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1. INTRODUCTION

To color the vertices of a graph G = (V , E) means to give
each vertex a positive integer color value in such a way that
no two adjacent vertices get the same color. In many practical
considerations, it is desirable to minimize the number of
colors used.

Many applications ranging over code assignment in wire-
less networks [3], scheduling problems [10,23], track assign-
ment in railway optimization [5–7], and so forth, can be
solved by means of minimum coloring.

If at most k colors are used, the result is called a k-coloring.
The smallest possible positive integer k for which there exists
a k-coloring of G is called the chromatic number χ(G). It has
to be remembered that even in a centralized setting, approxi-
mating χ(G) within a factor of |V |1−ε is an NP-hard problem,
for any ε > 0 [30].

In the context of distributed computing, the performance
of a graph coloring algorithm on a system graph G is charac-
terized by at least two main parameters: the number of colors
used by the algorithm to color the graph G and the num-
ber of rounds required to obtain a coloring. Designing a fast
distributed algorithm (i.e., an algorithm running within o(D)

rounds where D is the diameter of the graph G) which always
uses a number of colors in some way bounded from above
with respect to χ(G) appears to be difficult; e.g., in [22] it
is proved that coloring trees of diameter D and maximum
degree � requires �(D) rounds even if we allow the algo-
rithm to use

√
� colors. For this reason, it is natural to pose

the problem of constructing distributed algorithms having
properties analogous to certain centralized graph coloring
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heuristics, which are known to work well in practice. The
class of greedy algorithms considered herein is of special
significance due to the elegance of their formulation, and
the number of graph classes for which they always produce
optimal or near-optimal results.

1.1. Preliminaries: Greedy Coloring in a
Centralized Setting

For a given graph G and a sequence K of all its vertices,
K = (v1, v2, . . . , vn), we will use the term greedy coloring
to describe the following procedure of locally minimal color
assignment:

Algorithm Greedy-Color(G, K):

for v := v1 to vn do
give vertex v the smallest possible color not used by any
of the already colored neighbors of v;

Different graph coloring algorithms are obtained by choos-
ing the sequence K in a specific way and then applying the
Greedy-Color procedure. Below we briefly recall some of
the types of sequences most often applied in practice (cf.
[17, 18]).

• General Greedy (G) sequence: K is an arbitrarily chosen
sequence of vertices.

• Largest-First (LF) sequence: K is formed by arranging the
vertices of graph G in non-ascending order of degrees.

• Smallest-Last (SL) sequence: K is formed by iteratively
removing a vertex of minimal degree from the graph and
placing it at the end of K .

All the considered algorithms obviously lead to correct color-
ings of the graph, but the converse does not hold — not every
coloring of a graph can be obtained by applying a specific
algorithm. We will call a coloring of a graph an A-coloring
if it can be obtained by means of greedy coloring with a
sequence of some type A.

Observe that all G-colorings have the much desired local
minimality property described by Grundy [13], namely, no
single vertex may have its color value decreased without
affecting the color of some other (neighboring) vertex. As a
direct consequence, all G-colorings use no more than � + 1
colors, with � being the maximum vertex degree in G. LF-
colorings and SL-colorings are special types of G-colorings,
thus they inherit this property.

For graph classes found in practice greedy colorings
obtained according to specific sequences may admit even
stronger bounds [18, 25, 29]. For example, any SL-coloring
of a planar graph uses no more than six colors, whereas
any LF-coloring is optimal or within a fixed number of col-
ors of the optimum for numerous graph classes, including
complete k-partite graphs, caterpillars, crowns, and bipartite
wheels [18].

1.2. Model of Distributed Computation

We consider restricted variants of the vertex coloring prob-
lem in a distributed network, assuming the so-called Linial
model of computation, which is widely used in previous
research on the subject [4, 21, 22, 27]. Such a distributed
network consists of a set V of processors and a set E of bidi-
rectional communication links between pairs of processors.
It can be modeled by an undirected graph G = (V , E). We
denote n = |V |.

