
 123

30th International Symposium, DISC 2016
Paris, France, September 27–29, 2016
Proceedings

Distributed
ComputingLN

CS
 9

88
8

AR
Co

SS
Cyril Gavoille
David Ilcinkas (Eds.)

Lecture Notes in Computer Science 9888

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison, UK Takeo Kanade, USA
Josef Kittler, UK Jon M. Kleinberg, USA
Friedemann Mattern, Switzerland John C. Mitchell, USA
Moni Naor, Israel C. Pandu Rangan, India
Bernhard Steffen, Germany Demetri Terzopoulos, USA
Doug Tygar, USA Gerhard Weikum, Germany

Advanced Research in Computing and Software Science
Subline of Lecture Notes in Computer Science

Subline Series Editors

Giorgio Ausiello, University of Rome ‘La Sapienza’, Italy
Vladimiro Sassone, University of Southampton, UK

Subline Advisory Board

Susanne Albers, TU Munich, Germany
Benjamin C. Pierce, University of Pennsylvania, USA
Bernhard Steffen, University of Dortmund, Germany
Deng Xiaotie, City University of Hong Kong
Jeannette M. Wing, Microsoft Research, Redmond, WA, USA

More information about this series at http://www.springer.com/series/7407

http://www.springer.com/series/7407

Cyril Gavoille • David Ilcinkas (Eds.)

Distributed
Computing
30th International Symposium, DISC 2016
Paris, France, September 27–29, 2016
Proceedings

123

Editors
Cyril Gavoille
University of Bordeaux
Talence Cedex
France

David Ilcinkas
CNRS & University of Bordeaux
Talence Cedex
France

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-662-53425-0 ISBN 978-3-662-53426-7 (eBook)
DOI 10.1007/978-3-662-53426-7

Library of Congress Control Number: 2016950389

LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues

© Springer-Verlag Berlin Heidelberg 2016
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer-Verlag GmbH Berlin Heidelberg

Preface

DISC, the International Symposium on Distributed Computing, is an international
forum on the theory, design, analysis, implementation, and application of distributed
systems and networks. DISC is organized in cooperation with the European Associa-
tion for Theoretical Computer Science (EATCS).

This volume contains the papers presented at DISC 2016, the 30th International
Symposium on Distributed Computing, held during September 27–29, 2016, in Paris,
France. The volume includes the citation for the 2016 Edsger W. Dijkstra Prize in
Distributed Computing, jointly sponsored by DISC and PODC (the ACM Symposium
on Principles of Distributed Computing), which was presented at PODC 2016 in
Chicago and split between Noga Alon, Laszlo Babai, and Alon Itai; and Michael Luby
for their two seminal papers both published in 1986: “A Fast and Simple Randomized
Parallel Algorithm for the Maximal Independent Set Problem” and “A Simple Parallel
Algorithm for the Maximal Independent Set Problem”. The volume also includes the
citation for the 2016 Doctoral Dissertation Award, also jointly sponsored by DISC and
PODC, which was presented at DISC 2016 in Paris. This year the award was split
between Hsin-Hao Su, who completed his dissertation “Algorithms for Fundamental
Problems in Computer Networks” in July 2015, under the supervision of Seth Pettie
at the University of Michigan, and Shahar Timnat, who completed his dissertation
“Practical Parallel Data Structures” in July 2015, under the supervision of Erez Petrank
at Technion.

In total, 132 regular papers and 13 brief announcements were submitted and peer
reviewed. The Program Committee selected 32 contributions out of the 132 submis-
sions for regular presentations at the symposium. Each presentation was accompanied
by a paper of up to 14 pages in this volume. Every submission was read and evaluated
by at least three members of the Program Committee (PC). The PC was assisted by 148
external reviewers. Following a 10-day discussion period, the PC held a physical
meeting in Paris, France, on July 4, 2016, with some of the PC members participating
by conference call. Revised and expanded versions of several selected papers will be
considered for publication in a special issue of the journal Distributed Computing. Four
of the regular submissions that were rejected, but generated substantial interest among
the members of the PC, were invited to be published as brief announcements. In total,
10 brief announcements were accepted for a short presentation and accompanied by a
3-page publication presented in the back-matter pages of this volume. Each brief
announcement summarizes ongoing work or recent results, and it can be expected that
these results will appear as full papers in later conferences or journals.

The Best Paper Award for DISC 2016 was presented to Dan Hefetz, Fabian Khun,
Yannic Maus, and Angelika Steger for their paper “A Polynomial Lower Bound for
Distributed Graph Coloring in a Weak LOCAL Model”. This year three papers have
been nominated for the Best Student Paper Award. It will be awarded after a vote on
the student talk at the conference during a special session. The nominated students are

Amir Abboud and Seri Khoury for their paper “Near-Linear Lower Bounds for Dis-
tributed Distance Computations, Even in Sparse Networks” (co-authored by Keren
Censor-Hillel), Ohad Ben-Baruch for his paper “Lower Bound on the Step Complexity
of Anonymous Binary Consensus” (co-authored by Hagit Attiya and Danny Hendler),
and Lili Su for the paper “Non-Bayesian Learning in the Presence of Byzantine
Agents” (co-authored by Nitin H. Vaidya).

The program featured three invited lectures, presented by Javier Esparza (Tech-
nische Universität München), Serge Abitboul (Inria & ENS Cachan), and Graham
Cormode (University of Warwick). An abstract of each invited lecture is included in the
front-matter pages of the proceedings. Three workshops were co-located with the DISC
symposium this year. The 5th Workshop on Advances on Distributed Graph Algo-
rithms (ADGA) chaired by Danupon Nanongkai, the 6th Research Meeting on Dis-
tributed Computing by Mobile Robots (MAC) co-chaired by Paola Flocchini and Maria
Potop-Butucaru, and the 1st Workshop on Dynamic Graph in Distributed Computing
(DGDC) co-chaired by Arnaud Casteight and Swan Dubois. The workshops AGDA
and MAC were held on September 26, and DGDC on September 30.

We wish to thank the many contributors to DISC 2016: the authors of the submitted
papers, the PC members, who performed a huge and difficult job, the three invited
speakers, the conference general chair and local organizers led by Maria Potop-Butucaru
for the great effort they put in, the logistics chair Lélia Blin, the sponsoring chair Petr
Kuznetsov, the publicity chair Swan Dubois, the web chair Stéphane Rovedakis, the
workshop organizers led by the workshop chair Colette Johnen, the Steering Committee
for its guidance led by Shlomi Dolev.

DISC 2016 acknowledges the use of the EasyChair system for handling submis-
sions, managing the review process, and producing the proceedings.

July 2016 Cyril Gavoille
David Ilcinkas

VI Preface

Organization

Program Committee

Silvia Bonomi Sapienza Università di Roma, Italy
Carole Delporte-Gallet University Paris Diderot, France
Swan Dubois UPMC Sorbonne Universités & Inria, France
Michael Elkin Ben-Gurion University of the Negev, Israel
Panagiota Fatourou FORTH ICS & University of Crete, Greece
Pascal Felber University of Neuchâtel, Switzerland
Paola Flocchini University of Ottawa, Canada
Cyril Gavoille University of Bordeaux, France
Chryssis Georgiou University of Cyprus, Cyprus
Seth Gilbert National University of Singapore, Singapore
Emmanuel Godard Université Aix-Marseille, France
Vincent Gramoli The University of Sydney, Australia
Rachid Guerraoui EPFL, Switzerland
Magnús M. Halldórsson Reykjavik University, Iceland
David Ilcinkas CNRS & University of Bordeaux, France
Matthew P. Johnson City University of New York, USA
Christoph Lenzen MPI for Informatics, Germany
Toshimitsu Masuzawa Osaka University, Japan
Mikhail Nesterenko Kent State University, USA
Paolo Penna ETH Zürich, Switzerland
Luís Rodrigues University of Lisbon, Portugal
Elad Michael Schiller Chalmers University of Technology, Sweden
Johannes Schneider ABB Corp. Research, Switzerland
Christian Sommer Apple Inc., USA
Jennifer L. Welch Texas A&M University, USA
Philipp Woelfel University of Calgary, Canada

Additional Reviewers

Adamek, Jordan
Agathangelou,

Chrysovalandis
Ahmadi, Mohamad
Akhoondian Amiri, Saeed
Anceaume, Emmanuelle
Bampas, Evangelos
Barenboim, Leonid
Baruch, Mor
Beauquier, Joffroy
Bhattacharya, Sayan
Blin, Lelia
Bramas, Quentin
Brown, Trevor
Burman, Janna
Busnel, Yann
Casteigts, Arnaud
Castéran, Pierre
Censor-Hillel, Keren
Chalopin, Jérémie
Christoforou, Evgenia
Clementi, Andrea
Crain, Tyler
Crescenzi, Pierluigi
Das, Shantanu
Denysyuk, Oksana
Dereniowski, Dariusz
Devismes, Stéphane
Di Luna, Giuseppe
Eisenstat, David
Fauconnier, Hugues
Filmus, Yuval
Foreback, Dianne
Fuegger, Matthias
Függer, Matthias
Gafni, Eli
Garnica, Ramsey
Gelashvili, Rati
Giakkoupis, George
Glacet, Christian
Golab, Wojciech
Hamza, Jad

Holzer, Stephan
Hood, Kendric
Huang, Jeff
Izumi, Taisuke
Jurdzinski, Tomasz
Kakugawa, Hirotsugu
Kanellou, Eleni
Kerber, Michael
Konrad, Christian
Korhonen, Janne H.
Kranakis, Evangelos
Krinninger, Sebastian
Kropf, Peter
Kuns, Kassidy
Kutten, Shay
Kuznetsov, Petr
Labourel, Arnaud
Lamani, Anissa
Levi, Reut
Liaskos, Christos
Luccio, Fabrizio
Luchangco, Victor
Marcoullis, Ioannis
Markou, Euripides
Maurer, Alexandre
Mavronicolas, Marios
Maymounkov, Petar
Medina, Moti
Mendes, Hammurabi
Mercier, Hugues
Mery, Dominique
Millet, Laure
Monnet, Sébastien
Morrison, Adam
Mostéfaoui, Achour
Natale, Emanuele
Navarra, Alfredo
Neiman, Ofer
Nicolaou, Nicolas
Nikoletseas, Sotiris
Nisse, Nicolas
Ooshita, Fukuhito

Pandurangan, Gopal
Pasin, Marcelo
Pasquale, Francesco
Patt-Shamir, Boaz
Paz, Ami
Perdereau, Eloi
Perrot, Kévin
Persiano, Giuseppe
Petrank, Erez
Pettie, Seth
Pratikakis, Polyvios
Querzoni, Leonardo
Rabie, Mikaël
Radeva, Tsvetomira
Rajsbaum, Sergio
Robinson, James
Robinson, Peter
Rodeh, Yoav
Romano, Paolo
Ropars, Thomas
Ruppert, Eric
Santoro, Nicola
Schmid, Stefan
Shapiro, Marc
Sharma, Gokarna
Shibata, Masahiro
Stachowiak, Grzegorz
Su, Hsin-Hao
Sudo, Yuichi
Suomela, Jukka
Sutra, Pierre
Talmage, Edward
Tonoyan, Tigran
Travers, Corentin
Turau, Volker
Vasudev, Yadu
Viglietta, Giovanni
Vilaça, Xavier
Wada, Koichi
Yamauchi, Yukiko
Zemmari, Akka

VIII Organization

Sponsoring Organization

Organization IX

The 2016 Edsger W. Dijkstra Prize
in Distributed Computing

The Dijkstra Prize Committee has decided to grant the 2016 Edsger W. Dijkstra Prize
in Distributed Computing jointly to Noga Alon, László Babai, Alon Itai, and Michael
Luby, for the following two papers:

• “A Fast and Simple Randomized Parallel Algorithm for the Maximal Independent
Set Problem” by Noga Alon, László Babai, and Alon Itai, published in Journal of
Algorithms, 7(4):567–583, 1986

• “A Simple Parallel Algorithm for the Maximal Independent Set Problem” by
Michael Luby, published in the Proceedings of the 17th Annual ACM Symposium on
Theory of Computing (STOC), pp. 1–10, May 1985, and in SIAM Journal on
Computing, 15(4):1036–1053, 1986

The Prize is awarded for outstanding papers on the principles of distributed
computing, whose significance and impact on the theory and/or practice of distributed
computing have been evident for at least a decade.

In these seminal works, the authors present, simultaneously and independently, an
O(log n) time randomized distributed/parallel algorithm for the Maximal Independent
Set (MIS) problem. MIS is regarded as a crown jewel of distributed symmetry breaking
problems, and a central problem in the area of locality in distributed computing. The
nominated papers provide a fascinatingly simple, elegant, and efficient randomized
solution for this problem. While many variations exist, at their core, the algorithms are
as simple as this:

Repeat until done: each node picks an O(log n)-bit random number; strict local
minima join the MIS, and get removed from the graph along with their
neighbors.

The algorithm has played a significant role in popularizing Distributed Computing
to the broader Computer Science community. It is one of the most well-known
distributed algorithms, and perhaps the one covered most frequently in general
algorithms courses and textbooks, especially those on randomized algorithms.

The algorithm leads to O(log n) time randomized distributed/parallel algorithms for
many other basic symmetry breaking problems such as (D + 1)-coloring, Maximal
Matching, and Ruling Sets. The awarded papers were among the pioneers in
demonstrating the striking power of randomization in Distributed Computing, and have
received more than 1,000 citations. Interestingly, they were also among the first in
observing the simple yet powerful fact that one can derandomize parallel/centralized
algorithms that use only d-wise independent randomness for constant d. This fact is
used in the papers to derive deterministic parallel MIS algorithms, and it is now viewed
as one of the basic derandomization techniques.

Thanks to its simplicity, the algorithm and its variations have been in widespread
use, in various settings, from wireless networks to biological systems where symmetry

breaking is required. This algorithmic result has also given rise to a host of fundamental
and rich theoretical questions. Although to this day many of the questions remain open
and continue intriguing the researchers, the follow up work on these questions have
advanced our understanding of locality considerably.

The E.W. Prize is sponsored jointly by the ACM Symposium on Principles of
Distributed Computing (PODC) and the EATCS Symposium on Distributed Comput-
ing (DISC). The prize is presented annually, with the presentation taking place
alternately at PODC and DISC. This year it will be presented at PODC to be held at
Chicago, IL, USA, July 25–29, 2016.

The 2016 Dijkstra Prize Committee:

Shlomi Dolev Ben-Gurion University of the Negev
Pierre Fraigniaud CNRS and University Paris Diderot
Cyril Gavoille University of Bordeaux (Chair)
Dahlia Malkhi VMware Research
Andrzej Pelc Université du Québec en Outaouais
David Peleg Weizmann Institute

XII The 2016 Edsger W. Dijkstra Prize in Distributed Computing

The 2016 Doctoral Dissertation Award
in Distributed Computing

The Doctoral Dissertation Award Committee has awarded the 2016 Principles of
Distributed Computing Doctoral Dissertation Award to Dr. Hsin-Hao Su and to Dr.
Shahar Timnat:

• “Algorithms for Fundamental Problems in Computer Networks” by Dr. Hsin-Hao
Su supervised by Professor Seth Pettie at University of Michigan, Ann Arbor.

Dr. Hsin-Hao Su completed his dissertation “Algorithms for Fundamental
Problems in Computer Networks” in July 2015, under the supervision of Pro-
fessor Seth Pettie, at the University of Michigan, Ann Arbor.
Hsin-Hao’s thesis provides efficient algorithms for fundamental graph problems
that arise in networks, in both sequential and distributed settings. Among the
latter, the most prominent are his results concerning graph coloring. He showed
that numerous existential results in graph theory can be viewed as distributed
algorithms with a tiny probability of success (guaranteed by the Lovasz Local
Lemma) and that a fast distributed algorithm for the constructive LLL could be
used to amplify the success probability to nearly 1. Hsin-Hao presented a O(log
n)-time randomized algorithm for the LLL, and illustrated how it could be
applied to graph coloring problems where the existence of the coloring is not
obvious. Moser and Tardos observed that any LLL algorithm in their “resam-
pling” framework requires X(log n) time, so this result is optimal within a
natural design space. Hsin-Hao used his LLL algorithm to establish an O(log n)-
time algorithm for (4 + o(1))D/lnD-coloring triangle-free graphs. This result
more than any other exhibits the technical virtuosity of Hsin-Hao: he discovered
not only a great algorithm, but a new bound on the chromatic number of
triangle-free graphs.
Before Hsin-Hao’s work many symmetry-breaking problems appeared to have
similar complexity: (D + 1)-coloring seemed similar to the Maximal Indepen-
dent Set (MIS) problem and (2D − 1)-edge coloring seemed similar to Maximal
Matching. Hsin-Hao developed new tools for analyzing randomized coloring
algorithms in locally sparse graphs, one consequence of which is that (2D − 1)-
edge coloring is provably easier than maximal matching.

• “Practical Parallel Data Structures” by Dr. Shahar Timnat supervised by Professor
Erez Petrank at Technion.

