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Abstract

We give a series of new lower bounds on the minimum number of vertices required
by a graph to contain every graph of a given family as induced subgraph. In particular,
we show that this induced-universal graph for n-vertex planar graphs must have at least
10.52n vertices. We also show that the number of conflicting graphs to consider in or-
der to beat this lower bound is at least 137. In other words, any family of less than 137
planar graphs of n vertices has an induced-universal graph with less than 10.52n ver-
tices, stressing the difficulty in beating such lower bounds. Similar results are developed
for other graph families, including but not limited to, trees, outerplanar graphs, series-
parallel graphs, K3 3-minor free graphs. As a byproduct, we show that any family of ¢
graphs of n vertices having small chromatic number and sublinear pathwidth, like any
proper minor-closed family, has an induced-universal graph with less than 15/7v/t - n ver-
tices. This is achieved by making a bridge between equitable colorings, combinatorial
designs, and path-decompositions.

Keywords: planar graphs, universal graphs, bounded pathwidth graphs, equitable
coloring, and combinatorial designs.

1 Introduction

Universality plays an important role in Graph Theory and Computer Science. For the fa-
mous Traveling Salesperson Problem, [JLN*05] showed that every set S of n points in a
metric space has some universal tour, computable in polynomial time, that approximates,
up to poly-logarithmic factor, the best tour of every subset of S by taking the induced sub-
tour of this universal ordering. In graph theory, the celebrated Excluded Grid Theorem of
Robertson and Seymour [RST94] (which states that graphs excluding as minor a fixed pla-
nar graph have bounded treewidth), relies on the fact that every planar graph is a minor of
some relatively small grid. So, excluding such a grid as minor implies excluding as minor
every sufficiently small planar graph. Therefore, rather than considering individually each
graph of a given graph family, it is much simpler to manipulate one single graph (here a
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grid), whose properties is close enough to those of the graphs of the family (here the prop-
erty is planarity). This grid-minor universality has been extended by [GH23], by showing
that for every n and g, there is some fixed graph of Euler genus g and with only O(g?(n+g)?)
vertices that is minor-universal for all n-vertex graphs of Euler genus g. Here the size of
the minor-universal graph is an important parameter, and its polynomial dependency in
n and g is the crux for the very recent polynomial bound for the Graph Minor Structure
Theorem [GSW25].

Induced-universal graphs. In this paper, we focus on universality under induced-
subgraph containment. More precisely, a graph U is an induced-universal graph for a graph
family F if every graph of & is isomorphic to an induced-subgraph of U. Here, the term
"graph family" must be considered in a broad sense: it can contain a finite set of graphs (like
two bounded size graphs, or two trees with n vertices) or a countably finite set of graphs
(like the class of all planar graphs). We denote by “U(%) the smallest number of vertices
of an induced-universal graph for ¥, and by %, the sub-family composed only of n-vertex
graphs of & (if any).

For the family 4 of all graphs, Alon [Alo17] showed that U%(4,) = (1 + o(1)) - 2*=1/2,
For the family % of all planar graphs, a result of [DEG*21, GJ22] implies that U%(%,,) <

n-200V198")  And for the family 7 of all trees, [ADBTK17] showed that U (%7,) < cn, where
¢ > 768 is a rather large constant!. The results for trees and planar graphs come from
the design of adjacency labeling schemes, which can be viewed as an alternative definition of
induced-universal graphs with algorithmic applications [KNR92].

Whereas for all graphs, the first order of % (%,) is well-established, the situation is very
different for planar graphs and trees. Up to the best of our knowledge, the only non-trivial
better-than-n lower bound is U(%?,) > 11|n/6] =~ 1.83n, coming from the family of paths
and cycles [ELO08, Claim 1]. For trees, the lower bound is even weaker. A folklore bound
U(T,) > 3|n/2] can be obtained by considering a family of two trees that can only share
[n/2] vertices: a star (a depth-1 tree) and a path, each with n vertices. These both lower
bounds are ad-hoc techniques based on the impossibility of coexisting a certain number of
"conflicting graphs" in a single graph that is too small.

On the difficulty of proving lower bounds. It is perhaps worth mentioning that it can be
very difficult to prove strict lower bounds on the size of universal objects for specific combi-
natorial properties. For instance, consider universal planar point sets, i.e., a fixed set of points
such that each n-vertex planar graph has a straight-line drawing on it. The best upper bound
is 2n? (an 2nx n-grid), and the current best lower bound has been improved only recently to
1.293n for n large enough [SSS20], a large gap. Interestingly, [SSS20] showed that for n =11,
no universal planar point sets of exactly n points exist. In other words, the lower bound is at
least n+ 1 for n =11. Proving an (n + 1)-lower bound, even for small #, is not so easy. Tech-
nically, they have considered (computer-assisted) a family of 49 "conflicting" graphs, each
with n = 11 vertices, which cannot be simultaneously drawn on any set of n points. They
show that more than 36 conflicting graphs are required. In other words, for n =11, in order

11t is not given explicitly in [ADBTK17]. Their involved construction is based on a solution for caterpillars
that contains at least 12 - 2°n = 384n vertices. Extending the solution for trees requires to at least double the
caterpillar solution. An estimate of 10° or 10° for ¢ seems to be closer to reality.



to beat the trivial n-lower bound any conflicting family has size at least 37. It is only con-
jectured that the n-lower bound can be beaten for every n > 11. There are even conjectures
made about the size of any conflicting family w.r.t the trivial n-lower bound [BCD*07, (3),
p- 129].

For induced-universal graphs for trees, it is not clear if a lower bound as low as say 2.1n
can be achieved. As previously said, the folklore 3 |#/2 |-lower bound for trees is achieved by
considering a conflicting family of two caterpillars® on 7 vertices: a star and a path. Naively,
one may believe that by considering a conflicting family of three trees (instead of two cater-
pillars) may allow us to easily beat this folklore 3n/2-lower bound. Unfortunately, one of
our results implies that U(¥) < 3n/2 + O(logn) for any family & composed of three trees
with n vertices. So, at least 4 trees need to be considered in any conflicting family w.r.t. the
3n/2-lower bound. Even worse, we show that in order to beat 2.1n, we will need to consider
at least 7 trees. Clearly, a lower bound proof involving 7 trees is far more complicated than
one involving 2 trees, as pairwise intersections of the trees in an induced-universal graph
solution may be hard to control.

Our contributions. First, we use some classical Information-Theoretic lower bound to im-
prove the current lower bounds based on conflicting families. This concerns trees, planar
and some other families (see Table 1 and Table 3 columns c). We also develop another lower
bound for specific conflicting families containing small cliques (see Table 2). The bound
is actually optimal for unions of cliques of bounded size. This captures the folklore 3n/2-
lower bound for trees, and the 11n/6-lower bound for paths and cycles. As intermediate
step, it gives a simple 25n/12-lower bound for planar graphs by considering cliques of size
at most four. Using our Information-Theoretic lower bound, the bound for planar graphs is
improved to 10.52n.

Second, we use block designs and special vertex-coloring to construct small induced-
universal graphs for any family & with ¢ graphs of n vertices. The result depends on two
more integral parameters on ¥: p and k. More precisely, we show in Theorem 3 that, if every
graph of & has a set of p vertices whose removal leaves a graph that is equitably k-colorable
(a k-coloring with same color-class sizes), then

U(F) < S-%+tp. (1)

The number s = s(t, k) is related to some block designs and the Coding-Theoretic Function
as defined in Section 3.1. Actually, we show in Theorem 4 that parameter p is at most the
pathwidth of any graph in ¥ times the chromatic number k of .

For instance, for any family & composed of t = 3 trees with n vertices, Eq. (1) implies
UF) < 3n/2 + O(logn), since k = 2, p = O(logn) (trees are bipartite of logarithmic path-
width), and because s = 3 in this case. For # composed of t = 6 trees, we have s = 4, and thus
WU(F) < 2n+O0(logn). If F is composed of t = 20 planar graphs, U(F) < 4n+ O(y/n), since in
that case k =4, p = O(y/n), and s = 16.

