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Abstract. We consider the question of locality in distributed comput-
ing in the context of quantum information. Specifically, we focus on the
round complexity of quantum distributed algorithms, with no bounds
imposed on local computational power or on the bit size of messages.
Linial’s LOCAL model of a distributed system is augmented through
two types of quantum extensions: (1) initialization of the system in a
quantum entangled state, and/or (2) application of quantum communi-
cation channels. For both types of extensions, we discuss proof-of-concept
examples of distributed problems whose round complexity is in fact re-
duced through genuinely quantum effects. Nevertheless, we show that
even such quantum variants of the LOCAL model have non-trivial lim-
itations, captured by a very simple (purely probabilistic) notion which
we call “physical locality” (ϕ-LOCAL). While this is strictly weaker
than the “computational locality” of the classical LOCAL model, it
nevertheless leads to a generic view-based analysis technique for con-
structing lower bounds on round complexity. It turns out that the best
currently known lower time bounds for many distributed combinatorial
optimization problems, such as Maximal Independent Set, bounds cannot
be broken by applying quantum processing, in any conceivable way.

1 Introduction

The introduction of computational models based on quantum computing, start-
ing from the works of Deutsch in the 1980’s [11], has led to the advent of a new
branch of complexity theory. Many studies have for instance focused on the com-
plexity class BQP of problems solvable on a quantum computer in polynomial
time with bounded error probability, and its relation to the classical complex-
ity classes. One of the best known algorithmic results in this respect is Shor’s
polynomial-time method of integer factorization [37] based on the Quantum
Fourier Transform, which has recently been partially tested in an experimental
set-up for very small values of problem input. Nevertheless, application of quan-
tum information in centralized computing scenarios still proves extremely costly
and is riddled with technological difficulties resulting from quantum decoherence
� Supported by the ANR project “ALADDIN”, by the INRIA équipe-project
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effects. On the other hand, in an even wider time-frame, properties of quantum-
mechanical systems have proven to be of interest from the perspective of game
theory [4,13,2], information theory [31,22,3], and distributed systems [4,9].

A major line of study (which we briefly look at in the related work section)
concerns the application of quantum effects to reduce communication complex-
ity, i.e., to decrease the number of communication bits required to solve a specific
task performed within a system graph with several distributed agents. The in-
fluence of quantum information on the computing power of distributed systems
with node anonymity and distributed systems in the presence of faults has also
been studied.

This paper focuses on a different aspect of quantum distributed computing:
we do not impose any bounds on the size of communicated messages, but assume
that the system operates in synchronous rounds, and ask to what extent quantum
effects can reduce the number of rounds required to solve combinatorial optimi-
sation problems. The starting point for considerations is the well-established
LOCAL model a.k.a. Linial’s Free model [25,26]. We provide a comparison of
the “computational power” of the quantum and non-quantum models, formalis-
ing the notion of locality in quantum distributed computing, and showing how
it essentially differs from the understanding of locality in the LOCAL model.

1.1 Related Work

One of the most intensively studied problems related to multi-agent quantum sce-
narios, when expressed in the language of distributed computing, is roughly try-
ing to address the question: Can quantum effects be used to enhance distributed
computations with messages of bounded size, i.e., in settings inspired by the
CONGEST distributed model? (See [35] for an introduction to the CONGEST
model.) The quantum variant of CONGEST , widely studied in physics, is known
as the Local Operations and Classical Communication (LOCC) model. It ex-
ploits the key quantum-mechanical concept of an entangled state (see e.g. [31]).
This is achieved by altering the initialization phase of the system to allow for a
starting state entangled among all the processors, which are locally given quan-
tum computation capabilities; however, communication between processors is
still restricted to the exchange of classical information, only. This application
of pre-entanglement has been shown to decrease the number of communication
bits required to solve certain distributed problems with output collected from
one node, and consequently, to decrease the number of required communication
rounds when message sizes are bounded. The first proof-of-concept example was
provided in [6], where the computation of a specific function of input data dis-
tributed among three parties was shown to require at least 3 communicated bits
in the classical case, but only 2 communicated bits if the system is initialized in
a specific quantum entangled state. Many related results and refinements of this
scenario are surveyed in e.g. [7,39].