Vertices are identified by means of unique labels. Each
vertex has its local state, described by a certain number of
integer variables. The system functions in so-called synchro-
nized rounds, consisting of three steps: a vertex first reads
its own local state variables and the local state variables of
all its neighbors, then performs an arbitrary amount of local
computations, and finally updates its local state variables
accordingly.

Although local computations are unbounded, the case of
randomized algorithms, i.e, algorithms that can make use of
a so-called coin-flip function, is usually separately studied.
Section 4 is devoted to such a variant.

In all further considerations we assume that two global
parameters are known to all vertices: some constant-factor
upper bounds on the number of vertices n and on the max-
imum vertex degree �. This assumption is used only to
provide a simple mechanism for executing subroutines of
known complexity with respect to n and � and waiting a
known number of rounds for their completion.

For convenience of notation, we will assume that the spe-
cial local state variable c always stores the outcome of the
algorithm; for example, in a coloring process, c(v) is the color
value assigned to vertex v. The algorithm is considered to be
complete when the values of all variables c are correctly set
and the algorithm will not modify them in any subsequent
round.

For each vertex v define its neighborhood N(v) = {u :
{u, v} ∈ E} and vertex degree degG(v) = |N(v)|. The
maximum degree among all vertices in G is denoted by
� = max

v∈V
{degG(v)}. To distinguish among neighbors of

higher degree, we will use the symbol N≥(v) = {u ∈ N(v) :
deg(u) ≥ deg(v)} and similarly N>(v) = {u ∈ N(v) :
deg(u) > deg(v)}. The distance-d neighborhood Nd(v) of
vertex v is defined as the set of all vertices at a distance
between 0 and d from v. For any subset of vertices S ⊆ V ,
we denote the subgraph of G induced by vertex set S as G[S].
The length of the shortest cycle in graph G is known as its
girth and denoted by g(G).

1.3. Problem Definitions

In this article, we consider two variants of the graph col-
oring problem in a distributed setting, those of obtaining a
G-coloring and of obtaining an LF-coloring of the system
graph, denoted G-COL and LF-COL, respectively. As men-
tioned in Section 1.1, G-COL and LF-COL are refinements
of the problem of finding a (� + 1)-coloring of the system
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graph G (simply denoted COL), and thus are not easier in the
sense of computation time. In fact, G-COL and LF-COL are
also not easier than the problem of finding a maximal inde-
pendent set in G (denoted MIS), because for any G-coloring
of G the set of all vertices having color 1 is clearly a maximal
independent set.

Nevertheless, it is possible to put forward a definition of
G-COL and LF-COL which demonstrates the local nature of
the imposed constraints; for completeness we provide local
formulations of COL and MIS as well. For a set of vertices
S ⊆ V , the symbol c(S) is used to denote the set of values
{c(v) : v ∈ S}.

Definition 1. The considered distributed problems are
defined by the following constraints on the local variable
c at any vertex v:

(�+ 1)-Coloring (COL): c(v) ∈ {1, . . . , � + 1}\ c(N(v)).
Maximal Independent Set (MIS):

c(v) ∈ {0, 1} ∧ c(v)=1 ⇔ c(N(v)) = {0}.
Greedy Coloring (G-COL):

c(v) = min {1, . . . , �+1}\c(N(v)).
Largest-First Coloring (LF-COL):

c(v) = min {1, . . . , �+1}\c(N≥(v)).