From above, at least 7 conflicting trees would be required in order to beat a hypothetical
2.1n-lower bound for trees, as U (¥ ) < 2n+O(logn) for t = 6 trees. Actually, we have showed

ZRecall that a caterpillar is a tree in which the nodes of degree at least two induced a path. They are also
exactly the maximal graphs of pathwidth one.



a lower bound of 1.626n for tree families, and U (%) < 3n/2 + O(logn) for t = 3 trees. Thus,
at least 4 conflicting trees are required in order to beat the 1.626n-lower bound (cf. the first
line of Table 1). For planar graph families, k = 4, p = O(yn), and s = 42 if t = 136. So, at
least 137 conflicting graphs are required in order to beat the 10.52n-lower bound.

This framework applies to several families of graphs, and the series of new lower bounds
we obtained, on % and conflicting family size, are summarized in columns ¢ and ¢ of Table 1.

F c t k  A([ck]1-1, 2k 2,k)
forests 1.626 | 4 2 A(3,2,2)=
outer-planar 3.275 | 13 || 3 A(9,43)= 12
series-parallel 3.850 | 17 || 3 A(11,4,3)=16
K; -minor-free’ 6.264 | 51 || 4 A(25,6,4)=50
planar 10.520 | 137 || 4 A(42,6,4)=136
K33-minor-free || 10.521 | 124 || 5 A(52,8,5) € {123,124}*

Table 1: New lower bounds given by Theorem 2 for various family & of the form U(%,) >
cn —o(n). Here t is a lower bound on the size of a conflicting family needed to beat the
corresponding cn-lower bound. From Theorem 5, we have t =1+ A([ck] -1, 2k — 2, k), where
k is the chromatic number of %, and A, related to block designs, is the Coding-Theoretic
Function defined in Section 3.1.

Motivated by the quest for an (2(nlogn)-lower bound for planar graph, we show that a
conflicting family w.r.t. to this lower bound (if it exists) must have a size of at least Q(log? n).
More generally, we show in Theorem 6 that any family & of t graphs having a small chro-
matic number and sublinear pathwidth, like any proper minor-closed family as planar or
bounded genus graphs, verifies U(F,) < 157Vt - n.

Organization of the paper. Section 2 presents the union-of-clique lower bound, and the
Information-Theoretic lower bound. Section 3 gives our construction, as in Eq. (1), using
block designs, and its applications to conflicting families. Section 4 presents our upper
bound in O(Vt - n).

2 Lower Bounds

2.1 Union of cliques

The first lower bound is based on the union of small cliques. The bounds presented in
Theorem 1 are optimal and generalize previously known lower bounds: the folklore lower
bound of | 3n/2] for acyclic graphs of maximum degree two, and the lower bound of 11 |7/6
for graphs of maximum degree at most two [ELO08, Claim 1]. We remark for this latter that
our lower bounds are slightly better. It actually matches ours only for » multiple of six. E.g.,
if n=6i+5 for integer i, 11 |n/6] = 111 whereas our bound gives 117 + 8.

3K5’ is the graph K5 minus one edge.
4 According to Andries E. Brouwer’s web pages, it is not known whether A(52,8,5) = 123 or 124.
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Theorem 1 Let K, i be the family of graphs with at most n vertices composed of a disjoint union
of cliques each with at most k vertices. Then, U(K,, ;) = Zle n/i] > (n+1)In(k+1)—k.

Proof.

Lower bound. Foreveryie({l,..., k}, let G; be the n-vertex graph composed of | n/i | disjoint
cliques of i vertices plus n mod i isolated vertices, and let F; = {G,..., G;}. Clearly, F; C X, ;,
and thus in particular U (X, ;) > U(F). Our goal is to show that U (Fy) = Zle |n/i]. For
convenience, let N; = U(F;). Obv1ously, N; = nsince F; = {G;}and G has n vertices. Assume
k > 2. We will show that Ny > [n/k] + Ni_;.

Let U be a minimum induced-universal graph for Fy, thus with Nj vertices. We construct
as follows a subgraph U’ of U that is an induced-universal graph for F;_; with no more than
Ny —|n/k] vertices. First, consider any induced-subgraph embedding of Gy in U, and denote
by Cy,...,Clu be all its cliques embedded in U with k > 2 vertices. Thus, the subgraph

UWkJ C; is an induced union of cliques of U, each with k > 2 vertices. Second, for each C;,
select an arbitrary vertex x;. Finally, we set U’ = U \ X, where X = {x,...,x,,x|}. Note that
X is a stable set in U, because there are no edges in U between any two distinct cliques of

ULn/kJ C

Clearly, |V(U’)| = |V(U)| - |X| = Ny — |n/k]. It remains to show that U’ is an induced-
universal graph for F;_;. Consider G; € Fy_;, for some t < k, and denote by Dy, D,,... be
all its clique components that are embedded in U. The subgraph | J; D; is an induced union
of cliques of U, each with 1 or t vertices. Each clique D; can intersect X in at most one
vertex, because X is a stable set. Suppose that D; intersects X in vertex x; for some i,j. The
key point is that the clique C; containing x; intersects no other D,, with m = i. Otherwise,
D; U D,,, would be not an induced union of disjoint cliques in U. Also, we have |V (C;)| = k >
t =[V(D;)|. It follows that, for each such clique D;, one can move its embedding into C; \ {x;}
instead of D; while preserving that their union is disjoint. One can check that their union is
also induced in U if U’ is minimal, i.e., with no proper subgraphs that is induced-universal
for the same family. So, this new embedding is preserved as well in U \ {x;}, since x; is not
useful anymore. By applying this embedding transformation for each clique D; intersecting
X, we have shown that G, is induced in U’ = U \ X. This applies for each G; € F;_;.

Therefore, U’ is an induced-universal for F;_;, and thus N;_; < |V(U’)| < Ny — [nw/k]. In
other words, we have established that:

Vk=2, Np > HH\JH.

By iterating the previous inequality down to k = 2, and using the fact that N; = n, we get:

k
U(H i) = Ny = ZHJ .

Weremarkf’thatz _ Ln/i] > Zle((n+1)/i—l):(n+1) (Z Vi)—k > (n+1)- Jk“ld _k,
and thus U (K, ;) > (n+1)In(k+1)—k.

5Using the fact that [a/b] + 1 > (a+ 1)/b for integers a and b = 0.



Upper bound. For every i € {1,...,k}, we inductively construct a graph U; as follows. For
i =1, we let U; be a stable set with n vertices. Then, for i > 2, assuming that U;_; contains
|n/(i —1)] disjoint cliques of i — 1 vertices, the graph Uj; is obtained from a copy of U;_; in
which we replace | n/i] cliques of i — 1 vertices each by a clique of i vertices. In other words,
we increase by one vertex | n/i] cliques taken among the | n/(i — 1)] cliques of i — 1 vertices of
U;_1. So, U; has exactly |n/i] vertices more than U;_;, and it contains | n/i| disjoint cliques
of i vertices. Moreover, U; contains U; as induced subgraph for each j <i. Thus, U; contains
| n/j| disjoint cliques of at least j vertices.

In particular, |V(Uy)| = [n/k] + |V(Ur_q)| = Zle n/k], and Uy contains |n/j| disjoint
cliques of at least j vertices, for every j € {1,...,k}. Also observe that U has a total of n
disjoint cliques. Denoted by C; be the ith largest clique of Uy.

Let us show that Uy is induced-universal for #, . Consider a graph G € X, and let
Dy,...,D; be its t < n disjoint cliques ordered by non-increasing size. The cliques of G are
embedded in Uy in a greedy way: D, is embedded into C;, for each i =1,2,...,t.

