## Localisation-Resistant Random Words with Small Alphabets

Cyril GAVOILLE<sup>2</sup> Ghazal KACHIGAR<sup>1,2</sup> Gilles ZÉMOR<sup>1</sup>

<sup>1</sup> Institut de Mathématiques de Bordeaux, <sup>2</sup> LaBRI University of Bordeaux, France

WORDS 2019, Loughborough - 09/09/2019



### Introduction

**Object of study:** Probability distributions on (some subset of)  $\{1, \ldots, q\}^n$  and  $\{0, 1\}^n$ .

### Examples

*q*-coloured words: 
$$\mathcal{C}_{q,n} = \{x_1 \dots x_n \in \{1,\dots,q\}^n \mid x_i \neq x_{i+1}\}.$$

Independent-set words: 
$$J_n = \{y_1 \dots y_n \in \{0,1\}^n \mid y_i = 1 \Rightarrow y_{i-1} = y_{i+1} = 0\}.$$

**Localisation resistance:** No information is revealed about location of subword(s).

| +     | $\stackrel{\geq k}{\longleftrightarrow}$ |   |   |  |
|-------|------------------------------------------|---|---|--|
| <br>X |                                          | У |   |  |
| <br>X |                                          |   | у |  |
| <br>У |                                          | X |   |  |

all occur with the same probability.

### Introduction

### Main results (informal)

- Complete description of localisation-resistant probability distributions on independent-set words.
- We need q ≥ 4 for n large enough in order for a localisation-resistant probability distribution on q-coloured words to exist.

### Motivation

- *q*-colouring using local resources is a fundamental problem in Distributed Computing [Pettie et al.- STOC '18].
- Open question: are there faster algorithms if we have access to quantum resources?
- q-colouring using quantum resources must be localisation-resistant [Gavoille, Kosowki & Markiewicz '09].

## Some definitions

 $x_1 \dots x_n$  a random word on a small alphabet.

Stationarity: "Shift invariance for probability distributions".

For all  $I, J \subset \{1, ..., n\}$  intervals at distance at least k of each other:

$$k$$
-dependence:  $Pr(x_I, x_J) = Pr(x_I) \cdot Pr(x_J)$ .  $k$ -localisability:  $Pr(x_I, x_J)$  depends only on  $|I|$ ,  $|J|$ .

#### **Facts**

- 0-dependence = independence.
- 0-localisability = exchangeability.
- k-localisability ⇒ stationarity.
- k-dependence + stationarity ⇒ k-localisability.



## k-dependence VS k-localisability

k-dependence + stationarity  $\Rightarrow k$ -localisability.

#### BUT

k-localisability  $\not\Rightarrow m$ -dependence for some m.

### Example

 $S = \{\text{all permutations of } \{1, \dots, n\}\}$ 

Pr: uniform distribution on S.

This distribution is 0-localisable since

$$Pr(x_I, x_J) = \frac{(n - |I| - |J|)!}{n!}$$

But not k-dependent for any  $k \le n$  because

$$\Pr(x_I) \cdot \Pr(x_J) = \frac{(n-|I|)!}{n!} \cdot \frac{(n-|J|)!}{n!} \neq \Pr(x_I, x_J)$$



# The *q*-colouring problem

**Recall** that the set of *q*-coloured words of length *n* is:

$$C_{q,n} = \{x_1 \dots x_n \in \{1, \dots, q\}^n \mid x_i \neq x_{i+1}\}$$

### 1-dependent colouring

### [Holroyd & Liggett '15, '16]:

- There is a stationary 1-dependent *q*-colouring for all  $q \ge 4$  for every  $n \in \mathbb{N}$ .
- There is no stationary 1-dependent 3-colouring for *n* large enough.

Because "k-dependent + stationary  $\Rightarrow k$ -localisable", this implies

### 1-localisable colouring

There is a 1-localisable *q*-colouring for all  $q \ge 4$  for every  $n \in \mathbb{N}$ .



