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Abstract

In this paper we focus on the question of locality in distributed computing in the context
of quantum information. To the best of our knowledge, this is the first work which focuses
solely on the round complexity of quantum distributed algorithms, with no bounds imposed
on local computational power or on the bit size of messages. Specifically, we consider Linial’s
LOCAL model of a distributed system augmented through two types of quantum extensions:
(1) initialization of the system in a quantum entangled state, and/or (2) application of
quantum communication channels.

For both types of extensions, we put forward valid proof-of-concept examples of dis-
tributed problems whose round complexity is in fact reduced through genuinely quantum
effects. Nevertheless, we show that even such quantum variants of the LOCAL model have
non-trivial limitations, captured by a very simple (purely probabilistic) notion which we call
“physical locality” (ϕ-LOCAL). While this is strictly weaker than the “computational lo-
cality” of the classical LOCAL model, it nevertheless leads to a generic view-based analysis
technique for constructing lower bounds on round complexity. Specifically, it turns out that
the best currently known lower time bounds for many distributed combinatorial optimization
problems, such as Maximal Independent Set, bounds cannot be broken by applying quantum
processing, in any conceivable way.
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1 Introduction

The introduction of computational models based on quantum computing, starting from the
works of Deutsch in the 1980’s [Deu85], has led to the advent of a new branch of complexity
theory. Many studies have for instance focused on the complexity class BQP of problems solvable
on a quantum computer in polynomial time with bounded error probability, and its relation to
the classical complexity classes. One of the best known algorithmic results in this respect is
Shor’s polynomial-time method of integer factorization [Sho94, Sho97, Buh96] based on the
Quantum Fourier Transform, which has recently been partially tested in an experimental set-
up for very small values of problem input [LWL+07, CYL07]. Nevertheless, application of
quantum information in centralized computing scenarios still proves extremely costly and is
riddled with technological difficulties resulting from quantum decoherence effects [Sch05]. On
the other hand, in an even wider time-frame, properties of quantum-mechanical systems have
proven to be of interest from the perspective of game theory [BT08, EWL99, BH01], information
theory [NC00, Jae07, BS98], and distributed systems [BT08, DP08].

A major line of study (which we briefly look at in the related work section) concerns the
application of quantum effects to reduce communication complexity, i.e., to decrease the number
of communication bits required to solve a specific task performed within a system graph with
several distributed agents. The influence of quantum information on the computing power of
distributed systems with node anonymity and distributed systems in the presence of faults has
also been studied.

This paper focuses on a different aspect of quantum distributed computing: we do not impose
any bounds on the size of communicated messages, but assume that the system operates in
synchronous rounds, and ask to what extent quantum effects can reduce the number of rounds
required to solve combinatorial optimisation problems. The starting point for considerations
is the well-established LOCAL model a.k.a. Linial’s Free model [Lin87, Lin92]. We provide a
comparison of the “computational power” of the quantum and non-quantum models, formalising
the notion of locality in quantum distributed computing, and showing how it essentially differs
from the understanding of locality in the LOCAL model.

1.1 Related Work

One of the most intensively studied problems related to multi-agent quantum scenarios, when
expressed in the language of distributed computing, is roughly trying to address the question:
Can quantum effects be used to enhance distributed computations with messages of bounded
size, i.e., in settings inspired by the CONGEST distributed model1? The quantum variant of
CONGEST , widely studied in physics, is known as the LOCC model2. It exploits the key
quantum-mechanical concept of an entangled state (see e.g. [NC00, HHH96]). This is achieved
by altering the initialization phase of the system to allow for a starting state entangled among
all the processors, which are locally given quantum computation capabilities; however, com-
munication between processors is still restricted to the exchange of classical information, only.
This application of pre-entanglement has been shown to decrease the number of communication
bits required to solve certain distributed problems with output collected from one node, and
consequently, to decrease the number of required communication rounds when message sizes are
bounded. The first proof-of-concept example was provided in [CB97], where the computation of

1See [Pel99] for an introduction to the CONGEST model.
2It stands for Local Operations and Classical Communication.
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a specific function of input data distributed among three parties was shown to require at least 3
communicated bits in the classical case, but only 2 communicated bits if the system is initialized
in a specific quantum entangled state. Many related results and refinements of this scenario are
surveyed in e.g. [Ż08, BCvD01].

Other works on the subject have focused on characterising the physical evolution of states
attainable in the LOCC model [Nie99, OMM04, dNDVB07], while other authors have dealt with
the combinatorial complexity of distributing the entangled state over the whole system in the
initialization phase [SKP04]. Other modifications of the model attempt to show that a denser
coding of information in transmitted messages is possible when using quantum channels, as
compared to classical communication links (see e.g. [BCdWZ99]).

Very recently, some authors have begun to study the impact of quantum effects on funda-
mental concepts of the theory of distributed computing. An overview of this line of research
is contained in the recent survey paper by Denchev and Pandurangan [DP08]. The advan-
tages of applying quantum communication in games against a dynamic adversary are displayed
in [BOH05], where it is shown that a constant number of computational rounds is sufficient to
solve the quantum Byzantine agreement problem for an n-node system with less than n/3 faulty
nodes in such a dynamic setting; corresponding classical algorithms require Ω(

√
n) rounds. An-

other especially interesting result is that the leader election problem can be solved in distributed
systems with quantum links, but no pre-entanglement [TKM05, KMT08]. Some authors have
also claimed that problems related to leader election [PSK03, DP06] and distributed consen-
sus [DP06, Hel08] can be solved in distributed systems aided by quantum pre-entanglement.

1.2 Outline of the Paper

In Subsection 1.3 we briefly outline the LOCAL model and its extensions, obtained by modifying
the initialization of the system set-up and/or adding quantum communication capabilities on
the edges. Whereas this discussion is self-contained, we also provide a formal mathematical
definition of the corresponding notions in Appendix A. Subsection 1.4 introduces some notation
used when comparing computational models.

In Section 2 we compare the computational power of models based on the proposed extensions
of LOCAL. In particular, we prove that adding quantum extensions to the LOCAL model
decreases the round complexity of certain distributed problems. This is achieved through simple
proof-of-concept examples.

Most importantly, in Section 3 we introduce a probabilistic framework for proving lower
bounds on the distributed time complexity of computational problems in any quantum (or other
unconventional) models based on LOCAL. This is directly applied to obtain such lower bounds
for many combinatorial optimization problems, including Maximal Independent Set, Greedy
Graph Coloring, and problems of spanner construction. As a side effect, the simple concept of
“physical locality” formulated in this section, leads to the definition of a computational model
we call ϕ-LOCAL, which appears to be of independent interest.

Finally, in Section 4 we make an attempt to clarify issues with some of the related work
on quantum distributed computing as surveyed by [DP08]. Making use of the framework of
computational models defined in the previous sections, we explain why certain claims, saying
that problems such as Leader Election or Distributed Consensus benefit from the application of
quantum processing, should be approached with caution.

Section 5 contains some concluding remarks and suggests directions of future studies.
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1.3 Preliminaries: Description of Computation Models

In this section we briefly recall the computational properties of the LOCAL model, which
has been the subject of intensive study in the last 20 years, starting from the seminal works
of [Lin87, NS95]. When considering the LOCAL model in the context of quantum processing, it
has to be noted that simply introducing a “quantum computer” as a module in each processor
does not affect the power of the model, since in LOCAL the processors as such are already
assumed to have unbounded capabilities of local computation.

