On the Complexity of Distributed Coloring

Cyril Gavoille ${ }^{1} \quad$ Ralf Klasing ${ }^{1}$ Adrian Kosowski ${ }^{2}$ Alfredo Navarra ${ }^{3}$

${ }^{1}$ Univeristy of Bordeaux, France
${ }^{2}$ Gdańsk University of Tecnology, Poland
${ }^{3}$ University of Perugia, Italy
DISC 2007 - Limassol, Cyprus

Coloring Problems

A k-coloring is a color assignment $V(G) \rightarrow\{1, \ldots, k\}$ such that adjacent vertices of a graph G get different colors.

A Maximal Independent Set is set of pairwise non-adjacent vertices and which is maximal (for inclusion).

Both problems arise in many partitioning \& clustering problems in many aeras.

Sequential Algorithms

Every graph has a $(\Delta+1)$-coloring where Δ is the maximum degree, which can be found by a trivial sequential algorithm. [Similar for maximal independent set]

Sequential Algorithms

Every graph has a ($\Delta+1$)-coloring where Δ is the maximum degree, which can be found by a trivial sequential algorithm. [Similar for maximal independent set]

Procedure Sequential_Coloring (G) :

- Select an uncolored vertex v
- Color v with a color distinct from its colored neighbors
- Repeat until all vertices are colored

Sequential Algorithms

Every graph has a ($\Delta+1$)-coloring where Δ is the maximum degree, which can be found by a trivial sequential algorithm. [Similar for maximal independent set]

Procedure Sequential_Coloring (G) :

- Select an uncolored vertex v
- Color v with a color distinct from its colored neighbors
- Repeat until all vertices are colored

Well-known variants to minimize the largest color:

Sequential Algorithms

Every graph has a $(\Delta+1)$-coloring where Δ is the maximum degree, which can be found by a trivial sequential algorithm. [Similar for maximal independent set]

Procedure Sequential_Coloring (G) :

- Select an uncolored vertex v
- Color v with a color distinct from its colored neighbors
- Repeat until all vertices are colored

Well-known variants to minimize the largest color:
(1) Greedy coloring: choose the smallest available color

Sequential Algorithms

Every graph has a $(\Delta+1)$-coloring where Δ is the maximum degree, which can be found by a trivial sequential algorithm. [Similar for maximal independent set]

Procedure Sequential_Coloring (G) :

- Select an uncolored vertex v
- Color v with a color distinct from its colored neighbors
- Repeat until all vertices are colored

Well-known variants to minimize the largest color:
(1) Greedy coloring: choose the smallest available color
(2 Largest-first coloring: color first high degree vertices with the smallest possible available color

Distributed Setting

The challenge is to give fast deterministic distributed algorithms for these problems having sequential solutions: understand the locality of these problems.

Distributed Setting

The challenge is to give fast deterministic distributed algorithms for these problems having sequential solutions: understand the locality of these problems.

Secret goal: Prove that these problems are inherently non-local

What is the hope?

(in finding fast distributed algorithms)

All these problems have a local definition!

What is the hope?

(in finding fast distributed algorithms)

All these problems have a local definition!

$$
(\Delta+1) \text {-coloring: } \quad c(v) \in[1, \Delta+1] \backslash c\left(N_{v}\right)
$$

$\Delta=$ maximum degree of the graph $N_{v}=$ set of neighbors of v

What is the hope?

(in finding fast distributed algorithms)

All these problems have a local definition!

$$
(\Delta+1) \text {-coloring: } \quad c(v) \in[1, \Delta+1] \backslash c\left(N_{v}\right)
$$

Maximal Independent Set: $i(v)=$ Yes iff $i\left(N_{v}\right)=\{$ No $\}$
$\Delta=$ maximum degree of the graph $N_{v}=$ set of neighbors of v

What is the hope?

(in finding fast distributed algorithms)

All these problems have a local definition!
$(\Delta+1)$-coloring: $\quad c(v) \in[1, \Delta+1] \backslash c\left(N_{v}\right)$
Maximal Independent Set: $i(v)=$ Yes iff $i\left(N_{v}\right)=\{\mathrm{No}\}$
Greedy coloring: $\quad c(v) \in \min [1, \Delta+1] \backslash c\left(N_{v}\right)$
$\Delta=$ maximum degree of the graph
$N_{v}=$ set of neighbors of v

What is the hope?

(in finding fast distributed algorithms)

All these problems have a local definition!

$$
(\Delta+1) \text {-coloring: } \quad c(v) \in[1, \Delta+1] \backslash c\left(N_{v}\right)
$$

Maximal Independent Set: $i(v)=$ Yes iff $i\left(N_{v}\right)=\{\mathrm{No}\}$
Greedy coloring: $c(v) \in \min [1, \Delta+1] \backslash c\left(N_{v}\right)$
Largest-first coloring: $c(v) \in \min [1, \Delta+1] \backslash c\left(N_{v}^{\geqslant}\right)$
$\Delta=$ maximum degree of the graph
$N_{v}=$ set of neighbors of v
$N_{v}^{\geqslant}=$set of neighbors of v with degree at least $\operatorname{deg}(v)$

