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Abstract

Distributed Greedy Coloring is an interesting and intuitive variation of
the standard Coloring problem. Given an order among the colors, a coloring
is said to be greedy if there does not exist a vertex for which its associated
color can be replaced by a color of lower position in the fixed order without
violating the property that neighbouring vertices must receive different colors.
We consider the problems of Greedy Coloring and Largest First Coloring (a
variant of greedy coloring with strengthened constraints) in the Linial model of
distributed computation, providing lower and upper bounds and a comparison
to the (∆+1)-Coloring and Maximal Independent Set problems, with ∆ being
the maximum vertex degree in G.

Keywords: Distributed Computing, Graph Coloring, Greedy Algorithm, Ran-
domisation

1 Introduction

To color the vertices of a graph G means to give each vertex a positive integer color
value in such a way that no two adjacent vertices get the same color. In many
practical considerations, it is desirable to minimise the number of colors used.
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Many applications ranging over code assignment in wireless networks [2], schedul-
ing problems [8,20], track assignment in railway optimisation [4–6] and so forth, can
be solved by means of minimum coloring.

If at most k colors are used, the result is called a k-coloring. The smallest
possible positive integer k for which there exists a k-coloring of G is called the
chromatic number χ(G). It has to be remembered that even in a centralised setting,
approximating χ(G) within a factor of n1−ε is an NP-hard problem, for any ε >
0 [26].

In the context of distributed computing, the performance of a graph coloring
algorithm on a system graph G is characterised by at least two main parameters:
the number of colors used by the algorithm to color the graph G and the number
of rounds required to obtain a coloring. Designing a fast distributed algorithm (i.e.,
an algorithm running within o(D) rounds where D is the diameter of the graph G)
which always uses a number of colors in some way bounded from above with respect
to χ(G) appears to be difficult; e.g., in [19] it is proved that coloring trees of diameter
D requires Ω(D) rounds even if we allow the algorithm to use

√
∆ colors. For this

reason, it is natural to pose the problem of constructing distributed algorithms
having properties analogous to certain centralised graph coloring heuristics, which
are known to work well in practice. The class of greedy algorithms considered herein
is of special significance due to the elegance of their formulation, and the number of
graph classes for which they always produce optimal or near-optimal results.

1.1 Preliminaries: Greedy Coloring in a Centralised Setting

For a given graph G and a sequence K of all its vertices, K = (v1, v2, . . . , vn),
we will use the term greedy coloring to describe the following procedure of locally
minimal color assignment:

algorithm Greedy-Color(G,K):
for v := v1 to vn do

give vertex v the smallest possible color not used by any
of the already colored neighbours of v;

Different graph coloring algorithms are obtained by choosing sequence K in a specific
way and then applying the Greedy-Color procedure. Below we briefly recall some of
the types of sequences most often applied in practice (cf. [15,16]).

• General Greedy (G) sequence: K is an arbitrarily chosen sequence of vertices.

• Largest-First (LF) sequence: K is formed by arranging the vertices of graph
G in non-ascending order of degrees.

• Smallest-Last (SL) sequence: K is formed by iteratively removing a vertex of
minimal degree from the graph and placing it at the end of K.

All the considered algorithms obviously lead to correct colorings of the graph, but
the converse does not hold — not every coloring of a graph can be obtained by
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applying a specific algorithm. We will call a coloring of a graph an A-coloring if it
may be obtained by means of greedy coloring with a sequence of some type A.

Observe that all G-colorings have the much desired local minimality property de-
scribed by Grundy [11], namely, no single vertex may have its color value decreased
without affecting the color of some other (neighbouring) vertex. As a direct conse-
quence, all G-colorings use not more than ∆ + 1 colors, with ∆ being the maximum
vertex degree in G. LF-colorings and SL-colorings are special types of G-colorings,
thus they inherit this property.