There exist two distinct and independent approaches to extending the LOCAL model: by
modifying the initial set-up of the system (leading to extensions which we call +S and +E), and
by introducing quantum communication channels (the +Q extension). Of these three extensions,
two (+E and +Q) rely on quantum processing and roughly correspond to settings studied in some
related work [DP08], whereas the third extension (+S) is purely computational in the classical
sense, and is introduced in this work.

The discussion which follows is intentionally informal, whereas rigorous definitions and some
further considerations are postponed to Appendix A. The formalism in the Appendix is used in
particular for showing computational limitations of models and pointing out errors in previous
work, hence we keep it precise in a mathematical sense and free from any implicit assumptions.

The LOCAL model. It is assumed that the distributed system consists of a set of processors
V (with |V | = n) and operates in a sequence of synchronous rounds, each of which involves un-
bounded computations on the local state variables of the processors, and a subsequent exchange
of messages of arbitrary size between pairs of processors which are connected by links (except
for round 0, which involves local computations, only). Nodes can identify their neighbours using
integer labels assigned successively to communication ports. The local computation procedures
encoded in all processors are necessarily the same, and initially all local state variables have the
same value for all processors, except for one distinguished local variable x(v) of each processor v
which encodes input data. The input of a problem is defined in the form of a labeled graph Gx,
where G = (V,E) is the system graph, while x : V → N is an assignment of labels to processors.
The output of the algorithm is given in the form of a vector of local variables y : V → N, and the
algorithm is assumed to terminate once all variables y(v) are definitely fixed. Herein we assume
that faults do not appear on processors and links, that local computation procedures may be
randomized (with processors having access to their own generators of random variables), and
that the input labels x need not in general be unique for all processors.

In our considerations, it is convenient to assume that the set of processors V is given before
the input is defined. This is used for convenience of notation, and does not affect neither the
model in any way, nor the anonymity of nodes in the considered problems.

Initialization of the system (+S and +E extensions). In the LOCAL model, it is assumed
that the initial set-up of all the processors is identical. This assumption can be relaxed by
allowing the processors to obtain some information from a central helper, but only before the
start of the distributed process (i.e., independently of the inputGx). The initialization procedure
is an integral part of the algorithm used for solving the distributed problem. Several different
forms of initialization can be naturally defined; for clarity of discussion, we consider only two
extensions of the model: the +S extension (for Separable state), which allows for the most general
form of initialization possible in a classical computational setting, and the more powerful +E
extension (for Entangled state), which allows for the most general form of initialization available
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in a quantum distributed system.

The +S extension. We say that a computational model is equipped with the +S extension
if the following modifications are introduced:

• For any computational problem, the computational procedure consists of the distributed
algorithm applied by all the processors during the rounds of computation, and an additional
(randomized) procedure executed in a centralized way in the initialization phase. The
result of the initialization procedure is an assignment h : V → N of helper variables to the
set of processors. The helper variables are independent3 of the input Gx.

• For each processor v ∈ V , at the start of round 0, its input label x(v) is augmented by the
value h(v), stored in a helper register of the local memory.

It is straightforward to show that the above formulation has two equivalent characterizations.
From a computational perspective, we may equivalently say that for each processor v, the helper
initialization value h(v) encodes: (1) a unique identifier of v from the range {1, . . . , n}, (2) the
value of n, (3) the value of a random number, chosen from an arbitrarily large range, and shared
by all processors. All further helper information is unnecessary, since it can be computed by the
processors in round 0 of the distributed computations (simulation of the centralized assignment
of further helper information can be simulated based on random bits and starting information
which is common to all processors).

Alternatively, we may say that through the randomized initialization, according to some
probability distribution we choose some deterministic initialization of the set of states of indi-
vidual processors. This intuition precisely corresponds to the notion of a state with uncertainty
in classical statistical physics, referred to in quantum-mechanical discussions as a (mixed) sepa-
rable state of the system. It is obviously true to say that whenever a problem is solved in a model
with the +S extension, it may benefit solely from the modification of the system initialization,
and not from the laws of quantum mechanics.

The +E extension. Unlike in classical physics, in quantum mechanics not every initializa-
tion of the system has to follow the above pattern. Consider a scenario in which we centrally
create an initial global state of the whole system of processors, and spatially distribute “parts”
of it to the individual processors (for example, by sharing out among the nodes a set of quantum-
correlated photons, coming from a single SPDC4 emission process). Then, each of the processors
can perform operations on the “part” of the state assigned to its spatial location; by a loose
analogy to processing of classical information, this is sometimes referred to as each processor
“manipulating its own quantum bits (qubits)”. Given a general initial state of the system,
the outcome of such a physical process, as determined by the processors, may display correla-
tions which cannot be described using any classical probabilistic framework. Initial states which
can be lead to display such properties are called non-separable, or entangled states. Quantum
entanglement is without doubt one of the predominant topics studied in quantum-mechanical
literature of the last decades; we refer the interested reader to e.g. [NC00] for an extensive
introduction to the topic.

3Helper variables that do depend on the inputs are referred to in the literature as Oracles [FIP06, FGIP07].
Such extensions are not discussed in this paper.

4Spontaneous Parametric Down-Conversion.
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We say that a computational model is equipped with the +E extension if all processors are
equipped with helper quantum information registers h, and the computational procedure used
to solve a problem sets in the initialization phase in a centralized way some chosen, possibly
entangled, quantum state over the set of quantum information registers h of all processors, in a
way independent of the input graph Gx.

Of course, the definition of the +E extension does not require that the starting state is
entangled; for the special case when it is separable, the +E extension is precisely equivalent to
the +S extension.

Communication capabilities (+Q extension). Whereas the application of local quantum
operations in each processor does not increase the power of the LOCAL model as such, the
situation changes when the processors can interact with each other using quantum communica-
tion channels. Intuitively, such channels allow for the distribution of an entangled state by a
processor over several of its neighbours in one communication round; such an effect cannot be
achieved using classical communication links.

We say that a computational model is equipped with the +Q extension if all communication
links between processors in the system graph are replaced by quantum communication channels.

Models based on extensions. Modifications to the initialization and communication capa-
bilities of the system are completely independent of each other. For initialization, we can apply
no extension, use a separable state (+S), or an entangled state (+E). For communication, we
can apply no extension (message exchanges with classical information), or use quantum chan-
nels (+Q). Hence, we obtain 6 possible models (LOCAL, LOCAL+S, LOCAL+E , LOCAL+Q,
LOCAL+Q+S, LOCAL+Q+E), which are discussed in the following section. Some of these col-
lapse onto each other, in particular, LOCAL+Q+E and LOCAL+E are equivalent in terms of
computational power (Proposition 4).

1.4 Notation for Comparing the Power of Computational Models

In order to compare the computational power of different models, we introduce two basic notions:
that of the problem being solved, and of an outcome of the computational process.

Definition 1. A problem P is a mapping Gx 7→ {yi}, which assigns to each input graph Gx a
set of permissable output vectors yi : V → N.