The proof of the equivalence of the above definitions
with the prior characterizations is straightforward. For the
G-COL problem, consider any G-coloring c of graph G,
and an arbitrarily chosen vertex v. Because at the time of
coloring some of the vertices from N(v) are already col-
ored and v obtains the minimum possible color, we have
c(v) ≤ min{1, . . . , �+1} \ c(N(v)), but also c(v) /∈ c(N(v))
by the legality of the coloring, thus c(v) = min{1, . . . , � +
1} \c(N(v)). Conversely, given a set of color values fulfilling
c(v) = min{1, . . . , �+1} \c(N(v)) we can always construct
a corresponding sequence K for the Greedy-Color procedure
simply by ordering vertices according to nondecreasing val-
ues of c(v). For the definition of LF-COL the argument is
analogous; an appropriate sequence K can be constructed
by ordering vertices according to nonincreasing values of
deg(v), breaking ties according to nondecreasing values of
c(v).

As a side note, it is interesting to observe that the problem
of finding an SL-coloring of graph G does not admit any local
definition. Indeed, when G is a ring of even length, any such
coloring uses exactly two colors. Taking into account that the
2-coloring of a ring requires �(n) rounds (cf. e.g. [22]), this
means that finding a distributed SL-coloring of a graph may
also require �(n) rounds; such a problem is of little interest
in a distributed setting. The same also holds for well-known
algorithms with dynamic sequences, such as DSATUR [17].

1.4. State-of-the-art Results

In terms of n, the fastest known distributed algorithm

for MIS 2O(
√

log n) time [27]. The same bound holds for
COL, taking into account the simple algorithm which finds

a (� + 1)-coloring of an arbitrary graph by direct reduction
to one iteration of any algorithm for MIS (see e.g. [15]). The
current best lower bound is only �(log∗ n) for COL [22] and

�
(√

log n
log log n

)
for MIS [19]. The distributed time complexity

of COL and MIS is thus widely open.
Recently, it has been proved that COL and MIS on graphs

of arboricity o(
√

log n) can be solved in o(log n) time [2],
whereas in growth-bounded graphs they can be solved in
optimal O(log∗ n) time [28]. Some additional time bounds
are obtained when taking into account the value of parameter
�. For general graphs, the best upper bound for COL and MIS
is O(� log �+ log∗ n) rounds [20]. All the above mentioned
algorithms are deterministic; using randomization, it is also
shown in [20] that an expected O(� log log n) rounds are
enough for COL.

For the general graph coloring problem some extremely
fast algorithms have been described. Linial [22] gave an algo-
rithm working in O(log∗ n) time but using O(�2) colors.
Algorithms having strong bounds on the number of col-
ors usually only work for some specific graph classes. For
example in [12] a technique for coloring triangle-free graphs
using O(�/ log �) colors was proposed, but the algorithm
may fail for some instances of the problem (i.e., for some
triangle-free graphs). Practical performance aspects of many
algorithms for COL, including algorithms with mechanisms
for economizing on the number of used colors, were studied
in [9].

To the best of our knowledge, the first distributed approach
to greedy graph coloring was proposed by Panconesi and
Rizzi [26] who used a forest decomposition technique to
achieve a coloring fulfilling the constraints of G-COL in
O(�2 + log∗ n) time. Recently, an algorithm motivated by
sequential LF-coloring was described in [14]. Analysis shows
that it runs in O(�2 log n) time. The solution obtained by this
algorithm is always greedy (solving the G-COL problem), but
does not satisfy the constraints of the LF-COL problem for
some instances.

1.5. Our Contribution

We provide lower and upper bounds on the time complex-
ity of Greedy Coloring (G-COL) and Largest First Coloring
(LF-COL) with respect to Coloring (COL) and Maximal
Independent Set (MIS).

A summary of the results is contained in Table 1. The
obtained lower and upper bounds for the G-COL and LF-
COL problems are expressed in terms of parameters n and

�. In particular, we prove a lower bound of �
(

log n
log log n

)
for G-COL and �(

√
n) for LF-COL, an improvement upon

the current MIS-derived lower bounds [19]. We note that
our lower bounds also apply for randomized algorithms (cf.
Section 4).