For graph classes found in practice greedy colorings obtained according to specific
sequences may admit even stronger bounds [16,22,25]. For example, any SL-coloring
of a planar graph uses not more than 6 colors, whereas any LF-coloring is optimal or
within a fixed number of colors of the optimum for numerous graph classes, including
complete k-partite graphs, caterpillars, crowns, and bipartite wheels [16].

1.2 Model of Distributed Computation

We consider restricted variants of the vertex coloring problem in a distributed net-
work, assuming the so-called Linial model of computation, which is widely used in
previous research on the subject [3, 18, 19, 24]. Such a distributed network consists
of a set V of processors and a set E of bidirectional communication links between
pairs of processors. It can be modeled by an undirected graph G = (V,E). We
denote n = |V |.

Vertices are identified by means of unique labels. Each vertex has its local
state, described by a certain number of integer variables. The system functions
in so-called synchronized rounds, consisting of three steps: a vertex first reads its
own local state variables and the local state variables of all its neighbours, then
performs an arbitrary amount of local computations, and finally updates its local
state variables accordingly.

Although local computations are unbounded, the case of randomised algorithms,
i.e, algorithms that can make use of a so-called coin-flip function, is usually sepa-
rately studied. Section 4 is devoted to such a variant.

In all further considerations we assume that two global parameters are known to
all vertices: some constant-factor upper bounds on the number of vertices n and on
the maximum vertex degree ∆. This assumption is used only to provide a simple
mechanism for executing subroutines of known complexity with respect to n and ∆
and waiting a known number of rounds for their completion.

For convenience of notation, we will assume that the special local state variable c
always stores the outcome of the algorithm; for example, in a coloring process, c(v)
is the color value assigned to vertex v. The algorithm is considered to be complete
when the values of all variables c are correctly set and the algorithm will not modify
them in any subsequent round.

For each vertex v define its neighborhood N(v) = {u : {u, v} ∈ E} and vertex
degree degG(v) = |N(v)|. The maximum degree among all vertices in G is denoted
by ∆ = max

v∈V
{degG(v)}. In order to distinguish among neighbours of higher degree,

we will use the symbol N≥(v) = {u ∈ N(v) : deg(u) ≥ deg(v)} and similarly
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N>(v) = {u ∈ N(v) : deg(u) > deg(v)}. The distance-d neighbourhood Nd(v) of
vertex v is defined as the set of all vertices at a distance between 0 and d from v.
For any subset of vertices S ⊆ V , we denote the subgraph of G induced by vertex
set S as G[S]. The length of the shortest cycle in graph G is known as its girth and
denoted by g(G).

1.3 Problem Definitions

In this paper we consider two variants of the graph coloring problem in a distributed
setting, those of obtaining a G-coloring and of obtaining an LF-coloring of the system
graph, denoted G-COL and LF-COL respectively. As mentioned in the Subsection 1.1,
G-COL and LF-COL are refinements of the problem of finding a (∆ + 1)-coloring of
the system graph G (simply denoted COL), and thus are not easier in the sense of
computation time. In fact, G-COL and LF-COL are also not easier than the problem
of finding a maximal independent set in G (denoted MIS), since for any G-coloring
of G the set of all vertices having color 1 is clearly a maximal independent set.

Nevertheless, it is possible to put forward a definition of G-COL and LF-COL

which demonstrates the local nature of the imposed constraints; for completeness
we provide local formulations of COL and MIS as well.

Definition 1. The considered distributed problems are defined by the following con-
straints on the local variable c at any vertex v:

(∆ + 1)-Coloring (COL): c(v) ∈ {1, . . . , ∆ + 1} \ c(N(v)).

Maximal Independent Set (MIS): c(v) 6= 0 ⇔ c(N(v)) = {0}.
Greedy Coloring (G-COL): c(v) = min {1, . . . , ∆ + 1} \ c(N(v)).

Largest-First Coloring ( LF-COL): c(v) = min {1, . . . , ∆ + 1} \ c(N≥(v)).