Instead of explicitly saying that we are interested in finding efficient (possibly randomized)
distributed algorithms for solving problems within the considered computational models, we
characterize the behavior of such procedures through the probability distribution of output
vectors which they may lead to, known as an outcome. In fact, such a probability distribution is
necessarily well defined, whereas formally describing the computational process may be difficult
in some unconventional settings (see e.g. the ϕ-LOCAL model in Section 3).

Definition 2. An outcome O is a mapping Gx 7→ {(yi, pi)}, which assigns to each input graph
Gx a normalized discrete probability distribution {pi}, such that: ∀i p

i > 0 and
∑

i p
i = 1, with

pi representing the probability of obtaining yi : V → N as the output vector of the distributed
system.
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Definition 3. For any outcome O in a computational model M which is a variant of LOCAL,
we will write O ∈ M[t] if within model M there exists a distributed procedure which yields
outcome O after at most t rounds of computation.

We will say that an outcome O is a solution to problem P with probability p if for all Gx,
we have:

∑

{(yi,pi)∈O(Gx) : yi∈P(Gx)} pi ≥ p. When p = 1, we will simply call O a solution to
P (with certainty).

By a slight abuse of notation, for a problem P we will write P ∈ M[t] (respectively,
P ∈ M[t, p]) if there exists an outcome O ∈ M[t] which is a solution to problem P (respectively,
a solution to problem P with probability p).

For two computational models M1, M2, we say that M1 is not more powerful than M2

(denoted M1 ⊆ M2) if for every problem P, for all t ∈ N and p > 0, P ∈ M1[t, p] =⇒ P ∈
M2[t, p]. The relation ⊆ induces a partial order of models which is naturally extended to say
that M1 and M2 are equivalent (M1 = M2), or that M1 is less powerful than M2 (M1 ( M2).

It can easily be proved that M1 ⊆ M2 if and only if for every outcome O, for all t ∈ N,
O ∈ M1[t] =⇒ O ∈ M2[t]. Such an outcome-based characterisation of models is occasionally
more intuitive, since it is not explicitly parameterised by probability p.

In all further considerations, when proving that M1 ( M2, we will do so in a stronger,
deterministic sense, by showing that there exist a problem P and t ∈ N such that P ∈ M2[t]
and P /∈ M1[t].

2 Hierarchy of Quantum Models

The most natural variants of LOCAL which are based on the extensions proposed in the pre-
vious subsection are the classical model with separable initialization (LOCAL+S), and quan-
tum models with pre-entanglement at initialization, quantum channels, or both (LOCAL+E ,
LOCAL+Q, and LOCAL+Q+E , respectively). The strengths of the models can obviously
be ordered as follows: LOCAL ⊆ LOCAL+Q ⊆ LOCAL+Q+S ⊆ LOCAL+Q+E , and
LOCAL ⊆ LOCAL+S ⊆ LOCAL+E ⊆ LOCAL+Q+E . We now proceed to show that, whereas
LOCAL+E = LOCAL+Q+E , all the remaining inclusions are in fact strict. The hierarchy of the
most important models is shown in Fig. 1.

Proposition 1. LOCAL ( LOCAL+S. Moreover, there exists a problem P such that P ∈
LOCAL+S[0] and P 6∈ LOCAL[t] for all t ∈ N.

Proof. Any problem, which can be solved when given unique node identifiers from the range
{1, . . . , n} is clearly in LOCAL+S[0]. On the other hand, there are many examples of such
problems which are not in LOCAL (or require Ω(n) rounds assuming that the system graph is
connected and node labels are unique), most trivially the problem P of assigning unique node
identifiers from the range {1, . . . , n} to all nodes.

More interestingly, one can show that LOCAL+S benefits due to the fact that helper variables
h(v) can encode a value which is set in a randomized way. Consider as a simple example
a problem P ′ whose input is a graph G = (V,E), of sufficiently large order n, with input
labels of the nodes encoding unique node identifiers {1, . . . , n} and the value of n; moreover,
G is restricted to be the complete graph Kn minus exactly one edge. The goal is to select
an edge of the graph, i.e., output y must be such that for some two nodes u, v ∈ V , with
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Figure 1: Hierarchy of computational extensions to the LOCAL model. See Section 3 for a
definition of the ϕ-LOCAL model, and Section 1.3 or Appendix A for definitions of all other
models.

{u, v} ∈ E, we have y(u) = y(v) = 1, and for all other w ∈ V we have y(w) = 0. Even with the
knowledge of node identifiers and n, in the LOCAL model the problem cannot be solved with
high probability without communication, i.e., within 0 rounds: we have P ′ /∈ LOCAL[0, e−1]
(the proof is technical, see Appendix C.1). On the other hand, within the LOCAL+S model
this problem admits a solution in 0 rounds with probability arbitrarily close to 1 for sufficiently
large n. Similar arguments can be applied to display the difference between the models for more
advanced problems which simulate collaborative mobile agent scenarios, in particular variants
of the cops-and-robbers problems in graphs.

We now point out the difference in power between the classical and quantum models. The
proofs proceed by rephrasing one of the best established results of quantum interferometry,
first introduced in the context of the so called Bell’s Theorem without inequalities, for a 3-
particle quantum entangled state (cf. [GHZ89] for the original paper, [Mer90] for a very informal
intuition, or [PCZ+08] for a contemporary exposition). We use its more algorithmic modulo-4
sum formulation, similar to that found in [Ż08].

Theorem 2. LOCAL+S ( LOCAL+E. Moreover, there exists a problem P such that P ∈
LOCAL+E [0] and P 6∈ LOCAL+S[t] for all t ∈ N.

Proof. Let P be a problem defined on a system with 3 nodes. Let the input graph be empty,
and assume that input labels x = (x1, x2, x3) ∈ {0, 1}3 of respective nodes satisfy the condition
x1 + x2 + x3 ∈ {0, 2}. An output y = (y1, y2, y3) ∈ {0, 1}3 is considered valid for input x
if and only if 2(y1 + y2 + y3) ≡ (x1 + x2 + x3) mod 4. This problem is not in LOCAL+S,
since finding a solution with certainty would imply that there exist three deterministic functions
Y1, Y2, Y3 : {0, 1} → {0, 1}, such that for any input vector (x1, x2, x3) satisfying the constraints
of the problem, (Y1(x1), Y2(x2), Y3(x3)) is a valid output vector. It is immediate to show that
this is impossible.5

The situation is different when the system operates in the LOCAL+E model starts in an en-
tangled state. The procedure required to obtain a valid solution is described in detail in [GHZ89].
In brief, in the initialization phase we share out to each of the processors one of 3 entangled
qubits, carried e.g. by photons, which are in the entangled tripartite state known as the GHZ

5By considering all of the possible inputs, we obtain the set of equations: 2(Y1(0) + Y2(0) + Y3(0)) ≡ 0
mod 4, and 2(Y1(1) + Y2(1) + Y3(0)) ≡ 2(Y1(1) + Y2(0) + Y3(1)) ≡ 2(Y1(0) + Y2(1) + Y3(1)) ≡ 2 mod 4, which is
contradictory: by summing the left-hand sides of all four equations we obtain 0 ≡ 6 mod 4.
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Table 1: An outcome O which is a solution (with certainty) to the modulo-4 sum problem on
the 3-node empty graph, and belongs to LOCAL+E [0] (see Theorem 2).