Other works on the subject have focused on characterising the physical evo-
lution of states attainable in the LOCC model [30,32,8], while other authors
have dealt with the combinatorial complexity of distributing the entangled state
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over the whole system in the initialization phase [38]. Other modifications of
the model attempt to show that a denser coding of information in transmit-
ted messages is possible when using quantum channels, as compared to classical
communication links (see e.g. [5,36]).

Very recently, some authors have begun to study the impact of quantum effects
on fundamental concepts of the theory of distributed computing. An overview of
this line of research is contained in the recent survey paper [9]. The advantages of
applying quantum communication in games against a dynamic adversary are dis-
played in [1], where it is shown that a constant number of computational rounds
is sufficient to solve the quantum Byzantine agreement problem for an n-node
system with less than n/3 faulty nodes in such a dynamic setting; corresponding
classical algorithms require Ω(

√
n) rounds. Another especially interesting result

is that the leader election problem can be solved in distributed systems with
quantum links, but no pre-entanglement [40,23]. Some authors have also claimed
that problems related to leader election [33,12] and distributed consensus [12,21]
can be solved in distributed systems aided by quantum pre-entanglement.

1.2 Outline of the Paper

In Subsection 1.3 we briefly outline the LOCAL model and its extensions,
obtained by modifying the initialization of the system set-up and/or adding
quantum communication capabilities on the edges. Whereas this discussion is
self-contained, we also provide a formal mathematical definition of the cor-
responding notions in an extended version of the paper [19]. Subsection 1.4
introduces some notation used when comparing computational models.

In Section 2 we compare the computational power of models based on the
proposed extensions of LOCAL. In particular, we prove that adding quantum
extensions to the LOCAL model decreases the round complexity of certain dis-
tributed problems. This is achieved through simple proof-of-concept examples.

Most importantly, in Section 3 we introduce a probabilistic framework for
proving lower bounds on the distributed time complexity of computational prob-
lems in any quantum (or other unconventional) models based on LOCAL. This
is directly applied to obtain such lower bounds for many combinatorial optimiza-
tion problems, including Maximal Independent Set, Greedy Graph Coloring, and
problems of spanner construction. As a side effect, the simple concept of “physi-
cal locality” formulated in this section, leads to the definition of a computational
model we call ϕ-LOCAL, which appears to be of independent interest.

Finally, in Section 4 we make an attempt to clarify issues with some of the
related work on quantum distributed computing as surveyed by [9]. Making
use of the framework of computational models defined in the previous sections,
we explain why certain claims, saying that problems such as Leader Election
or Distributed Consensus benefit from the application of quantum processing,
should be approached with caution.

Section 5 contains some concluding remarks and suggests directions of future
studies.



246 C. Gavoille, A. Kosowski, and M. Markiewicz

1.3 Preliminaries: Description of Computation Models

The LOCAL Model. The LOCAL model has been the subject of intensive
study in the last 20 years, starting from the seminal works [25,29]. It is assumed
that the distributed system consists of a set of processors V (with |V | = n) and
operates in a sequence of synchronous rounds, each of which involves unbounded
computations on the local state variables of the processors, and a subsequent ex-
change of messages of arbitrary size between pairs of processors which are con-
nected by links (except for round 0, which involves local computations, only).
Nodes can identify their neighbours using integer labels assigned successively
to communication ports. The local computation procedures encoded in all pro-
cessors are necessarily the same, and initially all local state variables have the
same value for all processors, except for one distinguished local variable x(v) of
each processor v which encodes input data. The input of a problem is defined
in the form of a labeled graph Gx, where G = (V, E) is the system graph, while
x : V → N is an assignment of labels to processors. The output of the algorithm
is given in the form of a vector of local variables y : V → N, and the algorithm
is assumed to terminate once all variables y(v) are definitely fixed. Herein we
assume that faults do not appear on processors and links, that local computa-
tion procedures may be randomized (with processors having access to their own
generators of random variables), and that the input labels x need not in general
be distinct for all processors.