The proof of the equivalence of the above definitions with the prior characterisations
is straightforward. For the G-COL problem, consider any G-coloring c of graph G,
and an arbitrarily chosen vertex v. Since at the time of coloring some of the ver-
tices from N(v) are already colored and v obtains the minimum possible color, we
have c(v) ≤ min {1, . . . , ∆ + 1} \ c(N(v)), but also c(v) /∈ c(N(v)) by the legality of
the coloring, thus c(v) = min {1, . . . , ∆ + 1} \ c(N(v)). Conversely, given a set of
color values fulfilling c(v) = min {1, . . . , ∆ + 1} \ c(N(v)) we can always construct
a corresponding sequence K for the Greedy-Color procedure simply by ordering ver-
tices according to non-decreasing values of c(v). For the definition of LF-COL the
argument is analogous; an appropriate sequence K can be constructed by order-
ing vertices according to non-increasing values of deg(v), breaking ties according to
non-decreasing values of c(v).

As a side note, it is interesting to observe that the problem of finding an SL-
coloring of graph G does not admit any local definition. Indeed, when G is a ring
of even length, any such coloring uses exactly 2 colors. Taking into account that
the 2-coloring of a ring requires Ω(n) rounds (cf. e.g. [19]), this means that finding
a distributed SL-coloring of a graph may also require Ω(n) rounds; such a problem
is of little interest in a distributed setting. The same also holds for well-known
algorithms with dynamic sequences, such as DSATUR [15].
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1.4 State-of-the-art Results

In terms of n, the fastest distributed algorithm for MIS is 2O(
√

log n) [24]. The same
bound holds for COL, taking into account the simple algorithm proposed by Johans-
son [13] which finds a (∆+1)-coloring of an arbitrary graph by direct reduction to one
iteration of any algorithm for MIS. The current best lower bound is only Ω(log∗ n)

for COL [19] and Ω
(√

log n

log log n

)

for MIS [17]. The distributed time complexity of

COL and MIS is thus widely open.
For the general graph coloring problem some extremely fast algorithms have

been described. Linial in [19] gave an algorithm working in O(log∗ n) time but using
O(∆2) colors. Algorithms having strong bounds on the number of colors usually only
work for some specific graph classes. For example in [10] a technique for coloring
triangle-free graphs using O(∆/ log ∆) colors was proposed, but the algorithm may
fail for some instances of the problem (i.e., for some triangle-free graphs).

To the best of our knowledge, the first distributed approach to greedy graph
coloring was proposed by Panconesi and Rizzi [23] who used a forest decomposition
technique to achieve a coloring fulfilling the constraints of G-COL in O(∆2 log∗ n)
time. Recently an algorithm motivated by sequential LF-coloring was described
in [12]. Analysis shows that it runs in O(∆2 log n) time. The solution obtained by
this algorithm is always greedy (solving the G-COL problem), but does not satisfy
the constraints of the LF-COL problem for some instances.

1.5 Our Contribution

We provide lower and upper bounds on the time complexity of Greedy Coloring
(G-COL) and Largest First Coloring (LF-COL) with respect to Coloring (COL) and
Maximal Independent Set (MIS).

A summary of the results is contained in Table 1. The obtained lower and upper
bounds for the G-COL and LF-COL problems are expressed in terms of parameters n

and ∆. In particular, we prove a lower bound of Ω
(

log n

log log n

)

for G-COL and Ω(
√

n)

for LF-COL, an improvement upon the current MIS lower bound [17]. We note that
our lower bounds also apply for randomized algorithms (cf. Section 4).

The rest of the paper is organised as follows. The next section provides lower
bounds for the considered problems. Upper bound results for deterministic algo-
rithms can be found in Section 3, while a discussion concerning upper bound results
for randomised algorithms can be found in Section 4. Finally, Section 5 provides
conclusive remarks.