The rest of the article is organized as follows. The next
section provides lower bounds for the considered prob-
lems. Upper bound results for deterministic algorithms can
be found in Section 3, whereas a discussion concerning

14 NETWORKS—2009—DOI 10.1002/net



TABLE 1. The time complexity of Greedy Coloring and LF-Coloring with respect to other well-known problems, (�+1)-Coloring and Maximal Independent
Set, in the distributed setting.

COL MIS G-COL LF-COL

Lower bounds (deterministic and randomized)

�(log∗ n) [21] �
(√

log n
log log n

)
[19] �

(
log n

log log n

)
[Thm 5] �(

√
n) [Thm 6]

�
(

log �
log log �

)
[19] �(�) [Thm 6]

Upper bounds (deterministic algorithms)

2O(
√

log n) [1, 27] 2O(
√

log n) [1, 27] 2O(
√

log n) [Thm 8] O(
√

n · TMIS) [Thm 12]
O(� log n) [1]

O(� + TCOL) [Prop 9] O(� + TCOL) [Prop 9] O(� · TMIS) [Thm 11]
O(� log � + log∗ n) [20]

Upper bounds (randomized algorithms)

O(log n) [15, 24] O(log n) [24] 2O(
√

log n) [Prop 13] O(
√

n log n) [Prop 14]
O(� log log n) [20]

O
(
� + T R

COL

) [Prop 13] O
(
� + T R

COL

)
[Prop 13] O (� log � log n) [Prop 14]

O
(
� log � + log∗ n

)
[20]

For a problem P, the notation TP (resp. T R
P ) describes a known upper bound on the complexity of an algorithm (resp. randomized algorithm) for solving P.

upper bound results for randomized algorithms can be
found in Section 4. Finally, Section 5 provides concluding
remarks.

2. LOWER BOUNDS

2.1. The G-COL Problem

For a given graph G, let CG(v) denote the set of all possible
colors which may be assigned to vertex v ∈ V , taken over
all greedy colorings of G. For trees, we have the following
property.

Lemma 1. Let T be a tree and v some vertex of T such
that the maximum distance from v to another vertex of T is
d. Then max CT (v) ≤ d + 1.

Proof. Consider an arbitrary greedy coloring of T . If a
vertex vc receives some color c > 1, then it must be adjacent
to a vertex vc−1 which is assigned color c − 1. By induction
we easily prove that vc must be the endpoint of a path in T
with c vertices. Since by assumption the longest path of T
with one endpoint in v has d + 1 vertices, clearly the color
assigned to v in the coloring cannot exceed d + 1. ■

Lemma 2. Suppose that there exists an n-vertex graph G
such that for some � we have bounds on its girth g(G) ≥ �

and chromatic number χ(G) > �/2. Then, for any distributed
algorithm for the G-COL problem there exist graphs of at
most n vertices which require no less than �/2 − 1 rounds to
color.

Proof. Suppose that there exists a distributed algorithm
A which for all graphs of at most n vertices produces a greedy
coloring cA in at most d rounds. Algorithm A must be able
to assign for any vertex v ∈ V a color cA(v) ∈ CG(v),
using information about the graph structure at distance at
most d only. Thus, if for two graphs G = (V , E) and
G′ = (V ′, E′) with distinguished vertices v ∈ V , v′ ∈ V ′

we have G[Nd(v)] = G′[Nd(v′)], then the coloring of graph
G produced by algorithm A has the property that cA(v) ∈
CG(v) ∩ CG′(v′).