In our considerations, it is convenient to assume that the set of processors
V is given before the input is defined. This is used for convenience of notation,
and neither affects the model, nor the anonymity of nodes in the considered
problems.

Extensions of System Initialization (+S and +E). In the LOCAL model, it
is assumed that the initial set-up of all the processors is identical. This assump-
tion can be relaxed by allowing the processors to obtain some information from
a central helper, but only before the start of the distributed process (i.e., inde-
pendently of the input Gx). The initialization procedure is an integral part of
the algorithm used for solving the distributed problem. Several different forms of
initialization can be naturally defined; for clarity of discussion, we consider only
two extensions of the model: the +S extension (for Separable state), which allows
for the most general form of initialization possible in a classical computational
setting, and the more powerful +E extension (for Entangled state), which allows
for the most general form of initialization available in a quantum distributed
system.

The +S extension. We say that a computational model is equipped with the +S
extension if the following modifications are introduced:

– For any computational problem, the computational procedure consists of
the distributed algorithm applied by all the processors during the rounds
of computation, and an additional (randomized) procedure executed in a
centralized way in the initialization phase. The result of the initialization
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procedure is an assignment h : V → N of helper variables to the set of
processors. The helper variables are independent1 of the input Gx.

– For each processor v ∈ V , at the start of round 0, its input label x(v) is
augmented by the value h(v), stored in a helper register of the local memory.

It is straightforward to show that the above formulation has two equivalent char-
acterizations. From a computational perspective, we may equivalently say that
for each processor v, the helper initialization value h(v) encodes: (1) a unique
identifier of v from the range {1, . . . , n}, (2) the value of n, (3) the value of a
random number, chosen from an arbitrarily large range, and shared by all pro-
cessors. All further helper information is unnecessary, since it can be computed
by the processors in round 0 of the distributed computations (simulation of the
centralized assignment of further helper information can be simulated based on
random bits and starting information which is common to all processors).

Alternatively, we may say that through the randomized initialization, accord-
ing to some probability distribution we choose some deterministic initialization
of the set of states of individual processors. This intuition precisely corresponds
to the notion of a state with uncertainty in classical statistical physics, referred
to in quantum-mechanical discussions as a (mixed) separable state of the sys-
tem. It is obviously true to say that whenever a problem is solved in a model
with the +S extension, it may benefit solely from the modification of the system
initialization, and not from the laws of quantum mechanics.

The +E extension. Unlike in classical physics, in quantum mechanics not every
initialization of the system has to follow the above pattern. Consider a scenario in
which we centrally create an initial global state of the whole system of processors,
and spatially distribute “parts” of it to the individual processors (for example,
by sharing out among the nodes a set of quantum-correlated photons). Then,
each of the processors can perform operations on the “part” of the state assigned
to its spatial location; by a loose analogy to processing of classical information,
this is sometimes referred to as each processor “manipulating its own quantum
bits (qubits)”. Given a general initial state of the system, the outcome of such
a physical process, as determined by the processors, may display correlations
which cannot be described using any classical probabilistic framework. Initial
states which can be lead to display such properties are called non-separable, or
entangled states. Quantum entanglement is without doubt one of the predom-
inant topics studied in quantum-mechanical literature of the last decades; we
refer the interested reader to e.g. [31] for an extensive introduction to the topic.

We say that a computational model is equipped with the +E extension if all
processors are equipped with helper quantum information registers h, and the
computational procedure used to solve a problem sets in the initialization phase
in a centralized way some chosen, possibly entangled, quantum state over the
set of quantum information registers h of all processors, in a way independent
of the input graph Gx.
1 Helper variables that do depend on the inputs are referred to in the literature as

Oracles [16,15]. Such extensions are not discussed in this paper.



248 C. Gavoille, A. Kosowski, and M. Markiewicz

Extension of Communication Capabilities (+Q). Whereas the application
of local quantum operations in each processor does not increase the power of the
LOCAL model as such, the situation changes when the processors can interact
with each other using quantum communication channels. Intuitively, such chan-
nels allow for the distribution of an entangled state by a processor over several
of its neighbours in one communication round; such an effect cannot be achieved
using classical communication links.