Dr. Shahar Timnat completed his dissertation “Practical Parallel Data Structures”
in July 2015 under the supervision of Professor Erez Petrank at Technion.
Shahar’s dissertation provides an outstanding advance in our understanding
of concurrent algorithms, including novel efficient practical algorithms and
a theoretical study of their fundamental properties. The literature on
highly-concurrent data structures focuses on lock-freedom, which guarantees

that some thread will eventually make progress, and wait-freedom, which
guarantees that all threads will eventually make progress in spite of failures and
delays of other threads. It was believed that the overhead and complexity
required to achieve wait-freedom is too high for practical systems. Shahar’s
thesis changes this traditional belief by showing that lock-free algorithms can be
made wait-free automatically and with a small performance penalty. His con-
struction is realistic and practical.
Shahar provides a practical wait-free iterator, an original construct that no one
knew how to do before. Another contribution is a novel and helpful analysis
of the common “helping” pattern that is typically used for constructing wait-free
algorithms. This analysis shows that there exist circumstances where some form
of helping is required. Like many lower bounds, this has practical impact
because it spares data structure designers from wasting their time trying on other
approaches. Finally, the thesis proposes a simple transactional interface that is
well-adapted both to architectures that provide hardware support for transac-
tions, and to those that do not, yielding a way to design data structures that easily
can be ported from one platform to another.

The 2016 Doctoral Dissertation Award Committee:

Yoram Moses Technion
Andrzej Pelc Université du Québec en Outaouais (Chair)
Paul Spirakis University of Liverpool

XIV The 2016 Doctoral Dissertation Award in Distributed Computing

Invited Lectures

Verification of Population Protocols

Javier Esparza

Technische Universität München

Abstract. Population protocols (Angluin et al., PODC 2004) are a formal model
of sensor networks consisting of identical mobile devices. When two devices
come into the range of each other, they interact and change their states. Com-
putations are infinite sequences of pairwise interactions where the interacting
processes are picked by a fair scheduler. A population protocol is well specified
if for every initial configuration C of devices and for every fair computation
starting at C, all devices eventually agree on a consensus value that only
depends on C. If a protocol is well-specified, then it is said to compute
the predicate that assigns to each initial configuration its consensus value. The
main two verification problems for population protocols are: Is a given protocol
well-specified? Does a given protocol compute a given predicate?

While the class of predicates computable by population protocols was
already established in 2007 (Angluin et al., Distributed Computing), the
decidability of the verification problems remained open until 2015, when my
colleagues and I finally managed to prove it (Esparza et al., CONCUR 2015,
improved version to appear in Acta Informatica). In the talk I report on our
results and discuss some new developments.

Personal Information Management Systems
and Knowledge Integration

David Montoya1, Thomas Pellissier Tanon2, and Serge Abiteboul3

1 Engie Ineo & ENS Cachan & Inria
2 ENS Lyon

3 INRIA & ENS Cachan

Abstract. Personal data is constantly collected, either voluntarily by users in
emails, social media interactions, multimedia objects, calendar items, contacts,
etc., or passively by various applications such as GPS of mobile devices,
transactions, quantified self sensors, etc. The processing of personal data is
complicated by the fact that such data is typically stored in silos with different
terminologies/ontologies, formats and access protocoles. Users are more and
more loosing control over their data; they are sometimes not even aware of the
data collected about them and how it is used.

We discuss the new concept of Personal Information Management Systems
(PIMS for short) that allows each user to be in a position to manage his/her
personal information. Some applications are run directly by the PIMS, so are
under direct control of the user. Others are in separate systems, that are willing
to share with the PIMS the data they collect about that particular user. In that
later case, the PIMS is a system for distributed data management. We argue that
the time has come for PIMS even though the approach requires a sharp turn
from previous models based on the monetisation of personal data. We consider
research issues raised by PIMS, either new or that acquire a new avor in a PIMS
context.

We also present works on the integration of users data from different
sources (such as email messages, calendar, contacts, and location history) into a
PIMS. The PIMS we consider is a Knowledge Base System based on Semantic
Web standards, notably RDF and schema.org. Some of the knowledge is
episodical (typically related to spatio-temporal events) and some is semantic
(knowledge that holds irrelative to any such event). Of particular interest is the
cross enrichment of these two kinds of knowledge based on the alignment of
concepts, e.g., enrichment between a calendar and a geographical map using the
location history. The goal is to enable users via the PIMS to query and perform
analytics over their personal information within and across different dimensions.

Matching and Covering in Streaming Graphs

Graham Cormode

Department of Computer Science, University of Warwick, UK

Abstract. Problems related to (maximum) matchings and vertex covering in
graph have a long history in Combinatorics and Computer Science. They arise in
many contexts, from choosing which advertisements to display to online users,
to characterizing properties of chemical compounds. Stable matchings have a
suite of applications, from assigning students to universities, to arranging organ
donations. These have been addressed in a variety of different computation
models, from the traditional RAM model, to more recent sublinear (property
testing) and external memory (MapReduce) models. Matching has also been
studied for a number of classes of input graph: including general graphs,
bipartite graphs, weighted graphs, and those with some sparsity structure.

We focus on the streaming case, where each edge is seen once only, and we
are restricted to space sublinear in the size of the graph (ie., no. of its vertices).
In this case, the objective is to find (approximately) the size of the matching.
Even here, results for general graphs are either weak or make assumptions about
the input or the stream order. In this talk, we describe work which seeks to
improve the guarantees in various ways. First, we consider the case when we are
given a promise on the size of the solution: the matching is of size at most k, say.
This puts us in the realm of parameterized algorithms and kernelization, but with
a streaming twist. We show that algorithms to find a maximal matching can have
space which grows quadratically with k. Second, we consider restricting to
graphs that have some measure of sparsity – bounded arboricity, or bounded
degree. This aligns with reality, where most massive graphs have asymptotically
fewer than O(n2) edges. In this case, we show algorithms whose space cost is
polylogarithmic in the size of the input, multiplied by a constant that depends on
the level of sparsity, in order to estimate the size of the maximum matching. The
techniques used rely on ideas of sampling and sketching, developed to handle
data which arrives as a stream of observations, coupled with analysis of the
resulting randomized algorithms.

G. Cormode—Supported in part by European Research Council grant ERC-2014-CoG 647557
the Yahoo Faculty Research and Engagement Program and a Royal Society Wolfson Research Merit
Award.

Contents

Fast Two-Robot Disk Evacuation with Wireless Communication. 1
Ioannis Lamprou, Russell Martin, and Sven Schewe

Deterministic Leader Election in OðDþ log nÞ Time with Messages
of Size O(1) . 16

Arnaud Casteigts, Yves Métivier, John Michael Robson,
and Akka Zemmari

Near-Linear Lower Bounds for Distributed Distance Computations,
Even in Sparse Networks . 29

Amir Abboud, Keren Censor-Hillel, and Seri Khoury

Fast Distributed Algorithms for Testing Graph Properties 43
Keren Censor-Hillel, Eldar Fischer, Gregory Schwartzman,
and Yadu Vasudev

Further Algebraic Algorithms in the Congested Clique Model
and Applications to Graph-Theoretic Problems . 57

François Le Gall

Towards a Universal Approach for Monotonic Searchability
in Self-stabilizing Overlay Networks . 71

Christian Scheideler, Alexander Setzer, and Thim Strothmann

Asynchronous Embedded Pattern Formation Without Orientation 85
Serafino Cicerone, Gabriele Di Stefano, and Alfredo Navarra

Polynomial Lower Bound for Distributed Graph Coloring in a Weak
LOCAL Model . 99

Dan Hefetz, Fabian Kuhn, Yannic Maus, and Angelika Steger

Optimal Consistent Network Updates in Polynomial Time 114
Pavol Černý, Nate Foster, Nilesh Jagnik, and Jedidiah McClurg

Distributed Construction of Purely Additive Spanners 129
Keren Censor-Hillel, Telikepalli Kavitha, Ami Paz, and Amir Yehudayoff

Optimal Fair Computation . 143
Rachid Guerraoui and Jingjing Wang

Near-Optimal Low-Congestion Shortcuts on Bounded Parameter Graphs 158
Bernhard Haeupler, Taisuke Izumi, and Goran Zuzic

http://dx.doi.org/10.1007/978-3-662-53426-7_1
http://dx.doi.org/10.1007/978-3-662-53426-7_2
http://dx.doi.org/10.1007/978-3-662-53426-7_2
http://dx.doi.org/10.1007/978-3-662-53426-7_2
http://dx.doi.org/10.1007/978-3-662-53426-7_3
http://dx.doi.org/10.1007/978-3-662-53426-7_3
http://dx.doi.org/10.1007/978-3-662-53426-7_4
http://dx.doi.org/10.1007/978-3-662-53426-7_5
http://dx.doi.org/10.1007/978-3-662-53426-7_5
http://dx.doi.org/10.1007/978-3-662-53426-7_6
http://dx.doi.org/10.1007/978-3-662-53426-7_6
http://dx.doi.org/10.1007/978-3-662-53426-7_7
http://dx.doi.org/10.1007/978-3-662-53426-7_8
http://dx.doi.org/10.1007/978-3-662-53426-7_8
http://dx.doi.org/10.1007/978-3-662-53426-7_9
http://dx.doi.org/10.1007/978-3-662-53426-7_10
http://dx.doi.org/10.1007/978-3-662-53426-7_11
http://dx.doi.org/10.1007/978-3-662-53426-7_12

Anonymity-Preserving Failure Detectors . 173
Zohir Bouzid and Corentin Travers

Certified Universal Gathering in R
2 for Oblivious Mobile Robots 187

Pierre Courtieu, Lionel Rieg, Sébastien Tixeuil, and Xavier Urbain

Non-local Probes Do Not Help with Many Graph Problems 201
Mika Göös, Juho Hirvonen, Reut Levi, Moti Medina, and Jukka Suomela

Are Byzantine Failures Really Different from Crash Failures?. 215
Damien Imbs, Michel Raynal, and Julien Stainer

Sublinear-Space Distance Labeling Using Hubs . 230
Paweł Gawrychowski, Adrian Kosowski, and Przemysław Uznański

Online Balanced Repartitioning. 243
Chen Avin, Andreas Loukas, Maciej Pacut, and Stefan Schmid

Lower Bound on the Step Complexity of Anonymous Binary Consensus 257
Hagit Attiya, Ohad Ben-Baruch, and Danny Hendler

Opacity vs TMS2: Expectations and Reality . 269
Sandeep Hans, Ahmed Hassan, Roberto Palmieri, Sebastiano Peluso,
and Binoy Ravindran

On Composition and Implementation of Sequential Consistency 284
Matthieu Perrin, Matoula Petrolia, Achour Mostéfaoui, and Claude Jard

k-Abortable Objects: Progress Under High Contention 298
Naama Ben-David, David Yu Cheng Chan, Vassos Hadzilacos,
and Sam Toueg

Linearizability of Persistent Memory Objects Under a Full-System-Crash
Failure Model . 313

Joseph Izraelevitz, Hammurabi Mendes, and Michael L. Scott

Buffer Size for Routing Limited-Rate Adversarial Traffic 328
Avery Miller and Boaz Patt-Shamir

Distributed Testing of Excluded Subgraphs . 342
Pierre Fraigniaud, Ivan Rapaport, Ville Salo, and Ioan Todinca

How to Discreetly Spread a Rumor in a Crowd . 357
Mohsen Ghaffari and Calvin Newport

Depth of a Random Binary Search Tree with Concurrent Insertions. 371
James Aspnes and Eric Ruppert

XXII Contents

http://dx.doi.org/10.1007/978-3-662-53426-7_13
http://dx.doi.org/10.1007/978-3-662-53426-7_14
http://dx.doi.org/10.1007/978-3-662-53426-7_14
http://dx.doi.org/10.1007/978-3-662-53426-7_15
http://dx.doi.org/10.1007/978-3-662-53426-7_16
http://dx.doi.org/10.1007/978-3-662-53426-7_17
http://dx.doi.org/10.1007/978-3-662-53426-7_18
http://dx.doi.org/10.1007/978-3-662-53426-7_19
http://dx.doi.org/10.1007/978-3-662-53426-7_20
http://dx.doi.org/10.1007/978-3-662-53426-7_21
http://dx.doi.org/10.1007/978-3-662-53426-7_22
http://dx.doi.org/10.1007/978-3-662-53426-7_23
http://dx.doi.org/10.1007/978-3-662-53426-7_23
http://dx.doi.org/10.1007/978-3-662-53426-7_24
http://dx.doi.org/10.1007/978-3-662-53426-7_25
http://dx.doi.org/10.1007/978-3-662-53426-7_26
http://dx.doi.org/10.1007/978-3-662-53426-7_27

Priority Mutual Exclusion: Specification and Algorithm 385
Chien-Chung Huang and Prasad Jayanti

Information Spreading in Dynamic Networks Under Oblivious Adversaries 399
John Augustine, Chen Avin, Mehraneh Liaee, Gopal Pandurangan,
and Rajmohan Rajaraman

Non-Bayesian Learning in the Presence of Byzantine Agents 414
Lili Su and Nitin H. Vaidya

Asynchronous Computability Theorems for t-Resilient Systems 428
Vikram Saraph, Maurice Herlihy, and Eli Gafni

Upper Bounds for Boundless Tagging with Bounded Objects 442
Zahra Aghazadeh and Philipp Woelfel

Brief Announcements

Brief Announcement: Local Distributed Verification 461
Alkida Balliu, Gianlorenzo D’Angelo, Pierre Fraigniaud,
and Dennis Olivetti

Brief Announcement: A Step Optimal Implementation of Large
Single-Writer Registers . 465

Tian Ze Chen and Yuanhao Wei

Brief Announcement: Deterministic MST Sparsification
in the Congested Clique. 468

Janne H. Korhonen

Brief Announcement: Symmetricity in 3D-space — Characterizing
Formable Patterns by Synchronous Mobile Robots 471

Yukiko Yamauchi, Taichi Uehara, and Masafumi Yamashita

Brief Announcement: Mending the Big-Data Missing Information. 474
Hadassa Daltrophe, Shlomi Dolev, and Zvi Lotker

Brief Announcement: Set-Consensus Collections are Decidable. 477
Carole Delporte-Gallet, Hugues Fauconnier, Eli Gafni,
and Petr Kuznetsov

Brief Announcement: A Log*-Time Local MDS Approximation
Scheme for Bounded Genus Graphs . 480

Saeed Akhoondian Amiri and Stefan Schmid

Brief Announcement: On the Space Complexity of Conflict
Detector Objects . 484

Claire Capdevielle, Colette Johnen, and Alessia Milani

Contents XXIII

http://dx.doi.org/10.1007/978-3-662-53426-7_28
http://dx.doi.org/10.1007/978-3-662-53426-7_29
http://dx.doi.org/10.1007/978-3-662-53426-7_30
http://dx.doi.org/10.1007/978-3-662-53426-7_31
http://dx.doi.org/10.1007/978-3-662-53426-7_32
http://dx.doi.org/10.1007/978-3-662-53426-7
http://dx.doi.org/10.1007/978-3-662-53426-7
http://dx.doi.org/10.1007/978-3-662-53426-7
http://dx.doi.org/10.1007/978-3-662-53426-7
http://dx.doi.org/10.1007/978-3-662-53426-7
http://dx.doi.org/10.1007/978-3-662-53426-7
http://dx.doi.org/10.1007/978-3-662-53426-7
http://dx.doi.org/10.1007/978-3-662-53426-7
http://dx.doi.org/10.1007/978-3-662-53426-7
http://dx.doi.org/10.1007/978-3-662-53426-7
http://dx.doi.org/10.1007/978-3-662-53426-7
http://dx.doi.org/10.1007/978-3-662-53426-7
http://dx.doi.org/10.1007/978-3-662-53426-7

Brief Announcement: Public Vs. Private Randomness in Simultaneous
Multi-party Communication Complexity. 487

Orr Fischer, Rotem Oshman, and Uri Zwick

Brief Announcement: Beeping a Maximal Independent Set Fast 490
Stephan Holzer and Nancy Lynch

Author Index . 495

XXIV Contents

http://dx.doi.org/10.1007/978-3-662-53426-7
http://dx.doi.org/10.1007/978-3-662-53426-7
http://dx.doi.org/10.1007/978-3-662-53426-7

Fast Two-Robot Disk Evacuation
with Wireless Communication

Ioannis Lamprou(B), Russell Martin, and Sven Schewe

Department of Computer Science, University of Liverpool, Liverpool, UK
{Ioannis.Lamprou,Russell.Martin,Sven.Schewe}@liverpool.ac.uk

Abstract. In the fast evacuation problem, we study the path planning
problem for two robots who want to minimize the worst-case evacuation
time on the unit disk. The robots are initially placed at the center of
the disk. In order to evacuate, they need to reach an unknown point, the
exit, on the boundary of the disk. Once one of the robots finds the exit,
it will instantaneously (using wireless communication) notify the other
agent, who will make a beeline to it.