Input Probability Output
(x1, x2, x3) pi (yi

1, y
i
2, y

i
3)

(0, 0, 0) 1/4 (0, 0, 0)
1/4 (0, 1, 1)
1/4 (1, 0, 1)
1/4 (1, 1, 0)

Input Probability Output
(x1, x2, x3) pi (yi

1, y
i
2, y

i
3)

(0, 1, 1)
or (1, 0, 1)
or (1, 1, 0)

1/4 (1, 1, 1)
1/4 (1, 0, 0)
1/4 (0, 1, 0)
1/4 (0, 0, 1)

state (namely 1√
2
(|000〉+ |111〉) in Dirac’s notation for pure states). Each of the processors then

performs a simple transformation on “its own” qubit, in a way dependent only on the proces-
sor’s input xi. Finally, a measurement is performed, and it can be shown that the probability
distribution of obtained output vectors (the outcome) is that stated in Table 1. Since all of the
outputs are accepted as valid for the considered problem P, this implies that P ∈ LOCAL+E [0].

We note that the obtained outcome O ∈ LOCAL+E [0] is a solution to P with certainty, but
it is not deterministic, yielding different outputs with probability 1/4 (Table 1); in fact, within
LOCAL+E there does not exist an outcome which is a solution to P, and yields some output
with probability 1. This sort of situation could not occur in LOCAL, or in any other classical
model.

Proposition 3. LOCAL ( LOCAL+Q. Moreover, for any t > 0, there exists a problem P

such that P ∈ LOCAL+Q[t] and P 6∈ LOCAL[2t− 1].

Proof. The proof proceeds by a modification of the argument from Theorem 2. This time, we
consider a system on n = 3k + 1 nodes, and an input graph with the topology of a uniformly
subdivided star with a central node of degree 3. The modified problem P ′ consists in solving the
problem from Theorem 2, when the three input and output values are put on the three leaves of
the star. Within LOCAL, this problem requires 2k rounds to solve, since the three leaves are at
a distance of 2k from each other, and need to communicate to solve the problem. On the other
hand, in LOCAL+Q we are given quantum communication links. Hence, in round 0, the central
node can create an entangled tripartite GHZ state, and propagate its qubits in k rounds6 to the
leaves of the graph, which then apply the previously discussed quantum procedure.

Whereas the time distinction between LOCAL+S and LOCAL+E given by Theorem 2 is
remarkable (since it considers the feasibility of solving problems, or when discussing connected
graphs, a speed-up from Ω(n) to 0 communication rounds), the situation is less clear between
LOCAL+Q and LOCAL. Although a speed-up factor of 2 as expressed by Proposition 3 looks
like a natural limit, the authors know of no conclusive arguments to show that it cannot be
increased further.

Finally, following the argumentation of [DP08], we note that LOCAL+E = LOCAL+Q+E ,
or in other words that, given access to pre-entanglement, it is possible to simulate quantum

6Observe that intermediate nodes simply send the qubit on, without making any copies.
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links by means of classical ones. The effect used to achieve this is known as quantum teleporta-
tion [PCZ+08]; by carefully choosing an entangled state over the whole system, it can be applied
even when the communicating nodes do not yet know their neighbors’ unique identifiers.

Proposition 4 ([DP08]). LOCAL+E = LOCAL+Q+E.

To complete a discussion of Fig. 1, we point out that LOCAL+Q is incomparable with
LOCAL+S. This is because the problem discussed in the proof of Proposition 1 belongs to
LOCAL+S, but not to LOCAL+Q, and the problem discussed in the proof of Proposition 3
belongs to LOCAL+Q[1], but not to LOCAL+S[1].

The LOCAL+Q+S model has been left out from discussion, since it appears to be of little sig-
nificance. By considering the same problems as before, we have LOCAL+Q+S ( LOCAL+Q+E =
LOCAL+E , so LOCAL+Q+S could be placed directly to the left of LOCAL+E in Fig. 1.

3 Lower Time Bounds Based on Physical Locality (ϕ-LOCAL)

Proving lower bounds on the power of quantum models is problematic. This results, in particular,
from the fact that there does not exist as yet an easy-to-use classification of entangled states,
or of quantum operations (completely positive maps) which can be performed to transform one
quantum state into another. However, in the context of distributed computing, it is possible
to consider a more general framework of physical locality, leading to the ϕ-LOCAL model we
define hereafter, which in turn can be used to bound the power of quantum models.

Within the classical LOCAL model, we can say that the output of any processor v after
t rounds has to be computed based on the input data which can be collected from the input
graph Gx by performing an exploration up to a depth of t, starting from node v; we call this
the distance-t local view denoted by Vt(Gx, v). This leads to a simple characterisation of the
LOCAL model in terms of valid outcomes (see Appendix C.2 for a formalization).

In order to allow for quantum extensions to local, the assumption of classical computability
needs to be relaxed, while at the same time retaining in some form the assumption of locality,
since it is an essential part of physical theory as we understand it today (cf. e.g. [Shi84, Str07]
for different approaches to the problem). To define locality, for a moment we choose to look
at the system from a physicist’s perspective, with the distributed system as an experimental
stand, with processors as black boxes, with input data Gx as part of the experimental set-up,
and with output y as the data resulting of a single experiment. For each input, the experiment is
performed for an ensemble of identical systems, obtaining a probability distribution of outputs
{(yi, pi)}. Now, given a round-based model with interactions between nearest neighbors only,
the physical understanding of locality is as follows: Locality is violated if and only if, based on the
available output data, we can conclusively verify that after t rounds some subset S of processors
was affected by input data initially localized outside its view Vt(Gx, S) :=

⋃

v∈S Vt(Gx, v).

Using the above intuition, we now formalize this notion to obtain what we call the ϕ-LOCAL
model, i.e., the weakest possible distributed model which still preserves physical locality. Given
an output distribution {(yi, pi)} acting on V , for any subset of vertices S ⊆ V we define its
marginal distribution on set S, {(yi, pi)}[S], as the unique distribution {(yj, pj)} acting on S
which satisfies the condition pj =

∑

{i : yj=yi[S]} p
i, where yi[S] is the restriction of output

yi : V → N to nodes from subset S ⊆ V .

Definition 4. An outcome Gx 7→ {(yi, pi)} belongs to ϕ-LOCAL[t] if for all subsets S ⊆ V ,

for any pair of inputs G
(a)
x , G

(b)
x such that Vt(G

(a)
x , S) = Vt(G

(b)
x , S), the output distri-
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butions corresponding to these inputs have identical marginal distributions on set S, i.e.,
{(yi(a), pi(a))}[S] = {(yi(b), pi(b))}[S].

Quantum relaxations of the LOCAL model, whether obtained through application of pre-
entanglement, quantum channels, or both, lie in terms of strength “in between” the LOCAL
and ϕ-LOCAL model. This is expressed by the following theorem, whose proof we perform in
Appendix B (after previously reformulating the models in equivalent mathematical terms for
easier manipulation in Appendix A).

Theorem 5. LOCAL+Q+E ⊆ ϕ-LOCAL.