2 Lower Bounds

2.1 The G-COL Problem

For a given graph G, let CG(v) denote the set of all possible colors which may be
assigned to vertex v ∈ V , taken over all greedy colorings of G. For trees, we have
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Lower bounds (deterministic and randomized)

COL MIS G-COL LF-COL

Ω(log∗ n) [18] Ω
(√

log n
log log n

)

[17] Ω
(

log n
log log n

)

[Thm 5] Ω(
√

n) [Thm 6]

Ω
(

log ∆
log log ∆

)

[17] Ω(∆) [Thm 6]

Upper bounds (deterministic algorithms)

COL MIS G-COL LF-COL

2O(
√

log n) [1, 24] 2O(
√

log n) [1, 24] 2O(
√

log n) [Thm 8] O(
√

n · TMIS) [Thm 12]

O(∆ log n) [1]
O(∆ + TCOL) [Pro 9] O(∆ + TCOL) [Pro 9] O(∆ · TMIS) [Thm 11]

O(∆2 + log∗ n) [23]

Upper bounds (randomised algorithms)

COL MIS G-COL LF-COL

O(log n) [13, 21] O(log n) [21] 2O(
√

log n) [Cor 13] O(
√

n log n) [Cor 14]

O(∆2 + log∗ n) [23] O(∆ + T R
COL

) [Cor 13] O(∆ + T R
COL

) [Cor 13] O(∆ log ∆ log n) [Cor 14]

Table 1: The time complexity of Greedy Coloring and LF-Coloring with respect
to other well-known problems, (∆ + 1)-Coloring and Maximal Independent Set,
in the distributed setting. For a problem P, the notation TP (resp. T R

P
) describes a

known upper bound on the complexity of an algorithm (resp. randomized algorithm)
solving P.

the following property.

Lemma 1. Let T be a tree and v some vertex of T such that the maximum distance
from v to another vertex of T is d. Then max CT (v) ≤ d + 1.

Proof. Consider an arbitrary greedy coloring of T . If a vertex vc receives some color
c > 1, then it must be adjacent to a vertex vc−1 which is assigned color c − 1. By
induction we easily prove that vc must be the endpoint of a path in T with c vertices.
Since by assumption the longest path of T with one endpoint in v has d+1 vertices,
clearly the color assigned to v in the coloring cannot exceed d + 1.

Lemma 2. Suppose that there exists an n-vertex graph G such that for some ℓ,
g(G) ≥ ℓ and χ(G) > ℓ/2. Then, there does not exist a distributed algorithm for
the G-COL problem which colors all graphs of at most n vertices in less than ℓ/2− 1
rounds.

Proof. Suppose that there exists a distributed algorithm A which for all graphs of
at most n vertices produces a greedy coloring cA in at most d rounds. Algorithm A
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must be able to assign for any vertex v ∈ V a color cA(v) ∈ CG(v), using information
about the graph structure at distance at most d only. Thus, if for two graphs
G = (V,E) and G′ = (V ′, E ′) with distinguished vertices v ∈ V , v′ ∈ V ′ we have
G[Nd(v)] = G′[Nd(v

′)], then the coloring of graph G produced by algorithm A has
the property that cA(v) ∈ CG(v) ∩ CG′(v′).

Now, let G be the graph of girth g(G) ≥ ℓ described in the assumption of the
lemma. Let v ∈ V be arbitrarily chosen. We now apply the proven property for
graphs G and G′

v ≡ G[N ℓ

2
−1(v)] with vertices v and v′ ≡ v, obtaining cA(v) ∈

CG(v) ∩ CG′

v
(v). However, the graph G′

v is clearly a tree (since it is acyclic and
connected) and all vertices of G′

v are at a distance of at most ℓ/2− 1 from v. Hence
by Lemma 1 we obtain maxCG′

v
(v) ≤ ℓ/2, and we conclude that for graph G,

cA(v) ≤ ℓ/2. Since v was arbitrarily chosen, we have cA(v) ≤ ℓ/2 for all v ∈ V . We
have thus obtained a coloring of G using at most ℓ/2 colors, whereas by assumption
the chromatic number χ(G) is larger than ℓ/2, a contradiction.