We say that a computational model is equipped with the +Q extension if all
communication links between processors in the system graph are replaced by
quantum communication channels.

Models with the Extensions. Modifications to the initialization and commu-
nication capabilities of the system are completely independent of each other. For
initialization, we can apply no extension, use a separable state (+S), or an en-
tangled state (+E). For communication, we can apply no extension, or use quan-
tum channels (+Q). Hence, we obtain 6 possible models (LOCAL, LOCAL+S,
LOCAL+E , LOCAL+Q, LOCAL+Q+S, LOCAL+Q+E), which are discussed in
the following section. (Some of these models collapse onto each other.)

1.4 Notation for Comparing the Power of Computational Models

In order to compare the computational power of different models, we introduce
two basic notions: that of the problem being solved, and of an outcome of the
computational process.

Definition 1. A problem P is a mapping Gx �→ {yi}, which assigns to each
input graph Gx a set of permissable output vectors yi : V → N.

Instead of explicitly saying that we are interested in finding efficient (possibly
randomized) distributed algorithms for solving problems within the considered
computational models, we characterize the behavior of such procedures through
the probability distribution of output vectors which they may lead to, known as
an outcome. In fact, such a probability distribution is necessarily well defined,
whereas formally describing the computational process may be difficult in some
unconventional settings (see e.g. the ϕ-LOCAL model in Section 3).

Definition 2. An outcome O is a mapping Gx �→ {(yi, pi)}, which assigns to
each input graph Gx a normalized discrete probability distribution {pi}, such
that: ∀i pi > 0 and

∑
i pi = 1, with pi representing the probability of obtaining

yi : V → N as the output vector of the distributed system.

Definition 3. For any outcome O in a computational model M which is a variant
of LOCAL, we will write O ∈ M[t] if within model M there exists a distributed
procedure which yields outcome O after at most t rounds of computation.

We will say that an outcome O is a solution to problem P with probability p if
for all Gx, we have:

∑
{(yi,pi)∈O(Gx) : yi∈P(Gx)} pi ≥ p. When p = 1, we will

simply call O a solution to P (with certainty).
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By a slight abuse of notation, for a problem P we will write P ∈ M[t] (re-
spectively, P ∈ M[t, p]) if there exists an outcome O ∈ M[t] which is a solution
to problem P (respectively, a solution to problem P with probability p).

For two computational models M1, M2, we say that M1 is not more powerful
than M2 (denoted M1 ⊆ M2) if for every problem P, for all t ∈ N and p > 0,
P ∈ M1[t, p] =⇒ P ∈ M2[t, p]. The relation ⊆ induces a partial order
of models which is naturally extended to say that M1 and M2 are equivalent
(M1 = M2), or that M1 is less powerful than M2 (M1 � M2).

It can easily be proved that M1 ⊆ M2 if and only if for every outcome O, for
all t ∈ N, O ∈ M1[t] =⇒ O ∈ M2[t]. Such an outcome-based characterisation
of models is occasionally more intuitive, since it is not explicitly parameterised
by probability p.

In all further considerations, when proving that M1 � M2, we will do so in
a stronger, deterministic sense, by showing that there exist a problem P and
t ∈ N such that P ∈ M2[t] and P /∈ M1[t].

2 Hierarchy of Quantum Models

The most natural variants of LOCAL which are based on the extensions proposed
in the previous subsection are the classical model with separable initialization
(LOCAL+S), and quantum models with pre-entanglement at initialization, quan-
tum channels, or both (LOCAL+E , LOCAL+Q, and LOCAL+Q+E , respectively).
The strengths of the models can obviously be ordered as follows: LOCAL ⊆
LOCAL+Q ⊆ LOCAL+Q+S ⊆ LOCAL+Q+E , and LOCAL ⊆ LOCAL+S ⊆
LOCAL+E ⊆ LOCAL+Q+E . We now proceed to show that, whereasLOCAL+E =
LOCAL+Q+E , all the remaining inclusions are in fact strict. The hierarchy of the
most important models is shown in Fig. 1.