To show that this embedding does not fail, it is sufficient to show that |V(C;)| > |V(D;)|.
Let d; = |V(D;)]. Since G € H,, d; € {1,...,k}. The main observation is that
d; < |V(G)|/i < n/i. This is because cliques of G are considered by non-increasing or-
der. We have seen that Uy contains |n/j| disjoint cliques with at least j vertices for every
je{l,....,k}. So, since d; < n/i, Uy contains |n/d;] > |n/(n/i)| = i disjoint cliques with at
least d; vertices. Therefore, the ith largest cliques in Uy has at least d; vertices, that is

|[V(C;)| = d; =|V(D;)| as claimed. O
A A O O O O O O O O
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Figure 1: The minimum induced-universal graph for A, 4, the family of graphs with at
most 24 vertices that are union of disjoint cliques with at most 4 vertices. Its has U (K4 4) =
24-(1+1/2+1/3 +1/4) = 50 vertices.

Note that graphs in &, , are forests (it is actually a matching), graphs in £, 3 have max-
imum degree at most two and thus are outer-planar, and 4, 4 are planar. Thus, for these
families, for infinitely many #» (for n divisible by k!), we have respectively 3n/2, 11n/6, and
25n/12 as lower bounds on the number of vertices for their minimum induced-universal
graphs (see Table 2). However, for forests, outer-planar and planar graphs, the next lower
bounds, as presented in Theorem 2, will be better (see also Table 3).

2.2 Information-Theoretic lower bound

Given an infinite graph family &, the unlabeled constant-growth of F is the following number
(if it exists),
g(F) = limsup (u,)""

n—-oo

6



F lower bounds on % (%,)
caterpillar forests D A, , 3n/2
union of cycles and paths D %, 3 11n/6
planar D%, 4 25n/12
union of cliques with < k vertices =%, | (n+1)In(k+1)—-k
union of cliques = X, , (n+1)In(n+1)-n

Table 2: Summary of lower bounds derived from Theorem 1.

where u,, counts the number of unlabeled graphs of & having n vertices.

Theorem 2 Let F be a infinite graph family with unlabeled constant-growth at least® g > e/2.
For every 0 < € < g/e —1/2, and for infinitely many n, U(%,) > (c — €)n, where c is solution of
c/(c - 1)1 = g. We have ¢ > g/e + /2. Moreover, if lim,,_,.,(u,)"" does exist, then U(F,) > cn
for every large enough n.

Proof. Consider any minimum induced-universal graph U for %,, let N = WU(%,) be its
number of vertices, and let u,, be the number of unlabeled graphs in %,.

From the universality of U, every graph of %, is isomorphic to an n-vertex induced sub-
graph of U. So, the number of pairwise non-isomorphic n-vertex induced subgraphs in U
must be an upper bound on u,,. Such induced subgraphs can be obtained by selecting a sub-
set of n vertices taken among the N of U. Thus, there are at most (I;l]) induced subgraphs in
N
n )

We have the well-known upper bound for the binomial numbers (see [Bol78, p. 255] for

instance): ,
wevca (i) < (G (5] =(el25)) = s

where @ =a/b>1and f : x = x*/(x — 1)*"! is related to the entropic-function.

U having n vertices. It follows that u,, < (

Assume N < cn for all n and some constant ¢ > 1. We have, for every n > 1:

()< ()< s

= ()" < flo).

N

Uy

The latter inequality implies that limsup,, ,_(u,)"" < f(c), since’ f(c) is a constant inde-
pendent of n. In other words, if N < cn for every n and ¢ > 1, then ¢ < g(¥) < f(c), where g
is a lower bound on the unlabeled constant-growth of . A basic property of limsup is that,
for every sequence x,,, if limsup,_,_ x, > ¢, for some constant ¢, then, x,, > ¢ for infinitely
many #. It turns out that if ¢ > f(c), then (u,)"/" > f(c), and thus N > cn for infinitely many
n.

®Here e = exp(1) = 2.7182818284....
This is because, for every sequence X, limsup,,_, ., x, =inf,;>¢ {supm>n xm}.



One can check that the derivative of f is f’(x) = f(x)In(x/(x—1)) > 0 for x > 1, and that
f(x) — ex —e/2 when x — oo (using the facts that lim f’(x) = e and lim f(x) — ex = —e/2). In
fact, analyzing the second derivative of f, we have f(x) < ex—e/2 for all x > 1. In particular,
f(x) is non-decreasing for x > 1, and the real solution of the equation f(c) = g is some ¢
satisfying g <eco—e/2,1.e., ¢y > g/2+1/2.

We have 0 < € < g/e —1/2 by assumption. Let ¢ = ¢y — €. Since ¢y > g/2 + 1/2, we have
c=gle+l/2—e>g/le+1/2—(g/e—1/2) > 1. So, f(c) = f(co—¢€) < g as f(x) is non-decreasing for
x> 1, which in turns implies that is U(%,) = N > (cg — €)n for infinitely many n.

Now assume that (u,)"” has a limit, which must be g(¥). Following the same argu-
ment as above, if N < cn for every large enough n, then (u,)"" < f(c). In particular,
1im,,_, o (14,)"" < f(c), and thus g < g(F) < f(c). In other words, if g > f(c), then N > cn for
every large enough n. Therefore, for ¢ solution of f(c) = g, we indeed have N > cn for every
large enough n.

This completes the proof. O

At first glance, the condition "for infinitely many #" in the lower bound of Theorem 2 is
not satisfactory, as we may expected stronger condition like "for every n, U(%,) > (c—&)n" or
"U(%F,) = cn—o(n)". However, we observe that there are graph families where such a stronger
condition cannot be true. This is the case of cubic planar graphs since there are no cubic
graphs with an odd number of vertices. Nevertheless, the lower bound U (%,) > cn —o(n)
holds for all the families considered in Table 3, as lim,,_,,(1,)"/" exists for all of them.

Now, using known results on counting graphs for various families, and combined with
Theorem 2, we get the following set of new lower bounds (cf. Table 3):

F g refs c
caterpillar forests® | 2 [HS73] 1.293
forests 2.9557 [Ott48] 1.626
outer-planar 7.5036 [BFKVO07] 3.275
series-parallel 9.0733* [BGKNO7] 3.850
Kz -minor-free 15.65" [GNO09] 6.264
planar 27.2268" [GNO09] 10.520
bounded genus 27.2268°  [McDO08] | 10.520
K3 3-minor-free 27.2293* [GGNWO08] | 10.521

Table 3: Lower bounds for various family & of the form U(%,) > cn — o(n), where c is the
solution of ¢ = ¢¢/(c—1)°"! and where g is a lower bound on the unlabeled constant-growth of
. All figures in the numbers are correct (not rounded). Starred numbers correspond to the
labeled constant-growth of & defined as limsup,,_, (€,/n")V/", where €, counts the number
of labeled graphs of F having n vertices, a lower bound on the unlabeled constant-growth
of .

The labeled constant-growth of other families can be founded in [GN09, MK12, NRR20].
An intriguing question, we left open, is to know whether there are hereditary families %

8Improved by Theorem 1.



with unlabeled constant-growth g for which the lower bound given by Theorem 2 is tight.

3 Almost Equitable Coloring

The main idea in our construction of small induced-universal graph in Theorem 3 is to reuse
large stable sets found in each graph of the family. For this purpose, one need these stable
sets have similar size.

Recall that a k-coloring is equitable if the number of vertices in two color classes differ
by at most one. In other words, if G has an equitable k-coloring, then V(G) has a partition
into stable sets Cy,..., Cy such that |C;| € {[n/k], | n/k]} for each i, where n = |V (G)|. Note that
|Ci| = 0 for some i implies that |C;| € {0, 1} for all j.