## The *q*-colouring problem

### 1-localisable colouring

There is a 1-localisable *q*-colouring for all  $q \ge 4$  for every  $n \in \mathbb{N}$ .

### Is 1-localisable 3-colouring possible?

#### Main result

Every 1-localisable probability distribution for random q-coloured words of length n requires  $q \ge 4$  for n large enough.

# *q*-coloured words and independent-set words

#### Recall

q-coloured words:  $\mathcal{C}_{q,n} = \{x_1 \dots x_n \in \{1,\dots,q\}^n \mid x_i \neq x_{i+1}\}.$  Independent-set words:  $\mathfrak{I}_n = \{y_1 \dots y_n \in \{0,1\}^n \mid y_i = 1 \Rightarrow y_{i-1} = y_{i+1} = 0\}.$ 

Choose any colour c and define a function  $f = (f_1, \dots, f_n)$  on  $\mathcal{C}_{q,n}$  as follows:

$$y_i = f_i(x_i) = 1$$
 if  $x_i = c$  and  $y_i = f_i(x_i) = 0$  if  $x_i \neq c$ 

#### Then

- The image of f is exactly  $\mathfrak{I}_n$ .
- *f* preserves *k*-dependence, *k*-localisability, stationarity.
- $\Pr(y_i = 1) \ge 1/q$ .

#### Goal

Find  $\max \Pr(y_i = 1)$  for a 1-localisable probability distribution on  $\mathfrak{I}_n$ .



We aim to find max  $Pr(y_i = 1)$  for a 1-localisable probability distribution on  $\mathfrak{I}_4$ . Let  $p_1 = Pr(y_i = 1)$ ,  $p_2 = Pr(y_i = 1, y_{i+2} = 1)$ .

| <i>Y</i> 1 <i>Y</i> 2 <i>Y</i> 3 <i>Y</i> 4 | $Pr(y_1y_2y_3y_4)$ |
|---------------------------------------------|--------------------|
| 0101                                        |                    |
| 1010                                        |                    |
| 1001                                        |                    |
| 0100                                        |                    |
| 0010                                        |                    |
| 1000                                        |                    |
| 0001                                        |                    |
| 0000                                        |                    |

$$Pr(1010) = Pr(1010) = Pr(1001) = p_2.$$

We aim to find max  $Pr(y_i = 1)$  for a 1-localisable probability distribution on  $\mathfrak{I}_4$ . Let  $p_1 = Pr(y_i = 1)$ ,  $p_2 = Pr(y_i = 1, y_{i+2} = 1)$ .

| <i>Y</i> 1 <i>Y</i> 2 <i>Y</i> 3 <i>Y</i> 4 | $Pr(y_1y_2y_3y_4)$ |
|---------------------------------------------|--------------------|
| 0101                                        | $p_2$              |
| 1010                                        | $p_2$              |
| 1001                                        | $p_2$              |
| 0100                                        |                    |
| 0010                                        |                    |
| 1000                                        |                    |
| 0001                                        |                    |
| 0000                                        |                    |
|                                             |                    |

$$Pr(0100) + p_2 = Pr(0100) + Pr(0101) = Pr(010*) = p_1.$$

We aim to find max  $Pr(y_i = 1)$  for a 1-localisable probability distribution on  $\mathcal{I}_4$ . Let  $p_1 = Pr(y_i = 1)$ ,  $p_2 = Pr(y_i = 1, y_{i+2} = 1)$ .

| <i>Y</i> 1 <i>Y</i> 2 <i>Y</i> 3 <i>Y</i> 4 | $Pr(y_1y_2y_3y_4)$ |
|---------------------------------------------|--------------------|
| 0101                                        | $p_2$              |
| 1010                                        | $p_2$              |
| 1001                                        | $p_2$              |
| 0100                                        | $p_1 - p_2$        |
| 0010                                        | $p_1 - p_2$        |
| 1000                                        |                    |
| 0001                                        |                    |
| 0000                                        |                    |

$$Pr(1000) + 2p_2 = Pr(1000) + Pr(1010) + Pr(1001) = Pr(10 \star \star) = p_1.$$

We aim to find max  $Pr(y_i = 1)$  for a 1-localisable probability distribution on  $\mathcal{I}_4$ . Let  $p_1 = Pr(y_i = 1)$ ,  $p_2 = Pr(y_i = 1, y_{i+2} = 1)$ .

