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Abstract. We consider q-coloured words, that is words on {1, . . . , q}
where no two consecutive letters are equal. Motivated by multipartite AQ1

colouring games with nonsignalling resources, we are interested in ran-
dom q-coloured words satisfying a k-localisability property. More pre-
cisely, the probability of containing any given pair of words as subwords
spaced at least k letters apart can depend only on their lengths. We focus
on the issue of the smallest alphabet size q for which a probability dis-
tribution for such random words can exist. For k = 1, we prove a lower
bound of q ! 4. The bound is optimal because there exists a suitable
distribution for random 4-colourings that was constructed by Holroyd
and Liggett in 2015. Our lower bound can be generalized to k-localisable
random words where the letters of each subword of k +1 letters must be
pairwise different. We show that the alphabet size in this case must be AQ2

at least (k + 1) · (1 + 1/k)k.

Keywords: Random words · Stochastic colouring process ·
Hard-core process · Colouring game

1 Introduction

Multipartite Colouring Game. Let us consider the following general multipartite
graph colouring game. We are given a graph G with nodes v1, . . . , vn, a colour
bound q, and m players P1, . . . , Pm. The referee virtually places each player Pi

at a node vj and gives them a personalised input. This information depends on
the variant of the game. For example, it can consist of the index j that the player
Pi is placed on. Each player then has to output a colour for its node, i.e., an
integer taken from {1, . . . , q}. The players win if the resulting node colouring is
a q-colouring of the coloured subgraph of G, i.e., the subgraph induced by the
nodes hosting at least one player. More precisely, colours must differ for adjacent
players and coincide for players that have been placed on the same node, if any.
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2 C. Gavoille et al.

Players are allowed to agree on a joint strategy beforehand, which may
depend on G, q and m. Once placed on their node with the referee’s input,
players are not allowed to communicate in any way. So, the output colour can
only depend on the joint strategy and on the referee’s input. Unless specified
by the referee’s input, players are not aware whether other players stand at the
same node, or which players are adjacent to them.

The main question is to understand how small the colour bound q can be so
that the m players can still win the game for G, under given assumptions on
their joint strategy and on the referee’s inputs.

This question is related to fundamental problems in graph theory, distributed
computing, and quantum information. To illustrate, assume that the referee’s
input consists of the node index where each player is placed. For m = n, the
smallest q is precisely the chromatic number of G since the referee can force the
players to output a q-colouring of the whole graph, and a strategy for the players
consists of agreeing beforehand on any given q-colouring. For m = 2, and if the
two players share quantum resources (materialised say by entangled particles),
this leads to the notion of quantum chromatic number. Interestingly, this variant
of chromatic number can be smaller than the classical one. For instance, there is
a graph with 18 nodes and chromatic number 5 on which the two players Alice
and Bob can win this colouring game with only 4 colours [8].

Two-partite games with quantum resources (sometimes called pseudo-
telepathy games) are well studied in Computer Science and in Physics. How-
ever, multipartite quantum games with a large number m of players are much
less understood. There are multipartite games where quantum superiority can
be proved, and also outperformed (in terms of winning probability) by general
nonsignalling resources [1,2,7,12]. Such exotic resources, which are not predicted
to exist according to current physical theories, allow the players to use any non-
local correlations in their outputs without any communication.

Links to Distributed Computing. Colouring a network with a minimal amount
of communication is a fundamental symmetry-breaking problem studied in dis-
tributed computing (see [4,10,13,15,16] for recent breakthroughs, and [3] for a
book dedicated to this field). In this setting and in brief, each player acts at a
single node as a processor that can exchange messages with its neighbours in
some underlying graph. They must output a colouring of the graph after a lim-
ited number of synchronous rounds of communication. In this model, a.k.a. the
LOCAL model, there are distributed algorithms for q-colouring n-node paths1
that require O(log∗n − log∗q) rounds2 of communication for q > 2, and this is
tight. More precisely, [26,27] showed that after collecting the IDs of k neighbours
around each node, i.e., k = 2t numbers after t two-sided rounds of communi-
cation in the path, any possibly randomised q-colouring algorithm must satisfy
q = Ω(log(k) n).