It is well-known that any n-vertex graph with maximum degree A has an equitable (A+1)-
coloring, as proved by Hajnal and Szemerédi (see [KK08] for a shorter proof), that can be
computed in time O(An?) [KKMS10]. It is conjectured that in fact every connected graph
is equitably (A + 1)-colorable [Mey73], if it is neither a clique nor an odd cycle. This has
been confirmed for many graph classes. In particular, every 4-colorable graph of maximum
degree 4 has an equitable 4-coloring [KK12].

We point out that there are graphs with equitable k-coloring but no equitable (k + 1)-
coloring, e.g. a 2-coloring of K33. There are also bipartite graphs with no equitable 2-
coloring, for instance K, , with g > p + 1. Even worst for p = 1, K, has an equitable k-
coloring if and only if k > 1 + g/2. However, by removing p vertices, we can obtain a graph
that has an equitable 2-coloring, and even so an equitable 1-coloring.

This leads to the following extension of equitable coloring that will be the crux for our
main result. See Fig. 2 for an illustration.

Definition 1 A graph G is p-almost equitably k-colorable if there exists a set X of at most p
vertices such that G\ X has an equitable k-coloring.

O 1 ) 1 A ,,,,,, m» ,,,,,, !& 1 ) D
Do b db db désso dbdld |

Figure 2: A caterpillar of 29 vertices with a 2-coloring that is not equitable (18 circle vs.
11 squared vertices). In fact, it has no equitable 2-coloring, but it has a 1-almost equitable
2-coloring (14 green and 14 red vertices) obtained by removing the squared vertex in the
meddle of the path.

So, equitably k-colorable graphs, i.e., the graphs having an equitably k-coloring, are ex-
actly those that are 0-almost equitably k-colorable. Clearly, every graph G with n vertices is
n-almost equitably k-colorable, G \ X has only k vertices which can be (equitably) k-colored
anyway. It is also straightforward to see that:



Claim 1 If G has n vertices and is p-almost equitably k-colorable with k < n, then there exists a
set X with exactly min{p,n — k} vertices such that G\ X has an equitable k-coloring.

Indeed, if |X| < min{p, n -k}, one can successively increase X set by taking one vertex at
each step from the stable set with the current most frequent color. We will use Claim 1 twice
in this section.

3.1 Block design based construction

Theorem 3 below relies on the well-known Coding-Theoretic Function A(n,d, w) that is the
maximum number of binary words of  bits that are pairwise at distance’ at least d and of
weight'? w. For instance, with the bijection between binary words of length 1 to subsets
of {1,...,n}, A(n,2,2) can be seen as the number of distinct pairs of integers taken from
{1,...,n}, since to be at distance at least two, binary words of weight two can share at most
one 1. Therefore, A(n,2,2) = (g) More generally, for each integer k > 2, A(n,2k — 2,k) is
the maximum number of edge-disjoint copies of K; taken in K,,. Such clique partitions are
also called block designs or incomplete block designs, and are parts of Combinatorial Designs
field [CDO07].

Not all the values of A(n,d, w) are known, and we refer to [BSSS90, CD07] for best known
bounds on A(n,d, w). However, by counting edges of the cliques, it is easy to see that A(n, 2k—
2,k) < (’;)/(15) The equality holds if and only if a Steiner System S(2, k, n) exists (for instance,
see [BSSS90, Theorem 7]). E.g., the equality holds for any a € N, for any prime power k and
n = k%, or, for any k power of two and n = (k—1)2%+k (cf. [BSSS90, Theorem 13, Eq. (26&29)].

By combining block designs and almost equitable coloring, we can show:

Theorem 3 Let s,t,k € N such that t < A(s,2k — 2,k). For every family & with t graphs, each
being p-almost equitably k-colorable with n vertices,

WUWTF) < s[n;p-‘+tp.

Given the numbers A(s, 2k — 2, k), the induced-universal graph Ug for ¥ has an explicit
construction. Furthermore, all embedded graphs of & in %Ug are pairwise edge disjoint, as
only vertices are shared into some common stable sets. It follows that Ug is also an induced-
universal graph for any edge-colored graph of . For the family of all edge-colored cliques
with r colors, we refer to [Kou21].

Proof of Theorem 3. Consider a family & of t graphs with n vertices that are p-almost
equitably k-colorable, where t < A(s, 2k — 2, k) for some integer s.

We define the graph family H obtained from ¥, by removing, for each G € ¥, exactly
p vertices of G such that the resulting graph has an equitable k-coloring. The fact we can
remove exactly p vertices is due to Claim 1. By construction, |H| < |F| = t.

Uy is composed of s stable sets Sy ..., S,, each with [(n — p)/k] vertices.

%Le., the Hamming distance.
101e., the number of 1’s in the binary word.

10



We define A be the complete graph on s vertices that are the stables Sy,...,S;. As we
already said, it is possible to pack A(s, 2k — 2,k) cliques of k vertices in A, in a way that no
two cliques of the packing share more than one vertex. Let Qy,..., Q; be such clique packing
in ;. Note that this is possible because t < A(s, 2k — 2,k). E.g., if k = 2, Q;’s are just K.

The edges of Uy, are determined by the graphs of H as follows. We associated with each
graph H; € H a unique clique Q; of the packing. In Uy, Q; corresponds to a collection of
k stables Cy,...,Cy, taken among the S;’s. In the meanwhile, the equitable k-coloring of H;
induced a partition of V(H;) into k stables, each with at most [(n — p)/k] vertices. We map
all vertices of a given part of H;, say those of color j, to some stable C; in Uy. Then, we add
to Uy all edges of H;, so that are between some C; and C;. Mapping the vertices of color j
in H; on C; is Uy is possible because each C; has [(n - p)/k] vertices.

From the above construction, one can check that each H; € H is an induced subgraph
of Uy, since any two graphs of H share at most one stable in Uy. It shows that Uy is an
induced-universal graph for H with s[(n — p)/k] vertices.

The graph Uy is obtained from Uy, by adding the following set of vertices and edges. For
each G; € ¥, we select some H; = G; \ X; in H with |X;| = p. This is possible because G is p-
almost equitably k-colorable. The graph H; € H appears in Uy as induced subgraph. Then,
we add p vertices that are connected to H; in the same way X; is connected to its neighbors
in G; as shown in Fig. 3. Repeating the same process for each graph G; € ¥ adds tp vertices.

Eventually, the graph Ug has s[(n—p)/k] + tp vertices and is induced-universal for the
family F. See Fig. 3 for an illustration with k = 2.

O

The above construction relies on the function A(s,2k — 2,k), whose values are not all
known, but can be computed in practice (see for instance [Owe95]).

3.2 Bounded pathwidth graphs

We make a link between pathwidth and almost equitable coloring. Recall that a graph G has
pathwidth at most p if it is a subgraph of some interval graphs with maximum clique size
p+1.

Theorem 4 Every k-colorable graph of pathwidth at most p is p(k — 1)-almost equitably k-
colorable.

Because graphs of pathwidth p are (p + 1)-colorable (as they are p-degenerated), we im-
mediately get from Theorem 4:

Corollary 1 Every graph of pathwidth at most p is p*>-almost equitably (p + 1)-colorable.

The strategy to prove Theorem 4 is as follows.

First, we select two colors that are non-equitable for the k-coloring, the least and the most
frequent colors. Second, we show how to re-balance these two colors, by removing at most
p vertices, so that one of the color has n/k — p(k — 1)/k vertices. Then, we set this color aside

11



Figure 3: Construction of Ug for a family & = {Gy,..., Gg} of 2-almost 2-colorable graphs.
Here p=k=2,s=4,and t = A(s, 2k — 2,k) = A(s,2,2) = (3) = 6. The stables Sy,..., Sy, each of
size [(n—p)/k], are shared between the 6 graphs of 7.
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and repeat this process k — 1 times in total, until all the colors are balanced, so by removing
a total of p(k — 1) vertices.

For the second part, we need of the following technical lemma.