The problem has been studied for robots with the same speed [8]. We
study a more general case where one robot has speed 1 and the other has
speed s ≥ 1. We provide optimal evacuation strategies in the case that
s ≥ c2.75 ≈ 2.75 by showing matching upper and lower bounds on the
worst-case evacuation time. For 1 ≤ s < c2.75, we show (non-matching)
upper and lower bounds on the evacuation time with a ratio less than
1.22. Moreover, we demonstrate that a different-speeds generalization of
the two-robot search strategy from [8] is outperformed by our proposed
strategies for any s ≥ c1.71 ≈ 1.71.

Keywords: Evacuation · Different speeds · Disk · Wireless · Fast robots

1 Introduction

Consider a pair of mobile robots in an environment represented by a circular
disk of unit radius. The goal of the robots is to find an exit, i.e. a point at an
unknown location on the boundary of the disk, and both move to this exit. The
exit is only recognized when a robot visits it. The robots’ aim is to accomplish
this task as quickly as possible. This problem is referred to as the evacuation
problem. The robots start at the center of the disk and can move with a speed not
exceeding their maximum velocity (which may be different from one another).
They can coordinate their actions in any manner they like, and can communicate
wirelessly (instantaneously).

1.1 Related Work

Evacuation belongs to the realm of distributed search problems, which have a
long history in mathematics, computer science, and operations research, see,
e.g. [3].
c© Springer-Verlag Berlin Heidelberg 2016
C. Gavoille and D. Ilcinkas (Eds.): DISC 2016, LNCS 9888, pp. 1–15, 2016.
DOI: 10.1007/978-3-662-53426-7 1

2 I. Lamprou et al.

Salient features in search problems include the environment (e.g. a geomet-
ric one or graph-based), mobility of the robots (how they are allowed to move),
perception of and interaction with the environment, and their computational
and communication abilities. Typical tasks include exploring and mapping an
unknown environment, finding a (mobile or immobile) target (e.g. cops and rob-
bers games [4] and pursuit-evasion games [17]; the “lost at sea” problem [12];
the cow-path problem and plane-searching problem [2,5,14,15]), rendezvous or
gathering of mobile agents [16], and evacuation [7,8,10]. (Note that we distin-
guish between the distributed version of evacuation problems involving a search
for an unknown exit, and centralized versions, typically modeled as (dynamic)
capacitated flow problems on graphs, where the exit is known.) A general sur-
vey of search and rendezvous problems can be found in [1]. Also related is the
task of patrolling or monitoring, i.e. the periodic (re)visitation of (part of) the
environment [6,9,18].

In most of these settings, the typical cost is the time required to finish the
task (in a synchronous environment), or the total distance moved by the robots
to finish it (in an asynchronous setting). (Patrolling has a different “cost”, the
time between consecutive visits to any point in the region, the so-called “idle
time”.)

A little explored feature of the robots is their speed. Most past work has
focused on the case where all robots share the same (maximal) speed. Notable
exceptions of which the authors are aware include [7], which considers the evacu-
ation problem on the infinite line with robots with distinct maximal speeds, [9],
which introduces a non-intuitive ring patrolling strategy using three robots with
distinct maximal speeds, and [11,13], where the rendezvous problem with differ-
ent speeds in a cycle is studied. It is this feature, robots with different maximal
speeds, that we explore in this paper.

The most relevant previous work is [8,10], which explores the evacuation
problem in the unit disk with two robots with identical speeds (s = 1).

1.2 Our Results

We consider the evacuation problem in the unit disk using two robots with dis-
tinct maximal speeds (one with speed 1, the second with speed s ≥ 1). The robots
share a common clock and can communicate instantaneously when they have
found the exit (wireless communication) and so can synchronize their behavior
in the evacuation procedure. We assume that the robots can measure distances
to an arbitrary precision (equivalently, they can measure time to an arbitrary
precision), and can vary their speeds as they desire, up to their maximum speed.

We show that, even in the case of two robots, the analysis involved in finding
(time) optimal evacuation strategies can become intricate, with strategies that
depend on the ratio of the fast robot’s to the slow robot’s maximal speed.

For large s, we introduce an efficient and non-obvious search strategy, called
the Half-Chord Strategy (Fig. 1). We generalize a strategy from [8] for small s,
the “Both-to-the-Same-Point Strategy” (BSP), where the two robots move to
the same point on the boundary and then separately explore the boundary in

Fast Two-Robot Disk Evacuation with Wireless Communication 3

clockwise and counterclockwise directions to find the exit. For values of s ≥ c1.86

(with c1.86 ≈ 1.856), we show that BSP is not optimal by demonstrating that
the Half-Chord Strategy is superior to it. Moreover, we improve on this with the
Fast-Chord Strategy (Fig. 4), which outperforms Half-Chord for 1.71 ≈ c1.71 <
s < c2.07 ≈ 2.07. We obtain optimality for all s ≥ c2.75 ≈ 2.75, in the wireless
setting, as we demonstrate matching upper and lower bounds on the evacuation
time. For s ∈ (1, c2.75), we provide lower bounds on the evacuation time that
do not match the bounds provided by the respective search strategies (BSP for
s < c1.71, Fast-Chord for s ∈ [c1.71, c2.07), and Half-Chord for s ≥ c2.07). The
worst ratio between our upper and lower bound, 1.22, is realized for s = c1.71.

Section 2 contains a more formal definition of the problem we consider.
Section 3 contains our upper bounds on the evacuation time, while Sect. 4 has
our lower bounds. In the interests of space, parts of the proofs are omitted from
this version, and we trust the reader to rely upon the supplied diagrams for the
intuition of our results.

2 Problem Definition and Strategy Space

In this section, we formally define the problem in question. Furthermore, we
provide a partition of the strategy space and some observations, which will be
useful in the bounds to follow.

Definition 1 (The Fast Evacuation Problem). Given a unit disk and two
robots starting at its center (the former with maximum speed s ≥ 1 and the
latter with maximum speed 1), provide an algorithm such that both robots reach
an unknown exit lying on a boundary point of the disk. The two robots, called
Fast and Slow, are allowed to move within the entire unit disk, can only identify
the exit when they stand on it, and can communicate wirelessly at any time.

Definition 2. An “evacuation strategy” is an algorithm on how each robot
moves such that both robots have evacuated the disk at the end of its execution.

The following remark is a direct consequence of the geometric environment
in which this fast evacuation scenario takes place.

Remark 1. In any evacuation strategy, when either robot discovers the exit, the
optimal strategy of the other one immediately reduces to following a beeline to
the exit.

We now proceed with identifying key aspects of potential strategies.

Definition 3. A “both-explore” strategy is a strategy for both robots to evacuate
the disk, where (in the worst-case) both of them explore at least two distinct points
on the boundary. We define the set of all both-explore strategies as BES.

Definition 4. A “fast-explores” strategy is a strategy where only Fast explores
the boundary searching for the exit. Slow, eventually, only reaches the exit point
and at any time it reaches no other point on the boundary of the disk. We define
the set of all fast-explores strategies as FES.

4 I. Lamprou et al.

Definition 5. A “slow-explores” strategy is a strategy where only Slow explores
the boundary searching for the exit. Fast, eventually, only reaches the exit point
and at any time it reaches no other point on the boundary of the disk. We define
the set of all slow-explores strategies as SES.

Notice that, for s = 1, if only one robot explores the boundary, we randomly
assign such a strategy to FES or SES. Below, let ALL stand for the set of all
evacuating strategies.

Proposition 1. (BES,FES, SES) forms a partition of ALL.

We remark that, when considering SES and FES strategies, it can become
a burden to forcefully keep the non-exploring robot away from the boundary.
E.g., if we only want Slow to explore in an SES strategy, the optimal behavior
of Fast would be to mimic the behavior of Slow. For FES strategies with s ≤ 2,
it also proves to be most natural to allow Slow to move on the boundary, but to
ignore it when Slow finds the exit first. For this reason we use FES and SES
strategies in this sense. Alternatively, one could also let the non-exploring robot
to move ε-close to the boundary.

We do not consider SES strategies in our analysis. An optimal SES strategy
is obviously to go to the boundary and explore the boundary (counter)clockwise.
The worst case time is 1 + 2π.

3 Upper Bounds

3.1 The Half-Chord Strategy

The idea for this strategy stems from the proof of the FES lower bound to
follow. The worst-case analysis is performed for s ∈ [2,∞). For the strategy
details below, please refer to Fig. 1. The center of the disk is denoted by O.
Fast’s trajectory is given with double arrows, while Slow’s is given with single
arrows. All angles and arcs are considered in counterclockwise order.

The Strategy. Initially, both robots move in beelines with an angle of π + 1/2
between them until Fast reaches the boundary (i.e. for 1

s time). Let B be the
first boundary point reached by Fast. From now on, Fast’s strategy reduces to
exploring the boundary. On the other hand, Slow continues on its beeline for
another 1

s time until it reaches point C (where |OC| = 2
s). Then, it takes an arc

from C to M on the disk with radius 2
s centered at O (where M is the middle

point of chord BA, where A is the point with arc distance 2 arccos
(− 2

s

)
from B).

Finally, Slow traverses MB. Below, we provide a more structured and formal
strategy definition.

Fast moves as follows until the exit is found:

– for t ∈ [
0, 1

s

]
: moves toward B and

– for t ∈ (
1
s , 1+2π

s

]
: traverses the boundary counterclockwise.

Fast Two-Robot Disk Evacuation with Wireless Communication 5

Slow moves as follows until the exit is found:

– Phase I: for t ∈ [
0, 2

s

]
moves toward C,

– Phase II: for t ∈
[
2
s , 1+2 arccos(−2/s)

s

]
moves toward M via CM on disk

(
O, 2

s

)
,

– Phase III: for t ∈
[
1+2 arccos(−2/s)

s , 1+2π
s

]
moves toward B via the MB

segment.

In Table 1, we shortly outline some core measurements on the emerging shape,
e.g. angles and lengths, which will be useful in the proofs that follow. We now
continue with some useful propositions.

Table 1. Measurements for Half-Chord Strategy

|OC| = 2
s

by choice

BA = 2 arccos
(− 2

s

)
by choice

φ = �BOC = π + 1/2 by choice

|CM| = 1
s
(2 arccos

(− 2
s

)− 1) slow on M exactly when fast on A

θ = �COM = s
2
|CM| = arccos

(− 2
s

)− 1/2 arc-to-angle

ψ = �MOB = 2π − φ − θ = π − arccos
(− 2

s

)
sum of angles around O

|AB| = 2 sin
(
2 arccos

(− 2
s

)
/2
)

= 2
√

1 − 4
s2

arc-to-chord computation

|AM | = |MB| = |AB|/2 =
√

1 − 4
s2

since M is the middle of the chord

�OMB = π/2 perpendicular bisector through center

Proposition 2. Fast reaches A exactly when Slow reaches M .

Proposition 3. Fast explores the whole boundary before Slow reaches B.

•

•

•
•

•O

C
B

A

M

Fig. 1. The Half-Chord
Strategy (case s = 4)

The aforementioned proposition, together with
the fact that it takes 1+2π

s time for Fast to explore
the whole boundary, provides us with the endtime
for Phase III and the strategy in general.

The main result of this section follows from the
combination of the upper bounds proved for Phases
I, II, and III.

Theorem 1. For any s ≥ 2, the worst-case evac-
uation time of the Half-Chord strategy is at most
1+2 arccos(− 2

s)
s +

√
1 − 4

s2 .

6 I. Lamprou et al.

Phase I

Lemma 1. The Half-Chord evacuation strategy takes at most

(1 + 2 arccos(−2/s))
s

+

√

1 − 4
s2

evacuation time, if the exit is found during Phase I.

Proof. We need only care about the time t ∈ [1/s, 2/s], since for less time Slow
has not yet reached the boundary. Imagine that the exit is discovered after
(1+a)/s time (for a ∈ [0, 1]). For a visualization, the reader can refer to Fig. 2a.
Slow has covered (1+a)/s distance on the OC segment, while Fast has explored
an a part of BA. Slow now takes a segment from its current position (namely
D) to the exit E. To compute |DE| we use the law of cosines in �DOE. Let
ω = �DOE. In case a ≤ 1

2 , ω ≤ π, and more accurately ω = a + ψ + θ =
π + a − 1

2 . In case a > 1
2 , ω > π, and more accurately ω = 2π − a − ψ − θ. Since

cos(2π − x) = cos(x), we can consider the two cases together. We compute,

|DE| =
√|OE|2 + |OD|2 − 2|OE||OD| cos(ω) = sqrt1 + (1+a)2

s2 + 21+a
s cos(1/2 − a)

Overall, the worst-case evacuation time is given by

max
a∈[0,1]

{
1 + a

s
+

√

1 +
(1 + a)2

s2
+ 2

1 + a

s
cos(1/2 − a)

}

.

To conclude the proof, it suffices to observe that 2
s +

√
1 + 22

s2 + 22
s is an

upper bound to the above quantity, since a ≤ 1 and cos(·) ≤ 1. Finally,
2
s +

√
1 + 22

s2 + 22
s ≤ 1+2 arccos(− 2

s)
s +

√
1 − 4

s2 for any s ≥ 2. �	

Phase II

Lemma 2. The Half-Chord evacuation strategy takes at most
1+2 arccos(− 2

s)
s +√

1 − 4
s2 evacuation time, if the exit is found during Phase II.

Proof. We prove that the worst-case placement for the exit is point A. Suppose
the exit E is found at the time when Slow lies on point S and has not yet covered
a τ part of CM. The corresponding central angle is sτ

2 , since CM is an arc on
(O, 2

s). At the same time, Fast has not yet explored an sτ part of BA with a
corresponding central angle of size sτ . Then, Slow can move backwards on the
boundary of (O, 2

s) for another τ distance to point D. Now, the central angle
from D to M is sτ

2 + sτ
2 = sτ and matches the central angle between E and A.

Thence, due to shifting by the same central angle, we get �EOD = �EOA +
�AOD = �DOM + �AOD = �AOM . Moreover, since |OD| = |OM | = 2

s and
|OE| = |OA| = 1, triangles �EOD and �AOM are congruent meaning that

Fast Two-Robot Disk Evacuation with Wireless Communication 7

Fig. 2. Exit during Phases I &II (Examples for s = 4)

|ED| = |AB|. To sum up, if the exit is discovered τ time before Slow reaches

M , it takes at most another τ +
√

1 − 4
s2 time for it to reach it. At the same

time, it would take τ +
√

1 − 4
s2 for it to reach A. Hence, exiting through A is

the worst-case scenario and yields a total time of
1+2 arccos(− 2

s)
s +

√
1 − 4

s2 . �	

Phase III

Lemma 3. The Half-Chord evacuation strategy takes at most
1+2 arccos(− 2

s)
s +√

1 − 4
s2 evacuation time, if the exit is found during Phase III.

Proof. Since
1+2 arccos(− 2

s)
s time has already passed at the beginning of Phase

III, it suffices to show that at most
√

1 − 4
s2 time goes by when the exit is

discovered within AB.
Suppose that the exit is discovered τ time units after the beginning of Phase

III. Then, Slow lies at C (Fig. 3), τ distance away from M on the MB segment.
On the other hand, Fast lies on E, an sτ distance away from A on AB.

Consider a disk with center C and radius r =
√

1 − 4
s2 − τ . One can notice

that (C, r) intersects (O, 1) at two points: one of them is B and the other one is
D, where D is included in AB, since |AC| ≥ r for any choice of τ ≥ 0. Moreover,
we draw the chord DB and its middle point, say M ′. Now, notice that OM ′ is
perpendicular to DB, since DB is a chord of (O, 1) and also that OM ′ passes
through C, since DB is also a chord of (C, r). To conclude, we exhibit that E is
included in DB. Equivalently, that |AE| ≥ |AD|. We look into two cases.

8 I. Lamprou et al.

First, that �AOD ≤ �AOM . In this case, we compute �AOD = �AOM −
�DOM = �MOB − �DOM = �MOM ′ + �M ′OB − �DOM = �MOM ′ +
�DOM ′ − �DOM = 2 · �MOM ′, since �AOM = �MOB and �M ′OB =
�DOM ′ from the fact that OM (OM ′) bisects AB (DB). Moreover, �DOM ′ −
�DOM = �MOM ′. We compute �MOM ′ = arctan(sτ/2) by the right triangle
�MOC. Finally, �AOD = 2arctan(sτ/2) ≤ sτ = �AOE, since arctan(x) ≤ x
for x ≥ 0.

For the second case, �AOD > �AOM . Then, �AOD = �AOM +�MOD =
�MOB + �MOD = �MOM ′ + �M ′OB + �MOD = �MOM ′ + �DOM ′ +
�MOD = 2 ·�MOM ′, again by using the equalities deriving from bisecting the
chords. The rest of the proof follows as before. �	

Fig. 3. Exit during Phase III (when s = 4; exit E lies at the end of Fast’s arrow)

3.2 The Half-Chord Strategy for 1 ≤ S ≤ 2

We first observe that, for s = 2, the name “Half-Chord” is slightly misleading,
as the points A, B, and M coincide. The time needed for s = 2 is, as shown in
Theorem 1, 1+2π

s . Note also that the Half-Chord strategy is a BES strategy for
s = 2.