Lemma 3 ([7]). For all n, k ∈ N (4 ≤ k ≤ n) there exists an n-vertex graph G,
such that χ(G) ≥ k and g(G) ≥ 1

4
log n

log k
.

Corollary 4. For all values of n ≥ 216 there exists a graph G of order n, such that
χ(G) ≥ log n

log log n
and g(G) ≥ 1

4
log n

log log n
.

Proof. For any given value of n ≥ 216, put k =
⌈

log n

log log n

⌉

in Lemma 3. We immedi-

ately obtain that there exists a graph G of order n such that the following conditions
are fulfilled:

χ(G) ≥ k =

⌈

log n

log log n

⌉

≥ log n

log log n
, (1)

g(G) ≥
⌈

1

4

log n

log k

⌉

≥ 1

4

log n

log log n − log log log n + 1
≥ 1

4

log n

log log n
, (2)

which completes the proof.

Combining Corollary 4 with Lemma 2 (putting l = 1
4

log n

log log n
) we immediately

obtain that for all values of n ≥ 216, no distributed algorithm can solve the G-COL

problem in less than 1
8

log n

log log n
− 1 rounds for all graphs of order at most n. Thus, we

may write the following theorem.

Theorem 5. The distributed time complexity of G-COL is Ω
(

log n

log log n

)

.

2.2 The LF-COL Problem

Theorem 6. The distributed time complexity of LF-COL is Ω (
√

n) and Ω(∆).

Proof. Consider a family of graphs {Gd}d=4,5,6,... having n(Gd) = 5
2
d2 − 1

2
d + 1 and

∆(G) = 2d, whose representative is depicted in Figure 1. Vertices v0, v1, . . . , vd

induce a path of length d. Some additional components are connected to particular
vertices to ensure that vertex vi obtains a color d − i + 1 in each LF-coloring of
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K2d−1 K2d−3 K2d−5 K5 K3 K1

K1 Kd−4 Kd−3 Kd−2 Kd−1

vd vd−1 vd−2 v3 v2 v1 v0

K2K4K6K8K2d−2

Figure 1: A graph which requires Ω(d) time to LF-color in the distributed model

Gd, that is component Kr depicts a complete graph with r vertices and a bold
line between such a component and vi illustrates that each of the vertices of Kr is
connected to vi. Similarly, when two components Kr1

and Kr2
are connected, each

vertex from Kr1
is connected to each vertex from Kr2

, thus forming a clique Kr1+r2
.

We have deg(vi) = d + i, hence the vertices of the path appear in the LF sequence
in the order vd, vd−1, . . . , v1, v0. Moreover, we have |N>(vi)| = d − i, and it is easy
to obtain inductively that in any LF-coloring of Gd the set of colors used in N>(vi)
is {1, 2, . . . , d− 1}, hence the only possible color for vi in an LF-coloring is d− i + 1.
However, if vertex vd were to be removed from the graph, the colors of all other
vertices of the path would decrease by 1. Thus, we have shown that the color of
v0 depends on the existence of vertex vd: if vd exists, v0 must obtain color d + 1,
otherwise it must obtain color d. As vertices vd and v0 are at a distance of d from
each other, and information in our model can propagate only at the speed of one
vertex per round, the coloring cannot be completed in less than d rounds, and the
claim follows.

3 Upper Bounds for Deterministic Algorithms

3.1 The G-COL Problem

We recall after [1,24] that a (j, k)-decomposition of a graph G = (V,E) is a partition
{C1, C2, . . . } of V such that the following conditions are fulfilled:

• each subgraph G[Ci], called a cluster, is connected and of diameter at most j,

• the so called cluster graph, obtained from G by contracting each Ci into one
vertex, is vertex colored with at most k colors.