Proposition 1. LOCAL � LOCAL+S. Moreover, there exists a problem P
such that P ∈ LOCAL+S[0] and P 
∈ LOCAL[t] for all t ∈ N.

Proof. Any problem, which can be solved when given unique node identifiers
from the range {1, . . . , n} is clearly in LOCAL+S[0]. On the other hand, there
are many examples of such problems which are not in LOCAL (or require Ω(n)
rounds assuming that the system graph is connected and node labels are unique),
most trivially the problem P of assigning unique node identifiers from the range
{1, . . . , n} to all nodes. ��

More interestingly, one can show that LOCAL+S benefits due to the fact that
helper variables h(v) can encode a value which is set in a randomized way.
Consider as a simple example a problem P ′ whose input is a graph G = (V, E),
of sufficiently large order n, with input labels of the nodes encoding unique node
identifiers {1, . . . , n} and the value of n; moreover, G is restricted to be the
complete graph Kn minus exactly one edge. The goal is to select an edge of the
graph, i.e., output y must be such that for some two nodes u, v ∈ V , with {u, v} ∈
E, we have y(u) = y(v) = 1, and for all other w ∈ V we have y(w) = 0. Even
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Fig. 1. Hierarchy of computational extensions to the LOCAL model. See Section 3 for
a definition of the ϕ-LOCAL model, and Section 1.3 or the extended version [19] for
definitions of all other models.

with the knowledge of node identifiers and n, in the LOCAL model the problem
cannot be solved with high probability without communication, i.e., within 0
rounds: we have P ′ /∈ LOCAL[0, e−1] (the proof is technical and postponed to
the extended version [19]). On the other hand, within the LOCAL+S model this
problem admits a solution in 0 rounds with probability arbitrarily close to 1 for
sufficiently large n. Similar arguments can be applied to display the difference
between the models for more advanced problems which simulate collaborative
mobile agent scenarios, in particular variants of the cops-and-robbers problems
in graphs.

We now point out the difference in power between the classical and quantum
models. The proofs proceed by rephrasing one of the best established results of
quantum interferometry, first introduced in the context of the so called Bell’s
Theorem without inequalities, for a 3-particle quantum entangled state (cf. [20]
for the original paper or [34] for a contemporary exposition). We use its more
algorithmic modulo-4 sum formulation, similar to that found in [41].

Theorem 1. LOCAL+S � LOCAL+E. Moreover, there exists a problem P
such that P ∈ LOCAL+E [0] and P 
∈ LOCAL+S[t] for all t ∈ N.

Proof. Let P be a problem defined on a system with 3 nodes. Let the input graph
be empty, and assume that input labels x = (x1, x2, x3) ∈ {0, 1}3 of respective
nodes satisfy the condition x1 + x2 + x3 ∈ {0, 2}. An output y = (y1, y2, y3) ∈
{0, 1}3 is considered valid for input x if and only if 2(y1+y2+y3) ≡ (x1+x2+x3)
mod 4. This problem is not in LOCAL+S, since finding a solution with certainty
would imply that there exist three deterministic functions Y1, Y2, Y3 : {0, 1} →
{0, 1}, such that for any input vector (x1, x2, x3) satisfying the constraints of
the problem, (Y1(x1), Y2(x2), Y3(x3)) is a valid output vector. It is immediate to
show that this is impossible.

The situation is different when the system operates in the LOCAL+E model
starts in an entangled state. The procedure required to obtain a valid solution
is described in detail in [20]. In brief, in the initialization phase we share out
to each of the processors one of 3 entangled qubits, carried e.g. by photons,
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which are in the entangled tripartite state known as the GHZ state (namely
1√
2
(|000〉 + |111〉) in Dirac’s notation for pure states). Each of the processors

then performs a simple transformation on “its own” qubit, in a way dependent
only on the processor’s input xi. Finally, a measurement is performed, and it
can be shown that the probability distribution of obtained output vectors (the
outcome) is that stated in Table 1. Since all of the outputs are accepted as valid
for the considered problem P, this implies that P ∈ LOCAL+E [0]. ��

Table 1. An outcome O which is a solution (with certainty) to the modulo-4 sum
problem on the 3-node empty graph, and belongs to LOCAL+E [0] (see Theorem 1)

Input Probability Output
(x1, x2, x3) pi (yi

1, y
i
2, y

i
3)

(0, 0, 0) 1/4 (0, 0, 0)
1/4 (0, 1, 1)
1/4 (1, 0, 1)
1/4 (1, 1, 0)

Input Probability Output
(x1, x2, x3) pi (yi

1, y
i
2, y

i
3)

(0, 1, 1)
or (1, 0, 1)
or (1, 1, 0)

1/4 (1, 1, 1)
1/4 (1, 0, 0)
1/4 (0, 1, 0)
1/4 (0, 0, 1)

Proposition 2. LOCAL � LOCAL+Q. Moreover, for any t > 0, there exists a
problem P such that P ∈ LOCAL+Q[t] and P 
∈ LOCAL[2t − 1].

Proof (sketch). The proof proceeds by a modification of the argument from The-
orem 1. This time, we consider a system on n = 3k+1 nodes, and an input graph
with the topology of a uniformly subdivided star with a central node of degree 3.
The modified problem P ′ consists in solving the problem from Theorem 1, when
the three input and output values are put on the three leaves of the star. Within
LOCAL, this problem requires 2k rounds to solve, whereas within LOCAL+Q,
k rounds are sufficient. ��

Whereas the time distinction between LOCAL+S and LOCAL+E given by
Theorem 1 is remarkable (since it considers the feasibility of solving problems,
or when discussing connected graphs, a speed-up from Ω(n) to 0 communication
rounds), the situation is less clear between LOCAL+Q and LOCAL. Although a
speed-up factor of 2 as expressed by Proposition 2 looks like a natural limit, the
authors know of no conclusive arguments to show that it cannot be increased
further.

Finally, following the argumentation of [9], we observe that LOCAL+E =
LOCAL+Q+E , or in other words that, given access to pre-entanglement, it is
possible to simulate quantum links by means of classical ones. The effect used
to achieve this is known as quantum teleportation [34]; by carefully choosing
an entangled state over the whole system, it can be applied even when the
communicating nodes do not yet know their neighbors’ unique identifiers. The
amount of pre-entanglement provided at initialization must be sufficient to allow
for communication throughout all the rounds of the algorithm.
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To complete a discussion of Fig. 1, we point out that LOCAL+Q is incom-
parable with LOCAL+S. This is because the problem discussed in the proof of
Proposition 1 belongs to LOCAL+S, but not to LOCAL+Q, and the problem
discussed in the proof of Proposition 2 belongs to LOCAL+Q[1], but not to
LOCAL+S[1].

The LOCAL+Q+S model has been left out from discussion, since it appears
to be of little significance. By considering the same problems as before, we have
LOCAL+Q+S � LOCAL+Q+E = LOCAL+E , so LOCAL+Q+S could be placed
directly to the left of LOCAL+E in Fig. 1.

3 Lower Time Bounds Based on Physical Locality
(ϕ-LOCAL)

Proving lower bounds on the power of quantum models is problematic. This
results, in particular, from the fact that there does not exist as yet an easy-to-use
classification of entangled states, or of quantum operations (completely positive
maps) which can be performed to transform one quantum state into another.
However, in the context of distributed computing, it is possible to consider a
more general framework of physical locality, leading to the ϕ-LOCAL model
we define hereafter, which in turn can be used to bound the power of quantum
models.

Within the classical LOCAL model, we can say that the output of any pro-
cessor v after t rounds has to be computed based on the input data which can
be collected from the input graph Gx by performing an exploration up to a
depth of t, starting from node v; we call this the distance-t local view denoted
by Vt(Gx, v). This leads to a simple characterisation of the LOCAL model in
terms of valid outcomes (see the extended version [19] for a formalization).

In order to allow for quantum extensions to local, the assumption of classical
computability needs to be relaxed, while at the same time retaining in some
form the assumption of locality. Given a round-based model with interactions
between nearest neighbors only, the physical understanding of locality is as fol-
lows: Locality is violated if and only if, based on the available output data, we can
conclusively verify that after t rounds some subset S of processors was affected
by input data initially localized outside its view Vt(Gx, S) :=

⋃
v∈S Vt(Gx, v).