The theorem captures the property of locality of nearest-neighbor interactions in quantum
mechanics, and its proof can be seen as a boundary case (for discrete rounds) of the more
physical continuous-time setting studied in [BR81]. It does not rely in any way on any other
physical concepts, such as causality or speed of information in the theory of relativity.

Although it is not clear whether the containment in the above theorem is strict (we leave
this as an open question), the ϕ-LOCAL model is still sufficiently constrained to preserve many
important lower time bounds known from the LOCAL model, which are based on arguments
of indistinguishability of local views of a node for different inputs. In particular, by careful
analysis, it is easy to prove the following statements for the ϕ-LOCAL model.

• The problem of finding a maximal independent set in the system graph requires

Ω(
√

log n
log log n) rounds to solve [KMW04].

• The problem of finding a locally minimal (greedy) coloring of the system graph requires
Ω( log n

log log n) rounds to solve [GKKN07, GKK+09].

• The problem of finding a connected subgraph with O(n1+1/k) edges requires Ω(k) rounds
to solve [DGPV08, Elk07].

The matter is less clear in the case of the (∆ + 1)-coloring problem. The proof of the
famous lower bound of 1

2 log∗ n − O(1) rounds [Lin92] (and its extension to randomized algo-
rithms [Nao91]) does not appear to generalize from the LOCAL model to the ϕ-LOCAL model;
we are unaware of any (even constant) bound on the number of rounds required to find a solution
to (∆ + 1)-coloring in ϕ-LOCAL. Some indication that the technique of coloring neighborhood
graphs, used by Linial, may not apply in ϕ-LOCAL, is that this technique can likewise be used
to show a lower bound of

⌊

n
2

⌋

−1 rounds on the time required for 2-coloring the cycle Cn, where
n is even. However, in ϕ-LOCAL the same problem admits a solution in fewer rounds.

Theorem 6. The problem of 2-coloring the even cycle Cn (given unique node labels x) belongs
to ϕ-LOCAL[⌈n−2

4 ⌉], but does not belong to ϕ-LOCAL[⌈n−2
4 ⌉ − 1].

Proof (sketch). For the lower bound, consider the local view of two nodes u, v which still have
disjoint views after ⌈n−2

4 ⌉ − 1 rounds. There are at least two nodes which belong to neither the
view of u nor the view of v; hence, u and v cannot distinguish whether they are at an even or
at an odd distance from each other in the cycle. This directly leads to the lower bound, since
the definition condition of ϕ-LOCAL can be shown to be violated for S = {u, v}.

The upper bound is generated by on outcome O of the 2-coloring problem, given as follows:
each of the 2 legal 2-colorings of Cn is used as the output with probability 1

2 . Such an outcome

10



O belongs to ϕ-LOCAL[⌈n−2
4 ⌉]. This can be easily verified, since for any subset S ⊆ V we either

have that S consists of exactly two antipodal nodes of Cn, or the view V⌈n−2

4
⌉(Cnx , S) is simply

an arc of the cycle.

It would be interesting to find a constructive quantum procedure for finding a 2-coloring of
Cn in ⌈n−2

4 ⌉ rounds. In particular, we have that 2-coloring of C6 belongs to ϕ-LOCAL[1], does
not belong to LOCAL+S[1], and do not know if it belongs to LOCAL+E [1].

4 Simple Problems in a Quantum Setting

In this section, we have a look at some of the related work on quantum distributed problems, as
outlined in the survey [DP08]. Whereas the discussion in this section relies on the results and
notation from the preceding sections, it can also be translated into the (not always precisely
described) computational models studied in the considered related work.

Two problems which have been used to exhibit the difference between quantum models and
non-quantum models are LeaderElection, where the goal is for exactly one node of the system
graph to output a value of 1 whereas all other nodes output 0, and a problem which we will call
BitPicking, where the goal is for all nodes to return the same output value, either 0 or 1.7 These
discussions include the concept of fairness, which in the terminology of this paper means that we
are asking not about the problems as such, but about obtaining specific (fair) outcomes. More
precisely, we will say that FairLeaderElection is the outcome which puts a uniform probability
distribution on the n distinct outputs valid for LeaderElection (i.e., on all possible leaders), and
FairBitPicking is the outcome which puts a uniform probability distribution on the 2 distinct
outputs valid for BitPicking (i.e., picking 0 or 1).

The focus of [PSK03, DP06, Hel08] is to show that FairBitPicking and FairLeaderElection

belong to LOCAL+E [0] (even with some additional restrictions on the amount of allowed pre-
entanglement), whereas they do not belong to LOCAL[0]. This statement is correct, however,
this effect is due to the modification of initialization of the system, and not to quantum mechanics.
In fact, we can make the following obvious statement.

Proposition 7. FairBitPicking and FairLeaderElection belong to the non-quantum class
LOCAL+S[0]. Moreover, they can be solved with only one bit of helper information per node, at
initialization.

Proof. There is no input for the considered outcomes, hence the initialization procedure can be
defined so as to encode the appropriate output vector in the helper data h(v), choosing specific
outputs according to the required probability distribution.

Consequently, this sort of study should be considered in the context of the LOCAL+S mod-
ification, or in other words, the benefits of adding purely classical helper information to the
LOCAL model (and not what some authors refer to as “quantum non-locality”). Whereas in a
formal sense it is not a mistake to say that such an effect can also be obtained when using a quan-
tum entangled state as the “helper”, this is technologically difficult to implement, complicates
the discussion, and does not save information in any way, since for the considered outcomes,
the required helper data can already be encoded using one bit per node within LOCAL+S.

7Two sets of authors [DP06, Hel08] confuse the latter question with that of the DistributedConsensus prob-
lem [Lyn97, AW04].
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As such, this sort of approach can be seen as useless from the perspective of distributed com-
puting.8 In order to capture the benefit coming from the quantum setup, one has to display
quantum correlations which cannot be described in the classical framework (Theorem 2 and
Proposition 3).

Finally, we relate to the recent claims that the DistributedConsensus can be solved in a
quantum setting without communication. Whereas these claims result from a misunderstanding
of the definition [Lyn97, AW04] of DistributedConsensus, we point out that such a result is
impossible in any quantum model, since it is even impossible in ϕ-LOCAL. We recall that in
DistributedConsensus, given an assignment of input labels (x1, . . . , xn) to particular processors,
the goal is to obtain an output vector (y, . . . , y), such that y ∈ {x1, . . . , xn}.

Proposition 8. DistributedConsensus /∈ ϕ-LOCAL[0].

Proof. Consider a system with only two processors, having inputs x1, x2 ∈ {0, 1}. Let outcome
O be a valid solution to DistributedConsensus with certainty. Then, O must be given as the
following mapping x 7→ {(pi, yi)} for some probability values p, q ∈ [0, 1]: (0, 0) 7→ {(1, (0, 0))},
(1, 1) 7→ {(1, (1, 1))}, (0, 1) 7→ {(p, (0, 0)), (1 − p, (1, 1))}, and (1, 0) 7→ {(q, (0, 0)), (1 − q, (1, 1))}.
Now, suppose that O ∈ ϕ-LOCAL[0]. Applying the definition of ϕ-LOCAL to set S consisting
of processor 1 only, considering inputs xa = (0, 0) and xb = (0, 1), we obtain p = 1. Likewise,
applying the same definition to set S′ consisting of processor 2 only, considering inputs x′a = (1, 1)
and x′b = (0, 1), we obtain p = 0, a contradiction.