For s < 2, Slow can simply move even slower, namely with speed s
2 . Using

the same paths as for s = 2, this provides the same upper bound of 1+2π
s .

Theorem 2. For 1 ≤ s ≤ 2, the (generalized) Half-Chord strategy leads to a
1+2π

s evacuation time.

Fast Two-Robot Disk Evacuation with Wireless Communication 9

3.3 The Both-to-the-Same-Point Strategy

This BES strategy follows the same key idea presented in [8] where it is proven
to be optimal for s = 1.

The Strategy. In the Both-to-the-Same-Point Strategy (shortly BSP strategy),
initially both robots set out toward the same boundary point moving in a beeline.
Once they arrive there, they move to opposite directions along the boundary.
This goes on, until the exit has been found by either robot or the robots meet
each other on the boundary. We restrict the analysis of BSP for s ∈ [1, 2], since
for s > c1.71 this strategy becomes non-dominant.

Theorem 3. The BSP strategy requires evacuation time at most

1 + 2

√

1 − 1
(s + 1)2

+
2arccos(− 1

s+1) − s + 1
s + 1

when s ∈ [1, 2].

3.4 The Fast-Chord Strategy

In the Half-Chord strategy for s = 2, we observe that the final point reached after
Phase I, i.e. point C, lies on the disk boundary. Thence, after that, Slow explores
CB, but so does Fast (since by its strategy it explores the whole boundary). This
seems like an unnecessary double-exploring of this part of the boundary. Thus,
we propose a new strategy, where Fast reaches C as usual, but then traverses
the CB chord, instead of CB. Furthermore, we could vary the position of C,
in order for Fast to reach B (for the second time) exactly when Slow reaches
D (a point before B) and so get Fast to explore some part of the boundary in
clockwise fashion as well. In this case, Slow does not traverse the whole CB.
Let us now describe more formally this Fast-Chord family of strategies. All arcs
are considered in counterclockwise fashion unless otherwise stated. Below, let
|BA| = s − 1, x1 = |AC|, x2 = |CB|, x3 = |DB| and y = |CB|; see Fig. 4.

y

s − 1

x1

x2

x3
•

•
•
•

•

O

C

B

D

A

Fig. 4. The Fast-Chord
Family of Strategies

The Strategy. Fast moves as follows until the exit
is found:

– for t ∈ [
0, 1

s

]
moves toward B,

– Phase I: for t ∈ (
1
s , 1

]
traverses BA,

– Phase IIa: for t ∈ (
1, 1 + x1

s

]
traverses AC,

– Phase IIb: for t ∈ (
1 + x1

s , 1 + x1+x2
s

]
traverses

CB and
– Phase IIc: for t ∈

(
1 + x1+x2

s , 1 + x1+x2
s + x3

s+1

]

moves toward D (clockwise) till it meets Slow.

Slow moves as follows until the exit is found:

10 I. Lamprou et al.

– for t ∈ [0, 1] moves toward C,
– for t ∈ (1, 1 + y] traverses CD,
– for t ∈

(
1 + y, 1 + y + x3

s+1

]
traverses DB till it meets Fast.

The following system of equations describes the relationship between the
variable distances:

⎧
⎨

⎩

x1 + y + x3 + s − 1 = 2π (I)
x2 = 2 sin

(
x3+y

2

)
(II)

x1 + x2 = s · y (III)

Equation (I) suggests how the disk boundary is partitioned. Equation (II)
suggests that x2 is the chord of an arc with length x3+y. Equation (III) suggests
that Fast traverses x1 and x2 at the same time as slow traverses y. That is,
since Fast lies on A exactly when Slow lies on C, then Fast arrives at B (for
the second time) exactly when Slow arrives at D. The latter happens at time
1+y = 1+ x1+x2

s . The remaining x3 part of the boundary can be explored in time
x3

s+1 , since both robots explore it concurrently until they meet. Hence, within x3
s+1

time, they can explore a distance equal to s · x3
s+1 + x3

s+1 = (s + 1) · x3
s+1 = x3. All

variables are non-negative representing distance.
The idea behind this paradigm is to try different values for x3 and then solve

the above system to extract x1, x2 and y. Nonetheless, due to the sin(·) function
in equation (II), it is not possible to obtain a symbolic solution. Thence, we
hereby provide bounds computed numerically. For any value of s, we iterate over
all possible x3 values and then solve the above system numerically. For each x3

value and for each exploration phase, we use a small time step and compute the
worst-case evacuation time. Then, we can select the x3 value which minimizes
this worst-case time. All this numerical work is implemented in Matlab. We
iterate over x3 in the interval [0, 2π − s + 1]. The upper bound for x3 stems
from the case x1 = y = 0. Indeed, notice that, for s = 1, Fast-Chord is exactly
BSP when we set x1 = y = 0. For the time parameter, namely t, we iterate in
the interval

[
0, 1 + x1+x2

s + x3
s+1

]
. Finally, we use a parametric representation of

the disk (where the center O lies on coordinates (0, 0)) to calculate the distance
between the two robots.

By studying the numerical bounds we obtain via the Fast-Chord method, we
state the following result, in comparison to the other two strategies studied in
this paper.

Theorem 4. Fast-Chord performs better than (Generalized) Half-Chord for s ∈
(c1.71, c2.07). It also performs better than Both-to-the-Same-Point for s ≥ c1.71.

4 Lower Bounds

The main tool behind our lower bounds is the following lemma from [8].

Fast Two-Robot Disk Evacuation with Wireless Communication 11

Lemma 4 (Lemma 5 [8]). Consider a boundary of a disk whose subset of total
length u + ε > 0 has not been explored for some ε > 0 and π ≥ u > 0. Then
there exist two unexplored boundary points between which the distance along the
boundary is at least u.

4.1 Fast Explores

Lemma 5. Any FES-strategy takes at least

– 1+2π
s time for any s ∈ [1, 2] and

–
1+2 arccos(− 2

s)
s +

√
1 − 4

s2 time for any s ≥ 2.

Proof. For any s, Fast needs at least 1+2π
s time to explore the whole boundary.

We now show a better bound for s ≥ 2. At time 1+a
s (where a ≥ 0), Fast has

explored at most an a part of the boundary. Then, if we consider the time 1+a−ε
s

(where ε > 0), a 2π−(a−ε) = 2π−a+ε subset of the boundary has not yet been
explored. We bound a ∈ [π, 2π) such that 0 < 2π − a ≤ π holds. We now apply
Lemma 4 with u = 2π − a and ε. Thence, there exist two unexplored boundary
points between which the distance along the boundary is at least u. Let us now
consider the perpendicular bisector of the chord connecting these two points.
Depending on which side of the bisector Slow lies, an adversary may place the
exit on the boundary point lying at the opposite side. The best case for Slow
is to lie exactly on the point of the bisection. That is, Slow will have to cover

a distance of at least
2 sin(u

2)
2 = sin

(
a
2

)
, where 2 sin

(
u
2

)
is the chord length. In

this case, the overall evacuation time is equal to 1+a
s + sin

(
a
2

)
and for the best

lower bound we compute max
π≤a<2π

{
1+a

s + sin
(

a
2

)}
. �	

4.2 Both Explore

The following lower bound is a result of applying Lemma 4 to obtain a gener-
alization of the lower bound proved in [8]. The proof considers a timestep when
both robots have explored some part of the boundary and lie on the opposite
ends of a long chord. Then, an adversary acts according to his best interests. He
either places the exit on the end opposite Fast or in the end being farthest to
Slow; the latter leading to a chord bisection argument similar to the one used in
Lemma 5.

Lemma 6. Any BES-strategy takes at least

– 1 + 2
s

√
1 − s2

(s+1)2 +
−s+2 arccos(− s

s+1)+1

s+1 time for s ∈ [1, 2),

– 1+
√

1 − 4
(s+1)2 +

−s+2 arccos(− 2
s+1)+1

s+1 for s ∈ [2, c4.84] (where c4.84 ≈ 4.8406)
and

– 1 + sin
(

s−1
2

)
time for s ∈ (c4.84, 2π + 1).

12 I. Lamprou et al.

The above lower bound loses its value as s grows. Hence, there is a need to
capture a lower bound for the case where Slow has not explored any part of the
boundary yet. This is possible, since we can apply an FES lower bound idea
when s is big enough.

Lemma 7. Any BES-strategy takes at least

– 1 + sin
(

s−1
2

)
time for s ∈ (π + 1, c4.97), where c4.97 ≈ 4.9699, and

–
1+2 arccos(− 2

s)
s +

√
1 − 4

s2 time for s ≥ c4.97.

4.3 An Improvement for Both Explore

λ

k

•

•

•

•

•

O
B

A

M
K

Fig. 5. An Improved BES
Lower Bound

We now obtain numerical values for a stronger
BES lower bound by performing a more com-
plex analysis on the Original BES lower bound
proof given in Lemma 6. The main idea behind
the improvement is to provide a better bound for
the subcase when the adversary places the exit on
the farthest endpoint from Slow’s current position.
Apparently, the best play for Slow is to lie exactly
on the midpoint of the chord with the unexplored
endpoints. Nevertheless, in order for Slow to be
there, it needs to spend some of its time, originally
destined for exploration, within the disk interior.
We hereby examine the best possible scenario for
Slow in terms of its distance from the midpoint following the above reasoning.
Let us refer to this lower bound as Improved BES.

Lemma 8. Improved BES is greater or equal to Original BES for any s ≥ 1.

Proof. At time 1 + y, where y ≥ 0 is a variable, Fast has explored at most an
s − 1 + sy part of the boundary and Slow has explored at most a y part of
the boundary. Now suppose that Slow has spent k time, where k ∈ [0, y], not
exploring the boundary, i.e. moving within the disk interior.

Notice that it takes 1 + 2π−s+1
s+1 time for the whole perimeter to be explored,

when both robots are only exploring after timestep 1. Thence, we upper-bound
y ≤ 2π−s+1

s+1 . To lower-bound y, we restrict the unexplored part u = 2π − s +
1 − (s + 1)y + k ≤ π. That is, we get y ≥ max{π−s+1+k

s+1 , 0}. Moreover, u > 0 is
already covered by the aforementioned upper bound.

Now, we are ready to apply Lemma 4: There exist two unexplored points
(say A,B) with arc distance ≥ 2π − s + 1 − (s + 1)y + k, which implies
that the chord between them has length at least 2 sin

(
2π−s+1−(s+1)y+k

2

)
=

2 sin
(

s−1+(s+1)y−k
2

)
. An adversary could place the exit on any of the two end-

points. If Slow reaches an endpoint first (case I), then the exit is placed on the
other side, such that Slow has to traverse the chord. If Fast reaches an endpoint

Fast Two-Robot Disk Evacuation with Wireless Communication 13

first, then the exit is placed either on the other side (case II), meaning that Fast
has to traverse the chord, or on the endpoint that lies the farthest from Slow’s
current position (case III), meaning that Slow has to traverse at least half the
chord. We assume that both the robots and the adversary behave optimally.
Hence, the robots will always avoid case I.

Let us now examine more carefully what happens in case III. For a depiction
of the proof, see Fig. 5. The ideal location for Slow is to lie exactly on the chord
midpoint, say M . Nevertheless, this may not be possible due to it only spending
k time within the disk interior. Let us consider the minimum distance from the
chord midpoint to the boundary. This is exactly 1−λ, where λ = |OM | is the dis-
tance from the midpoint to the center of the disk. Notice that OM intesects AB
perpendicularly, since M is the midpoint of chord AB. Using the Pythagorean

theorem in �AMO, we get λ =
√

1 − sin2
(

s−1+(s+1)y−k
2

)
. If we consider the

case when 1−λ > k, then the ideal position for Slow is to lie k distance away from
the boundary and on the extension of OM (i.e. on point K). From there, Slow

can take a beeline to the exit, yielding a
√

sin2
(

s−1+(s+1)y−k
2

)
+ (1 − λ − k)2

distance again by the Pythagorean theorem, now in �AMK.
To conclude, Slow will try to minimize this beeline distance over k, while the

adversary will select a case between II and III that maximizes the total distance.
Overall, the optimization problem reduces to computing:

max
y∈[ymin,ymax)

⎧
⎪⎨

⎪⎩
1 + y + max

⎧
⎪⎨

⎪⎩

min
k∈[0,y]

2
s sin

(
s−1+(s+1)y−k

2

)
,

min
k∈[0,y]

√
sin2

(
s−1+(s+1)y−k

2

)
+ max {1 − λ − k, 0}2

⎫
⎪⎬

⎪⎭

⎫
⎪⎬

⎪⎭
(1)

Note that the above bound matches the original one for 1 − λ < k.
Last but not least, we need also consider the case where the adversary

chooses to place the exit on the last boundary point to be explored. In the
current setting, it takes at least u

s+1 = 2π−s+1−(s+1)y+k
s+1 extra time for both

robots to explore the rest of the boundary, since Fast explores s u
s+1 while Slow

explores u
s+1 for a total distance of u. Overall, we are looking to compute

max
y∈[ymin,ymax)

{
1 + y + 2π−s+1−(s+1)y

s+1

}
, since Slow wishes to minimize k. Due to

the inherent complexity of the optimization problem (1), we compute numerical
bounds. The computational work is done in Matlab, where we iterate over fea-
sible values of y and k. The resulting bounds show that, for all s ∈ [1, 2π + 1),
this lower bound is greater or equal to the lower bound given in Lemma 6 with
k = 0 always selected as the minimizer. �	

5 Comparison and Future Work

Regarding the lower bounds, for each value of s we select the minimum (weakest)
lower bound between the (maximum) BES and FES ones as our overall lower
bound. We see that Improved BES is strictly stronger than Original BES for

14 I. Lamprou et al.

any s ≥ c1.71 ≈ 1.71. Moreover, Improved BES is stronger than the FES lower
bound for s ≥ c2.75 ≈ 2.75.

As far as the upper bounds are concerned, we notice that Half-Chord out-
performs BSP for any s ≥ c1.86 ≈ 1.856. Besides, Fast-Chord outperforms BSP
for any s ≥ c1.71 ≈ 1.71. Finally, Fast-Chord outperforms Half-Chord for any
s ≤ c2.07 ≈ 2.072. That is, the introduction of Fast-Chord yields a better upper
bound for any s ∈ [c1.71, c2.07].

By comparing upper and lower bounds, we see that Half-Chord is optimal for
s ≥ c2.75, since the matching FES lower bound is the weakest in this interval.
On the other hand, for s < c2.75 the ratio between the bounds is at most 1.22
(maximized when s = c1.71), where the strategy changes from BSP to Fast-
Chord. The best strategy to use is BSP when s < c1.71, Fast-Chord when
c1.71 < s < c2.07 and Half-Chord for s ≥ c2.07.

Optimality for the case 1 < s < c2.75 remains open. Regarding further work,
one could consider a more-than-two-robots evacuation scenario. Moreover, the
non-wireless case for two-robots fast evacuation seems to be quite challenging
given that exact optimality is complex to obtain even for s = 1 [10].