1 This holds also for cycles, and more generally for graphs of maximum degree ∆ with
q > ∆.

2 We write log∗ n = min{i : log(i)
2 n " 1}, the inverse function of a power-2 tower.
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Localisation-Resistant Random Words 3

Since after t rounds every node has been able to communicate with nodes at
distance at most t, these t-round algorithms imply that information about nodes
at distance t suffices to provide a q-colouring. Yet, the colouring problem in the
LOCAL model can be viewed as a particular setting of the general multipartite
colouring game where the referee’s placement is a permutation (m = n) and
where the input for each player is the t-neighbourhood of its node3. Whether
the number of rounds t can be significantly reduced if quantum resources are
available is a widely open question [14,24,25] even for path graphs.

Lastly, we notice that the colouring game as described above can be further
extended to locally checkable labelling games where the goal for the players is to
output a label taken from a predefined set and satisfying some local constraints
in the graph. This captures not only colouring problems, but also maximal inde-
pendent set, dominating set, weak 2-colouring4, and many others [6,28].

Our Contribution. In this paper we consider the multipartite q-colouring game
for the path v1 − v2 − · · · − vn where the referee’s placement is a permutation σ
on {1, . . . , n} not revealed to the players. So player Pi is placed at position σ(i)
on the path, i.e., at the node vσ(i). The referee’s input for Pi consists only of the
index σ−1(σ(i)+1) of the player placed on its right neighbouring node5, vσ(i)+1.
As a result, each player outputs a colour given its own index and the one of its
right neighbour. The players win the game if they produce a q-colouring of the
path. Thus in this game a player can coordinate only with its right neighbour
and its colour cannot depend on its position σ(i).

As explained above, this game can be seen as the q-colouring problem in the
distributed LOCAL model where each processor has received information only
from its right neighbour, after what may be called a half-round of communica-
tion. From the above lower bound with k = 1, we must have q = Ω(log n) for
every joint strategy based on classical resources including shared randomness.

The question we want to address is what is the minimum number of colours
q that can be achieved if players are allowed to use quantum resources, and
more generally any nonsignalling resources. It should be stressed that quantum
resources allow each player to use non-local correlations that may in fact beat
the previous Ω(log n) lower bound on q. We prove in this paper that q ! 4 for
n large enough, and this is optimal.

To formally state our main theorem, we interpret the colouring resulting
from a run of the game as a random word X1X2 · · · Xn, where each letter Xi is
a random variable ranging in {1, . . . , q} and corresponding to the colour output
by the player at node vi. Here randomness may come from the kind of resource
used by the players in their joint strategy (e.g., a quantum state) that is revealed
at the time they output the colour (e.g., measurement).
3 Say, the list of player’s IDs and the edges list between them.
4 In this problem, each player must produce one out two possible colours such that at

least one of its adjacent node receives a different colour.
5 Player at vn receives index 0. Alternatively, we may assume that an extra player

P0 is always placed at a virtual node vn+1 and does not take part in the colouring
game.
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4 C. Gavoille et al.

Given an interval I = [a, b], we use the notation XI for the subword
XaXa+1 · · · Xb−1Xb. Define the distance between any two intervals I, J as
inf {|i − j| : i ∈ I, j ∈ J}. (The distance between I and J = ∅ is +∞ by con-
vention). Note that the two subwords XI and XJ are separated by k letters in
X1 · · · Xn if and only if I and J are at distance k + 1. We say that a word is
coloured if any two consecutive letters are distinct.

In order to lower bound q for any probability distribution for random
q-coloured words coming from such games, we introduce the notion of k-
localisability defined as follows:

Definition 1. A probability distribution for a random word X1 · · · Xn is k-
localisable if, for all intervals I, J ⊆ {1, . . . , n} at distance more than k, the
distribution of (XI ,XJ ) can only depend on {|I|, |J |}.

Informally, this means that the probability of having two given words S and
T in a random word depends neither on their absolute positions, nor on their
order, nor on their distance in the word, as long as the number of letters between
them is at least k.

