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Coloring Problems

A k-coloring is a color assignment V (G) → {1, ..., k} such
that adjacent vertices of a graph G get different colors.

A Maximal Independent Set is set of pairwise non-adjacent
vertices and which is maximal (for inclusion).

Both problems arise in many partitioning & clustering
problems in many aeras.



Sequential Algorithms

Every graph has a (∆ + 1)-coloring where ∆ is the maximum

degree, which can be found by a trivial sequential algorithm.
[Similar for maximal independent set]

Procedure Sequential Coloring(G):

Select an uncolored vertex v
Color v with a color distinct from its colored neighbors
Repeat until all vertices are colored

Well-known variants to minimize the largest color:

1 Greedy coloring: choose the smallest available color

2 Largest-first coloring: color first high degree vertices
with the smallest possible available color
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Distributed Setting

The challenge is to give fast deterministic distributed
algorithms for these problems having sequential solutions:
understand the locality of these problems.

Secret goal: Prove that these problems are inherently non-local
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What is the hope?

(in finding fast distributed algorithms)

All these problems have a local definition!

(∆ + 1)-coloring: c(v) ∈ [1, ∆ + 1] \ c(Nv)

Maximal Independent Set: i(v) = Yes iff i(Nv) = {No}
Greedy coloring: c(v) ∈ min[1, ∆ + 1] \ c(Nv)

Largest-first coloring: c(v) ∈ min[1, ∆ + 1] \ c(N>
v )

∆ = maximum degree of the graph
Nv = set of neighbors of v
N>

v = set of neighbors of v with degree at least deg(v)
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Model of Computation

Linial’s free model, a.k.a. LOCAL model

underlying topology reliable and unkown

unique ID node, spontaneous wakeup, totally synchronous

1 round = exchange messages with one or more neighbors

unlimited message size

⇒ model to understand the LOCALITY of a problem.
In time t a vertex knows at most its distance-t neighborhood
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Results

lower upper ref.

(∆ + 1)-coloring Ω(log∗ n) 2O(
√

log n) [L92/PS96]

Max. Indep. Set Ω(
√

log n
log log n

) 2O(
√

log n) [KMW04/PS93]

greedy coloring Ω( log n
log log n

) 2O(
√

log n) [here/here]

largest-first coloring Ω(
√

n ) O(
√

n ) [KK06/here]

polylog(n) � 2
√

log n � nε

log∗ n = the smallest i such that log(i) n 6 2
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The Ω(log n/ log log n) Lower Bound

Let A be any distributed algorithm computing a greedy
coloring for all n-vertex graphs.

Step 1 The maximum color assigned by A to a node v of a
depth-d tree T is 6 d + 1.

Step 2 If girth(G) > ` and χ(G) > `/2, then A requires at least
`/2− 1 rounds for G.

Step 3 There are n-vertex graphs with girth > ` and χ > `/2 for
` = 1

4
log n/ log log n.
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for your attention