Lemma 7. Given a (j, k)-decomposition of a graph, there exists a distributed O(j ·k)
time algorithm for solving the G-COL problem.
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Proof. Once the (j, k)-decomposition is given, we have a situation in which the clus-
tered graph is already colored (perhaps not greedily). The algorithm then proceeds
according to the assigned colors: first clusters of color 1 are processed in parallel,
then clusters of color 2 are processed in parallel, and so forth. Inside each cluster,
a leader is elected in order to collect all the information from the related cluster.
This operation clearly requires O(j) rounds to retrieve all the information about the
cluster. The leader then greedily assigns a suitable color to each vertex of its cluster
respecting the greedy coloring property, i.e., each vertex gets the smallest color pos-
sible with respect to its already colored neighbours from other clusters. Again this
requires O(j) rounds. Note that clusters of color 1 have no constraints with respect
to the other clusters. In the case of clusters of color 2, the greedy coloring may
begin only after waiting O(k) steps for all the neighbours from clusters of color 1 to
be colored. Consequently, a coloring of the last clusters is complete after O(j · k)
rounds.

The following theorem is obtained directly from Lemma 7, taking into account
the results of [24] where a (2O(

√
log n ), 2O(

√
log n ))-decomposition of any n-vertex graph

is provided in 2O(
√

log n ) distributed time.

Theorem 8. There exists a distributed algorithm for the G-COL problem running
in 2O(

√
log n ) time.

Proposition 9. There exists a distributed O(∆+TCOL) algorithm for G-COL, where
TCOL denotes a known upper bound on the execution time of an algorithm for the
COL problem in G.

Proof. Suppose that a (∆+1)-coloring of graph G is already provided. This induces
a partition of the vertex set into independent sets V = IS1 ∪ IS2 ∪ . . . ∪ IS∆+1. It
is easy to see that in the i-th round we can simultaneously assign the minimum
possible color to all vertices from ISi, taking into account the constraints imposed
by the colors of vertices from IS1 ∪ . . .∪ ISi−1. Thus, a greedy coloring of the graph
can be obtained ∆ + 1 rounds after the initial (∆ + 1)-coloring is known to be
complete.

3.2 The LF-COL Problem

Before discussing the details of the distributed implementation of the LF algorithm,
we present an equivalent characterisation of a correct LF-coloring. For a given
coloring of G, let IS(j,k) ∈ V , for any 1 ≤ j ≤ ∆, 1 ≤ k ≤ ∆ + 1, denote the
independent set of vertices of G of degree j and colored with color k. We define
H(j,k) ⊆ G as the subgraph induced by the set of all vertices v ∈ V such that

degG(v) = j and v /∈
(
⋃

ki<k IS(j,ki)

)

∪ N
(

⋃

ji>j IS(ji,k)

)

.

Lemma 10. Given an assignment of colors c : V (G) → N, if for all j, k the set
IS(j,k) is a maximal independent set in H(j,k), then c is an LF-coloring of G.
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IS(∆,1)
//

²²

IS(∆,2)
//

²²

IS(∆,3)
//

²²

IS(∆,∆)
//

²²

IS(∆,∆+1)

IS(∆−1,1)
//

²²

IS(∆−1,2)
//

²²

IS(∆−1,3)
//

²²

IS(∆−1,∆)

IS(2,1)
//

²²

IS(2,2)
//

²²

IS(2,3)

IS(1,1)
// IS(1,2)