Coming back to our colouring game on the path where players are only
aware of their immediate right neighbour, the word distribution resulting of
any winning strategy based on nonsignalling resources must be 1-localisable.
This is because otherwise two players at nodes vi and vj sufficiently far apart
could collectively retrieve information about i, j or |i − j| from their colour
distribution. From the rules of the game this is not possible without signals
(i.e., communication). This holds for any nonsignalling theory including quantum
mechanics. Note however that a k-localisable colour distribution does not forbid
non-local correlation.

Theorem 1. Every 1-localisable probability distribution for random q-coloured
words of length n requires q ! 4 for n large enough.

As we will see in the next paragraph, the lower bound of Theorem1 is tight.
This is actually a consequence of the random 4-colouring given in [20].

Our approach to prove Theorem1 is to study random binary words Y1 · · · Yn

obtained from a random q-coloured word X1 · · · Xn by fixing any colour c ∈
{1, . . . , q} and by setting Yi = 1 if Xi = c, and Yi = 0 otherwise. Observe
that Y1 · · · Yn codes an independent set of the n-node path, and let us call an
independent-set word any binary word that does not contain any two consecutive
ones. Such random words can also be seen as hard-core processes where the
variable Yi indicates the presence of a radius-1 hard-core particle at position i
on the discrete line.

The lower bound of Theorem1 is actually a corollary of our following main
technical contribution. It gives a fine analysis of the marginal probabilities
of having a given number of ones in fixed positions for 1-localisable random
independent-set words, a result interesting in its own right. We let cn = 1

n+1

(2n
n

)

denote the n-th Catalan number.
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Localisation-Resistant Random Words 5

Theorem 2. Let pi denote the probability of having i ones in the positions
indexed by the odd integers 1, 3, . . . , 2i − 1, for a random independent-set word
of length n ! 2i. Let ℓ = ⌊n/2⌋. Then, for every even n:

i. Every 1-localisable probability distribution for random independent-set words
of length n satisfies, for each i ∈ {0, . . . , ℓ}, pi " cℓ−i+1/cℓ+1.

ii. There exists a 1-localisable probability distribution for random independent-
set words of length n such that, for each i ∈ {0, . . . , ℓ}, pi = cℓ−i+1/cℓ+1.

By marginalising, it is easy to derive from Theorem 2(i) that pi "
c⌈n/2⌉−i+1/c⌈n/2⌉+1 for every length n, and not only for even n.

Let us explain why Theorem 1 follows from Theorem 2. The first observation
is that any letter transformation Yi = f(Xi) preserves the k-localisability of the
distribution as long as f does not depend on i. Now, given any 1-localisable
distribution for a random q-coloured word X1 · · · Xn, consider the most frequent
colour c, so appearing with probability at least 1/q in the random word. The
random independent-set word Y1 · · · Yn as defined above has a 1-localisable dis-
tribution. And the probability of having a one at any fixed position in Y1 · · · Yn

is p1 ! 1/q. However, from Theorem 2(i) applied to Y1 · · · Yn, we get that
p1 " c5/c6 = 7/22 whenever n ! 10 noting that cℓ/cℓ+1 = (ℓ + 2)/(4ℓ + 2).
Thus, we obtain 1/q " p1 " 7/22, implying that q > 3 as claimed in Theorem 1.

Related Works. The notion of k-localisability introduced in this paper is a natu-
ral notion for the study of multipartite colouring games on paths with quantum
resources (and beyond). A related notion in probability theory is the well-known
k-dependence of random variables [17,22] studied for more than seven decades.
A probability distribution for random variables X1 · · · Xn is k-dependent if, for
all intervals I, J ⊆ {1, . . . , n} at distance more than k, the variables XI and XJ

are independent. Clearly, 0-dependence is the same as independence.
Recall that a probability distribution for a random word X1 · · · Xn is station-