Using the above intuition, we now formalize this notion to obtain what we
call the ϕ-LOCAL model, i.e., the weakest possible distributed model which still
preserves physical locality. Given an output distribution {(yi, pi)} acting on V ,
for any subset of vertices S ⊆ V we define its marginal distribution on set S,
{(yi, pi)}[S], as the unique distribution {(yj , pj)} acting on S which satisfies
the condition pj =

∑
{i : yj=yi[S]} pi, where yi[S] is the restriction of output

yi : V → N to nodes from subset S ⊆ V .

Definition 4. An outcome Gx �→ {(yi, pi)} belongs to ϕ-LOCAL[t] if for all sub-
sets S ⊆ V , for any pair of inputs G

(a)
x , G

(b)
x such that Vt(G

(a)
x , S) = Vt(G

(b)
x , S),

the output distributions corresponding to these inputs have identical marginal dis-
tributions on set S, i.e., {(yi(a), pi(a))}[S] = {(yi(b), pi(b))}[S].
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Quantum relaxations of the LOCAL model, whether obtained through applica-
tion of pre-entanglement, quantum channels, or both, lie in terms of strength “in
between” the LOCAL and ϕ-LOCAL model. This is expressed by the following
theorem, whose proof is provided in the extended version of the paper [19].

Theorem 2. LOCAL+Q+E ⊆ ϕ-LOCAL.

The theorem captures the property of locality of nearest-neighbor interactions
in quantum mechanics, and it does not rely in any way on any other physical
concepts, such as causality or speed of information in the theory of relativity.

Although it is not clear whether the containment in the above theorem is strict
(we leave this as an open question), the ϕ-LOCAL model is still sufficiently
constrained to preserve many important lower time bounds known from the
LOCAL model, which are based on arguments of indistinguishability of local
views of a node for different inputs. In particular, by careful analysis, it is easy
to prove the following statements for the ϕ-LOCAL model.

– The problem of finding a maximal independent set in the system graph
requires Ω(

√
log n

log log n ) rounds to solve [24].
– The problem of finding a locally minimal (greedy) coloring of the system

graph requires Ω( log n
log log n ) rounds to solve [18,17].

– The problem of finding a connected subgraph with O(n1+1/k) edges requires
Ω(k) rounds to solve [10,14].

The matter is less clear in the case of the (Δ + 1)-coloring problem. The proof
of the famous lower bound of 1

2 log∗ n − O(1) rounds [26] (and its extension to
randomized algorithms [28]) does not appear to generalize from the LOCAL
model to the ϕ-LOCAL model; we are unaware of any (even constant) bound on
the number of rounds required to find a solution to (Δ+1)-coloring in ϕ-LOCAL.
Some indication that the technique of coloring neighborhood graphs, used by
Linial, may not apply in ϕ-LOCAL, is that this technique can likewise be used
to show a lower bound of

⌊
n
2

⌋
− 1 rounds on the time required for 2-coloring the

cycle Cn, where n is even. However, in ϕ-LOCAL the same problem admits a
solution in fewer rounds.

Theorem 3. The problem of 2-coloring the even cycle Cn (given unique node la-
bels x) belongs to ϕ-LOCAL[�n−2

4 �], but does not belong to ϕ-LOCAL[�n−2
4 �−1].

Proof (sketch). For the lower bound, consider the local view of two nodes u, v
which still have disjoint views after �n−2

4 � − 1 rounds. There are at least two
nodes which belong to neither the view of u nor the view of v; hence, u and v
cannot distinguish whether they are at an even or at an odd distance from each
other in the cycle. This directly leads to the lower bound, since the definition
condition of ϕ-LOCAL can be shown to be violated for S = {u, v}.