Lemma 1 Let B be a graph having a path-decomposition of width p and a 2-coloring into stables
Cy, Cy with |Cy| = |Cy|. Then, for every non-negative integer a € [|C,| —p,|Cy|] there exists a set X
of at most p vertices and a 2-coloring C{, C}, of B\ X such that |C{| = a.

Proof. Let B be a bipartite graph, and P = (Xj,...,X,) be a path-decomposition of width p.
According to [CFK*15, Lemma 7.2], we can assume that P is nice, meaning that X;, X, are
empty, and that X;,; is obtained from X; either by adding a vertex not in X;, or by removing
a vertex from X;. Some X;’s other than X; and X, may be empty, in particular if B is not
connected.

For every X; of P, we define a 2-coloring C{,Cé of B\ X; as follows. Informally, all the
vertices of B\ X; after X; in P (i.e., every u € X; \ X; with j > i) keep their color. Moreover,
the ones before X; (i.e., every u € X; \ X; with j < i) exchange their colors. More precisely,
we define Ci as the set of vertices of B\ X; that are in Cy, if after X;, and in C,, if before X;.
Moreover, define Cé = V(B)\ X;\ C!, that is the set of vertices of B\ X; that are in C, if after
X;, and in Cy, if before X;. Note that, for each i, C{, C} is a 2-coloring of B\ X; since, from the
path-decomposition P, vertices before and after X; are in different connected components
of B\ X;. Since there no vertices before X; and B\ X; = B, we have Cl1 =C; and C% = C,.
Similarly, there no vertices after X, and B\ X, = B, so C] = C, and C} = C;.

For simplicity, denote by a; = |Ci| and b; = |Cé| the color’s counters for Ci,Cé. The 2-
colorings defined for i = 1 and i = r have their colors inverted. So, a; = |C11| =|Cy| = b, and
by = |C%| =|Cy| = a,. Note that a; > a,, since |C{| = |C,|.

Consider any non-negative integer a € [|C,|—p,|C;|]. In other words, a € [max(0,a,—p),a;].
If a < a,, then we can select for X any subset of C, with |X| = 4, —a vertices. Since a >
max(0,a, —p), then a, —a < a, —max(0,a, — p) = min(a, — 0,a, — (a, — p)) < p, and thus we have
|X| < p,and |C, \ X| =|C,| - |X]| = a, — (a, —a) = a. Thus, if a < a,, we are done with the initial
2-coloring of B by setting C; = C; \ X and C; = C; \ X = C;. So, from now on, let us assume
ac(a,al

Two consecutive bags of P change by exactly one vertex (recall that P is nice). Therefore,
whenever moving from X; to X;,; along P, the color’s counters for the 2-coloring C, Cé goes
from (a;, b;) to (a;41,b;,1) for C{H, Cé“ such that

(ais1,bis1) €{(a; —1,b;),(a; +1,b;),(a;, b; = 1),(a;, b; + 1)} .

Since a € (a,, a1 ], there must exist at least one bag X; of P such that a; = a since the color’s
counter moves decreasingly one-by-one on each component from (ay, b;) to (a,,b,) with a; >
a,. W.l.o.g. assume j is the largest index such that a; = a.

If |X;| < p, then we are done by selecting X = X; and the 2-coloring C| = C{ and Cj = Cé.
We will conclude now by showing that the case |X;| = p + 1 is not possible.

Assume |X;| = p+1. Consider X;,, which exists in P, since |X;| > 0 and thus X; = X, = @.
Note that [X;,| <|Xj|, since P is nice. We also remark that a; + b; +|X;| = |V(B)| for every i.
If a;,1 = a, then j is not maximal: a contradiction. If a;,| <a, then b;,; = b;. It follows that
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aji1 +bji1 + X1l <aj+bj +]X;]: a contradiction, both sums must be [V(B)|. So, we are left
with the case a;,; > a. Thus, we have 4, <a <aj,;. By considering the bags of P from X;,,
to X,, and the color counters from (a;,,b;,1) to (a,,b,), there must be an index j’ € [j + 1,7]
such that aj = a: a contradiction with the maximality of j. O

Proof of Theorem 4. Let G be a graph with n vertices having a path-decomposition of width
p and a k-coloration into stable sets Cy,...,Cy. The willing k-coloring for G is obtained by
applying the following process (initially the current graph is G it-self):

1. Select in the current graph the two stable sets corresponding to the least and most
frequent colors, say Cpin, Ciax-

2. Apply Lemma 1 on the bipartite subgraph induced by Cyi,, Cinax, and with a suitable
non-negative integer a € [|Cppin| — P, |Cmax|]- This provides a set X and a new 2-coloring
Ci,C; with |C{| = a and |X| < p. Adjust X and C) such that |X| = p.

3. Update the current graph by moving aside vertices of X and Cj, and repeat.

It is clear that after repeating this process k — 1 times, we obtain a new k-coloring for G,
the last color being composed of the remaining graph. The first k — 1 colors are all the C{’s
stable sets constructed during the process. Moreover, the deleting set is the union of all the
X’s sets constructed. It contains exactly p(k — 1) vertices.

What we need to check is that such a k-coloring for G, without the deleting set, is equi-
table.

To be more precise, we introduce the following notations. Consider the situation ob-
tained after applying i loops of the above process, and denote by:

* G; the current graph, initially Gy = G;

. C{,..., Cli—i the current (k —i)-coloring of G;, initially (C?,..., C,?) =(Cq,...,Cy).

C{,...,C/ the current sequence of i colors that are supposed to be equitable, initially,

for i = 0, the sequence is empty, no such colors have yet been defined; and

* X; the current deleting set for G, obtained by taking the union of all X’s sets con-
structed so far, initially X, = @.

After i loops, the current state can be summarized as a partition of the vertex set of G,
and can be represented by _ _
(ClL....C 1 Xi 1 Cl,...,Ch)

where G; is the graph induced by Ci U---U Cli—i' Initially, for i = 0, we have the state
< Clr"-;ck | 1%} | € >
where ¢ denotes the empty sequence.

So, the (i + 1)-th step of the process can be rephrased as follows:

1. Select in G; two stables set C . C!

i’ Cmax, among its k —i colors Ci, ey C,’;il., with least and
most cardinality.
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2. Apply Lemma 1 on the induced subgraph G[Crinin UCI ] with a suitable parameter a;.
This provides a set X and a stable set C; with |C/| = a;. Adjusting X to p vertices, we
form X; with i - p vertices.

3. Update G; and its coloring Ci,...,C};_i into G;,1 and Ci”,...,C;:j_l.

It can also be illustrated by the state transition:

. . l+1 . . , , ,
(Ci,....Ci;1Xi1Cy,...,Cly —— (Ci*h.,Ct 1 X 1 Cy,e.l, CLCL D
After k—1 steps, we have a deleting set X;_; with exactly p(k—1) vertices, and a k-coloring
of G\ Xj_; into stable sets Cy,...,C;_; and C{“l (the remaining stable set, actually Gi_;). In
other words, the last transition is:

— — ’ ’ k-1 — ’ ’
(CF2C521X,1C,. ., Cl,) —— (CHM X 1ClLn Gl

To show that these colors are equitable for G \ X;_;, we have to show that a;’s can be
chosen such that a; € {[(n—|X;_1])/k],|(n—|Xk_1|)/k |}, and, similarly the for the last color
C{‘_l, that C{‘_l e{[(n—1Xk_11)/k], [ (n—|Xk_11)/k]}. Furthermore, in order to apply Lemma 1,
we have to check that g; € [|C! |- p,|Cl .|l and a; > 0.

min max
We remark that for non-null integers m, k, we have m = k|m/k] + r, where r = m mod k.
Observing that [m/k]— |m/k] € {0,1} depending whether k divides m or not, this can be
rewritten as m = (k —r) | m/k] + r[m/k].