ary if, for every interval I ⊆ {1, . . . , n}, the distribution of XI can depend only
on |I|. It is not difficult to see that any stationary k-dependent distribution is
also k-localisable: for k-dependent distributions, the distribution of (XI ,XJ ) is
the product of the marginals which, by stationarity, can depend only on |I| and
on |J |. However, the reverse is false. Although every k-localisable distribution is
stationary (setting J = ∅ in the definition), there exist k-localisable distribu-
tions that are not k-dependent. For instance Xi = σ(i) for a uniform random
permutation σ of {1, . . . , n} defines a 0-localisable distribution that is not k-
dependent for every k. Indeed, P(XI = S) = (n − |I|)!/n! and P(XI = S, XJ =
T ) = (n − (|I| + |J |))!/n! for any two disjoint intervals I, J (so at distance more
than k for some k ! 0). However, P(XI = S,XJ = T ) ̸= P(XI = S) · P(XJ = T )
for every k. Furthermore, the random binary word defined by Yi = Xi mod 2 is
still 0-localisable and once again not k-dependent for every k.

Interestingly, the notion of 0-localisability corresponds to the notion of
exchangeability [5,9], in connection with the celebrated de Finetti Theorem that
explains the relationship between exchangeability and independence. Random
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6 C. Gavoille et al.

variables are (finitely) exchangeable if they are invariant under permutations of
their indices, i.e., if P(Xσ(1), · · · ,Xσ(n)) = P(X1, · · · ,Xn) for any permutation
σ on {1, . . . , n}.

Until very recently, no stationary k-dependent distribution for q-coloured
words of growing length n was known, even for large q. It is easy to see that
k ! 1 and q ! 3 are required. Indeed, k ! 1 since Xi and Xi+1 cannot be
independent. And q ! 3, since for 2-colouring P(Xi = Xj) depends on the
parity of |i − j| that can be much larger than k. In fact, for large enough n, it
has been proved in [21] that no stationary 1-dependent 3-colouring exists. This
result is actually implied by our Theorem 2(i).

The relationship between k and q has been investigated in [18–20]. In par-
ticular, in [20] a stationary 1-dependent 4-colouring is constructed, as well as a
2-dependent 3-colouring of words of infinite length. The construction is based
on recursion formulae extending a suitable colouring of a word of length n to
a word of length n + 1. This stationary 1-dependent 4-colouring implies that a
1-localisable 4-colouring exists. Thus our lower bound in Theorem1 is tight.

Overview. Let In ⊂ {0, 1}n be the set of all independent-set words of length n,
i.e., the binary words of length n with no two consecutive ones. As explained in
the previous paragraph, Theorem1 is a corollary of Theorem2(i). So we focus
on 1-localisable distributions for binary words of In.

In a first step, we show that, for every 1-localisable probability distribution P,
the probability P(s) of every binary word s of length n can always be written as
a linear combination with integral coefficients of the pi’s, i.e., the probabilities of
a random word having i ones in positions 1, 3, . . . , 2i − 1. This leads to a system
of linear inequalities with O(n) variables pi and with O(|In|) constraints. We
can in principle find the maximum value of p1 by solving such a linear program-
ming problem. Unfortunately, |In| grows exponentially in n since it satisfies a
Fibonacci recurrence. This approach may at first seem intractable.

However, we show that the O(|In|) constraints are highly redundant and
that there is a subset of only O(n) constraints strictly equivalent to the original
ones. Hence, we end up with a much smaller linear programming problem with
n/2 variables and n/2 constraints which moreover turns out to be sufficiently
structured so as to admit a closed-form solution.

Section 2 is dedicated to deriving this structured linear programming prob-
lem with p1 as the linear objective function that we are maximising. Section 3
addresses the problem of solving this linear program. We are first able to derive
a feasible solution for the linear program involving a binomial formula for the
Catalan numbers (namely Corollary 1). We then show that the feasible solution
we found at the previous step is indeed the optimal one by using the dual-
ity theorem for linear programming. We also show that this particular solution
maximises simultaneously all the pi’s, which will prove Theorem2(i & ii).