References

1. Alpern, S., Gal, S.: The Theory of Search Games and Rendezvous. International
Series in Operations Research and Management Science, vol. 55. Kluwer Academic
Publishers, Dordrecht (2002)

2. Baeza-Yates, R.A., Culberson, J.C., Rawlins, G.J.E.: Searching in the plane.
Inform. Comput. 106, 234–252 (1993)

3. Beck, A.: On the linear search problem. Naval Res. Logist. 2, 221–228 (1964)
4. Bonato, A., Nowakowski, R.J.: The Game of Cops and Robbers on Graphs. Amer-

ican Mathematical Society, Golovach (2011)
5. Bose, P., De Carufel, J.-L., Durocher, S.: Revisiting the problem of searching on

a line. In: Bodlaender, H.L., Italiano, G.F. (eds.) ESA 2013. LNCS, vol. 8125, pp.
205–216. Springer, Heidelberg (2013)

6. Chevaleyre, Y.: Theoretical analysis of the multi-agent patrolling problem. In: IAT
2004, pp. 302–308 (2004)

7. Chrobak, M., G ↪asieniec, L., Gorry, T., Martin, R.: Group search on the line. In:
Italiano, G.F., Margaria-Steffen, T., Pokorný, J., Quisquater, J.-J., Wattenhofer, R.
(eds.) SOFSEM 2015-Testing. LNCS, vol. 8939, pp. 164–176. Springer, Heidelberg
(2015)

8. Czyzowicz, J., G ↪asieniec, L., Gorry, T., Kranakis, E., Martin, R., Pajak, D.: Evac-
uating robots via unknown exit in a disk. In: Kuhn, F. (ed.) DISC 2014. LNCS,
vol. 8784, pp. 122–136. Springer, Heidelberg (2014)

9. Czyzowicz, J., G ↪asieniec, L., Kosowski, A., Kranakis, E.: Boundary patrolling by
mobile agents with distinct maximal speeds. In: Demetrescu, C., Halldórsson, M.M.
(eds.) ESA 2011. LNCS, vol. 6942, pp. 701–712. Springer, Heidelberg (2011)

10. Czyzowicz, J., Georgiou, K., Kranakis, E., Narayanan, L., Opatrny, J.,
Vogtenhuber, B.: Evacuating robots from a disk using face-to-face communication
(Extended Abstract). In: Paschos, V.T., Widmayer, P. (eds.) CIAC 2015. LNCS,
vol. 9079, pp. 140–152. Springer, Heidelberg (2015)

Fast Two-Robot Disk Evacuation with Wireless Communication 15

11. Feinerman, O., Korman, A., Kutten, S., Rodeh, Y.: Fast rendezvous on a cycle by
agents with different speeds. In: Chatterjee, M., Cao, J., Kothapalli, K., Rajsbaum,
S. (eds.) ICDCN 2014. LNCS, vol. 8314, pp. 1–13. Springer, Heidelberg (2014)

12. Gluss, B.: An alternative solution to the “lost at sea” problem. Naval Res. Logistics
Q. 8, 117–122 (1961)

13. Huus, E., Kranakis, E.: Rendezvous of many agents with different speeds in a cycle.
In: Papavassiliou, S., Ruehrup, S. (eds.) Ad-hoc, Mobile, and Wireless Networks.
LNCS, vol. 9143, pp. 195–209. Springer, Heidelberg (2015)

14. Jeż, A., �Lopuzański, J.: On the two-dimensional cow search problem. Inf. Process.
Lett. 131, 543–547 (2009)

15. Kao, M.-Y., Reif, J.H., Tate, S.R.: Searching in an unknown environment: An
optimal randomized algorithm for the cow-path problem. Inform. Comput. 131,
63–80 (1996)

16. An, H.-C., Krizanc, D., Rajsbaum, S.: Mobile agent rendezvous: a survey. In:
Flocchini, P., G ↪asieniec, L. (eds.) SIROCCO 2006. LNCS, vol. 4056, pp. 1–9.
Springer, Heidelberg (2006)

17. Parsons, T.D.: Pursuit-evasion in a graph, in theory and applications of graphs.
In: Proceedings of the Michigan May 11–15, pp. 426–441 (1976)

18. Yanovski, V., Wagner, I.A., Bruckstein, A.M.: A distributed ant algorithm for
efficiently patrolling a network. Algorithmica 37, 165–186 (2003)

Deterministic Leader Election in O(D + logn)
Time with Messages of Size O(1)

Arnaud Casteigts(B), Yves Métivier, John Michael Robson, and Akka Zemmari

Université de Bordeaux - Bordeaux INP LaBRI, UMR CNRS 5800,
351 cours de la Libération, 33405 Talence, France
{acasteig,metivier,robson,zemmari}@labri.fr

Abstract. This paper presents a distributed algorithm, called ST T ,
for electing deterministically a leader in an arbitrary network, assuming
processors have unique identifiers of size O(log n), where n is the number
of processors. It elects a leader in O(D + log n) rounds, where D is the
diameter of the network, with messages of size O(1). Thus it has a bit
round complexity of O(D+ log n). This substantially improves upon the
best known algorithm whose bit round complexity is O(D log n). In fact,
using the lower bound by Kutten et al. [13] and a result of Dinitz and
Solomon [8], we show that the bit round complexity of ST T is optimal
(up to a constant factor), which is a step forward in understanding the
interplay between time and message optimality for the election problem.
Our algorithm requires no knowledge on the graph such as n or D.

1 Introduction

The election problem in a network consists of distinguishing a unique node, the
leader, which can subsequently act as coordinator, initiator, and more gener-
ally performs some special role in the network (see [22] p. 262). Once a leader
is established, many problems become simpler. For this reason, election algo-
rithms are often considered as building blocks for other distributed algorithms
and election, together with consensus, is probably the most studied task in dis-
tributed computing literature [7], starting with the works of Le Lann [14] and
Gallager [10] in the late 70’s.

A distributed algorithm solves the election problem if it always terminates
and in the final configuration exactly one process (or node) is in the elected
state and all others are in the non-elected state. It is also required that once
a process becomes elected or non-elected, it remains so for the rest of the exe-
cution. The vast body of literature on election (see [2,15,19,23] and references
therein) actually covers a number of different topics. They include the feasibility
of deterministic election in anonymous networks, starting with the seminal paper
of Angluin [1] and the key role of coverings; the complexity of deterministic elec-
tion in networks with identifiers; and the complexity of probabilistic election in
anonymous (or sometimes identified) networks.

A full version of this paper can be found on arXiv (http://arxiv.org/abs/1605.01903).

c© Springer-Verlag Berlin Heidelberg 2016
C. Gavoille and D. Ilcinkas (Eds.): DISC 2016, LNCS 9888, pp. 16–28, 2016.
DOI: 10.1007/978-3-662-53426-7 2

http://arxiv.org/abs/1605.01903

Deterministic Leader Election in O(D + log n) 17

The present work is in the second category. We assume that each node has
a unique identifier which is a positive integer of size O(log n), and the nodes
exchange messages with their neighbours in synchronous rounds. The exact
complexity of deterministic leader election in this setting has proven elusive for
decades and even some simple questions remain open [13]. Assuming the size of
messages is logarithmic (i.e. messages of size O(log n)), we know since Peleg [16]
that O(D) rounds are sufficient to elect a leader in arbitrary networks. This was
recently proven optimal by Kutten et al. [13] using a very general Ω(D) lower
bound (that applies even in the probabilistic setting). Independently, Fusco and
Pelc [9] showed that the time complexity of leader election is Ω(D + λ) where
λ is the smallest depth at which some node has a unique view, called the level
of symmetry of the network. (The view at depth t from a node is the tree of all
paths of length t originating at this node.) If nodes have unique identifiers, then
λ = 0, which implies the same Ω(D) bound as in [13].

Regarding message complexity, Gallager [10] presents the first election algo-
rithm for general graphs with O(m + n log n) messages, where m is the num-
ber of edges, and a running time of O(n log n). Santoro [18] proves a matching
Ω(m + n log n) lower bound for the number of messages. A few years later,
Awerbuch [3] presents an algorithm whose message complexity is again O(m +
n log n), but time complexity is taken down to O(n).

A number of questions remain open for election. Peleg asks in [16] whether an
algorithm could be both optimal in time and in number of messages. The answer
depends on the setting, but remains essentially open [13]. In the conclusion
of their paper, Fusco and Pelc [9] also observe that it would be interesting to
investigate other complexity measures for the leader election problem, such as bit
complexity. This measure can be viewed as a natural extension of communication
complexity (introduced by Yao [24]) to the analysis of tasks in a distributed
setting.

Following [11], the bit round complexity of an algorithm A is the total number
of bit rounds it takes for A to terminate, where a bit round is a round with single
bit messages. This measure has become popular recently, as it captures into a
single quantity aspects that relate both to time and to the amount of information
exchanged. In this framework, the time-optimal algorithm of Peleg [16] results
in a bit round complexity of O(D log n) (i.e. O(D) rounds with O(log n) message
size), and the message-optimal algorithm of [3] results in a O(n log n) bit round
complexity (i.e. O(n) time with O(log n) message size).

In this paper, we present a bit round complexity optimal leader election algo-
rithm for arbitrary synchronous networks. Our algorithm requires O(D + log n)
bit rounds, and we show this is optimal by combining a lower bound from [13]
and a recent communication complexity result by Dinitz and Solomon [8]. This
work is thus a step forward in understanding election, and a partial answer to
whether optimality can be achived both in time and in the amount of information
exchanged. (As opposed to measuring time on the one hand, and the number of
messages of a given size on the other hand.) In this respect, our result illustrates
the benefits of studying optimality under the unified lenses of bit complexity.

18 A. Casteigts et al.

1.1 Contributions

We present an election algorithm ST T , having time complexity of O(D + log n)
with messages of size O(1), where D is the diameter of the network. Algorithm
ST T solves the explicit (i.e. strong) variant of the problem defined in [13],
namely, the identifier of the elected node is eventually known to all the nodes. It
also fulfills requirements from [8], such as ensuring that every non-leader node
knows which local link is in direction of the leader, and these nodes learn the
maximal id network-wide (MaxF), as a by-product of electing this specific node
in the explicit variant.

The architecture of our algorithm follows the same principle as many election
algorithms, such as those of Gallager [10] or Peleg [16]. It relies on a competition
of spanning tree constructions that works by extinction of those trees originating
at nodes with lower identifiers (see Algorithm 4 in [2] and discussion therein).
Eventually, a single spanning tree survives, whose root is the node with highest
identifier. This node becomes elected when it detects termination (recursively
from the leaves up the root). Difficulty arises from designing such algorithms
with the extra constraint that only constant size messages must be used. Of
course, one might simulate O(log n)-size messages in the obvious way paying
O(log n) bit rounds for each message. But then, the bit round complexity would
remain O(D log n). Our algorithm takes it down to O(D + log n).

For ease of exposition, we split the ST T algorithm into three components
described below, whose execution is joint in a specific way.

1. A spreading algorithm S which pipelines the maximal identifier bitwise to
each node, in a mix of battles (comparisons), conquests (progress of locally
higher prefixes), and correction waves of bounded amplitude;

2. A spanning tree algorithm that executes in parallel of S and whose union
with S is denoted ST . It consists in updating the tree relations based on
what neighbour brought the highest prefix so far;

3. A termination detection algorithm that executes in parallel of ST and whose
union with ST is denoted ST T . This component enables the node with high-
est identifier (and only this one) to detect termination of the spanning tree
construction rooted whose root it is.

An extra component can be added to broadcast a (constant size) termination
signal from the root down the tree, once election is complete. This component
is trivial and therefore not described here.

Lower Bound: Dinitz and Solomon [8] prove a lower bound (Theorem 1 below)
on the leader election problem among two nodes.

Theorem 1 ([8]). Let M be an integer such that M ≥ 2. Let G be the graph
with two nodes linked by an edge each node has a unique identifier taken from
the set ZM = {0, · · · ,M}. The bit round complexity of the Leader task and of
the MaxF version is exactly 2�log2((M + 2)/3.5)�.

Deterministic Leader Election in O(D + log n) 19

Table 1. Best known solutions in terms of time and number of messages, compared to
our algorithm.

Time Number of messages Message size Bit round complexity

Awerbuch [3] O(n) Θ(m + n logn) O(log n) O(n logn)

Peleg [16] Θ(D) O(D m) O(log n) O(D logn)

This paper O(D + log n) O((D + log n)m) O(1) Θ(D + log n)

This theorem implies that the time complexity of an election algorithm with
messages of size O(1) is Ω(log n), and thus the bit round complexity of Algorithm
ST T is Ω(log n).

On the other hand, the lower bound by Kutten et al. in [13], establishing
that Ω(D) time is required with logarithmic size messages, obviously extends to
constant size messages. Put together, these results imply that the bit complexity
of leader election with messages of size O(1) and identifiers of size O(log n) is
Ω(D + log n), which makes our algorithm bit-optimal (up to a constant factor).

In fact, the lower bound holds for arbitrary sizes |id| of identifiers (necessarily
larger than log n, though, since they are unique). Likewise, the complexity of our
algorithm is expressed relative to identifiers of arbitrary sizes (see Theorem 25).
Hence, the bit round complexity of the election problem is in fact Θ(D + |id|).
Table 1 summarises these elements.

Outline: After general definitions in Sect. 2, we present the three components of
the algorithm: the spreading algorithm S (Sect. 3), its joint use with the spanning
tree algorithm (ST , Sect. 4), and the adjunction of termination detection (STT ,
Sect. 5). We conclude in Sect. 6 with some remarks.

2 Model and Definitions

2.1 The Network

We consider a failure-free message passing model for distributed computing.
The communication model consists of a point-to-point communication network
described by a connected graph G = (V,E) where the nodes V represent network
processes (or nodes) and the edges E represent bidirectional communication
channels. Processes communicate by message passing: a process sends a message
to another by depositing the message in the corresponding channel.

Let n be the size of V . We assume that each node u is identified by a unique
positive integer of O(log n) bits, called identifier and denoted Idu (in fact, Idu
denotes both the identifier and its binary representation). We do not assume any
global knowledge on the network, not even the size or an upper bound on the
size, neither do the nodes require position or distance information. Every node
is equipped with a port numbering function (i.e. a bijection between the set of
incident edges Iu and the integers in [1, |Iu|]), which allows it to identify which

20 A. Casteigts et al.

channel a message was received from, or must be sent to. Two nodes u and v
are said to be neighbours if they can communicate through a port.

Finally, we assume the system is fully synchronous, namely, all processes
start at the same time and time proceeds in synchronised rounds composed of
the following three steps:

1. Send messages to (some of) the neighbours,
2. Receive messages from (some of) the neighbours,
3. Perform local computation.

The time complexity of an algorithm is the number of such rounds needed to
complete the execution in the worst case.

2.2 Further Definitions

The paper uses a number of definitions from graph theory and formal language
theory. Although most readers may be familiar with them, we remind the most
important ones. Next we define the bit round complexity.

Definitions on graphs: These definitions are selected from [17] (Chapter 8).
A tree is a connected acyclic graph. A rooted tree is a tree with one distinguished
node, called the root, in which all edges are implicitly directed away from the
root. A spanning tree of a connected graph G = (V,E) is a tree T = (V,E′)
such that E′ ⊆ E. A forest is an acyclic graph. A spanning forest of a graph
G = (V,E) is a forest whose node set is V and edge set is a subset of E. A
rooted forest is a forest such that each tree of the forest is rooted. A child of a
node u in a rooted tree is an immediate successor of u on a path from the root.
A descendant of a node u in a rooted tree is u itself or any node that is a suc-
cessor of u on a path from the root. The parent of a node u in a rooted tree is
a node that is the immediate predecessor of u on a path to u from the root.

Definitions on languages: These definitions are selected from [17] (Chapter 16).
Let A be an alphabet, A∗ is the set of all words over A, the empty word is
denoted by ε. If x is a non empty word over the alphabet A of length p then x
can be written as the concatenation of p letters, i.e., x = x[1]x[2] · · · x[p] with
each x[i] in A. If a ∈ A and i is a positive integer then ai is the concatenation i
times of the letter a. Let x and y be two words over alphabet A, x is said to be
a prefix (resp. proper prefix) of y if there exists a word (resp. non-empty word)
z such that y = xz.

Bit round complexity: The bit complexity in general may be viewed as a natural
extension of communication complexity (introduced by Yao [24]) to the analysis
of tasks in a distributed setting. An introduction to the area can be found in
Kushilevitz and Nisan [12]. In this paper, we follow the definition from [11], that
is, the bit round complexity of an algorithm A is the total number of bit rounds
it takes for A to terminate, where a bit round is a synchronous round with single

Deterministic Leader Election in O(D + log n) 21

bit messages. This measure captures into a single quantity aspects that relate
both to time and to the amount of information exchanged. Other definitions are
considered in the literature, in [4–7] the bit complexity is the total number of
bits sent until global termination. In [20], it is the maximum number of bits sent
through a same channel. In both variants, silences may convey much information,
which is why we consider the definition from [11] in terms of round complexity
as more comprehensive.

3 A Spreading Algorithm

This section presents a distributed spreading algorithm using only messages of size
O(1) which allows each node to know the highest identifier among the set of all
identifiers with a time complexity of O(D + log n), where D is the diameter of G.

3.1 Preamble

Given a node u and the binary representation Idu of its identifier. We define
α(Idu) as the word

α(Idu) = 1|Idu|0Idu.

For instance, if u has identifier 23, then Idu = 10111 and α(Idu) =
11111010111. This encoding has the nice property that it extends the natural
order < of integers into a lexicographic order ≺ on their α-encoding.

Remark 2. Let u and v be two nodes with identifiers Idu and Idv. Then:

Idu < Idv ⇔ α(Idu) ≺ α(Idv).

As a result, the order between two identifiers Idu and Idv is the order induced
by the first letter which differs in α(Idu) and α(Idv). This property is key to
our algorithm, in which the spreading of identifiers progresses bitwise and com-
parisons occur consistently.

3.2 The Algorithm S
Variables: Each node can be active or follower, depending on whether it is still
a candidate for becoming the leader (i.e. no higher identifier was detected so far).
Each node u also has variables Yu, Zu and Zv

u (one for each neighbour v of u) which
are words over the alphabet {0, 1}. Yu is a shorthand for α(Idu), it is set initially
and never changes afterwards. Zu is a prefix of Yw, for some node w (possibly u
itself). It indicates the highest prefix known so far by u. On each node, this variable
will eventually converge to the α-encoding of the highest identifier. Finally, for
each neighbour v of u, Zv

u is the lastest value of Zv known to u.

Initialisation: Initially every node u is active, all the Zu’s are set to the empty
word ε, and the Zv

u’s are accordingly set to the empty word (wlog, we assume
that a preliminary round made it possible for all nodes to know what neighbours
they have).

22 A. Casteigts et al.

Main Loop: In each round, the algorithm executes the following actions.