Figure 2: Illustration of the time ordering of independent set construction

Proof. Observe that if a coloring c of G fulfills the assumption of the lemma,
then it is identical to the coloring c′ obtained using the greedy algorithm with
the largest-first sequence of vertices: K = (IS(∆,1), IS(∆,2), . . . , IS(∆,∆+1), IS(∆−1,1),
IS(∆−1,2), . . . , IS(∆−1,∆), . . . , IS(1,1), IS(1,2)), where the elements of each independent
set may be enumerated in arbitrary order. Indeed, suppose that for all vertices u
which appear in sequence K before some fixed vertex v both colorings are identical,
c(u) = c′(u). Putting j = degG(v), for all ji < c(v), IS(j,ki) is a maximal inde-
pendent set in H(j,ki), v ∈ V (H(j,ki)), and v /∈ IS(j,ki), hence IS(j,ki) ∪{v} is not an
independent set in G. This means that v has at least one neighbour u ∈ IS(j,ki)

which appears earlier in K, and c′(u) = ki, so c′(v) 6= ki. In this way we obtain
that c′(v) ≥ c(v). On the other hand, all vertices u which appear before v in K and
have color c′(u) = c(v) either belong to the same independent set IS(j,c(v)) as v, or
to some independent set IS(ji,c(v)), ji > j, and v /∈ N(IS(ji,c(v))). Consequently, color
c(v) is the smallest legal color for v in the greedy coloring, so we have c′(v) = c(v),
which completes the proof by an inductive argument.

We now propose a distributed algorithm which defines the maximal independent
sets IS(j,k) ⊆ H(j,k). Let r be a known upper bound on the number of rounds required
to compute an independent set in any subgraph of G. Then the execution of the
proposed algorithm is divided into ∆ + 1 steps, each of which lasts r rounds. In the
i-th step, 1 ≤ i ≤ ∆ + 1, we compute at once all of the independent sets IS(j,k) such
that 1 ≤ j ≤ ∆, 1 ≤ k ≤ ∆ + 1, and j − k = ∆ − i. Thus, in step 1 we compute
only a maximal independent set IS(∆,1) in graph H(∆,1), i.e. in the subgraph of G
induced by all vertices of degree ∆. In step 2 we compute a maximal independent
set IS(∆−1,1) in the subgraph of G induced by all vertices of degree ∆ − 1, and at
the same time maximal independent set IS(∆,2) in the subgraph of G induced by
all vertices of degree ∆ not belonging to IS(∆,1), and so on. An illustration of the
time ordering of the independent set construction is shown in Fig. 2. By Lemma 10,
when all vertices have been assigned to some independent set, the result can be
interpreted as a distributed LF-coloring of the graph. The time complexity of the
algorithm is determined by ∆ + 1 steps of an algorithm for the MIS problem, hence
we have the following theorem.

Theorem 11. There exists a distributed O(∆ · TMIS) algorithm for LF-COL, where
TMIS denotes a known upper bound on the execution time of an algorithm for the
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MIS problem in graphs of order at most n and degree at most ∆.

Theorem 12. There exists a distributed O(
√

n · TMIS) algorithm for LF-COL, where
TMIS denotes a known upper bound on the execution time of an algorithm for the
MIS problem in graphs of order at most n and degree at most ∆.

Proof. Consider a partition of the vertex set V (G) = V1 ∪ V2, where V1 contains
all vertices of degree at least a, and V2 contains all vertices of degree less than a,
for some value of parameter a. Let H be the spanning subgraph of G with all
edges having at least one endpoint of degree at least a, H = G \ E(G[V2]). Let
P = (v1v2 . . . vd) ⊆ H be a shortest path in H connecting some two vertices v1

and vd. In P we must have at least d/4 vertices which belong to V1 and whose
neighbourhoods are pairwise disjoint in H, hence also in G. Since each of these
vertices is of degree at least a, we obtain a ·d/4 ≤ n, which means that the diameter
of each of the connected components of H is at most 4n/a.

The coloring of graph G is obtained by first coloring all vertices from V1, and
then all vertices from V2. The former stage can be performed by electing a leader
in each of the connected components of H, computing a centralised LF-coloring of
all vertices from V1 within this component, and disseminating the coloring to all
vertices. In view of the obtained bound on the diameter, this step takes O(n/a)
time. In the latter stage, the coloring of V2 is easily completed using an approach
similar to that described by Theorem 11 in O(a · TMIS) time, since all vertices are
of degree less than a and obtain color at most a. The overall complexity of the
algorithm is therefore O(n/a+a · TMIS), and the proof of the claim is complete when
we put a =

√

n/TMIS.