The upper bound is generated by on outcome O of the 2-coloring problem,
given as follows: each of the 2 legal 2-colorings of Cn is used as the output with
probability 1

2 . Such an outcome O belongs to ϕ-LOCAL[�n−2
4 �]. This can be

easily verified, since for any subset S ⊆ V we either have that S consists of
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exactly two antipodal nodes of Cn, or the view V�n−2
4 �(Cnx , S) is simply an arc

of the cycle. ��
It would be interesting to find a constructive quantum procedure for finding a
2-coloring of Cn in �n−2

4 � rounds. In particular, we have that 2-coloring of C6

belongs to ϕ-LOCAL[1], does not belong to LOCAL+S[1], and do not know if
it belongs to LOCAL+E [1].

4 Simple Problems in a Quantum Setting

In this section, we have a look at some of the related work on quantum dis-
tributed problems, as outlined in the survey [9]. Whereas the discussion in this
section relies on the results and notation from the preceding sections, it can also
be translated into the (not always precisely described) computational models
studied in the considered related work.

Two problems which have been used to exhibit the difference between quan-
tum models and non-quantum models are LeaderElection, where the goal is for
exactly one node of the system graph to output a value of 1 whereas all other
nodes output 0, and a problem which we will call BitPicking, where the goal is
for all nodes to return the same output value, either 0 or 1. These discussions
include the concept of fairness, which in the terminology of this paper means
that we are asking not about the problems as such, but about obtaining specific
(fair) outcomes. More precisely, we will say that FairLeaderElection is the out-
come which puts a uniform probability distribution on the n distinct outputs
valid for LeaderElection (i.e., on all possible leaders), and FairBitPicking is the
outcome which puts a uniform probability distribution on the 2 distinct outputs
valid for BitPicking (i.e., picking 0 or 1).

The focus of [33,12,21] is to show that FairBitPicking and FairLeaderElection
belong to LOCAL+E [0] (even with some additional restrictions on the amount
of allowed pre-entanglement), whereas they do not belong to LOCAL[0]. This
statement is correct, however, this effect is due to the modification of initializa-
tion of the system, and not to quantum mechanics. In fact, we can make the
following obvious statement.

Proposition 3. FairBitPicking and FairLeaderElection belong to the non-quantum
class LOCAL+S[0]. Moreover, they can be solved with only one bit of helper infor-
mation per node, at initialization.

Finally, we relate to the recent claims that the DistributedConsensus can be solved
in a quantum setting without communication. Whereas these claims result from
a misunderstanding of the definition [27] of DistributedConsensus, we point out
that such a result is impossible in any quantum model, since it is even impos-
sible in ϕ-LOCAL (a short proof is provided in the extended version of the
paper [19]). We recall that in DistributedConsensus, given an assignment of input
labels (x1, . . . , xn) to particular processors, the goal is to obtain an output vector
(y, . . . , y), such that y ∈ {x1, . . . , xn}.

Proposition 4. DistributedConsensus /∈ ϕ-LOCAL[0].
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5 Conclusions and Future Work

We have pointed out that the computational power of quantum variants of the
LOCAL model is strictly greater than that of the classical LOCAL model, or
that of the LOCAL model equipped with helper information such as a pool of
shared random bits. It remains to be seen whether a difference can be observed
for any problems of practical significance. It is potentially possible that certain
combinatorial optimization problems may benefit from quantum extensions to
the LOCAL model. However, we can say that the “view-based” limitations of
the LOCAL model still hold in quantum models. So, one specific question which
remains open is whether the (Δ+1)-Coloring problem can be solved in a constant
number of rounds in any of the relaxed variants of LOCAL.

Finally, we can ask about a characterization of the limitations of quantum
computability, the most natural question being to establish whether the con-
tainment LOCAL+E ⊆ ϕ-LOCAL is strict. As a matter of fact, further studies
of the ϕ-LOCAL model, which can be seen as the weakest distributed local
model, capturing verifiability rather than computability of outcomes, appear to
be of interest in their own right.

Acknowledgment. We gratefully thank Pierre Fraigniaud and Zvi Lotker for their
preliminary discussions on the EPR effect and its applicability to Distributed
Computing. We thank Robert Alicki and W�ladys�law Adam Majewski for helpful
discussions concerning quantum dynamic maps, and Marek Żukowski for several
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