5 Conclusions and Future Work

We have pointed out that the computational power of quantum variants of the LOCAL model is
strictly greater than that of the classical LOCAL model, or that of the LOCAL model equipped
with helper information such as a pool of shared random bits. It remains to be seen whether a
difference can be observed for any problems of practical significance. It is potentially possible
that certain combinatorial optimization problems may benefit from quantum extensions to the
LOCAL model. However, we can say that the “view-based” limitations of the LOCAL model
still hold in quantum models. So, one specific question which remains open is whether the
(∆ + 1)-Coloring problem can be solved in a constant number of rounds in any of the relaxed
variants of LOCAL.

Finally, we can ask about a characterization of the limitations of quantum computability,
the most natural question being to establish whether the containment LOCAL+E ⊆ ϕ-LOCAL
is strict. As a matter of fact, further studies of the ϕ-LOCAL model, which can be seen as the
weakest distributed local model, capturing verifiability rather than computability of outcomes,
appear to be of interest in their own right.

Acknowledgment: We gratefully thank Pierre Fraigniaud and Zvi Lotker for their prelimi-
nary discussions on the EPR effect and its applicability to Distributed Computing. We thank
Robert Alicki and W ladys law Adam Majewski for helpful discussions concerning quantum dy-
namic maps, and Marek Żukowski for several references on quantum information.

8Some observations can perhaps be of purely physical interest. For example, for a problem with empty input,
whenever there exists a one-bit helper function h : V → {0, 1} leading to the desired output in LOCAL+S[0],
unique up to negation of 0 and 1, there will also exist an entangled pure n-qubit state spread over the nodes
leading to the desired output in LOCAL+E [0], unique up to transformation of the local basis {|0〉, |1〉}. [DP06]
note that this is the case for FairBitPicking and FairLeaderElection.
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A Model of a Quantum Distributed System

Any quantum-mechanical discussion relies on two fundamental concepts: states and observables.
Intuitively, a state can be treated as a measure of knowledge about a physical system (usually
associated with some observer), whereas the set of observables encodes the measurable proper-
ties of the system. There is a duality between these two concepts: we can also say that the state
of the system is uniquely described through the distribution of outcomes of measurements on all
possible observables related to it. Whereas in quantum-informational papers it is often conve-
nient to focus on states, we choose to adopt the approach more usual in mathematical physics,
which focuses on operator algebras (observables are operators satisfying certain mathematical
conditions). The algebraic approach used as the basis of this model is generally accepted as the
most mathematically robust theory, and moreover it naturally encodes concepts of quantum-
mechanical locality, since operator algebras are spatially localised (restricted to each processor),
unlike the state which is a global property of the system of all processors.

Most of the considerations in this paper can be without much loss of generality viewed
as finite-dimensional. Then, a (unital) C∗-algebra can be introduced simply as some set of
m×m matrices over complex numbers, which contains the identity matrix, and is closed with
respect to the operations of matrix multiplication, matrix conjugation, and linear combination.
Further on we rely only on a few basic concepts which can be understood in accordance with
their standard definition for matrices, such as matrix multiplication, the tensor product ⊗, and
spectral decomposition. The interested reader is referred to [BR79] for an explanation of more
advanced concepts related to C∗-algebras.

A.1 Specification of the Physical System

The distributed set-up is given by a recipe which is well defined for each n ∈ N. For simplicity
of the description, we assume that all the processors know a value D, which is some arbitrarily
weak upper bound on the number of neighbours of the node in the system, and that we consider
problems for which the input and output values are integers also bounded by D, i.e., x, y : V →
{0, . . . ,D}.

• Each processor v is described by its own copy Av of a C∗-algebra A, localised in an area
associated with the processor.

• The algebra A describing a processor is a complex system composed of the processor’s
several modules, given in the form of the following tensor product of C∗-algebras: Av =
Q⊗ IO1 ⊗ · · · ⊗ IOD, where:

– Q is a non-commutative (quantum) algebra encoding the computational characteris-
tics (“hardware”) of the processor,

– IO1, . . . ,IOD are isomorphic copies of an algebra IO representing a single in-
put/output communication port of the processor (the algebra IO is commutative
if and only if the channel is classical, and non-commutative if and only if the channel
is a quantum one).

• The multi-processor environment as a whole is described by the tensor product algebra of
the algebras of specific processors, A⊗ = A1 ⊗ · · · ⊗ An.
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• The state of the multi-processor system is a positive normalized linear functional acting
on algebra A⊗, of the form ω : A⊗ → R+. The state ω is defined at the time of the initial
set-up of the distributed system, and can be used to encode pre-entanglement.

• The input data of processors, given by way of a function x : V → {0, . . . ,D}, is fixed
and for simplicity assumed to be outside the quantum system. The algorithm is defined
by way of a family of quantum operations (completely positive maps), ϕx : A → A, for
0 ≤ x ≤ D, which encode the local operation of a processor having x as its input value.

• The evolution (dynamics) of the system is given through a sequence of discrete rounds.
The t-th round is subdivided into a phase in which some local transformations ϕv are
applied within each processor (computation phase), and a phase used for exchanging
messages ψe along edges e between adjacent processors (communication phase). For
an observable A⊗, initially we put A⊗

(0)
= ϕ1 · · ·ϕnA

⊗, and for all subsequent rounds,

A⊗
(t+1) = ϕ1 · · ·ϕnψ1 · · ·ψmA

⊗
(t). The specific maps ϕv and ψe are formally defined as

follows.

– Dynamic maps ϕv : A⊗ → A⊗ describe local operations performed during a round t
at each node. The map ϕv acts only on the local algebra of processor v depending on
its input label x(v), and is given by extension to the tensor product of the following
transformation: ϕv(A1 ⊗ · · · ⊗ Av ⊗ · · · ⊗An) = A1 ⊗ · · · ⊗ ϕx(v)(Av) ⊗ · · · ⊗ An. In
each round t, all maps ϕv corresponding to different processors act on independent
algebras and clearly commute (i.e., they can be executed simultaneously or reordered
without changing the result).

– Dynamic maps ψe : A⊗ → A⊗ describe communication along edges e of the system
graph, and at the same time define the system graph. All the maps are induced
by extension to the tensor product of the same transmission function for a pair of
input/output ports ψ : IO×IO → IO×IO, given simply as the exchange operation
ψ(X,Y ) = (Y,X) if edge e exists in the graph, and the identity operation ψ(X,Y ) =
(X,Y ) otherwise (signifying lack of communication). The map ψe acts only on the the
algebras corresponding to copies of IO for the input/output ports of the processors
communicating along edge e, leaving all other algebras unchanged. The maps ψe for
different edges act on independent algebras and clearly commute (i.e., they can be
executed simultaneously or reordered without changing the result).

• The local algebra A of a processor contains one distinguished element: observable M ∈ A,
which is used for purposes of measurement. For simplicity we assume that M has a
discrete spectral decomposition of the form M =

∑k
i=1 λ

iP i, with eigenvalues λi ∈ R+

and projectors P i ∈ A. The observable M⊗ ∈ A⊗ is given through the tensor products of
particular processors’ copies of observable M , as M⊗ = M ⊗ · · · ⊗M .