4 Notes on Randomised Algorithms

The introduction of randomisation consists in allowing local computations of vertices
to involve a random coin-flip function, which returns a value 0 or 1 (a so-called
random bit) with equal probability. We consider randomised algorithms that always
stop with a correct result, whereas the time complexity of an algorithm is its expected
running time.

Although randomized solutions to some problems may be significantly faster
than the best known distributed approaches (e.g. MIS in Table 1), certain lower
time bounds related to the speed of dissemination of information in the network still
apply. In particular, the arguments used when proving lower bounds in Section 2
are still valid: if the distance d-neighbourhoods of a vertex v in some two system
graphs G1 and G2 containing v are identical, and the sets of permissible values of
color c(v) are disjoint for graphs G1 and G2, then for any coloring algorithm, for at
least one of the graphs G1, G2, the probability of obtaining a correct solution within
d rounds cannot exceed 1/2. Hence, by Markov’s inequality, the expected execution
time of any algorithm is Ω(d). In this way we obtain that all the lower bounds in
Table 1 also hold for expected execution times in the randomized model.

On the other hand, deterministic algorithms can also be applied in the random-
ized model. Hence, all upper complexity bounds in Table 1 which are expressed in
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terms of n and ∆ still hold. In particular, the G-COL problem can still be solved
in 2O(

√
log n) time. The O(∆ + TCOL)-time algorithm for G-COL given by Proposi-

tion 9 is also easily adapted to allow for any randomised subroutine for the COL

problem. Indeed, the initial (∆+1)-coloring is used only to define independent sets
{ISi : 1 ≤ i ≤ ∆ + 1}, and instead of waiting for the COL algorithm to complete,
we can start the greedy coloring phase even before the independent sets are fully
defined (for example, in round (∆ + 1)k + i, k ∈ N, we activate all vertices from set
ISi none of whose neighbours belong to ISi).

Corollary 13. There exists a distributed randomised O(∆ + T R
COL

) expected time
algorithm for G-COL, where T R

COL
denotes the complexity of a randomised algorithm

for the COL problem in G.

In the case of algorithms for the LF-COL (Theorems 11 and 12), it is possible to
apply a randomised subroutine for MIS which has the property that at every stage
of the algorithm the partial solution described by local variables c of those vertices
which have already completed the algorithm induces a (not necessarily maximal) in-
dependent set. The randomised distributed algorithm for MIS proposed by Luby [21]
has this property. Although the complexity of this algorithm is given as O(log n),
when computing an LF-coloring, the subroutine for MIS is called O(∆2) times. Since
the time distribution of executions of the Luby algorithm is dominated by the neg-
ative binomial distribution (a direct corollary of [21] Thm 1), the slowest of the
iterations of MIS will almost certainly complete in O(log n log ∆) time. We may use
this value (or O(log2 n) for simplicity) in place of TMIS in Theorems 11 and 12.

Corollary 14. There exist distributed randomised algorithms for LF-COL running
in O(∆ log ∆ log n) and O(

√
n log n) expected time.

5 Conclusion

The number of colors used by most distributed algorithms for (∆ + 1)-coloring,
such as Johansson’s algorithm [13], is close to ∆ even if the graph is bipartite.
This is not surprising, since such algorithm has no mechanism for economizing on
the number of colors. Distributed greedy coloring (G-COL) is a natural approach
for optimizing the number of colors. We have shown that such greedy coloring
can be obtained within a time bound as good as the best known (∆ + 1)-coloring
algorithm [24]. However, and maybe surprisingly, no polylog randomized algorithm
for greedy coloring is known, unlike the case of (∆ + 1)-coloring.
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