Now, let G be the graph of girth g(G) ≥ � described
in the assumption of the lemma. Let v ∈ V be arbitrarily
chosen. We now apply the proven property for graphs G and
G′

v ≡ G[N �

2 −1(v)] with vertices v and v′ ≡ v, obtaining

cA(v) ∈ CG(v) ∩ CG′
v
(v). However, the graph G′

v is clearly
a tree (because it is acyclic and connected) and all vertices
of G′

v are at a distance of at most �/2 − 1 from v. Hence by
Lemma 1 we obtain max CG′

v
(v) ≤ �/2, and we conclude

that for graph G, cA(v) ≤ �/2. Because v was arbitrarily
chosen, we have cA(v) ≤ �/2 for all v ∈ V . We have thus
obtained a coloring of G using at most �/2 colors, whereas by
assumption the chromatic number χ(G) is larger than �/2, a
contradiction. ■

Lemma 3 ( [8]). For all n, k ∈ N (4 ≤ k ≤ n) there exists
an n-vertex graph G, such that χ(G) ≥ k and g(G) ≥ 1

4
log n
log k .

Corollary 4. For all values of n ≥ 216 there exists a graph
G of order n, such that χ(G) ≥ log n

log log n and g(G) ≥ 1
4

log n
log log n .

Proof. For any given value of n ≥ 216, put k =⌈
log n

log log n

⌉
in Lemma 3. We immediately obtain that there

exists a graph G of order n such that the following conditions
are fulfilled:

χ(G) ≥ k =
⌈

log n

log log n

⌉
≥ log n

log log n
,

g(G) ≥
⌈

1

4

log n

log k

⌉
≥ 1

4

log n

log log n − log log log n + 1

≥ 1

4

log n

log log n
,

which completes the proof. ■
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Combining Corollary 4 with Lemma 2 (putting l =
1
4

log n
log log n ), we immediately obtain that for all values of n ≥

216, no distributed algorithm can solve the G-COL problem
in less than 1

8
log n

log log n −1 rounds for all graphs of order at most
n. Thus, we have the following theorem.

Theorem 5. The distributed time complexity of G-COL is

�
(

log n
log log n

)
.

2.2. The LF-COL Problem

Theorem 6. The distributed time complexity of LF-COL is
�(

√
n) and �(�).

Proof. Consider a family of graphs {Gd}d=4,5,6,... having
n(Gd) = 5

2 d2 − 1
2 d + 1 and �(G) = 2d, whose representa-

tive is depicted in Figure 1. Vertices v0, v1, . . . , vd induce a
path of length d. Some additional components are connected
to particular vertices to ensure that vertex vi obtains a color
d − i +1 in each LF-coloring of Gd . Each of these additional
components Kr depicts a complete graph with r vertices, and
a bold line between such a component and vi illustrates that
each of the vertices of Kr is connected to vi. Similarly, when
two components Kr1 and Kr2 are connected, each vertex from
Kr1 is connected to each vertex from Kr2 , thus forming a clique
Kr1+r2 . We have deg(vi) = d+i, hence the vertices of the path
appear in the LF sequence in the order vd , vd−1, . . . , v1, v0.
Moreover, we have |N>(vi)| = d − i, and it is easy to obtain
inductively that in any LF-coloring of Gd the set of colors
used in N>(vi) is {1, 2, . . . , d − i}, hence the only possible
color for vi in an LF-coloring is d − i + 1. However, if ver-
tex vd were to be removed from the graph, the colors of all
other vertices of the path would decrease by 1. Thus, we have
shown that the color of v0 depends on the existence of vertex
vd : if vd exists, v0 must obtain color d + 1, otherwise it must
obtain color d. As vertices vd and v0 are at a distance of d
from each other, and information in our model can propa-
gate only at the speed of one vertex per round, the coloring
cannot be completed in less than d rounds, and the claim
follows. ■

FIG. 1. A graph which requires �(d) time to LF-color in the distributed
model.

3. UPPER BOUNDS FOR DETERMINISTIC
ALGORITHMS

3.1. The G-COL Problem

We recall after [1,27] that a (j, k)-decomposition of a graph
G = (V , E) is a partition C = {C1, C2, . . . } of V such that
the following conditions are fulfilled:

• each subgraph G[Ci], called a cluster, is connected and of
diameter at most j,

• the so called cluster graph, having vertex set C and edges
connecting those clusters Ci, Cj ∈ C for which there exist
vertices vi ∈ Ci, vj ∈ Cj such that {vi, vj} is an edge of G,
is vertex colored with at most k colors.