So, to be equitable, we must have in G \ X;_; precisely k — r stable sets of size
[ (n—|Xk_1])/k] and r stable sets of size [(n—|Xy_|)/k], where r = (n—|X}_1]) mod k. Since
n—|Xx_1|=n-p(k—1), we have r = (n+p) mod k, and (n—|Xy_|)/k = (n+p)/k—p. So, we must
have r stable sets of size [(n+ p)/k]—p and k —r stable sets of size |(n+ p)/k|—p, including
the last color C{‘_l.

For the r first steps i = 1,...,r, we choose a; = [(n+p)/k]—p, and for i > r we choose
a; =|(n+p)/k]—p. As a;’s differ by at most one, it will be more convenient to rewrite a; as

' o n+p . o 1 1fr>landl<1’
VZE{l,..-yk_]-}; a; = \‘ k J_p+dl ’Wheredl_{ 0 ifr:oori>7’

It is easy to check that Z;':1 d; = min(i,r), since up to index r, d; = 1, and then d; = 0 (we
have always d; = 0 if r = 0). W.l.o.g. we assume that n > p(k — 1), since Theorem 4 is clearly
true otherwise. It follows that (n+ p)/k —p > 0, and thus all the a;’s are > 0.

We assume that Lemma 1 applies correctly for the first i steps of the process, that is
a; € [|ICL. |—p,|Claxl]- Let n; =|V(G;)| be the number of vertices in the current graph G;. By

min max
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construction, n; = n—|X;| - ;:1 |C/|. Since Lemma 1 applies, |C/| = a;, and we have

i

n-1Xil-) a

j=1

e

i
|n+p
n— { 2 J—‘ d]

n;

j=1

n—ivsz—min(i,r).

We consider now Step i + 1, for some i € {0,...,k - 2}. There are k —i colors in G;, which
has n; vertices, so the least and most frequent colors in G; satisfy |C, . | < n;/(k —1) <|Cfl-
To show that a;,; € [|C . |- p,|CL..|] (we have seen that a;,; — in fact all the a;’s — is non-

min max
negative), it suffices to show that

nj i
—; P < 4i41 S P
< %_aiﬂe[orp]
nij—(k—1)-a;;1 €I, where I =[0,(k—1i)p]
o (n—z'V;CFPJ—min(i,r))—(k—i)(vsz—p+d1-+1)EI

n+p

0

o n—k{ J—min(i,r)+(k—i)(p—di+1)eI
& r—p-min(i,r)+(k—i)(p—dj1) €l (2)

the last simplification in Eq. (2) comes from the fact that we have chosen r such that n+p =
k|(n+p)/k]+r.

To prove Eq. (2), we consider two cases.

Cased;,; =1. Inthatcaser>0andi+1<r.Somin(i,r)=1i. Eq. (2) can be simplified as:

r—-p—i+(k—i)p-1)el
o (k—i-1)p—-(k-r)el=][0,(k—1)p]
o (k—i-1l)p>=(k-r) and (k—i—-1)p—(k—r)<(k—i)p
< (k—i-1)p>=(k—-i—-1) and —(k-r)<p

which is always true as p > 0 and r < k. Thus, Eq. (2) is true in this case.

Case d; ; =0. Inthiscase, r =0ori+1>r. We observe that in both cases, r —min(i, r) = 0.
So, Eq. (2) can be simplified in

r—min(i,r)—p+(k—i)(p—-0)el
& (k—i-1)pe]0,(k—1)p]
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which is true since p > 0 and i + 1 < k—1. Thus, Eq. (2) is true in this case as well.
All together, we have shown that the first r colors satisfy |C{|,...,|C;| = [(n+ p)/k]-p, and
that the k—r—1 next colors satisfy |C;,,|,...,|C;_,| = [ (n + p)/k]—p. It is easy to check that the

.
last color CK~! has | (1 + p)/k | —p vertices. Indeed, by the partition of the vertices of G\ Xj_j,
we must have

r k-1
n=1Xeal = ) IC]+ ) I+ Icf
i=1

i=r+1

n—p(k=1) = r([(n+p)/k]-p)+(k—r—1)([(n+p)/k|-p)+|CF|
n = r[(n+p)/k]+(k—r—1)|(n+p)/k]+|CF1|
& n+p = r[(n+p)/kl+(k=r—1)|(n+p)/k]+(C{+p)

0

0

This implies that [Cf~!|+ p = [(n+p)/k] by the choice of 7. So, [CK~!| = |(n+p)/k]| —p as
required.

This completes the proof of Theorem 4. O

We left open the question about the optimality of Theorem 4. However, we can show
that, for each k, the pathwidth in Theorem 4 is required. More precisely:

Proposition 1 For each integers k and p, there is a k-colorable graph of pathwidth at most p for
which every g-almost equitably k-coloration requires q > p.

Proof. Let G be the complete k-partite graph with k — 1 "small" parts of roughly p/(k - 1)
vertices and the with one "large" part with L = 2p + 2k — 1 vertices. To be more precise,
each small part has |p/(k—1)] or [p/(k —1)] vertices such that their size sum up to exactly p
vertices. The graph G is k-colorable (each part is monochromatic, with a distinct color), and
of pathwidth at most p (consider a path of L bags B; — B, —---— B where each B; is composed
of the p vertices contained in the small parts plus the ith vertex of the large part).

Consider any g-almost equitably k-coloration of G, let X be the set of vertices that makes
this coloring equitable, and let G’ = G \ X. Suppose |X| < p.

There must be one of the small parts with ¢ > 0 vertices remaining in G’, because their
sizes sum up to p. Note that t < [p/(k—1)] <p/(k—1)+ 1. It follows that t + 1 <p/(k—-1)+2,
and thus (t+1)(k—-1)<p+2k-1.

In the large part, it remains € > (t+1)(k—1) vertices in G’, because L—|X| = 2p+2k—-1-|X]| >
p+2k—-12>(t+1)(k—1). The colors of any small part cannot appear in the large part. So, to
color the vertices of the large part, at most k — 1 colors are available. To be equitable, each
color classes must have t or ¢ + 1 vertices: a contradiction with € > (¢ + 1)(k—1). 0

We note that the proofs of that Theorem 4 and Lemma 1 are constructive. Assuming
a with-p path-decomposition and a k-coloring of the graph are given, the proofs lead to
polynomial time algorithm for constructing the deleting set and the k-coloring making the
graph p(k —1)-almost equitably k-colored.
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3.3 Conflicting family

An application of the construction in Theorem 3 is that it can give a lower bound on the size
of a conflicting family w.r.t. some cn-lower bound.

Theorem 5 Let & be a family of k-colorable graphs with n vertices and pathwidth o(n/k). If
U(F) > cn—o(n) for some constant c, then ¥ contains more than A([ck]—1,2k —2,k) graphs, for
every large enough n.

Proof. Let s be the largest integer such that s < ck and let a = A(s,2k — 2,k). We have s =
[ck1—1. We want to show that & has to contain t > a graphs. By way of contradiction,
assume that t < a.

Note that a < (;)/(g) < (s/k)? < c? by the choice of s. By Theorem 4, every graph of %
is p(k — 1)-almost k-colorable, where p is an upper bound on the pathwidth of the graph.
Therefore, by Theorem 3, U(F) < sn/k+tp(k—1). As t < a < c?, the additive term tp(k—1) <
c?pk = o(n) as c is constant and p = o(n/k) by assumption. Thus, U(F) < sn/k + o(n).

This is incompatible with the assumption that U (%) > cn — o(n), since, for every large
enough n, this implies that U(%)/n > c—o(1), whereas we have U (¥ ) < sn/k + o(n) implies
U(F)/n < c+o(l) by the choice of s.

It follows that t > a = A(s, 2k — 2, k) where s = [ck]— 1 as claimed. O

To illustrate Theorem 5, consider any family %, of bipartite graphs with sublinear
pathwidth. From Theorem 5, if U(%,) > 2.1n — o(n), then ¥, must contains more than
A(f2.1-21-1,2-2-2,2) = A(4,2,2) = 6 graphs. In particular, any conflicting family w.r.t.
a 2.1n-lower bound for trees must contains at least 7 trees.