Due to space limitations, proofs and intermediate lemmas will appear in the
full version.
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Localisation-Resistant Random Words 7

2 Localisable Distribution on Independent-Set Words

A small worked-out example will go a long way towards explaining what the
present and following section are about. Let P be a 1-localisable probability
distribution on I4, and let X1X2X3X4 be a random word with this distribution.
We define p1 = P(X1 = 1) and p2 = P(X1 = X3 = 1). Let us now consider the
probabilities of the 8 individual words of I4:

0000, 1000, 0100, 0010, 0001, 1010, 0101, 1001

We have P(1010) = p2 by definition, and 1-localisability tells us that P(X1 =
1,X3 = 1) = P(X1 = 1,X4 = 1) = P(X2 = 1,X4 = 1). Hence, P(1010) =
P(1001) = P(0101) = p2. Now we also have: p1 = P(1000) + P(1010) + P(1001).
Hence the value of P(1000), which is readily seen to be the same as P(0001):

P(1000) = P(0001) = p1 − 2p2.

From P(X2 = 1) = P(0100) + P(0101) and P(X2 = 1) = P(X1 = 1) we get the
value of P(0100) and similarly of P(0010):

P(0100) = P(0010) = p1 − p2.

The only probability of an individual word that is unaccounted for is P(0000).
Writing that all probabilities of all individual words sum to 1, we get:

P(0000) = 1 − 4p1 + 3p2.

We may now notice two things. Any 1-localisable distribution on I4 is entirely
determined by the two values p1 and p2. Conversely, any probability distribution
defined as above by the two values p1 and p2 is 1-localisable. Finally, given any
two positive numbers p1 and p2, such a probability distribution is well-defined if
and only if all the linear expressions in p1, p2 that we have just computed take
positive values. In other words, the values of p1, p2 for which there exists a 1-
localisable probability distribution on I4 such that P(X1 = 1) = p1 and P(X1 =
X3 = 1) = p2, are exactly the solutions of the system of linear inequalities:

p1, p2 ! 0, p1 − 2p2 ! 0, p1 − p2 ! 0, and 1 − 4p1 + 3p2 ! 0.

Determining the largest allowable value of p1 consists therefore in solving the
associated linear program for the objective function p1. In the present example
we find that the maximum value is p1 = 2/5. Our goal is to prove that the
phenomena that we observe on this small example carry over to the general case
of 1-localisable distributions on In. We will then solve the general linear program
associated with the maximisation of p1.

We will find it convenient to write expressions such as P(10 ⋆ ⋆) for the value
P(X1 = 1) = p1. More generally, for a distribution P for binary words of length
n, two words s, t, and an integer i ! 0 such that |s| + i + |t| = n, we will write:

P(s ⋆i t) =
∑

u∈{0,1}i

P(s u t).
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8 C. Gavoille et al.

We now focus on the case of even n, and set n = 2ℓ. It will be useful to
introduce an algebraic formalism that will enable us to manipulate the general
linear program and identify redundant linear inequalities.

Consider ℓ variables p1, . . . , pℓ. Consider a function Λn : {0, 1}n →
Z[p1, . . . , pℓ], and define p0 =

∑
s∈{0,1}n Λn(s). We define the following rule for

extending the domain of Λn to {0, 1, ⋆}n:

(R0) Λn(s⋆t) = Λn(s0t) + Λn(s1t) for every s, t such that |s| + |t| = n − 1.

Repeated application of rule (R0) until only the symbol ⋆ remains on the left-
hand side gives that Λn(⋆n) =

∑
s∈{0,1}n Λn(s) = p0.

We also define the following properties:

(R1) Λn(s) = 0 if s ∈ {0, 1}n \ In.
(R2) Λn(s⋆t⋆) = Λn(s⋆⋆t) = Λn(⋆s⋆t) for s, t such that |s| + |t| = n − 2.
(R3) Λn(s⋆⋆t) = Λn(t⋆⋆s) for s, t such that |s| + |t| = n − 2.
(R4) Λn((1⋆)i⋆n−2i) = pi for i ∈ {1, . . . , ℓ}.

Lemma 1. For every p0, there is a unique function Λn on {0, 1}n satisfying
(R1), (R2) and (R4) and p0 =

∑
s∈{0,1}n Λn(s). For every s ∈ I2ℓ, Λn(s) is a

linear function of p1, . . . , pℓ. Furthermore, Λn satisfies Property (R3).