Model of Computation

Linial's free model, a.k.a. $\mathcal{L O C} \mathcal{A} \mathcal{L}$ model

- underlying topology reliable and unkown
- unique ID node, spontaneous wakeup, totally synchronous
- 1 round $=$ exchange messages with one or more neighbors
- unlimited message size

Model of Computation

Linial's free model, a.k.a. $\mathcal{L O C} \mathcal{A} \mathcal{L}$ model

- underlying topology reliable and unkown
- unique ID node, spontaneous wakeup, totally synchronous
- 1 round $=$ exchange messages with one or more neighbors
- unlimited message size
\Rightarrow model to understand the LOCALITY of a problem.
In time \mathbf{t} a vertex knows at most its distance-t neighborhood

Results

lower upper ref.
$(\Delta+1)$-coloring $\quad \Omega\left(\log ^{*} n\right) \quad 2^{O(\sqrt{\log n})} \quad[\mathrm{L} 92 / \mathrm{PS} 96]$
poly $\log (n) \ll 2^{\sqrt{\log n}} \ll n^{\epsilon}$
$\log ^{*} n=$ the smallest i such that $\log ^{(i)} n \leqslant 2$

Results

lower upper ref.
$(\Delta+1)$-coloring $\quad \Omega\left(\log ^{*} n\right) \quad 2^{O(\sqrt{\log n})} \quad[\mathrm{L} 92 / \mathrm{PS} 96]$
Max. Indep. Set $\Omega\left(\sqrt{\frac{\log n}{\log \log n}}\right) \quad 2^{O(\sqrt{\log n})} \quad$ [KMW04/PS93]

$$
\begin{array}{r}
\text { polylog}(n) \ll 2^{\sqrt{\log n}} \ll n^{\epsilon} \\
\log ^{*} n=\text { the smallest } i \text { such that } \log ^{(i)} n \leqslant 2
\end{array}
$$

Results

lower upper ref.
$(\Delta+1)$-coloring $\quad \Omega\left(\log ^{*} n\right) \quad 2^{O(\sqrt{\log n})} \quad[\mathrm{L} 92 / \mathrm{PS} 96]$
Max. Indep. Set $\Omega\left(\sqrt{\frac{\log n}{\log \log n}}\right) \quad 2^{O(\sqrt{\log n})} \quad$ [KMW04/PS93] greedy coloring $\quad \Omega\left(\frac{\log n}{\log \log n}\right) \quad 2^{O(\sqrt{\log n})} \quad$ [here/here]

$$
\begin{array}{r}
\text { polylog}(n) \ll 2^{\sqrt{\log n}} \ll n^{\epsilon} \\
\log ^{*} n=\text { the smallest } i \text { such that } \log ^{(i)} n \leqslant 2
\end{array}
$$

Results

lower upper ref.
$(\Delta+1)$-coloring $\quad \Omega\left(\log ^{*} n\right) \quad 2^{O(\sqrt{\log n})} \quad[\mathrm{L} 92 / \mathrm{PS} 96]$
Max. Indep. Set $\Omega\left(\sqrt{\frac{\log n}{\log \log n}}\right) \quad 2^{O(\sqrt{\log n})} \quad$ [KMW04/PS93]
greedy coloring
largest-first coloring
$\Omega\left(\frac{\log n}{\log \log n}\right)$
$\Omega(\sqrt{n})$
$2^{O(\sqrt{\log n})} \quad$ [here/here]
$O(\sqrt{n}) \quad[$ KK06/here]

$$
\text { poly } \log (n) \ll 2^{\sqrt{\log n}} \ll n^{\epsilon}
$$

$$
\log ^{*} n=\text { the smallest } i \text { such that } \log ^{(i)} n \leqslant 2
$$

The $\Omega(\log n / \log \log n)$ Lower Bound

Let \mathbf{A} be any distributed algorithm computing a greedy coloring for all n-vertex graphs.

The $\Omega(\log n / \log \log n)$ Lower Bound

Let \mathbf{A} be any distributed algorithm computing a greedy coloring for all n-vertex graphs.

Step 1 The maximum color assigned by \mathbf{A} to a node v of a depth- d tree T is $\leqslant d+1$.

The $\Omega(\log n / \log \log n)$ Lower Bound

Let \mathbf{A} be any distributed algorithm computing a greedy coloring for all n-vertex graphs.

Step 1 The maximum color assigned by \mathbf{A} to a node v of a depth- d tree T is $\leqslant d+1$.

Step 2 If $\operatorname{girth}(G) \geqslant \ell$ and $\chi(G)>\ell / 2$, then \mathbf{A} requires at least $\ell / 2-1$ rounds for G.

The $\Omega(\log n / \log \log n)$ Lower Bound

Let \mathbf{A} be any distributed algorithm computing a greedy coloring for all n-vertex graphs.

Step 1 The maximum color assigned by \mathbf{A} to a node v of a depth- d tree T is $\leqslant d+1$.

Step 2 If $\operatorname{girth}(G) \geqslant \ell$ and $\chi(G)>\ell / 2$, then \mathbf{A} requires at least $\ell / 2-1$ rounds for G.

Step 3 There are n-vertex graphs with girth $\geqslant \ell$ and $\chi>\ell / 2$ for $\ell=\frac{1}{4} \log n / \log \log n$.

Thank You

for your attention