Lemma 7. Given a (j, k)-decomposition of a graph, there
exists a distributed O(j · k) time algorithm for solving the
G-COL problem.

Proof. Once the (j, k)-decomposition is given, we have a
situation in which the clustered graph is already colored (per-
haps not greedily). The algorithm then proceeds according to
the assigned colors: first clusters of color 1 are processed in
parallel, then clusters of color 2 are processed in parallel, and
so forth. Inside each cluster, a leader is elected in order to col-
lect all the information from the related cluster. This operation
clearly requires O(j) rounds to retrieve all the information
about the cluster. The leader then greedily assigns a suitable
color to each vertex of its cluster respecting the greedy color-
ing property, i.e., each vertex gets the smallest color possible
with respect to its already colored neighbors from other clus-
ters. Again this requires O(j) rounds. Note that clusters of
color 1 have no constraints with respect to the other clusters.
In the case of clusters of color 2, the greedy coloring may
begin only after waiting O(k) steps for all the neighbors from
clusters of color 1 to be colored. Consequently, a coloring of
the last clusters is complete after O(j · k) rounds. ■

The following theorem is obtained directly from
Lemma 7, taking into account the results of [27] where a

(2O(
√

log n ), 2O(
√

log n ))-decomposition of any n-vertex graph

is provided in 2O(
√

log n ) distributed time.

Theorem 8. There exists a distributed algorithm for the

G-COL problem running in 2O(
√

log n ) time.

Proposition 9. There exists a distributed O(� + TCOL)

algorithm for G-COL, where TCOL denotes a known upper
bound on the execution time of an algorithm for the COL
problem in G.

Proof. Suppose that a (� + 1)-coloring of graph G is
already provided. This induces a partition of the vertex set
into independent sets V = IS1 ∪ IS2 ∪ · · · ∪ IS�+1. It is easy
to see that in the i-th round we can simultaneously assign
the minimum possible color to all vertices from ISi, taking
into account the constraints imposed by the colors of vertices
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from IS1 ∪ · · · ∪ ISi−1. Thus, a greedy coloring of the graph
can be obtained �+1 rounds after the initial (�+1)-coloring
is known to be complete. ■

3.2. The LF-COL Problem

Before discussing the details of the distributed imple-
mentation of the LF algorithm, we present an equivalent
characterization of a correct LF-coloring. For a given color-
ing of G, let IS(j,k) ∈ V , for any 1 ≤ j ≤ �, 1 ≤ k ≤ � + 1,
denote the independent set of vertices of G of degree j and
colored with color k. We define H(j,k) ⊆ G as the subgraph
induced by the set of all vertices v ∈ V such that degG(v) = j
and v /∈ (⋃

ki<k IS(j,ki)

) ∪ N
( ⋃

ji>j IS(ji ,k)

)
.

Lemma 10. Given an assignment of colors c : V(G) → N,
if for all j, k the set IS(j,k) is a maximal independent set in
H(j,k), then c is an LF-coloring of G.

Proof. Observe that if a coloring c of G fulfills the
assumption of the lemma, then it is identical to the coloring
c′ obtained using the greedy algorithm with the largest-first
sequence of vertices: K = (IS(�,1), IS(�,2), . . . , IS(�,�+1),
IS(�−1,1), IS(�−1,2), . . . , IS(�−1,�), . . . , IS(1,1), IS(1,2)), where
the elements of each independent set may be enumerated in
arbitrary order. Indeed, suppose that for all vertices u which
appear in sequence K before some fixed vertex v both col-
orings are identical, c(u) = c′(u). Putting j = degG(v), for
all ji < c(v), IS(j,ki) is a maximal independent set in H(j,ki),
v ∈ V(H(j,ki)), and v /∈ IS(j,ki), hence IS(j,ki) ∪{v} is not an
independent set in G. This means that v has at least one neigh-
bor u ∈ IS(j,ki) which appears earlier in K , and c′(u) = ki,
so c′(v) �= ki. In this way we obtain c′(v) ≥ c(v). On the
other hand, all vertices u which appear before v in K and
have color c′(u) = c(v) either belong to the same indepen-
dent set IS(j,c(v)) as v, or to some independent set IS(ji ,c(v)),
ji > j, and v /∈ N(IS(ji ,c(v))). Consequently, color c(v) is
the smallest legal color for v in the greedy coloring, so we
have c′(v) = c(v), which completes the proof by an inductive
argument. ■