| <i>Y</i> 1 <i>Y</i> 2 <i>Y</i> 3 <i>Y</i> 4 | $\Pr(y_1y_2y_3y_4)$ |
|---------------------------------------------|---------------------|
| 0101                                        | $p_2$               |
| 1010                                        | $p_2$               |
| 1001                                        | $p_2$               |
| 0100                                        | $p_1 - p_2$         |
| 0010                                        | $p_1 - p_2$         |
| 1000                                        | $p_1 - 2p_2$        |
| 0001                                        | $p_1 - 2p_2$        |
| 0000                                        |                     |
|                                             |                     |

Pr(0000) = 1 minus the rest.

We aim to find max  $Pr(y_i = 1)$  for a 1-localisable probability distribution on  $\mathfrak{I}_4$ . Let  $p_1 = Pr(y_i = 1)$ ,  $p_2 = Pr(y_i = 1, y_{i+2} = 1)$ .

| <i>Y</i> 1 <i>Y</i> 2 <i>Y</i> 3 <i>Y</i> 4 | $Pr(y_1y_2y_3y_4)$ |
|---------------------------------------------|--------------------|
| 0101                                        | $p_2$              |
| 1010                                        | $p_2$              |
| 1001                                        | $p_2$              |
| 0100                                        | $p_1 - p_2$        |
| 0010                                        | $p_1 - p_2$        |
| 1000                                        | $p_1 - 2p_2$       |
| 0001                                        | $p_1 - 2p_2$       |
| 0000                                        | $1-4p_1+3p_2$      |

We aim to find max  $Pr(y_i = 1)$  for a 1-localisable probability distribution on  $\mathfrak{I}_4$ . Let  $p_1 = Pr(y_i = 1)$ ,  $p_2 = Pr(y_i = 1, y_{i+2} = 1)$ .

| <i>Y</i> 1 <i>Y</i> 2 <i>Y</i> 3 <i>Y</i> 4 | $Pr(y_1y_2y_3y_4)$ |
|---------------------------------------------|--------------------|
| 0101                                        | $p_2$              |
| 1010                                        | $p_2$              |
| 1001                                        | $p_2$              |
| 0100                                        | $p_1 - p_2$        |
| 0010                                        | $p_1 - p_2$        |
| 1000                                        | $p_1 - 2p_2$       |
| 0001                                        | $p_1 - 2p_2$       |
| 0000                                        | $1-4p_1+3p_2$      |

Solving  $p_i \ge 0$  and  $\Pr(y_1y_2y_3y_4) \ge 0$  we find the maximum value to be  $p_1 = 2/5$ .

### General case

Set 
$$p_1 := \Pr(1 \star \cdots \star), p_2 := \Pr(1 \star 1 \star \cdots \star), \ldots, p_\ell$$
.

Find maximum value of  $p_1$  such that  $p_i \ge 0$  and  $\Pr(y_1 \dots y_n) \ge 0$  (where  $n = 2\ell - 1$  or  $n = 2\ell$ ).

- Each  $\Pr(y_1 \dots y_n) \ge 0$  is uniquely determined as a linear function of  $p_1, \dots, p_\ell$ .
- We thus need to solve a linear programming problem.
- **Problem**: Exponential (in  $\ell$ ) number of constraints.

### Equivalent subsystem

$$\begin{aligned} & \Pr(0^n) \geq 0 \\ & \Pr((10)0^{n-2} \geq 0 \\ & \Pr((10)^20^{n-4}) \geq 0 \\ & \dots \\ & \Pr((10)^{\ell-1}0^{n-2\ell+2)} \geq 0 \end{aligned}$$

 $\Rightarrow$  Linear programming problem in  $\ell$  constraints and  $\ell$  variables.