Now, we can combine the lower bounds on c collected from Table 3, with Theorem 5. By

this way, we obtain in Table 4 the lower bounds on the size of conflicting families. Note that
all families considered therein have bounded chromatic number and sublinear pathwidth.

F c t k  A([ck]-1, 2k 2,k)
forests 1.626 | 4 2 A(3,2,2)=
outer-planar 3.275 | 13 || 3 A(9,4,3)= 12
series-parallel 3.850 | 17 || 3 A(11,4,3)=16
K -minor-free'! | 6.264 | 51 || 4 A(25,6,4)=50
planar 10.520 | 137 || 4 A(42,6,4) =136
K3 3-minor-free || 10.521 | 124 || 5 A(52,8,5) € {123,124}!?

Table 4: Lower bounds on the size t of a conflicting families w.r.t. a cn-lower bound.

4 Towards Super-Linear Lower Bounds

The motivation of this part is mostly linked to the research of lower bounds for families of
n-vertex graphs for which one suspect a super-linear lower bound, say A(n)-n where A(n) is
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non-constant. We show that, for many of those families, namely those with small chromatic
number and sublinear pathwidth, the size of any conflicting family w.r.t. a A(n)- n-lower
bound cannot be linear in A(n). As shown in the next theorem, it must be at least quadratic.

Theorem 6 Let F be a family of n-vertex k-colorable graphs of pathwidth at most p such that
p(k2 —1) < n. If the number of graphs in F is t > max{4k2, 811}, then

%(9)<§-\/Z-n.

A consequence of Theorem 6 is that any (2(nlogn)-lower bound proof for planar graphs
(if it exists), and more generally for fixed minor-closed family of graphs, must use a conflict-
ing family of at least t = Q(log” n) witnesses n-vertex graphs.

First, this is because graphs excluding a fixed minor have pathwidth O(y/n) [AST90],
and constant chromatic number, due to bounded edge density [Mad67], so conditions are
fulfilled to apply Theorem 6. Second, for such family & with t = o(log® n) graphs, Theorem 6
would imply that U(F) = o(nlogn).

In order to prove Theorem 6 we need, as intermediate step, the following result:

Theorem 7 Let ¥ be a family of n-vertex p-almost equitably k-colorable graphs. If the number of
graphsin F is t > max{kz, 811}, then

15
U(F) < ﬁ.x/E.(n—p+k>+tp.
A consequence of Theorem 7, is that an upper bound on % (%) can be derived for any
graph family &, independently from its colorability. However, unlike Theorem 7, it relies to
families having t = ()(n?) graphs with n vertices.

Corollary 2 Every family of n> > 811 graphs with n vertices has an induced-universal graph
with less than 15n%/7 vertices.

Proof. Every n-vertex graph is equitably n-colorable. So Theorem 7 can be applied to any
family & of n-vertex graphs (with k = n and p = 0). Assuming that the number of graphs in
F is t = k? = n? graphs, we get by Theorem 7, that U(F) < 15/14-Vt-(n—0+n)+t-0 = 15n%/7
as claimed. O

The proof of Theorem 7 relies on the two technical following lemmas about A(#n, 2k—-2, k).
Indeed, in the proof of Theorem 6, we will need to lower bound A(n, 2k -2, k) for every k, and
not only for prime power k as in [BSSS90, Theorem 13]. Furthermore, as already explained
above Definition 1, majoring k does not necessarily keep the equitably property of color-
ings. An alternative to our lower bound in Lemma 2, would be the use of the well-known
optimal asymptotic bound due to Erdés and Hanani [EH63, Theorem 1] (see also [AYO05,
Theorem 3.1] for further refinements) saying that, for each k > 2,

lim A(n,2k—k2,k) _q
e GfG)
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Unfortunately, this would introduced an uncontrolled conditions between s and k due to
this limit. Nevertheless, based on [Bos38, Bus52], it is possible to construct orthogonal ar-
rays OA(s%,k,s,2), a generalization of orthogonal Latin squares, for every prime power s and
k < s+1. From them, we can derive incomplete block designs showing that A(sk, 2k—-2,k) > s2
(see [CDO07, Part III]). For completeness, we present another simple construction of such
block designs, making the universal graphs given by Theorem 6 and Theorem 7 fully con-
structive in polynomial time.

Lemma 2 Let s,k € N such that s is prime and 2 < k <s. Then

A(sk, 2k —2,k) > s> +k-A(s,2k—2,k) .

It is easy to check that if A(s,2k—2,k) = (;)/(’é), then s>+ k-A(s, 2k —2,k) = s? + k- (;)/(g) _
(Szk)/(ﬁ), and thus A(sk, 2k - 2,k) = (Szk)/(’;) from Lemma 2.

Proof. Recall that A(sk, 2k — 2, k) is the maximum number of edge-disjoint copies of K taken
in Ky . To lower bound this number, we first split the sk vertices of K, into k vertex-disjoint
cliques Sy, ..., Sk, each with s vertices. Then, in each S;, we select A(s, 2k — 2, k) edge-disjoint
copies of Ki. This is possible since each S; is a copy of K and 2 < k <'s. This first process
creates a collection 6, of k- A(s, 2k — 2, k) pairwise edge-disjoint copies of Ky taken from K.

In a second step, we will construct another collection 6, of pairwise edge-disjoint copies
of Ky, all obtained by picking one vertex in each S;. By doing this way, cliques of 6, and 6,
are edge-disjoint for sure, since clique-edges of 6; involve endpoints inside a S;’s, whereas
clique-edges of ‘€, have endpoints between distinct S;’s. In total, this creates |61 |+|6,| edge-
disjoint copies of K taken in K;i, and thus it shows that A(sk, 2k—2,k) > |€,|+k-A(s, 2k—2, k).
See Fig. 4 for an example.

It remains to show how to construct such a collection 6, of edge-disjoint copies of Kj
such that [€,] = 5.

For convenience, denote [t] = {0,...,t -1} for any positive number . Let u; ; be the jth
vertices of S;, for all i € [k] and j € [s]. Then, for every (p,q) € [s], define Cp,q be the clique
of Ky, induced by the vertex-set

V(Cpy) = [u,-,]- cie[k]and j=p+iq mod 5} '

By construction, each C,, is a clique on k vertices. We set €, = {Cp,:(p,q) € [s]?).
Clearly, |'6,| = s. Tt remains to show that cliques of €, are edge-disjoint, or equivalently,
that any two cliques of ‘6, share at most one vertex.

By way of contradiction, assume u; j,u; i € V(C,,) N V(Cy ) with (i,7) = (i,j) and
(p,q) # (p’,q"). We consider arithmetic in the cyclic group Z/sZ. Note that since s is prime,
xy = 0 implies x = 0 or y = 0 for all integers x, y.

From u;;,u; i € V(C, ) N V(Cp o), we get the following equations on j and j”:

j =p+iq =p'+iq

-/

j o =p+i'q =p'+i'q
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If i =i/, then, using j—j’ = (i—i’)gq, we get j—j’ =0, i.e., j = j’: a contradiction. Thus we
have i =i’

Using j—j ' =(i—i')g=(i—i")q’, we get (i—i")(g—q’) =0, that implies i =i’ or g = q’ since
s is prime. Since i #i’, we have g = ¢q’.

Using p+ig=p’+iq’,wegetp—p' =(q'—q)i = 0since g =q’. This implies p—p’ =0, i.e.,
p =p’. This is a contradiction, since we have already g = ¢q’.