1. update Zu,
2. send to all neighbours a signal indicating how Zu was updated,
3. receive such signals from neighbours,
4. update all the Zv

u accordingly.

The main action is the update of Zu (step 1). It depends on the values of Zv
u for

all neighbours v and Zu itself at the end of the previous round. This update is
done according to a number of rules. For instance, as long as u remains active and
Zu is a proper prefix of Yu, the update consists in appending the next bit of Yu to
Zu. Most updates are more complex and detailed further below. The three other
actions (step 2, 3, and 4 above) only serve the purpose of informing the neigh-
bours as to how Zu was updated, so that all Zv

u are correctly updated. In fact, Zu

can only be updated in seven possible ways, each causing the sending of a par-
ticular signal among {append0, append1, delete1, delete2, delete3, change, null},
with following meaning:

– append0 or append1: Zu was updated by appending a single 0 or a single 1;
– delete1, delete2, or delete3: Zu was updated by deleting one, two or three

letters from the end;
– change: Zu was updated by changing the last letter from 0 to 1;
– null: Zu was not modified.

Each node updates its variables Zv
u based on these signals (step 4).

Remark 3. By the end of each round, it holds that Zv
u = Zv for any neighbour

v of u. Thus from now on, Zv
u is simply written Zv.

We now describe the way Zu is updated by each node u. One property that
the update guarantees is that by the end of each round, if u and v are two
neighbours, then Zu and Zv must have a common prefix followed, in each case,
by at most six letters. This fact is later used for analysis.

Update of Zu in each round: Let us denote the state of some variable X at the
end of round t by Xt. For instance, we write Z0

u = ε, where round 0 corresponds
to initialisation. The computation of Zu at round t results from u being active
or follower, and the values of Zt−1

u and Zt−1
v for all neighbours v of u. It is done

according to the following rules given in order of priority, i.e., R1.1 has a higher
priority than R1.2, having itself a higher priority than R2, etc. Whenever a rule
is applied, the subsequent rules are ignored.

-R1 (delete). The relationship between Zt−1
u and Zt−1

v for any neighbour v of u
may mean that a delete operation is possible. If any delete is possible, one will
be carried out; if more than one is possible, the greatest will be carried out.
-R1.1 If some Zt−1

v is a proper prefix of Zt−1
u and v’s last action was a delete,

delete min{|Zt−1
u | − |Zt−1

v |, 3} letters from the end of Zt−1
u ;

-R1.2 If Zt−1
u = z0x with x 	= ε and some Zt−1

v = z1y, delete |x| letters from
the end of Zt−1

u ;

Deterministic Leader Election in O(D + log n) 23

-R2 (change). if Zt−1
u = z0 and some Zt−1

v = z1y then change Zt−1
u to z1 and

change u’s state to follower if it is active;
-R3 (append). if for some v, Zt−1

v = Zt−1
u 1x, then Zt

u is obtained by appending
1 to Zt−1

u ;
-R4 (append). if for some v, Zt−1

v = Zt−1
u 0x, then Zt

u is obtained by appending
0 to Zt−1

u ;
-R5 (append). if u’s state is active and t < |Yu|, append Yu[t] to Zt−1

u ;

If none of these actions apply, then Zu remains unchanged and a null signal
is sent. Otherwise, a signal corresponding to the resulting action is sent. We now
prove some properties on Algorithm S.

Lemma 4. Whenever a node u carries out a delete operation at round t, u’s
operation at round t+1 must be another delete operation or a change operation.

Proof. The proof proceeds by induction on t (details in the long version).

Lemma 4 induces immediately:

Corollary 5. A sequence of delete operations on a node u ends with a change
operation on u.

Remark 6. If a node u applies R1.1, R1.2, R2, R3, or R4 then there exists a node
v such that Yu ≺ Yv.

Remark 7. Let u be a node. If there exists a neighbour v of u and a round t such
that |Zt

u| < |Zt
v| then u becomes follower.

Lemma 8. Let u and v be two neighbours. Let t be a round number. The words Zt
u

andZt
v will always take one of the following forms (up to renaming of u and v) where

p and w are words and a is 1 or 0:

1. Zt
u = p and Zt

v = p,
2. Zt

u = p and Zt
v = pw with 1 ≤ |w| ≤ 2,

3. Zt
u = p0 and Zt

v = p1a,
4. Zt

u = p1 and Zt
v = p0w and |w| ≤ 3,

5. Zt
u = p and Zt

v = pw and 3 ≤ |w| ≤ 6 and u has performed a delete.

Proof. The proof proceeds by examination of all possible cases (detailed proof
in the long version).

The application of rule R1.2 corresponds to item 4, thus:

Corollary 9. If R1.2 is applied then 0 < |x| ≤ 3 and y = ε.

Lemma 8 implies:

Theorem 10. Let G be a graph of size n and diameter D such that each node u
is endowed with a unique identifier Idu which is a non negative integer. Let X be
the highest identifier. After at most |α(X)|+6D rounds, algorithm S terminates
and for each node u, Zu = α(X).

24 A. Casteigts et al.

Proof. The proof proceeds by induction on the distance of a node from the
highest node (detailed proof the long version).

4 A Spanning Tree Algorithm

This section explains how the computation of a spanning tree may be associated
to the spreading algorithm S by selecting for each node u the edge through which
Zu was modified.

Let u be a node, we add for each neighbour v, a variable statusvu whose possi-
ble values are in {child, parent, other}: it indicates the status of v for u; initially
statusvu = other. The computation of the spanning tree occurs concurently with
the spreading algorithm S as follows. If R2, R3, or R4 is applied at round t
relative to neighbor v, then u choses v as parent (if not already the case). Then,
in addition to the signals of the spreading algorithm (indicating how Zu was
updated), u sends a signal parent to v and a signal other to its previous parent
(if different from v).

After receiving signals from neighbours, in addition to the computation of the
new value of Zv for each neighbour v by Algorithm S, u updates statusvu. Algo-
rithm ST denotes the algorithm obtained with Rules of the spreading algorithm
S and actions described just above.

Remark 11. A node has no parent if and only if it is active.

Remark 12. A node has at most one parent.

The next definition introduces for each node u a word Tu that is used to
prove that the graph induced by all the parent relations has no cycle.

Definition 13. Let u be a node, let t be a round number of the spreading algorithm
S; T t

u is equal to:

– Zt
u if t = 0 or if Zt

u has been obtained from Zt−1
u thanks to R2 or R3 or R4

or R5;
– Zt′

u if Zt
u has been obtained from Zt−1

u thanks to R1.1 or R1.2 and t′ < t is the
last round where Zt′

u has not been obtained by a delete operation.

The following lemma is a direct consequence of the definition of T t
u, and of R2,

R3 and R4:

Lemma 14. Let t be a round number of the spreading algorithm S. If v is parent
of u then T t

u � T t
v; furthermore if v becomes parent of u at round t then T t

u ≺ T t
v

or T t
u = T t

v and T t−1
u ≺ T t−1

v .

Corollary 15. Let t be a round number. Let u1 be a node. Let (ui)1≤i≤p be nodes
of G such that, at round t, for 2 ≤ i ≤ p ui is parent of ui−1. Then u1 	= up.

Proof. Let t be a round, and let u1 be a node. Let (ui)1≤i≤p be nodes of G such
that, at round t, for 2 ≤ i ≤ p ui is parent of ui−1. The previous lemma implies
that (T t

ui
)1≤i≤p is increasing. Considering a couple (uj , uj+1) where R2, or R3,

or R4 has been applied for the last time before t, we obtain the result. �

Deterministic Leader Election in O(D + log n) 25

Corollary 16. Let t be a round number. Let u1 be a node. Then either u1 is
active or there exist (ui)1≤i≤p nodes of G such that: for 2 ≤ i ≤ p ui is parent
of ui−1 and up is active.

Definition 17. We denote by ST (G) the subgraph of G = (V,E) having V as
node set and there is an edge between the node u and the node v if u is the parent
of v or v is the parent of u when algorithm ST terminates.

When Algorithm ST terminates there is exactly one active node: the node
with highest identifier. Now, from Remark 12 and Corollary 16:

Proposition 18. Let G be a connected graph such that each node has a unique
identifier. Let u be the node with the highest identifier. When algorithm ST
terminates, the graph ST (G) is a spanning tree of G.

5 Termination Detection of Algorithm ST

This section presents some actions which, added to algorithm ST , enable the
node with the highest identifier to detect termination of algorithm ST ; further-
more, as it is the only one, when it detects the termination it becomes elected.
Our solution is a bitwise adaptation of the propagation process with feedback
introduced in [21] and further formalised and studied in Chapter 6 and 7 of [23].

Definition 19. Let v be a node. Let t be a round number of the spreading algo-
rithm. The variable Zt

v is said to be well-formed if there exists an identifier Id
such that Zt

v = α(Id).

Each node v is equipped with a boolean variable Termv which is true iff v and
all of its subtree have terminated. Whenever a rule of the spreading algorithm
is applied to node v, the variable Termv is set to false, and a signal is sent
to its neighbours to indicate that Termv = false. Indeed, this variable can be
updated several times for a same node before stabilizing to true.

We describe an extra rule to be added to the ST algorithm in order to allow
the node with highest identifier to learn that it is so by detecting termination of
the spanning tree algorithm. This rule is considered after those of algorithm ST
in each round. Let us denote by Nv the set of neighbours of v, and by Chv ⊆ Nv

those which are v’s children. Also recall that we omit the round number in the
expression on variables when it is non ambiguous.

The rule: Given a node v, if (v is follower) and (Termv = false) and (Zv is
well-formed) and (∀w ∈ Nv Zw = Zv) and (∀w ∈ Chv Termw = true) then
Termv := true. Furthermore v sends to his parent a signal indicating that
Termv = true.

26 A. Casteigts et al.

We denote by ST T the algorithm obtained by putting together the rules of
Algorithm ST and this extra rule for termination detection.

Remark 20. Let v be a node, if Termv = true then Zv has the same value it
had when Termv became true the last time.

Remark 21. If Chv = ∅, i.e., v is a leaf, and Zv is well-formed and for each
neighbour w of v Zw = Zv then v sets Termv to true right away (and v sends
to his parent a signal indicating that Termv = true).

Remark 22. Let u be the node with highest identifier. Let v be a node. If Zv =
α(Idu) then Zv will never change.

Theorem 10 and Proposition 18 imply:

Proposition 23. Let G be a graph such that each node has a unique (integer)
identifier. Algorithm ST T terminates. Furthermore, if the node u has the highest
identifier then, after a run of algorithm ST T , for each neighbour v of u Zv =
α(Idu) and Termv = true and the node u receives from each node v in Chu the
signal indicating that Termv = true.

The next proposition established that only the node with highest identifier
can receive a termination signal from all neighbors.

Proposition 24. Let G be a graph such that each node has a unique identifier.
Let v be a node which has not the highest identifier and such that Zv = α(Idv)
and for each neighbour w of v Zw = Zv. Then there exists a neighbour v′ of v
such that Termv′ = false.

Proof. The proof relies on transitive relations between Termv values within the
tree (detailed proof in the long version).

If the node u with highest identifier, becomes elected as soon as, for each
neighbour v of u, Zv = α(Idu) and Termv = true and it receives from each
child v the signal indicating that Termv = true we deduce:

Theorem 25. Let G be a graph such that each node has a unique identifier
which is an integer. Let u be the node with the highest identifier. There exists
an election algorithm for G with messages of size O(1) which terminates after
at most |α(Idu)| + 6D rounds.

6 Conclusion

Concerning deterministic election algorithms with identifiers, we may con-
sider three complexity measures: time complexity, message complexity, and bit
(round) complexity. Santoro [18] proved that Ω(|E|+n log n) is a lower bound for
the number of messages and Awerbuch [3] presented an algorithm that matches

Deterministic Leader Election in O(D + log n) 27

this bound. Kutten et al. [13] shows that concerning the time complexity Ω(D)
is a lower bound and [16] implies that O(D) is a tight upper bound. For bit
(round) complexity, we deduced from [13] and [8] that Ω(D + log n) is a lower
bound and we presented an algorithm that matches this bound with a running
time of O(D + log n) bit rounds. Our algorithm requires no knowledge on the
graph such as the size or the diameter.

References

1. Angluin, D.: Local and global properties in networks of processors. In: Proceedings
of the 12th Symposium on Theory of Computing, pp. 82–93 (1980)

2. Attiya, H., Welch, J.: Distributed Computing: Fundamentals, Simulations, and
Advanced Topics. Wiley, Hoboken (2004)

3. Awerbuch, B.: Optimal distributed algorithms for minimum weight spanning tree,
counting, leader election and related problems (detailed summary). In: Proceedings
of 19th Symposium on Theory of Computing, New York, USA, pp. 230–240 (1987)

4. Bar-Noy, A., Naor, J., Naor, M.: One-bit algorithms. Distrib. Comput. 4, 3–8
(1990)

5. Bodlaender, H.L., Moran, S., Warmuth, M.K.: The distributed bit complexity
of the ring: from the anonymous case to the non-anonymous case. Inf. Comput.
114(2), 34–50 (1994)

6. Bodlaender, H.L., Tel, G.: Bit-optimal election in synchronous rings. Inf. Process.
Lett. 36(1), 53–56 (1990)

7. Dinitz, Y., Moran, S., Rajsbaum, S.: Bit complexity of breaking and achieving
symmetry in chains and rings. J. ACM 55(1), 167–183 (2008)

8. Dinitz, Y., Solomon, N.: Two absolute bounds for distributed bit complexity.
Theor. Comput. Sci. 384(2–3), 168–183 (2007)

9. Fusco, E.G., Pelc, A.: Knowledge, level of symmetry, and time of leader election.
Distrib. Comput. 28(4), 221–232 (2015)

10. Gallager, R.G.: Finding a leader in a network with o(e+n logn) messages. Tech-
nical Report Internal Memo., M.I.T., Cambridge, MA (1979)

11. Kothapalli, K., Onus, M., Scheideler, C., Schindelhauer, C.: Distributed coloring in
O(

√
log n) bit rounds. In: 20th International Parallel and Distributed Processing

Symposium (IPDPS), Rhodes Island, Greece. IEEE (2006)
12. Kushilevitz, E., Nisan, N.: Communication complexity. Cambridge University

Press, New York (1999)
13. Kutten, S., Pandurangan, G., Peleg, D., Robinson, P., Trehan, A.: On the com-

plexity of universal leader election. J. ACM 7, 7: 1–7: 27 (2015)
14. LeLann, G.: Distributed systems: Towards a formal approach. In: Gilchrist, B.

(ed.), Information processing 1977, pp. 155–160. North-Holland (1977)
15. Lynch, N.A.: Distributed algorithms. Morgan Kaufman, San Francisco (1996)
16. Peleg, D.: Time-optimal leader election in general networks. J. Parallel Distrib.

Comput. 8(1), 96–99 (1990)
17. Rosen, K.H. (ed.): Handbook of Discrete and Combinatorial Mathematics. CRC

Press, Boca Raton (2000)
18. Santoro, N.: On the message complexity of distributed problems. Int. J. Parallel

Program. 13(3), 131–147 (1984)
19. Santoro, N.: Design and analysis of distributed algorithm. Wiley, New York (2007)

28 A. Casteigts et al.

20. Schneider, J., Wattenhofer, R.: Trading bit, message, and time complexity of dis-
tributed algorithms. In: Peleg, D. (ed.) Distributed Computing. LNCS, vol. 6950,
pp. 51–65. Springer, Heidelberg (2011)

21. Segall, A.: Distributed network protocols. IEEE Trans. Inf. Theor. 29(1), 23–24
(1983)

22. Tanenbaum, A., van Steen, M.: Distributed Systems - Principles and Paradigms.
Prentice Hall, Upper Saddle River (2002)

23. Tel, G.: Introduction to distributed algorithms. Cambridge University Press,
Cambridge (2000)

24. Yao, A.C.: Some complexity questions related to distributed computing. In:
Proceedings of 11th Symposium on Theory of Computing (STOC), pp. 209–213.
ACM Press (1979)

Near-Linear Lower Bounds for Distributed
Distance Computations, Even in Sparse

Networks

Amir Abboud1(B), Keren Censor-Hillel2(B), and Seri Khoury2(B)

1 Stanford University, Department of Computer Science, Stanford, USA
abboud@cs.stanford.edu

2 Department of Computer Science, Technion, Haifa, Israel
{ckeren,serikhoury}@cs.technion.ac.il

Abstract. We develop a new technique for constructing sparse graphs
that allow us to prove near-linear lower bounds on the round complexity
of computing distances in the CONGEST model. Specifically, we show
an Ω̃(n) lower bound for computing the diameter in sparse networks,
which was previously known only for dense networks. In fact, we can
even modify our construction to obtain graphs with constant degree,
using a simple but powerful degree-reduction technique which we define.

Moreover, our technique allows us to show Ω̃(n) lower bounds for
computing (3

2
− ε)-approximations of the diameter or the radius, and for

computing a (5
3

− ε)-approximation of all eccentricities. For radius, we
are unaware of any previous lower bounds. For diameter, these greatly
improve upon previous lower bounds and are tight up to polylogarithmic
factors, and for eccentricities the improvement is both in the lower bound
and in the approximation factor.