We now propose a distributed algorithm which defines the
maximal independent sets IS(j,k) ⊆ H(j,k). Let r be a known
upper bound on the number of rounds required to compute
an independent set in any subgraph of G. Then the execution
of the proposed algorithm is divided into � + 1 steps, each
of which lasts r rounds. In the i-th step, 1 ≤ i ≤ � + 1, we
compute at once all of the independent sets IS(j,k) such that
1 ≤ j ≤ �, 1 ≤ k ≤ � + 1, and j − k = � − i. Thus, in
step 1 we compute only a maximal independent set IS(�,1) in
graph H(�,1), i.e. in the subgraph of G induced by all vertices
of degree �. In step 2 we compute a maximal independent
set IS(�−1,1) in the subgraph of G induced by all vertices of
degree �−1, and at the same time a maximal independent set
IS(�,2) in the subgraph of G induced by all vertices of degree
� not belonging to IS(�,1), and so on. An illustration of the
time ordering of the independent set construction is shown in

FIG. 2. Illustration of the time ordering of independent set construction.

Figure 2. By Lemma 10, when all vertices have been assigned
to some independent set, the result can be interpreted as a
distributed LF-coloring of the graph. The time complexity of
the algorithm is determined by � + 1 steps of an algorithm
for the MIS problem, hence we have the following theorem.

Theorem 11. There exists a distributed O(� · TMIS) algo-
rithm for LF-COL, where TMIS denotes a known upper bound
on the execution time of an algorithm for the MIS problem in
graphs of order at most n and degree at most �.

Theorem 12. There exists a distributed O(
√

n · TMIS) algo-
rithm for LF-COL, where TMIS denotes a known upper bound
on the execution time of an algorithm for the MIS problem in
graphs of order at most n and degree at most �.

Proof. Consider a partition of the vertex set V(G) =
V1 ∪ V2, where V1 contains all vertices of degree at least a,
and V2 contains all vertices of degree less than a, for some
value of parameter a. Let H be the spanning subgraph of
G with all edges having at least one endpoint of degree at
least a, H = G \ E(G[V2]). Let P = (v1v2 . . . vd) ⊆ H be a
shortest path in H connecting some two vertices v1 and vd .
In P we must have at least d/4 vertices which belong to V1

and whose neighborhoods are pairwise disjoint in H, hence
also in G. Because each of these vertices is of degree at least
a, we obtain a · d/4 ≤ n, which means that the diameter of
each of the connected components of H is at most 4n/a.

The coloring of graph G is obtained by first coloring all
vertices from V1, and then all vertices from V2. The for-
mer stage can be performed by electing a leader in each
of the connected components of H, computing a centralized
LF-coloring of all vertices from V1 within this component,
and disseminating the coloring to all vertices. In view of the
obtained bound on the diameter, this step takes O(n/a) time.
In the latter stage, the coloring of V2 is easily completed
using an approach similar to that described by Theorem 11
in O(a · TMIS) time, because all vertices are of degree less
than a and obtain color at most a. The overall complexity of
the algorithm is therefore O(n/a + a · TMIS), and the proof
of the claim is complete when we put a = √

n/TMIS. ■

4. NOTES ON RANDOMIZED ALGORITHMS

The introduction of randomization consists of allowing
local computations of vertices to involve a random coin-flip
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function, which returns a value 0 or 1 (a so-called random
bit) with equal probability. We consider randomized algo-
rithms that always stop with a correct result, whereas the
time complexity of an algorithm is its expected running time.