• The evolution of the system is assumed to terminate after T rounds. After T rounds, a
standard von Neumann measurement process is applied to observable M⊗

(T ) = [M ⊗ · · · ⊗
M ](T ) (the evolved observable M⊗ after T rounds). This can be described as follows:
by iterating over all possible tuples of values (i1, . . . , in) ∈ {1, . . . , k}n for all v, with
probability p(i1,...,in) = ω([P i1 ⊗ · · · ⊗ P in ](T )), the values (λi1 , . . . , λin) are selected as the
result of measurement for the respective processors (1, . . . , n). The probabilities p(i1,...,in)

are understood here in the classical sense, and normalized in sum to 1.
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• The output of the algorithm is obtained by applying a function f : R+ → {0, . . . ,D}
to the measurement results. Thus, values (f(λi1), . . . , f(λin)) are returned by processors
(1, . . . , n), respectively.

Such a set-up is chosen for its simplicity, but obviously, there exist several other definitions
which lead to equivalent models. For example, the input can be represented by enlarging the
algebras Q and introducing an additional factored part of the input state. Also, for improved
clarity of the model, we prefer to consider dynamic maps, deferring other quantum operations
(such as measurements) to the final stage of the algorithm. This can be achieved without loss
of generality by sufficiently enlarging the local algebras of the processors (see e.g. [Str07] for a
high-level exposition). When defining algorithms in practice it may of course be convenient to
apply measurements in intermediate steps so as to simplify formulation.

In what follows, we introduce some standard notation. A state ω is called pure if it is
extremal with respect to convex combination of states (i.e., if ω = αω1 + (1 − α)ω2 for some
states ω1 6= ω2 and 0 ≤ α < 1, then α = 0). A pure state ω is said to be a product state over
Aa ⊗Ab if for any A ∈ Aa, B ∈ Ab we have ω(A⊗B) = ω(A⊗ 1)ω(1 ⊗ B) ≡ ωa(A)ωb(B); for
compactness, we simply write ω = ωaωb.

A.2 Details of the Computational Model

From a computational perspective, the set-up of the system described in the previous section
can be summarized as follows:

• The distributed algorithm (ω, {ϕx},Q,IO,M, f) is defined by setting the initial state ω
of the system, the maps ϕx which shape the local computations in each round, and the
observable M and function f responsible for extracting the output from the quantum
system. The algebras Q and IO which define the “hardware” of the processors can be
included in the specification of the algorithm, or can be taken as the general operator
algebra B(H) over a Hilbert space.

• The input is provided by setting the edges of the system graph and the inputs x(v) of
specific nodes; these settings directly influence the maps ψe and ϕv which are responsible
for communication and local computations within the system, respectively.

Definition 5. The above described model of a physical system provides a formal characteriza-
tion of quantum extensions to the LOCAL model.

• When no restrictions are made about the state ω, the model is said to be equipped with
the +E extension.

When state ω is restricted to be a mixed state separable over the local algebras A, i.e., a
state of the form

∑

i pi(ω
i
1 · · ·ωi

n), for some values of probabilities pi, pi ≥ 0,
∑

i pi = 1,
and some local pure states ωi

n over algebra A, possibly different for each processor, then
the model is said to be equipped with the +S extension.

When state ω is restricted to be of the form ωl . . . ωl, for some pure state ωl over algebra
A, identical for each processor, the system has neither of these extensions.

• When no restrictions are made about the communication algebra IO, which may be non-
commutative, the system is said to be equipped with the +Q extension.

When algebra IO is restricted to be commutative, communication is understood in the
classical sense and the system has no such extension.

vi



Note that the above definition also characterizes the LOCAL and LOCAL+S models. The
fact that such a characterisation is equivalent to the computational definition (Section 1.3) is
straightforward to prove, taking into account that the considered initial states are separable,
and the proposed evolution cannot create entanglement since only classical algebras are applied
for interaction between processors (cf. [Bae87] and [Nie99] for different expositions of related
concepts). The evolution on separable states is then easily simulated by a stochastic process, or
equivalently, a distributed randomized algorithm.

B Proof of Theorem: LOCAL+Q+E ⊆ ϕ-LOCAL

Proof. Consider any quantum distributed algorithm (ω, {ϕx},Q,IO,M, f). For any subset of
processors S ⊆ V , we will denote by A⊗S the tensor product of algebras A, taken over processors
from set S, only. Consider the effect of the evolution maps {ϕv} and {ψe} on an arbitrary
operator AS ∈ A⊗S. It is clear that AS is not affected by ϕv if v /∈ S, and moreover AS is not
affected by ψe if e /∈ V1(S). Thus, since these maps encode the input graph Gx, after a single
round of evolution we may write [AS ](1) = τ1(AS ,V1(Gx, S)), where τ1 denotes some operation
dependent only on the algorithm (independent of Gx). Moreover, since maps ϕv are local and
maps ψe only act on nearest neighbours, we have [AS ](1) ∈ A⊗V1(S). By applying the evolution
procedure for t rounds, we immediately obtain by induction that [AS ](t) = τt(AS ,Vt(Gx, S)),
where τt denotes some operation dependent only on the algorithm. Since the above holds for any
operator AS ∈ A⊗S , distributions of results of all measurements restricted to set of processors
S are independent of the input graph Gx, except for the local view Vt(Gx, S). This immediately
implies that all solutions which belong to LOCAL+Q+E [t] also belong to ϕ-LOCAL[t].

C Supplementary Propositions

C.1 Properties of problem P ′ (selecting an edge of Kn \ {e})

Proposition 9. Problem P ′ /∈ LOCAL[0, e−1].

Proof. Consider an outcome O in LOCAL[0] which solves P ′ with some probability Π. Within
LOCAL[0], the output value yi ∈ {0, 1} of each node i is dependent only on the input label
of the node, hence we may assume that with some probability pi node i returns 0, and with
probability 1 − pi returns 1. From now on we will only consider the nodes which return 1 with
non-zero probability, i.e. pi < 1; w.l.o.g. let us suppose that this is the set of nodes {1, . . . , k},
for some k, 2 ≤ k ≤ n. W.l.o.g. we can assume that p1 ≤ p2 ≤ . . . ≤ pk. It is straightforward to
see that the worst-case input Gx for such a procedure is a graph with a missing edge between
nodes 1 and 2. Hence, we can consider a simple application of Bernoulli’s formula for a sequence
of k independent random trials (1, . . . , k) with failure probabilities (p1, . . . , pk), in which the
“winning event” is the success of exactly two trials, different from the pair {1, 2}. Denoting
qi = p−1

i − 1, we have9:

Π = p1 · · · pk ·
(

∑

1≤i<j≤k

qiqj − q1q2

)

. (1)

It now suffices to prove that the above expression, treated as a multi-variable function with
respect to k and {p1, . . . , pk}, subject to the constraints k ∈ {2, . . . , n}, 0 ≤ p1 ≤ p2 ≤ . . . ≤

9When pi = 0, all subsequent expressions are well defined through their limit values when pi → 0+.
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pk < 1, does not achieve a value Π ≥ e−1. This is a technical step which, for the sake of
completeness, we perform below.