Interestingly, our technique also allows showing an almost-linear lower
bound for the verification of (α, β)-spanners, for α < β + 1.

Keywords: Distributed computing · Approximations · Lower bounds ·
Diameter · Radius · Eccentricity · Spanners

1 Introduction

The diameter and radius are two basic graph parameters whose values play a vital
role in many applications. In distributed computing, these parameters are even
more fundamental, since they capture the minimal number of rounds needed
in order to send a piece of information to all the nodes in a network. Hence,
understanding the complexity of computing these parameters is central to dis-
tributed computing, and has been the focus of many studies in the CONGEST

A. Abboud—Supported by Virginia Vassilevska Williams’s NSF Grants CCF-
1417238 and CCF-1514339, and BSF Grant BSF:2012338.
K. Censor-Hillel and S.Khoury—Supported by ISF Individual Research Grant
1696/14.

c© Springer-Verlag Berlin Heidelberg 2016
C. Gavoille and D. Ilcinkas (Eds.): DISC 2016, LNCS 9888, pp. 29–42, 2016.
DOI: 10.1007/978-3-662-53426-7 3

30 A. Abboud et al.

model of computation, where in every round each of n nodes may send messages
of up to O(log n) bits to each of its neighbors. Frischknecht et al. [21] showed
that the diameter is surprisingly hard to compute: Ω̃(n) rounds are needed even
in networks with constant diameter1. This lower bound is nearly tight, due to
an O(n) upper bound presented simultaneously and independently by [26,34]
to compute all pairs shortest paths in a network. Naturally, approximate solu-
tions are a desired relaxation, and were indeed addressed in several cornerstone
studies [21,24,26,28,34], bringing us even closer to a satisfactory understanding
of the time complexity of computing distances in distributed networks. However,
several central questions remained elusive.

Sparse Graphs. The graphs constructed in [21] have Θ(n2) edges and constant
diameter, and require any distributed protocol for computing their diameter to
spend Ω̃(n) rounds. Such a high lower bound makes one wonder if the diameter
can be computed faster in networks that we expect to encounter in realistic
applications. Almost all large networks of practical interest are very sparse [29],
e.g. the Internet in 2012 had ≈ 4 billion nodes and ≈ 128 billion edges [30].

The only known lower bound for computing the diameter of a sparse network
is obtained by a simple modification to the construction of [21] which yields a
much weaker bound of Ω̃(

√
n). This leaves hope that the Ω̃(n) bound can be

beaten significantly in sparse networks. Our first result rules out this possibility.

Theorem 1. The number of rounds needed for any protocol to compute the
diameter of a network on n nodes and O(n log n) edges of constant diameter
in the CONGEST model is Ω(n

log2 n
).

We remark that, as in [21], our lower bound holds even for networks with
constant diameter. Throughout the paper we say that a graph on n nodes is
sparse if it has O(n log n) edges. Due to simple transformations, e.g. by adding
dummy nodes, all of our lower bounds will also hold for the more strict definition
of sparse graphs as having O(n) edges, up to a loss of a log factor.

As explained next, the sparsity in our new lower bound construction allows
us to extend the result in some interesting ways.

Approximation Algorithms. Another important question is whether we can
bypass this near-linear barrier if we settle for knowing only an approximation
to the diameter. An α-approximation algorithm to the diameter returns a value
D̂ such that D ≤ D̂ ≤ α · D, where D is the diameter of the network. From
[21] we know that Ω̃(

√
n + D) rounds are needed, even for computing a (32 − ε)-

approximation to the diameter, for any constant ε > 0.
Following this lower bound, almost-complementary upper bounds were under

extensive research. It is known that a 3
2 -approximation can be computed in a

sublinear number of rounds: Holzer and Wattenhofer [26] showed a O(n3/4+D)-
round algorithm and (independently) Peleg et al. [34] obtained a O(D

√
n log n)

bound, later these bounds were improved to O(
√

n log n + D) by Lenzen and

1 The notations Ω̃ and Õ hide factors that are polylogarithmic in n

Near-Linear Lower Bounds for Distributed Distance Computations 31

Peleg [28], and finally Holzer et al. [24] reduce the bound to O(
√

n log n + D).
When D is small, these upper bounds are near-optimal in terms of the round
complexity – but do they have the best possible approximation ratio that can
be achieved within a sublinear number of rounds? That is, can we also obtain a
(32 − ε)-approximation in Õ(

√
n + D) rounds, to match the lower bound of [21]?

Progress towards answering this question was made by Holzer and Watten-
hofer [26] who showed that any algorithm that needs to decide whether the
diameter is 2 or 3 has to spend Ω̃(n) rounds. However, as the authors point out,
their lower bound is not robust and does not rule out the possibility of a (32 −ε)-
approximation when the diameter is larger than 2, or an algorithm that is allowed
an additive +1 error besides a multiplicative (32 − ε) error. Furthermore, when
the diameter is 2 or 3 as in the construction of [26], any (32 − ε)-approximation
must return the exact diameter. Thus, to explain why we cannot save time by
settling for a (32 − ε)-approximation, we need a more general construction.

The Main Challenge. Perhaps the main difficulty in extending the lower
bound constructions of [21,26] to resolve these gaps was that their original graphs
are dense. Our new sparse construction technique allows us to tighten the bounds
and negatively resolve the above question. In other words, we show a Ω̃(n) lower
bound for computing a (32 − ε)-approximation to the diameter.

At a high level, the reason that the density matters is as follows. The lower
bound technique reduces the 2-party communication complexity problem of Set-
Disjointness to a distributed algorithm for approximating the diameter. This is
done by constructing a graph in which the existence of some of the edges depends
on the inputs of the players, and partitioning the graph between the two players,
inducing a cut in it. The dependence is such that having a good approximation
to the diameter induces an answer to the Set-Disjointness problem. The players
then simulate the distributed algorithm, and pay in communicating the bits that
are sent on edges that cross the cut between their two partitions. Therefore, a
known lower bound on the 2-party communication complexity of Set-Disjointness
implies a lower bound on the number of rounds required for a distributed approx-
imation algorithm for the diameter. The larger the cut, the smaller the lower
bound for the distributed problem.

Having a sparse graph with a small cut, is what allows us to make this leap
in the lower bound. The key idea of achieving a sparse graph with a small cut,
is to connect the nodes to a set of nodes that represent their binary value,
and the only nodes on the cut are the nodes of the binary representation. We
call this graph structure a bit-gadget, and it plays a central role in all of our
graph constructions. This is inspired by graph constructions for different settings
(e.g. [3], see discussion in Sect. 1.1). Our main result follows.

Theorem 2. For all constant 0 < ε < 1/2, the number of rounds needed for
any protocol to compute a (3/2 − ε)-approximation to the diameter of a sparse
network in the CONGEST model is Ω(n

log3 n
).

Radius. In many scenarios we want one special node to be able to efficiently send
information to all othernodes. In this case,wewould like this node tobe the one that

32 A. Abboud et al.

is closest to every other node, i.e. the center of the graph. The radius of the graph is
the largest distance from the center, and it captures the number of rounds needed
for the center node to transfer a message to another node in the network. While
radius and diameter are closely related, the previous lower bounds for diameter do
not transfer to radius and it was conceivable that the radius of the graph could be
computed much faster. Obtaining a non-trivial lower bound for radius has been
stated as an open problem in [26]. A third advantage of our technique is that it
extends to computing the radius, for which we show that the same strong near-
linear barriers above hold.

Theorem 3. For all constant 0 < ε < 1/2, the number of rounds needed for any
protocol to compute a (3/2 − ε)-approximation to the radius of a sparse network
in the CONGEST model is Ω(n

log3 n
).

Eccentricity. The eccentricity of a node is the largest distance from it. Observe
that the diameter is the largest eccentricity in the graph while the radius is the
smallest. As pointed in [26], given a (32 − ε)-approximation algorithm to all the
eccentricities, we can achieve (32 − ε)-approximation algorithm to the diameter
by a simple flooding. This implies an Ω̃(

√
n + D) lower bound for any (32 − ε)-

approximation algorithm for computing all the eccentricities. Our construction
allows us to improve this result by showing that any algorithm for computing
even a (53 − ε)-approximation to all the eccentricities must spend Ω(n

log3(n)
)

rounds. This improves both in terms of the number of rounds, and in terms
of the approximation factor, which we allow to be even larger. Interestingly, it
implies that approximating all eccentricities is even harder than approximating
just the largest or the smallest one.

Theorem 4. For all constant 0 < ε < 2/3, the number of rounds needed for any
protocol to compute a (5/3 − ε) approximation of all eccentricities of a sparse
network in the CONGEST model is Ω(n

log3 n
).

Verification of Spanners. Finally, our technique allows us to obtain a lower
bound for the verification of (α, β)-spanners. An (α, β)-spanner of a graph G,
is a subgraph H in which for any two nodes u, v it holds that dH(u, v) ≤ α ·
dG(u, v) + β. When spanners are sparse, i.e., when H does not have too many
edges, they play a vital role in many application, such as routing, approximating
distances, synchronization, and more. Hence, the construction of sparse spanners
has been a central topic of many studies, both in centralized and sequential
computing.

Here we address the problem of verifying that a given subgraph H is indeed
an (α, β)-spanner of G. At the end of the computation, each node outputs a bit
indicating whether H is a spanner, with the requirement that if H is indeed a
spanner with the required parameters then all nodes indicate this, and otherwise
at least one node indicates that it is not. We obtain the following lower bound.

Theorem 5. Given an unweighted graph G = V,E, a subgraph H ⊂ E of G,
the number of rounds needed for any protocol to decide whether H is an (α, β)-
spanner of G in the CONGEST model is Ω(n

(α+β) log3 n
), for any α < β + 1.

Near-Linear Lower Bounds for Distributed Distance Computations 33

Notice that for any reasonable value of α, β = O(poly log n), the lower bound
is near-linear. This is another evidence for a task for which verification is harder
than computation in the CONGEST model, as initially brought into light in [18].
This is, for example, because (+2)-purely additive spanners with O(n3/2 log n)
edges can be constructed in O(

√
n log n + D) rounds (this appears in [28], and

can also be deduced from [26]), and additional various additive spanners can be
constructed fast in CONGEST [14].

Roadmap. Section 2 contains our lower bound for computing the exact or
approximate diameter. Due to space limitations we give our lower bounds for
computing the exact or approximate radius, computing eccentricities and veri-
fying spanners in the full version [2]. The degree-reduction technique appears in
the full version as well.

1.1 Additional Related Work

Communication Complexity and Distributed Computing. A well-known
technique to prove lower bounds in the CONGEST model is to use a reduction
from communication complexity to distributed computing. Peleg and Rubinovich
[35] apply a lower bound from communication complexity to show that the num-
ber of rounds needed for any distributed algorithm to construct a minimum
spanning tree (MST) is Ω̃(

√
n + D). Many recent papers were inspired by this

technique. In [20] Elkin extended the result of [35] to show that any distributed
algorithm for constructing an α-approximation to the MST must spend Ω̃(

√
n
α)

rounds. Das Sarma et al. [18] show that any distributed verification algorithm for
many problems, such as connectivity, s− t cut and approximating MST requires
Ω̃(

√
n+D) rounds. Nanongkai et al. [32] showed an Ω(

√
� · D +D) lower bound

for computing a random walk of length �. Similar reductions from communica-
tion complexity were adapted also in the CONGEST Clique Broadcast model
[19,25], where in each round each node can broadcast the same O(log n)-bit
message to all the nodes in the network.

Similar to the technique used in [18,19,21,25,26], our lower bounds are
obtained by reductions from the Set-Disjointness problem in the two-party
number-in-hand model of communication complexity [39]. Here, each of the play-
ers Alice and Bob receives a k-bit string, Sa and Sb respectively, and needs to
decide whether the two strings are disjoint or not, i.e., whether there is some bit
0 ≤ i ≤ k − 1 such that Sa[i] = 1 and Sb[i] = 1. It is shown in [27] that in order
to solve the Set-Disjointness problem, Alice and Bob must exchange Ω(k) bits.
The high level idea for applying this lower bound in the CONGEST model,
is to define a graph G = (V,E) based on the input strings of Alice and Bob,
such that G has some property p (e.g., diameter at most 4) if and only if the
two strings of Alice and Bob are not disjoint. Given an algorithm for deciding
whether a graph has property p, Alice and Bob can simulate this algorithm on
G in order to solve the Set-Disjointness problem.

34 A. Abboud et al.

More on Distributed Distance Computation. Distance computation prob-
lems have also been recently studied in weighted distributed networks. Nanongkai
[31] presented an Õ(n

1
2 · D

1
4) upper bound for the (1 + o(1))-approximation to

the single source shortest paths problem. More recently, this result was improved
by Henzinger et al. [23] as they presented an Õ(n

1
2+o(1) +D1+o(1)) algorithm for

the same approximation factor and showed that this also implies a (2 + o(1))-
approximation algorithm to the diameter. Moreover, such problems have also
been considered in the congested clique model [13,23,31], where (1 + o(1))-
approximate all pairs shortest paths can be computed in O(n0.158) rounds [13].

Intuitively, the technical difficulty in extending the proof for diameter to
work for radius as well is the difference in types between the two problems: the
diameter asks for a pair of nodes that are far (∃x∃y) while radius asks for a
node that is close to everyone (∃x∀y). Recent developments in the theory of
(sequential) algorithms suggest that this type-mismatch could lead to funda-
mental differences between the two problems. Recall that classical sequential
algorithms solve APSP in O(nm) time [17] and therefore both diameter and
radius can be solved in quadratic O(n2) time in sparse graphs.

Due to the lack of techniques for proving unconditional super-linear ω(n)
lower bounds on the runtime of sequential algorithms for any natural problem, a
recent line of work seeks hardness results conditioned on certain plausible conjec-
tures (a.k.a. “Hardness in P”). An interesting example of such result concerns the
diameter: Roditty and Vassilevska W. [36] proved that if the diameter of sparse
graphs can be computed in truly-subquadratic O(n2−ε) time, for any ε > 0, then
the Strong Exponential Time Hypothesis (SETH) is false2, by reducing SAT to
diameter. Since then, many other problems were shown to be “SETH-hard”
(e.g. [1,4,6,7,9] to name a few) but whether a similar lower bound holds for
radius is an open question [3,5,10,11,16,36]. In fact, Carmosino et al. [12] show
that there is a formal barrier for reducing SAT to radius3, and Abboud, Vas-
silevska W. and Wang [5] introduce a new conjecture to prove an n2−o(1) lower
bound for radius4 (which has a similar ∃∀ type). Diameter and radius seem to
behave differently also in the regime of dense and weighted graphs where the
best known algorithms take roughly cubic O(n3/2

√
log n) time [15,37] and it is

known that radius can be solved in truly-subcubic O(n3−ε) time if and only
if APSP can [3], but showing such a subcubic-equivalence between APSP and
diameter is a big open question [3,8,38].

2 SETH is a pessimistic version of the P �= NP conjecture, which essentially says that
CNF-SAT cannot be solved in (2−ε)n time. More formally, SETH is the assumption
that there is no ε > 0 such that for all k ≥ 1 we can solve k-SAT on n variables and
m clauses in (2 − ε)n · poly(m) time.

3 It would imply a new co-nondeterministic algorithm for SAT and refute the
Nondeterministic-SETH, which is a strong version of NP �= CONP.

4 A truly-subquadratic algorithm for computing the radius of a sparse graph refutes
the Hitting Set Conjecture: there is no ε > 0 such that given two lists A, B of n
subsets of a universe U of size poly log n we can decide whether there is a set a ∈ A
that intersects all sets b ∈ B in O(n2−ε) time.

Near-Linear Lower Bounds for Distributed Distance Computations 35

The framework and set-up in our unconditional lower bound proofs for dis-
tributed algorithms are very different from the ones in the works on conditional
lower bounds for sequential algorithms discussed above. Still, some of our graph
gadgets are inspired by the constructions in those proofs, e.g. [3,5,11,16,36].
Thus, it is quite surprising that our hardness proof for diameter transfers with-
out much difficulty to a hardness proof for radius.

1.2 Model and Basic Definitions

We consider a synchronized network of n nodes represented by an undirected
graph G = (V,E). In each round, each node can send a different message of b
bits to each of its neighbors. This model is known as the CONGEST (b) model,
and as the CONGEST model when b = O(log(n)) [33]. The graph parameters
we consider are formally defined as follows.

Definition 1 (Eccentricity, Diameter and Radius). Let d(u, v) denote the length
of the shortest path between the nodes u and v. The eccentricity e(u) of some node u
is maxv∈V d(u, v). The Diameter (denoted by D) is the maximum distance between
any two nodes in the graph: D = maxu∈V e(u). The Radius (denoted by r) is the
maximum distance from some node to the “center” of the graph: r = minu∈V e(u).

Finally, we define what we mean when we say that a graph is sparse.

