0}
Choose any colour ¢ and define a function f = (fi,...,f;) on Cq » as follows:
yi=filx)=1ifx;=c and
Then

yi=fi(x)=0ifx;#c
e The image of f is exactly J,.

e f preserves k-dependence, k-localisability, stationarity.
e Pr(y;=1)>1/q.

Goal

Find maxPr(y; = 1) for a 1-localisable probability distribution on J,.
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An example

We aim to find maxPr(y; = 1) for a 1-localisable probability distribution on Jy.
Let pr = Pr(yi =1), p2 = Pr(y; = 1,yi12 = 1).

yiyeysya | Pr(yiyeyaya)
0101

1010
1001
0100
0010
1000
0001
0000

Pr(1010) = Pr(1010) = Pr(1001) = p,.
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An example

We aim to find maxPr(y; = 1) for a 1-localisable probability distribution on Jy.
Let pr = Pr(yi =1), p2 = Pr(y; = 1,yi12 = 1).

yiyeysya | Pr(yiyeyaya)
0101 P2

1010 o3
1001 P2
0100
0010
1000
0001
0000

Pr(0100) + p2 = Pr(0100) +Pr(0101) = Pr(010%) = p.
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An example

We aim to find maxPr(y; = 1) for a 1-localisable probability distribution on Jy.
Let pr = Pr(yi =1), p2 = Pr(y; = 1,yi12 = 1).

yiyaysys | Pr(yiyeysya)
0101 P2
1010 o3
1001 P2
0100 p1— P2
0010 p1— P2
1000
0001
0000

Pr(1000) + 2p, = Pr(1000) + Pr(1010) + Pr(1001) = Pr(10% %) = py.

u]
|

I
ul
i
S
el
?



An example

We aim to find maxPr(y; = 1) for a 1-localisable probability distribution on Jy.
Let pr = Pr(yi =1), p2 = Pr(y; = 1,yi12 = 1).

yiyaysys | Pr(yiyeysya)

0101 P2
1010 o3

1001 P2
0100 p1— P2
0010 p1— P2
1000 p1—2p2
0001 p1—2p2
0000

Pr(0000) = 1 minus the rest.
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An example

We aim to find maxPr(y; = 1) for a 1-localisable probability distribution on Jy.
Let p1 = Pr(y; = 1), p2 = Pr(y; = 1,yi2 = 1).

y1yeysya | Pr(yi1yaysya)
0101 o}
1010 P2
1001 P2
0100 p1— P2
0010 p1— P2
1000 pP1—2p2
0001 P —2p2
0000 1—4py+3p2
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An example

We aim to find maxPr(y; = 1) for a 1-localisable probability distribution on Jy.
Let pr = Pr(yi =1), p2 = Pr(y; = 1,yi12 = 1).

yiyaysys | Pr(yiyeysya)
0101 P2
1010 o3
1001 P2
0100 p1— P2
0010 p1— P2
1000 p1—2p2
0001 p1—2p2
0000 1—4p1+3p2

Solving p; > 0 and Pr(yy2ysys) > 0 we find the maximum value to be p; = 2/5.
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General case
Setpr :=Pr(1x---%), po:=Pr(1%1x---%),

c p@-
Find maximum value of p; such that p; > 0 and Pr(y1 ...y,,) >0 (where n=2¢—1 or n=2{).
e Each Pr(y;...yn) > 0is uniquely determined as a linear function of p,...,py
e We thus need to solve a linear programming problem.
e Problem: Exponential (in £) number of constraints.
Pr(0™) >0

Pr((10)0"2>0
Pr((10)20"%) >0

Pr((1 0)[—1 0n—2€+2) Z 0

= Linear programming problem in ¢ constraints and ¢ variables.



Linear programming

Formulation using matrices and vectors

Maximise ¢"p(= p1), subject to Ap < b and p > 0.

Here the matrix and the vectors are of the form:

arg ap a1 ay
-1 ap a2 1 a
0 —1
A =
0 0 ... =1 a 401 ar—iy
| O o ... O —1 agy |

aij= (1) (72 ), e =(1,0,...,0),b=(1,0,...,0), p = (1., pr)-

=] F



Linear programming

p b

p A
Maximise |°:|I subject to I H
For linear programming problems that have the general form above, the optimal value for ¢"p (= py)
is u;’ﬁ where the sequence (u)x>1 is defined by u; = 1 and

k
U1 = Z A0—k+1,0—k-+i Uk+1—i
i=1

This optimal value is obtained by solving the special case Ap = b.

We prove this theorem using the duality theorem for linear programming



T
Linear programming

Applying the theorem on the previous slide to our problem (a;; = (—1)"*/ (2“2.‘(

17,+’1'+j))) we get

Theorem

The optimal value for py is 5/~ where uy = 1 and ty1 = Xty (—1)" N Ui,
This is exactly the sequence of Catalan numbers (cp)nen, Ch = ,11? (2”).

Finally

S _

ol (¢+2)/(4¢+2), hence the optimal value of py — 1/4 as £ — .
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Further results and questions

1. (In paper) If we plug in a feasible value for p;, we get a linear programming problem for
maximising p, that has the same general form and we may apply the same theorem and so on for
ps3, etc. This way we get p; < (Cr—jt1/Cor1) = 1/4' as £ — oo,
2. (Proven, not in paper) Let
Jn={y1.-.yn €{0,1}" | yi=1=yij=yiy; = 0,1 <j < k}
We have a similar result for k-localisable probability distributions on Jx , with the sequence of
Fuss-Catalan numbers.

graphs?

3. (Open questions) What about combinatorial structures other than words? E.g. labellings on