From now on, we consider only functions Λn that satisfy (R1) through (R4).
We now introduce the system of linear inequalities:

System 1. pi ! 0 and Λ2ℓ(s) ! 0, for all i ∈ {1, . . . , ℓ} and s ∈ I2ℓ.

We then have the relatively straightforward result:

Theorem 3. Let p1, . . . , pℓ ∈ [0, 1]. There exists a 1-localisable probability dis-
tribution P on I2ℓ such that P((1⋆)i⋆2ℓ−2i) = pi for all i ∈ {1, . . . , ℓ} iff System 1
is satisfied with p0 = 1. We then have Λ2ℓ(s) = P(s).

Let Sn =
{
(10)k0n−2k : k ∈ {0, . . . , ℓ}

}
⊂ In. We define the following sub-

system of System 1:

System 2. pi ! 0 and Λ2ℓ(s) ! 0, for all i ∈ {1, . . . , ℓ} and s ∈ S2ℓ.

We have the following:

Lemma 2. For every s ∈ In, there is (at)t∈Sn , at ∈ N, such that Λn(s) =∑
t∈Sn

atΛn(t).

Using this, we prove that

Proposition 1. System 1 is equivalent to System 2, i.e., any solution of one is
also a solution of the other.

Thus, one can focus on the much more manageable System 2. We have the
following expressions for the Λ-values of the elements of Sn:

Lemma 3. Λn((10)k0n−2k) =
∑ℓ−k

i=0 (−1)i
(2ℓ−2k+1−i

i

)
pk+i, for k ∈ {0, . . . , ℓ}.
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Localisation-Resistant Random Words 9

3 Solving the LP System

To summarise, we have shown so far that the existence of a 1-localisable proba-
bility distribution on I2ℓ ⊂ {0, 1}2ℓ is equivalent to the solvability of a system of
O(|In|) ∼exp(Ω(n)) inequalities Λ2ℓ(s) ! 0 for s ∈ I2ℓ. Moreover, every Λ2ℓ(s),
for s ∈ I2ℓ, is a linear function of pi = Λ2ℓ((1⋆)i⋆n−2i) for 1 " i " ℓ. We obtain
therefore a system of linear inequalities. We furthermore showed that there is a
size-ℓ subset S2ℓ of I2ℓ such that the inequalities corresponding to its members
imply all inequalities for all the members of I2ℓ.

Since we are interested in the values that can be taken by p1, . . . , pℓ, in
particular p1 and its maximum value, Lemma 3 tells us that we are now faced
with the explicit linear programming problem defined by p0 = 1 and:

maximise p1 subject to:
{

pi ! 0, i ∈ {1, . . . , ℓ}
∑ℓ−k

i=0 (−1)i
(2ℓ−2k+1−i

i

)
pk+i ! 0, k ∈ {0, . . . , ℓ − 1} .

(1)

Once we know this maximum value of p1, we set the value of p1 to be some-
thing less than or equal to this maximum value. It turns out that this gives rise
to another linear programming problem which is very similar in form to the first
one, and where the goal is now to maximise p2. We repeat this procedure until
we get the maximum value of every pi when the values of pj for j < i are set to
something less than or equal to their maximum possible value. Indeed, we will
show that we have the following, which implies directly Theorem2:

Theorem 4. Any solution (p1, . . . , pℓ) ∈ R ℓ to the system of inequalities (1)
satisfies pi " (cℓ/cℓ+1) · pi−1 " (cℓ−i+1/cℓ+1) · p0, possibly with equality.

We now need linear programming notation:

Definition 2. Let m, n ∈ N, ci, bj , ai,j ∈ R for 1 " i " m and 1 " j " n. Let
c= (c1, . . . , cn)T, b= (b1, . . . , bm)T, x = (x1, . . . , xn)T and A = (ai,j) be an
m ×n matrix. A problem of the form:

Maximise cTx, subject to Ax " b and x ! 0,

is called an LP problem in standard form. The linear expression cTx is called
the objective function, Ax " b and x ! 0 are called the constraints, the latter
being more specifically non-negativity constraints.