Although randomized solutions to some problems may
be significantly faster than the best known deterministic
approaches (e.g. MIS in Table 1), certain lower time bounds
related to the speed of dissemination of information in the
network still apply. In particular, the arguments used when
proving lower bounds in Section 2 are still valid: if the dis-
tance d-neighborhoods of a vertex v in some two system
graphs G1 and G2 containing v are identical, and the sets
of permissible values of color c(v) are disjoint for graphs G1

and G2, then for any coloring algorithm, for at least one of
the graphs G1, G2, the probability of obtaining a correct solu-
tion within d rounds cannot exceed 1/2. Hence, by Markov’s
inequality, the expected execution time of any algorithm is
�(d). In this way we obtain that all the lower bounds in Table
1 also hold for expected execution times in the randomized
model.

On the other hand, deterministic algorithms can also be
applied in the randomized model. Hence, all upper complex-
ity bounds in Table 1 which are expressed in terms of n and �

still hold. In particular, the G-COL problem can still be solved

in 2O(
√

log n) time. Upper bounds which include bounds on
the execution time of other algorithms need to be approached
more carefully; we show the following simple results.

Proposition 13. There exists a distributed randomized
O(� + T R

COL) expected time algorithm for G-COL, where
T R

COL denotes the complexity of a randomized algorithm for
the COL problem in G.

Proof. The O(� + TCOL)-time algorithm for G-COL
given by Proposition 9 is easily adapted to allow for any
randomized subroutine for the COL problem. Indeed, the
initial (� + 1)-coloring is used only to define independent
sets {ISi : 1 ≤ i ≤ � + 1}, and instead of waiting for the
COL algorithm to complete, we can start the greedy coloring
phase even before the independent sets are fully defined (for
example, in round (�+1)k+i, k ∈ N, we activate all vertices
from set ISi, none of whose neighbors belong to ISi). ■

Proposition 14. There exist distributed randomized algo-
rithms for LF-COL running in O(� log � log n) and
O(

√
n log n) expected time.

Proof. The deterministic subroutine for MIS applied in
the algorithms for LF-COL (Theorems 11 and 12) can be
replaced by a randomized subroutine, provided that this algo-
rithm for MIS has the property that at every stage of execution
the partial solution described by local variables c of those ver-
tices which have already completed the algorithm induces a
(not necessarily maximal) independent set. The randomized
distributed algorithm for MIS proposed by Luby [24] has
this property. The complexity of this algorithm is given as
O(log n), and the time distribution of executions of the Luby

algorithm is dominated by the negative binomial distribution
(a direct corollary of [24] Theorem 1). When computing an
LF-coloring, the subroutine for MIS is called independently
O(�2) times, and thus by a simple calculation we have that
the slowest of the iterations of MIS will almost certainly com-
plete in O(log n log �) time. We may therefore use the value
O(log n log �) (or O(log2 n) for simplicity) in place of TMIS

in Theorems 11 and 12, which completes the proof. ■

5. CONCLUSION

The number of colors used by most distributed algorithms
for (� + 1)-coloring, such as Johansson’s algorithm [15], is
close to � even if the graph is bipartite. This is not sur-
prising, because such algorithms have no mechanism for
economizing on the number of colors. Distributed greedy
coloring (G-COL) is a natural approach for optimizing the
number of colors. We have shown that such greedy color-
ing can be obtained within a time bound as good as the best
known (�+1)-coloring algorithm [27]. However, and maybe
surprisingly, no polylog randomized algorithm for greedy
coloring is known, unlike the case of (� + 1)-coloring.
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