Therefore, the two distinct vertices u; j,u; i € V(Cpq) N V(Cp o) do not exist, and this
completes the proof. O
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Figure 4: Illustration of the block design construction as in Lemma 2 for s = 5 and k = 3,
aiming to lower bound A(15,4,3). Note that A(5,4,3) = 2 (two K3 sharing a vertex in Kjs),
and thus A(sk,2k — 2,k) > s2+k- A(s,2k — 2,k) = 25+ 3 -2 = 31. All the edge-disjoint K3
(triangles) in K5 are monochromatic, e.g. V(Cs 1) = {uo,3, U1 4, U4} The edges of K;5 are not
represented. According to [BSSS90, Table I-A], A(15,4,3) = 35.

Lemma 3 Forall n,k € N such that 2 < k <14/15-(n+1)/k and 30 < n/k,

14 n+1)?

A 2k-2,8) > (12 )
(n 1>\ %

Proof. We use a generalization of Betrand’s postulate. From [SGIM13, Theorem 1], for

each integer i > 2, there is a prime in the interval (14i,15i). Since n > 30k, the integer

i = |n/(15k)]| > 2. Thus, there must exist a prime s such that:

n n n
N — < =
14 LskJ <s <15 {15kJ Sk
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In particular, n > sk. Since A(n,2k — 2,k) is non-decreasing in n, we have A(n, 2k —2,k) >
A(sk, 2k — 2,k). Note that®

n JH:M_VHSkJ S 14'(n+15k+1—15k) 14 n+1

> 14i+1 = 14.| - .
s T hSk 15k 15k 5 &

Thus, since k < 14/15-(n+1)/k, we have k <s. We can apply Lemma 2 to get:

2
Al 2k—2,k) > A(sk,2k—2,k) > > > (%.”Zl)
as claimed. 0

According to [SGIM13], the constant 14/15 that appears twice in Lemma 3 cannot be
replaced by any ratio of the form c¢/(c + 1) as long as that the integer ¢ < 100,000,000. By
using Betrand’s postulate“, we could achieve a better condition on n/k, namely 4 < n/k,
which ultimately would decrease'? the constant 811 in Theorem 6 and Theorem 7. However,
the price of weakening the condition is a doubling factor on the upper bound on U(¥),
replacing the factors 15/14 and 15/7 respectively by 2 and 4.

Proof of Theorem 7. We first observe that k > 2, since otherwise & would be composed of
only one graph (an independent set of n vertices), contradicting the fact that t > 811.

Our goal is to apply Theorem 3 to . Let us show that if s = |—15/14.-k\/?-| -1, then
t < A(s,2k—2,k). By Lemma 3 (plugging n =s), A(s, 2k —2,k) > (14/15- (s + 1)/k)?, subject to
2 <k <14/15-(s+1)/k and 30 < s/k. So, it suffices to show that 14/15-(s+1)/k > v/t. This is
equivalent to show that s > 15/14-k+/t— 1. Thus, by choosing s = [15/14 . k\/f-l -1, we ensure
that A(s,2k—2,k) > t.

The two conditions on s and k become:

_ %.([15/14«;/2}—1)% d 30 < [15/14.kk\/ﬂ—1

Recall that we have assumed t > max{k?,811}. For the first condition, we have:

14 ([15/14-kvE]-1)+k o1 (15/14-kvE+k-1)

15 k Z 15 k
14 1

> — -] > >

> Vi (1 k)/vz/k

as required.

For the second condition, the term s/k = ([15/14 . k\/f-l - 1)/k > 15/14 -+t — 1/k, which is

increasing with k > 2. So, the term 15/14- Vi —1/2 is at least 30 whenever Vt > (30 + 1/2) -
14/15 =~ V¥810.35. Thus, since t > 811, we have that s/k > 30 as required.

11t states that for each integer i > 2, there is a prime in the interval (i, 2i).
12Following the proof of Theorem 7, the new condition would be t > [((4+ 1/2)/2)?] = 3 instead of t >
[((30+1/2)-14/15)2] = 811.
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From Theorem 3,

UF) < S[n;p-‘+tp

< ([15/14-k\/ﬂ—1)(”_”:+k)+tp

< (15/14~k\/¥)(%m)+tp
< = \/_ (n—p+k)+tp

completing the proof of Theorem 7. O

Proof of Theorem 6. Similarly to the proof of Theorem 7, we have k > 2 (otherwise in
contradiction with t > 811). For technical reasons, we treat separately the case p < 2 from
the case p > 2. For the former case, if p € {0,1}, the graphs of ¥ are caterpillar forests.
We can use the construction of [GL22] showing that U (%) < 8n, independently of t. As
t > 811, (15/7)Vt-n > (15/7)V811 -n~ 61n> 8n > U(F). Therefore, the statement U(F) <
(15/7) - Vi-nis trivially true if p < 2. So, w.l.o.g. we assume that p > 2

With each G € ¥, we associate a new graph G’ such that:

1. G’ contains G as induced subgraph;
2. G'has n’ =2(n—q) vertices, where g = p(k —1); and
3. G’ is equitably 2k-colorable.

The graph G’ is obtained from G plus n — 2q isolated vertices. Note that n—2q > 0 since by
assumptions p(k? —1) < nand k > 2. Indeed, 2g = 2p(k— 1) < p(2k - 1) < p(k* - 1) < n.

Clearly, G’ contains G as induced subgraph and has exactly n+n—2q = n’ vertices.

To prove the third point, that is G’ is equitably 2k-colorable, we partition V(G’) into two
sets S, T, each of n—gq vertices, and show that G’[S] and G’[T] are both equitably k-colorable.

To construct S, we applied to G Theorem 4 and Claim 1 to obtain a set X of |X]| =
min{p(k—1),n—k} vertices such that G\ X is equitably k-colorable. From the conditions
on (p,k,n), we get p(k—1)+k < p(k—1)+pk < p(2k—-1) < p(k?-1) < n. Sop(k—1) < n—k,
and thus [X|=p(k-1)=4.

Welet S =V(G)\X,and T = V(G’)\ S. By construction, G’[S] = G \ X has n — g vertices
and an equitable k-coloring into k stable sets C},...,C7 with |[C?| € {|(n—q)/k],[(n—q)/k]}
since we have seen that g = |X]|.

The graph G’[T] is composed of G[X] plus a set I of n—2q isolated vertices. Consider
any k-coloring of G[X] into k stable sets Cf(,...,le (recall that G is k-colorable). We have
|CZX| €{0,...,|X|} for each i, noting that |CZX| = 0 is possible for some color i, in particular if
p=1.

The important remark is that the conditions on (p, k, n) imply that |CZX| < |C]S| for all i, j.
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Indeed, we have |C1.X| <|X|=qand |(n—q)/k] < |C]$|. Moreover,

q < [(n—q)/k]
=3 g < (n—q)/k
= qk+1) < n
N plk-=1)(k+1) < n
o p(k*-1) < n.

Now, ICI.XI < |Cf| for all i, j implies that we can color the vertices of I, and add |C1$| - |C1-X| >0

vertices taken from I to CiX resulting in a new color class of size exactly |CZS| This process
defines a k-coloring for G’[T] whose color classes have the same color distribution as the
k-coloring of G’[S]. Since |S| = |T| and the k-coloring of G’[S] is equitable, the k-coloring of
G’[T] must be equitable too.

Now, we apply Theorem 7 to the family ¥’ = {G’: G € ¥} composed of all the graphs
G’ constructed from G € F as above. Note that ¥’ is composed of t graphs, each with n’
vertices, and that are equitably k’-colorable with k” = 2k. Since t > max{4k2,811}, we have
that ¢ > max{k’?,811} as required to apply Theorem 7. Note that k—¢q = k—p(k - 1) <
k—-2(k—1)=2-k <0, because we have k,p > 2.

Each graph G € & appears as induced subgraph of some G’ € #’. Therefore, by Theo-
rem 7, we get:

1 1 1
UF) < UF') < 1o NE-(0+K) < 1 NVE- Qg k) < 2 Vo,
This completes the proof of Theorem 6. O
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