On the Complexity of Distributed Coloring

Cyril Gavoille¹ Ralf Klasing¹ Adrian Kosowski² Alfredo Navarra³

¹Univeristy of Bordeaux, France

²Gdańsk University of Tecnology, Poland

³University of Perugia, Italy

DISC 2007 - Limassol, Cyprus

A k-coloring is a color assignment $V(G) \rightarrow \{1, ..., k\}$ such that adjacent vertices of a graph G get different colors.

A **Maximal Independent Set** is set of pairwise non-adjacent vertices and which is maximal (for inclusion).

Both problems arise in many partitioning & clustering problems in many aeras.

Every graph has a $(\Delta + 1)$ -coloring where Δ is the maximum degree, which can be found by a trivial sequential algorithm. [Similar for maximal independent set]

Every graph has a $(\Delta + 1)$ -coloring where Δ is the maximum degree, which can be found by a trivial sequential algorithm. [Similar for maximal independent set]

Procedure Sequential_Coloring(G):

- Select an uncolored vertex \boldsymbol{v}
- Color v with a color distinct from its colored neighbors
- Repeat until all vertices are colored

Every graph has a $(\Delta + 1)$ -coloring where Δ is the maximum degree, which can be found by a trivial sequential algorithm. [Similar for maximal independent set]

Procedure Sequential_Coloring(G):

- Select an uncolored vertex \boldsymbol{v}
- Color v with a color distinct from its colored neighbors
- Repeat until all vertices are colored

Well-known variants to minimize the largest color:

Every graph has a $(\Delta + 1)$ -coloring where Δ is the maximum degree, which can be found by a trivial sequential algorithm. [Similar for maximal independent set]

Procedure Sequential_Coloring(G):

- Select an uncolored vertex \boldsymbol{v}
- Color v with a color distinct from its colored neighbors
- Repeat until all vertices are colored

Well-known variants to minimize the largest color:

O Greedy coloring: choose the smallest available color

Every graph has a $(\Delta + 1)$ -coloring where Δ is the maximum degree, which can be found by a trivial sequential algorithm. [Similar for maximal independent set]

Procedure Sequential_Coloring(G):

- Select an uncolored vertex \boldsymbol{v}
- Color v with a color distinct from its colored neighbors
- Repeat until all vertices are colored

Well-known variants to minimize the largest color:

- **O** Greedy coloring: choose the smallest available color
- **Largest-first coloring**: color first high degree vertices with the smallest possible available color

The challenge is to give fast deterministic **distributed** algorithms for these problems having sequential solutions: understand the *locality* of these problems.

The challenge is to give fast deterministic **distributed** algorithms for these problems having sequential solutions: understand the *locality* of these problems.

Secret goal: Prove that these problems are inherently non-local

(in finding fast distributed algorithms)

All these problems have a local definition!

(in finding fast distributed algorithms)

All these problems have a local definition!

 $(\Delta + 1)$ -coloring: $c(v) \in [1, \Delta + 1] \setminus c(N_v)$

 $\Delta = \text{maximum degree of the graph} \\ N_v = \text{set of neighbors of } v$

(in finding fast distributed algorithms)

All these problems have a local definition!

 $(\Delta + 1)$ -coloring: $c(v) \in [1, \Delta + 1] \setminus c(N_v)$ Maximal Independent Set: i(v) = YES iff $i(N_v) = \{NO\}$

 $\Delta = \text{maximum degree of the graph} \\ N_v = \text{set of neighbors of } v$

(in finding fast distributed algorithms)

All these problems have a local definition!

 $\begin{array}{ll} (\Delta+1)\text{-coloring:} & c(v) \in [1,\Delta+1] \setminus c(N_v) \\ \\ \text{Maximal Independent Set:} & i(v) = \text{YES iff } i(N_v) = \{\text{NO}\} \\ \\ & \text{Greedy coloring:} & c(v) \in \min[1,\Delta+1] \setminus c(N_v) \end{array}$

 $\Delta = \text{maximum degree of the graph} \\ N_v = \text{set of neighbors of } v$

(in finding fast distributed algorithms)

All these problems have a local definition!