The corresponding dual problem is defined as the following problem on m
variables (y1, . . . , ym)T = y:

Minimise bTy, subject to ATy ! c and y ! 0.

We will need the duality theorem, see for instance [11, Chap. 5].
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10 C. Gavoille et al.

Theorem 5 (Duality Theorem). If the primal problem has an optimal
solution x∗ = (x∗

1, . . . , x
∗
n)T, then the dual problem has an optimal solution

y∗= (y∗
1 , . . . , y∗

m)T such that cTx∗= bTy∗. Furthermore, if x and y are feasible
solutions to the primal and the dual problem respectively, such that cTx = bTy,
then this common value optimises both objective functions.

The solution to the linear program (1) will be a consequence of the following:

Theorem 6. Consider an n ×n matrix An which is of the form
⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

a1,1 a1,2 . . . . . . a1,n−1 a1,n

−1 a2,2 . . . . . . a2,n−1 a2,n

0 −1
. . . . . .

...
...

...
...

. . . . . .
...

...
0 0 . . . −1 an−1,n−1 an−1,n

0 0 . . . 0 −1 an,n

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Consider the LP maximisation problem Pn associated with (An, cn,bn,xn),
where bn = (b, 0, . . . , 0)T, cn = (c, 0, . . . , 0)T and xn = (x1, . . . , xn)T are vectors
of length n. Then, the optimal value of the objective function of Pn is obtained by
solving the special case Anxn = bn. And this optimal value is un

un+1
bc , where the

sequence (uk)k!1 is defined by u1 = 1 and uk+1 =
∑k

i=1 an−k+1,n−k+i uk+1−i.

Some comments are in order: in matrix form, the linear program (1) is exactly
of the form envisaged by Theorem 6 with b = c = 1. We will therefore obtain the
maximum of p1 predicted by Theorem 4 by applying Theorem6 and by proving
that the associated sequence (un)n!1 is the sequence of Catalan numbers.

Our goal is therefore to prove Theorem6. In other words the aim is to solve
the following LP maximisation problem Pn associated with (An, cn,bn,xn).

Problem 1. Maximise cn
Txn, subject to Anxn " bn and xn ! 0.

We will first compute the special solution given by Anxn = bn. We obtain:

Proposition 2. The value of the objective function of Problem 1 in the case
where Anxn = bn is un

un+1
bc.

Proposition 2 follows from the following intermediate results.

Lemma 4. In the case where Anxn = bn, there is (µj)1"j"n such that xn−j =
µjxn−j+1 for j ̸= n, b = µnx1.

Corollary 1. Let u1 = 1 and ui =
∏i−1

j=1 µi for i ∈ {2, . . . , n + 1}. Then, we
have the recurrence relation uk+1 =

∑k
i=1 an−k+1,n−k+i uk+1−i.

Corollary 2. The sequence (uj)1"j"n+1 as defined in Corollary 1 satisfies
xn−j = uj+1

uj
xn−j+1 for j ̸= n and b = un+1

un
x1.
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Proposition 2 now follows from Corollary 2 by remarking that the objective func-
tion is cx1.

We now wish to prove that the value of p1 given by Proposition 2 actually
maximises p1. To this end we consider the dual of Problem1, namely:

Problem 2. Minimise bn
T yn, subject to An

T yn ! cn and yn ! 0.

Once again we solve a particular instance of this problem, namely An
Tyn =

cn. We will show that

Proposition 3. The value of the objective function of Problem 2 in the case
where An

Tyn = cn is un
un+1

bc.

It will be useful to now define a sequence of LP maximisation problems
(Pk)k"n associated with (Ak, ck,bk,xk), where Ak−1 is the (k − 1) ×(k − 1)
submatrix at the bottom right of Ak. In other words, Ak = (ak

i,j) where:

an
i,j = ai,j and ak−1

i,j = ak
i+1,j+1

and where bk−1 = (xn−k, 0, . . . , 0)T and xk−1 = (xn−k, . . . , xn)T. We will now
write an

i,j instead of ai,j because we shall need to modify the superscript n later.
We next prove the following results.