First, by directly solving a multi-variable optimization problem for small values of k, we
establish that Π < e−1 ≈ 0.36 for all k ≤ 5. Indeed, when k = 2 we verify that Π = 0,
when k = 3, Π ≤ 8

27 < 0.30 (and Π = 8
27 is attained when p1 = p2 = p3 = 1

3 ); when
k = 4, Π ≤ 5

16 < 0.32 (and Π = 5
16 is attained when p1 = p2 = p3 = p4 = 1

2), when k = 5,
Π ≤ (3

4 )4 < 0.32 (and Π = (3
4 )4 is attained when p1 = 0 and p2 = p3 = p4 = p5 = 3

4 ).

Now, let k ≥ 6; we will show that it suffices to consider the case when p2 = p3 = . . . pk−1.
Suppose, to the contrary, that pk−1 > p2 and that Π ≥ e−1; we will construct an outcome O ′

corresponding to some k′ and some set of probabilities {p′1, . . . , p′k}, such that either |{i : p′i =
p′2}| > |{i : pi = p2}| or k′ < k, and O ′ yields a correct solution with probability Π′ ≥ Π. To
achieve this, we put: k′ = k, p′i = pi for all i < k − 1, p′k−1 = max{p2, pk−1pk} < pk−1, and
p′k =

pk−1pk

p′
k−1

> pk (note that either p′k−1 = p2, or else p′k = 1; in the latter case, we set k′ = k−1).

For convenience of notation we do not sort the values p′i in non-decreasing order with respect
to i, but note that we still have p′1 ≤ p′2 ≤ p′3, . . . , p

′
k, so Π′ is given by an expression analogous

to (1). We now introduce some auxiliary notation. For any subset of nodes S ⊆ {1, . . . , k} with
|S| ≥ 2, let s0, s1, and s2 be the probabilities that exactly 0, 1, and 2 of the nodes from S,
respectively, return a value of 1 in O (s′0, s′1, and s′2 are likewise defined for O ′; we also extend
this notation to letters x for set X, and y for set Y ). Denoting γ(S,w) =

∑

i∈S q
w
i , for w ∈ {1, 2},

we recall the following simple relations:

s0 =
∏

i∈S

pi

s1 =
∏

i∈S

pi ·
∑

i∈S

qi = s0γ(S,1)

s2 =
∏

i∈S

pi ·
∑

i,j∈S, i<j

qiqj =
1

2
s0(γ2

(S,1) − γ(S,2)) ≤
s21
2s0

(2)

s0 + s1 + s2 ≤ 1

Now, let X = {1, . . . , k − 2} and Y = {k − 1, k}. By introducing the above relations into
formula (1), we obtain for outcome O:

Π = x0y2 + x1y1 + (x2 − x0q1q2)y0. (3)

When writing an analogous expression for O ′, we observe that x′0 = x0, x′1 = x1, x′2 = x2,
y′0 = y0, q′1 = q1, and q′2 = q2, hence:

Π′ = x0y
′
2 + x1y

′
1 + (x2 − x0q1q2)y0.

By subtracting the above expressions we obtain and noting that y1−y′1 = −(y2−y′2), we obtain:

Π′ − Π = (x1 − x0)(y′1 − y1).

We have that y′1 − y1 > 0 (because pk−1pk = p′k−1p
′
k, p′k−1 < pk−1, and p′k > pk). Consequently,

if x1 ≥ x0, then Π′ ≥ Π. We will now prove that the opposite case, i.e. x1 < x0 is impossible.
Indeed, supposing that x1 < x0, consider the maximum possible value of y0, subject to the
following constraints on probabilities x0, x1, x2, y0, y1, y2 which are then necessarily fulfilled:
y0 + y1 + y2 = 1, x0 + x1 + x2 ≤ 1, x1 ≤ x0, x2 ≤ 1

2x1 (by (2)), x0y2 + x1y1 + x2y0 ≥ e−1 (since
the left-hand side is an upper bound on Π by (3), and moreover Π ≥ e−1 by assumption). By

viii



solving this optimization problem, we obtain y0 ≤ 1−e−1 (with equality obtained for x0 = 1 and
x1 = x2 = y1 = 0). Hence, since y0 = pk−1pk, and pk−1 ≤ pk, we have pk−1 ≤

√
1 − e−1 < 4

5 .
Consequently, for all i ≤ k − 2, pi ≤ pk−1 <

4
5 , and qi = p−1

i − 1 > 1
4 . But then: x1

x0
= γ(X,1) =

q1 + . . .+ qk−2 >
1
4 (k − 2) ≥ 1, a contradiction with the assumption x1 < x0.

Thus, it only remains to solve the case when k ≥ 6 and p2 = p3 = . . . pk−1. But then by
developing expression (1), we have:

Π = pk−4
2 [(1−p1)(1−pk)p2

2+(k−3)·(1−p1)(1−p2)p2pk+(k−2)·(1−pk)(1−p2)p1p2+
(k−2

2

)

(1−p2)2p1pk].

This expression involves only four variables, subject to the constraints: k ∈ {6, 7, . . . , n} and
0 ≤ p1 ≤ p2 ≤ pk ≤ 1, and by solving this problem we indeed verify that always Π < e−1, which
completes the proof.

We remark that the optimal assignment of probabilities to nodes is as follows: for n = 3 or
n = 4, we put the uniform distribution, pi = n−2

n . For n ≥ 5, we always select 1 as the output
for node 1 (p1 = 0), and put pi = n−2

n−1 for 2 ≤ i ≤ n. As n tends to infinity, the probability

that the obtained output is correct tends to e−1 from below. Clearly, in order to obtain such a
solution, the nodes must take advantage of their input labels which contain information about
the identifiers and n.

Proposition 10. Problem P ′ ∈ LOCAL+S[0, 1 −O(1/N2)], when considering graphs of order
n ≥ N .

Proof. It suffices to observe that the helper variable h(v) can simply encode the output, and be
set in a randomized way so as to select all edges of the complete graph with equal probability.
For any input, the probability that the solution is correct is then 1 − 1/

(n
2

)

.

C.2 Characterization of the LOCAL Model through Feasible Outcomes

For deterministic algorithms in LOCAL, the output of any processor v after t rounds is a
deterministic function of the identifiers of nodes which are located within its view Vt(Gx, v).

Claim 11. An outcome Gx 7→ {(yi, pi)} can be deterministically obtained in t rounds in the
LOCAL model if and only if p1 = 1 and there exists a function f such that, for every node v,
y1(v) = f(Vt(Gx, v)).

Allowing for randomised algorithms slightly increases the power of the model. The usual
scenario is to allow each node v to flip coins during the execution of the algorithm, which is in
fact equivalent to picking an arbitrary (possibly large) random positive integer r(v) by each node
before the start of execution [Lin92]. Outcomes in the LOCAL model can thus be described by
counting the number of random integer assignments leading to a particular output vector.

Claim 12. An outcome Gx 7→ {(yi, pi)} belongs to LOCAL[t] if and only if there exists a
function f such that for some integer k we have pi = 1

kn |{r ∈ {1, . . . , k}V : ∀v ∈ V, yi(v) =
f(Vt(G(x,r), v))}|.

ix