 $\begin{array}{ll} (\Delta+1)\text{-coloring:} & c(v) \in [1,\Delta+1] \setminus c(N_v) \\ \\ \text{Maximal Independent Set:} & i(v) = \text{YES} \quad \text{iff} \quad i(N_v) = \{\text{NO}\} \\ \\ \text{Greedy coloring:} & c(v) \in \min[1,\Delta+1] \setminus c(N_v) \\ \\ \\ \text{Largest-first coloring:} & c(v) \in \min[1,\Delta+1] \setminus c(N_v^{\geqslant}) \end{array}$

 $\begin{array}{l} \Delta = \mbox{maximum degree of the graph} \\ N_v = \mbox{set of neighbors of } v \\ N_v^\geqslant = \mbox{set of neighbors of } v \mbox{ with degree at least } \deg(v) \end{array}$

Model of Computation

Linial's free model, a.k.a. \mathcal{LOCAL} model

- underlying topology reliable and unkown
- unique ID node, spontaneous wakeup, totally synchronous
- 1 round = exchange messages with one or more neighbors
- unlimited message size

Model of Computation

Linial's free model, a.k.a. \mathcal{LOCAL} model

- underlying topology reliable and unkown
- unique ID node, spontaneous wakeup, totally synchronous
- 1 round = exchange messages with one or more neighbors
- unlimited message size

 \Rightarrow model to understand the LOCALITY of a problem. In time t a vertex knows at most its distance-t neighborhood

 $\mathrm{polylog}(n) \ll 2^{\sqrt{\log n}} \ll n^\epsilon \\ \log^* n = \mathrm{the \ smallest} \ i \ \mathrm{such \ that} \ \log^{(i)} n \leqslant 2$

	lower	upper	ref.
$(\Delta+1) ext{-coloring}$	$\Omega(\log^* n)$	$2^{O(\sqrt{\log n})}$	[L92/PS96]
Max. Indep. Set	$\Omega(\sqrt{\frac{\log n}{\log \log n}})$	$2^{O(\sqrt{\log n})}$	[KMW04/PS93]

$$\mathrm{polylog}(n) \ll 2^{\sqrt{\log n}} \ll n^\epsilon$$
 $\log^* n =$ the smallest i such that $\log^{(i)} n \leqslant 2$

	lower	upper	ref.
$(\Delta + 1)$ -colorin	g $\Omega(\log^* n)$	$2^{O(\sqrt{\log n})}$	[L92/PS96]
Max. Indep. S	et $\Omega(\sqrt{\frac{\log n}{\log \log n}})$	$2^{O(\sqrt{\log n})}$	[KMW04/PS93]
greedy colorin	g $\Omega(\frac{\log n}{\log \log n})$	$2^{O(\sqrt{\log n})}$	[here/here]

 $\mathrm{polylog}(n) \ll 2^{\sqrt{\log n}} \ll n^\epsilon \\ \log^* n = \mathrm{the \ smallest} \ i \ \mathrm{such \ that} \ \log^{(i)} n \leqslant 2$

	lower	upper	ref.
$(\Delta+1) ext{-coloring}$	$\Omega(\log^* n)$	$2^{O(\sqrt{\log n})}$	[L92/PS96]
Max. Indep. Set	$\Omega(\sqrt{\frac{\log n}{\log \log n}})$	$2^{O(\sqrt{\log n})}$	[KMW04/PS93]
greedy coloring	$\Omega(rac{\log n}{\log\log n})$	$2^{O(\sqrt{\log n})}$	[here/here]
largest-first colorin	_	$O(\sqrt{n})$	[KK06/ <mark>here</mark>]

$$\operatorname{polylog}(n) \ll 2^{\sqrt{\log n}} \ll n^\epsilon$$

$$\log^* n = \text{the smallest } i \text{ such that } \log^{(i)} n \leqslant 2$$

Let **A** be *any* distributed algorithm computing a greedy coloring for all *n*-vertex graphs.

Let **A** be *any* distributed algorithm computing a greedy coloring for all *n*-vertex graphs.

Step 1 The maximum color assigned by **A** to a node v of a depth-d tree T is $\leq d + 1$.

Let **A** be *any* distributed algorithm computing a greedy coloring for all *n*-vertex graphs.

- Step 1 The maximum color assigned by **A** to a node v of a depth-d tree T is $\leq d + 1$.
- Step 2 If girth(G) $\ge \ell$ and $\chi(G) > \ell/2$, then **A** requires at least $\ell/2 1$ rounds for G.

Let **A** be *any* distributed algorithm computing a greedy coloring for all *n*-vertex graphs.

- Step 1 The maximum color assigned by **A** to a node v of a depth-d tree T is $\leq d + 1$.
- Step 2 If girth(G) $\ge \ell$ and $\chi(G) > \ell/2$, then **A** requires at least $\ell/2 1$ rounds for G.
- Step 3 There are *n*-vertex graphs with girth $\ge \ell$ and $\chi > \ell/2$ for $\ell = \frac{1}{4} \log n / \log \log n$.

Thank You for your attention