## Linear programming

### Formulation using matrices and vectors

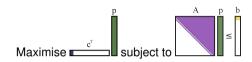
Maximise 
$$\mathbf{c}^{\mathsf{T}}\mathbf{p}(=p_1)$$
, subject to  $\mathbf{A}\mathbf{p} \leq \mathbf{b}$  and  $\mathbf{p} \geq \mathbf{0}$ .

Here the matrix and the vectors are of the form:

$$\mathbf{A} = egin{bmatrix} a_{1,1} & a_{1,2} & \dots & \dots & a_{1,\ell-1} & a_{1,\ell} \ -1 & a_{2,2} & \dots & \dots & a_{2,\ell-1} & a_{2,\ell} \ 0 & -1 & \ddots & \ddots & \vdots & \vdots \ \vdots & \vdots & \ddots & \ddots & \vdots & \vdots \ 0 & 0 & \dots & -1 & a_{\ell-1,\ell-1} & a_{\ell-1,\ell} \ 0 & 0 & \dots & 0 & -1 & a_{\ell,\ell} \end{bmatrix}$$

$$a_{i,j} = (-1)^{i+j} {2\ell+2-(i+j) \choose j-i+1}, \mathbf{c} = (1,0,\ldots,0), \mathbf{b} = (1,0,\ldots,0), \mathbf{p} = (p_1,\ldots,p_\ell).$$

# Linear programming



#### **Theorem**

For linear programming problems that have the general form above, the optimal value for  $\mathbf{c}^\mathsf{T}\mathbf{p}$  (=  $p_1$ ) is  $\frac{u_\ell}{u_{\ell+1}}$  where the sequence  $(u_k)_{k\geq 1}$  is defined by  $u_1=1$  and

$$u_{k+1} = \sum_{i=1}^{k} a_{\ell-k+1,\ell-k+i} u_{k+1-i}$$

This optimal value is obtained by solving the special case Ap = b.

We prove this theorem using the duality theorem for linear programming.



# Linear programming

Applying the theorem on the previous slide to our problem  $(a_{i,j} = (-1)^{i+j} {2\ell+2-(i+j) \choose j-i+1})$  we get

#### **Theorem**

The optimal value for  $p_1$  is  $\frac{u_\ell}{u_{\ell+1}}$  where  $u_1=1$  and  $u_{k+1}=\sum_{i=1}^k (-1)^{i+1} \binom{2k+1-i}{i} u_{k+1-i}$ .

This is exactly the sequence of **Catalan numbers**  $(c_n)_{n\in\mathbb{N}}$ ,  $c_n = \frac{1}{n+1}\binom{2n}{n}$ .

### **Finally**

$$\frac{c_\ell}{c_{\ell+1}} = (\ell+2)/(4\ell+2)$$
, hence the optimal value of  $p_1 \to 1/4$  as  $\ell \to \infty$ .



## Further results and questions

- 1. (In paper) If we plug in a feasible value for  $p_1$ , we get a linear programming problem for maximising  $p_2$  that has the same general form and we may apply the same theorem and so on for  $p_3$ , etc. This way we get  $p_i \le (c_{\ell-i+1}/c_{\ell+1}) \to 1/4^i$  as  $\ell \to \infty$ .
  - 2. (Proven, not in paper) Let

$$\mathfrak{I}_{k,n} = \{y_1 \dots y_n \in \{0,1\}^n \mid y_i = 1 \Rightarrow y_{i-j} = y_{i+j} = 0, 1 \le j \le k\}$$

We have a similar result for k-localisable probability distributions on  $\mathfrak{I}_{k,n}$  with the sequence of **Fuss-Catalan numbers**.

3. **(Open questions)** What about combinatorial structures other than words? E.g. labellings on graphs?