Proposition 4. There are (Uk,n)1"k"n+1 and (Vk,n)1"k"n+1 such that

yk = Uk,n y1 +Vk,n for 1 " k " n

0 = Un+1,n y1 +Vn+1,n

Furthermore,

(1) Vk,n = −cUk−1,n−1, and (2) Uk,n =
∑

0"j"k−1
0=i0<···<ij=k−1

∏

0"u"j−1

an
iu+1,iu+1

, for k ! 2.

Corollary 3. We have y1 = Un,n−1
Un+1,n

c in the case of equality in An
Tyn = cn.

Lemma 5. Un+1,n = un+1, where the sequence (un)n!1 is as in Corollary 1.

Corollary 3 and Lemma 5 together prove Proposition 3, remarking that the
objective function is by1. Since we have found a solution to Problem1 that gives
the value (un/un+1)bc for its objective function and we have also found a solution
to its dual problem, namely Problem2, that gives the very same value for the
dual objective function, the Duality Theorem implies that this common value
maximises both objective functions. This proves therefore Theorem6.

It remains to compute the specific value of the sequence (un) in the case of
the LP problem (1). We have:

Proposition 5. The sequence (un) is exactly the sequence of Catalan numbers.

Thus, the maximum value that can be taken by p1 is cℓ/cℓ+1.
The proof of Theorem4 is completed by determining the optimal values of

the remaining variables p2, . . . , pℓ. This amounts to solving linear systems Pk

for decreasing values of k, so that all the preceding techniques and results apply.
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4 Generalisation and Conclusion

In this paper we have introduced k-localisable distributions for random words.
They generalise the notion of exchangeability for random variables in much
the same way as k-dependence generalises independence. Furthermore, we
believe this notion is of great interest for the study of multipartite games with
nonsignalling resources (capturing quantum resources). This raises fundamental
questions in graph theory (through chromatic numbers) and distributed com-
puting (through symmetry-breaking problems). We have given a fine-grained
analysis of 1-localisable distributions for independent-set words, implying an
optimal lower bound of q ! 4 for 1-localisable random q-coloured words.

Using the same approach, we can extend Theorem 1 to d-distance q-coloured
words in which d + 1 consecutive letters must receive pairwise distinct colours
(Theorem 1 is for d = 1). This also corresponds to d-distance q-colouring of
a path, a well-known notion in graph theory [23,29]. As d-distance chromatic
number of the path is d + 1, we must have q ! d + 1. Observe that there is
no k-localisable d-distance q-colouring for k < d since P(Xi = Xj) depends on
whether |i− j| = d (it must be 0) or |i− j| > d (it must be >0 for q < n). So, we
investigate the case k = d, the d-localisable distributions for random d-distance
q-coloured words of length n. We can show that the minimum number of colours
must be q ! (d+1) ·(1+1/d)d for n large enough, generalising Theorem1. Using
the same approach as for d = 1, we consider distance-d independent-set words
(i.e., binary words with no two ones at distance "d). We show, using the same
technique, that the probability of having a one in any fixed position is upper
bounded by the ratio of two consecutive Fuss-Catalan numbers of parameters
n/(d + 1), a generalisation of Catalan numbers, whose limit is dd/(d + 1)d+1.
This will appear in the full version of the paper.

A step further would be to extend the results to combinatorial structures
other than words. The notion of k-localisability extends naturally to graphs as
follows. Here each node v of a graph G gets a random variable Xv. Let XS , for
every subset S of nodes, denote the collection of random variables Xs with s ∈ S,
and let GS denote any graph isomorphic to G[S], the subgraph of G induced
by S. Then, a probability distribution for random variables (Xv) with support
the nodes of G is k-localisable if, for every two subsets I, J at distance more
than k in G such that GI and GJ are connected, the distribution of (XI ,XJ )
can depend only on {GI , GJ}. The notion of independent-set word transfers also
to binary variables encoding independent sets in G. The study of k-localisable
q-colourings (or independent-sets) on graphs would have potential applications
to understanding the possibilities of distributed quantum computing.
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