Definition 2 (sparse network). A sparse network G = (V,E) is a network with
n nodes and at most O(n log(n)) edges.

Recall, however, that all our results can be obtained for graphs that have a
strictly linear number of Θ(n) edges, at the cost of at most an additional O(log n)
factor in the lower bound.

2 Computing the Diameter

In this section we present lower bounds on the number of rounds needed to
compute the diameter exactly and approximately in sparse networks. First, in
Sect. 2.1 we present a higher lower bound on the number of rounds needed for
any algorithm to compute the exact diameter of a sparse network, and next,
in Sect. 2.2 we show how to modify our sparse construction to achieve a higher
lower bound on the number of rounds needed for any algorithm to compute a
(32 − ε)-approximation to the diameter.

2.1 Exact Diameter

To prove Theorem 1 we describe a graph construction G = (V,E) and a partition
of G into (Ga, Gb), such that one part is simulated by Alice (denoted by Ga),
and the second is simulated by Bob (denoted by Gb). Each player receives an
input string defining some additional edges that will affect the diameter of G. The
proof is organized as follows: in Sect. 2.1 we describe the graph construction, and
next, in Sect. 2.1, we describe the reduction from the Set-Disjointness problem
and deduce Theorem 1.

36 A. Abboud et al.

Fig. 1. Graph Construction (diameter). Some edges are omitted, for clarity.

Graph Construction. Let ij denote the value of the bit j in the binary repre-
sentation of i. The set of nodes V is defined as follows (see also Fig. 1):5 First, it
contains two sets of nodes L = {�i | 0 ≤ i ≤ k − 1} and R = {ri | 0 ≤ i ≤ k − 1},
each of size k. All the nodes in L are connected to an additional node �k, which is
connected to an additional node �k+1. Similarly, all the nodes in R are connected
to an additional node rk, which is connected to an additional node rk+1. The
nodes �k+1 and rk+1 are also connected by an edge.

Furthermore, we add four sets of nodes, which are our bit-gadget: F = {fj |
0 ≤ j ≤ log(k) − 1}, T = {tj | 0 ≤ j ≤ log(k) − 1}, F ′ = {f ′

j | 0 ≤ j ≤
log(k) − 1}, T ′ = {t′j | 0 ≤ j ≤ log(k) − 1}, each of size log(k). We connect the
sets F, T with F ′, T ′ by adding edges between fi and t′i, and between ti and f ′

i ,
for each 0 ≤ i ≤ log(k) − 1. To define the connections between the sets L,R and
the sets F, T, F ′, T ′, we add the following edges: For each �i ∈ L, if ij = 0, we
connect �i to fj , otherwise, we connect �i to tj . Similarly, for each ri ∈ R, if
ij = 0 we connect ri to f ′

j , otherwise, we connect ri to t′j .
To complete the construction we add two additional nodes {a, b}. We connect

a to all the nodes in F ∪ T ∪ {�k, �k+1}, and similarly, we connect b to all the
nodes in F ′ ∪ T ′ ∪ {rk, rk+1}. We also add an edge between the nodes a and b.
The proofs of the following two claims appears in the full version [2].

Claim 2.1. For every i, j ∈ [k − 1] it holds that d(�i, rj) = 3 if i
= j, and
d(�i, rj) = 5 otherwise.

Claim 2.2. For every u, v ∈ V \(L ∪ R) it holds that d(u, v) ≤ 3.

5 Note that for the sake of simplicity, some of the edges are omitted from Fig. 1.

Near-Linear Lower Bounds for Distributed Distance Computations 37

Corollary 1. For every u, v such that u ∈ (Va\L) or v ∈ (Vb\R), it holds that
d(u, v) ≤ 4.

Reduction from Set-Disjointness. To prove Theorem 1, we show a reduction
from the Set-Disjointness problem. Following the construction defined in the
previous section, we define a partition (Ga = (Va, Ea), Gb = (Vb, Eb)):

Va = L ∪ F ∪ T ∪ {�k, �k+1, a}, Ea = {(u, v)|u, v ∈ Va ∧ (u, v) ∈ E}
Vb = R ∪ F ′ ∪ T ′ ∪ {rk, rk+1, b}, Eb = {(u, v)|u, v ∈ Vb ∧ (u, v) ∈ E}

The graph Ga is simulated by Alice and the graph Gb is simulated by Bob, i.e.,
in each round, all the messages that nodes in Ga send to nodes in Gb are sent
by Alice to Bob. Bob forwards these messages to the corresponding nodes in Gb.
All the messages from nodes in Gb to nodes in Ga are sent in the same manner.
Each player receives an input string (Sa and Sb) of k bits. If the bit Sa[i] = 0,
Alice adds an edge between the nodes �i and �k+1. Similarly, if Sb[i] = 0, Bob
adds an edge between the nodes ri and rk+1.

Observation 6. For every u, v ∈ Va, it holds that d(u, v) ≤ 4. Similarly,
d(u, v) ≤ 4 For every u, v ∈ Vb.

This is because d(ua, �k+1) ≤ 2 for any ua ∈ Va, and d(ub, rk+1) ≤ 2 for any
node ub ∈ Vb.

Lemma 1. The diameter of G is at least 5 if and only if the sets of Alice and
Bob are not disjoint.

The proof appears in the full version [2].

Proof of Theorem 1. From Lemma 1, we get that any algorithm for computing
the exact diameter of the graph G can be used to solve the Set-Disjointness prob-
lem. Note that since there are O(log(k)) edges in the cut (Ga, Gb), in each round
Alice and Bob exchange O(log(k) · log(n)) bits. Since k = Ω(n) we deduce that
any algorithm for computing the diameter of a network must spend Ω(n

log2(n)
)

rounds, and since |E| = O(n log(n)) this lower bound holds even for sparse
networks.

2.2 (3
2
− ε)-approximation to the Diameter

In this Section we show how to modify our sparse construction to achieve a
stronger lower bound for (32 − ε)-approximation algorithms.

Graph Construction. The main idea to achieve this lower bound is to stretch
our sparse construction by replacing some edges by paths of length P , an integer
which will be chosen later. Actually, we only apply the following changes to the
construction described in Sect. 2.1 (see also Fig. 2 where P = 3):

38 A. Abboud et al.

Fig. 2. Graph construction, P = 3 (diameter approximation). Some edges are omitted.

1. Remove the nodes a, b and their incident edges.
2. Replace all the edges incident to the nodes �k, rk by paths of length P .
3. Replace all the edges (u, v) such that u ∈ L and v ∈ (F ∪T) by paths of length

P . Similarly, Replace all the edges (u, v) such that u ∈ R and v ∈ (F ′ ∪ T ′)
by paths of length P .

4. Add two additional sets L′ = {�′
i | 0 ≤ i ≤ k − 1}, R′ = {r′

i | 0 ≤ i ≤ k − 1}
each of size k. Connect each �′

i to �i by a path of length P . Similarly, connect
each r′

i to ri by a path of length P .

Furthermore, to simplify our proof, we connect each u ∈ (F ∪ T) to �k+1 by
a path of length P . Similarly, connect each u ∈ (F ′ ∪ T ′) to rk+1 by a path of
length P .

Definition 3. (Y(u,v)) For each u, v ∈ V such that u and v are connected by a
path of length P , denote by Y (u, v) the set of all nodes on the P path between u
and v (without u and v).

The proofs of the following two claims appears in the the full version [2].

Claim 2.3. For every u, v ∈ V \(L′ ∪ R′ ⋃
i∈[k−1] Y (�′

i, �i)
⋃

i∈[k−1] Y (r′
i, ri)) it

holds that d(u, v) is at most 4P + 1.

Claim 2.4. For every i, j ∈ [k − 1] it holds that d(�′
i, r

′
j) = 4P + 1 if i
= j, and

d(�′
i, r

′
j) = 6P + 1 otherwise.

Reduction from Set-Disjointness. Following the construction described in
the previous section, we define a partition (Ga = (Va, Ea), Gb = (Vb, Eb)):

Near-Linear Lower Bounds for Distributed Distance Computations 39

Va =
⋃

i∈[k−1]
j∈[log(k)−1]

ij=0

Y (�i, fj)
⋃

i∈[k−1]
j∈[log(k)−1]

ij=1

Y (�i, tj)
⋃

i∈[k−1]

Y (�′
i, �i)

⋃

i∈[k−1]

Y (�i, �k) ∪ Y (�k, �k+1) ∪ L′ ∪ L ∪ F ∪ T ∪ {�k, �k+1}

Ea ={(u, v)|u, v ∈ Va ∧ (u, v) ∈ E}
Vb =

⋃

i∈[k−1]
j∈[log(k)−1]

ij=0

Y (ri, f
′
j)

⋃

i∈[k]
j∈[log(k)−1]

ij=1

Y (ri, t
′
j)

⋃

i∈[k−1]

Y (r′
i, ri)

⋃

i∈[k−1]

Y (ri, rk) ∪ Y (rk, rk+1) ∪ R′ ∪ R ∪ F ′ ∪ T ′ ∪ {rk, rk+1}

Eb ={(u, v)|u, v ∈ Vb ∧ (u, v) ∈ E}

Each player receives an input string (Sa and Sb) of k bits. If Sa[i] = 0, Alice
adds an edge between the nodes �i and �k+1. Similarly, if Sb[i] = 0, Bob adds an
edge between the nodes ri and rk+1.

Claim 2.5. Let 0 ≤ i ≤ k − 1 be such that Sa[i] = 0 or Sb[i] = 0. Then the
distance from the node �i ∈ L to any node u ∈ (R ∪ {rk+1}) is at most 2P + 2.

The proof appears in the full version [2]. Note that any node in Vb is connected
by a path of length at most P to some node in R∪{rk+1}, and any node in L′ is
connected by a path of length P to some node in L. Thus, combining this with
Claim 2.5 we conclude the following.

Corollary 2. Let 0 ≤ i ≤ k − 1 be such that Sa[i] = 0 or Sb[i] = 0. Then
d(u, vb) ≤ 4P + 2 for any u ∈ {�′

i} ∪ Y (�′
i, �i) and any vb ∈ Vb. Symmetrically,

d(u, va) ≤ 4P + 2 for any u ∈ {r′
i} ∪ Y (r′

i, ri) and any va ∈ Va.

Lemma 2. The Diameter of G is 6P+1 if the two sets of Alice and Bob are not
disjoint, and 4P+2 otherwise.

The proof appears in the full version [2].

Proof of Theorem 2. To complete the proof we need to choose P such that
(32−ε)·(4P +2) < (6P +1), this holds for any P > 1

2ε − 1
2 . Note that k = Ω(n

log(n))
for a constant ε. Thus, we deduce that any algorithm for computing (32 − ε)-
approximation to the diameter requires at least Ω(n

log3(n)
) rounds. Furthermore,

the number of nodes and the number of edges are both equal to Θ(k log(k) · P).
Thus, this lower bound holds even for graphs with linear number of edges.

40 A. Abboud et al.

3 Discussion

We introduce a new technique for reducing the Set-Disjointness communication
problem to distributed computation problems, in a highly efficient way. Our reduc-
tions encode an instance of Disjointness on k bits into a graph on only Õ(k) nodes
and edges with a small “communication-cut” of size O(log k). All previous lower
bound constructions had a cut of poly(k) size (e.g., [18,21,25,26]). This efficiency
allows us to answer several central open questions regarding the round complexity
of distance computation problems in the CONGEST model.

There are several interesting directions for future work. First, there is still a
log n factor gap between the upper and lower bounds on the round complexity of
computing the diameter in the CONGEST model. Due to the fundamentality
of the diameter, we believe that it will be interesting to close this small gap.

Second, while our ideas greatly improve the state of the art lower bounds for
shortest paths problems on unweighted graphs, their potential in the regime of
weighted graphs is yet to be explored.

Finally, following our strong barriers for sparse graphs, it is important to seek
further natural restrictions on the networks that would allow for much faster
distance computation. Planar graphs are an intriguing setting in this context.
s A promising recent work of Ghaffari and Haeupler [22] showed that computing
a minimum spanning tree can be done in Õ(D) rounds in planar graphs, despite
the Ω̃(

√
n) lower bound for general graphs [18]. Can the diameter of a planar

network be computed in Õ(D) rounds? While the graphs in our lower bounds
are highly non-planar, it is interesting to note that they have a relatively small
treewidth of O(log n).

Acknowledgement. We thank Ami Paz for many discussions and helpful suggestions.

References

1. Abboud, A., Backurs, A., Hansen, T.D., Williams, V.V., Zamir, O.: Subtree iso-
morphism revisited. In: Proceedings of the Twenty-Seventh Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA (2016)

2. Abboud, A., Censor-Hillel, K., Khoury, S.: Near-linear lower bounds for distributed
distance computations, even in sparse networks. CoRR, abs/1605.05109 (2016)

3. Abboud, A., Grandoni, F., Williams, V.V.: Subcubic equivalences between graph
centrality problems, APSP and diameter. In: Proceedings of the Twenty-Sixth
Annual ACM-SIAM Symposium on Discrete Algorithms, SODA (2015)

4. Abboud, A., Williams, V.V.: Popular conjectures imply strong lower bounds for
dynamic problems. In: 55th IEEE Annual Symposium on Foundations of Computer
Science, FOCS (2014)

5. Abboud, A., Williams, V.V., Wang, J.R.: Approximation and fixed parameter sub-
quadratic algorithms for radius and diameter in sparse graphs. In: Proceedings
of the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA (2016)

Near-Linear Lower Bounds for Distributed Distance Computations 41

6. Abboud, A., Williams, V.V., Weimann, O.: Consequences of faster alignment of
sequences. In: Esparza, J., Fraigniaud, P., Husfeldt, T., Koutsoupias, E. (eds.)
ICALP 2014. LNCS, vol. 8572, pp. 39–51. Springer, Heidelberg (2014)

7. Abboud, A., Williams, V.V., Yu, H.: Matching triangles and basing hardness on an
extremely popular conjecture. In: Proceedings of the Forty-Seventh Annual ACM
on Symposium on Theory of Computing, STOC (2015)

8. Aingworth, D., Chekuri, C., Indyk, P., Motwani, R.: Fast estimation of diameter
and shortest paths (without matrix multiplication). SIAM J. Comput. 28(4) (1999)

9. Backurs, A., Indyk, P.: Edit distance cannot be computed in strongly subquadratic
time (unless SETH is false). In: Proceedings of the Forty-Seventh Annual ACM on
Symposium on Theory of Computing, STOC (2015)

10. Borassi, M., Crescenzi, P., Habib, M.: Into the square - on the complexity of
quadratic-time solvable problems. CoRR, abs/1407.4972 (2014)

11. Cairo, M., Grossi, R., Rizzi, R.: New bounds for approximating extremal distances
in undirected graphs. In: Proceedings of the Twenty-Seventh Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA (2016)

12. Carmosino, M.L., Gao, J., Impagliazzo, R., Mihajlin, I., Paturi, R., Schneider, S.:
Nondeterministic extensions of the strong exponential time hypothesis and con-
sequences for non-reducibility. In: Proceedings of the 2016 ACM Conference on
Innovations in Theoretical Computer Science (2016)

13. Censor-Hillel, K., Kaski, P., Korhonen, J.H., Lenzen, C., Paz, A., Suomela, J.:
Algebraic methods in the congested clique. In: Proceedings of the 2015 ACM Sym-
posium on Principles of Distributed Computing, PODC (2015)

14. Censor-Hillel, K., Kavitha, T., Paz, A., Yehudayoff, A.: Distributed construction
of purely additive spanners. Manuscript (2016)

15. Chan, T.M., Williams, R.: Deterministic APSP, orthogonal vectors, and more:
quickly derandomizing Razborov-Smolensky. In: Proceedings of the Twenty-
Seventh Annual ACM-SIAM Symposium on Discrete Algorithms, SODA (2016)

16. Chechik, S., Larkin, D.H., Roditty, L., Schoenebeck, G., Tarjan, R.E., Williams,
V.V.: Better approximation algorithms for the graph diameter. In: Proceedings of
the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA
(2014)

17. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms,
3rd edn. The MIT Press, Cambridge (2009)

18. Das Sarma, A., Holzer, S., Kor, L., Korman, A., Nanongkai, D., Pandurangan, G.,
Peleg, D., Wattenhofer, R.: Distributed verification and hardness of distributed
approximation. SIAM J. Comput. 41(5) (2012)

19. Drucker, A., Kuhn, F., Oshman, R.: On the power of the congested clique model.
In: ACM Symposium on Principles of Distributed Computing, PODC (2014)

20. Elkin, M.: Unconditional lower bounds on the time-approximation tradeoffs for the
distributed minimum spanning tree problem. In: Proceedings of the 36th Annual
ACM Symposium on Theory of Computing (2004)

21. Frischknecht, S., Holzer, S., Wattenhofer, R.: Networks cannot compute their diam-
eter in sublinear time. In: Proceedings of the Twenty-Third Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA (2012)

22. Ghaffari, M., Haeupler, B.: Distributed algorithms for planar networks II: low-
congestion shortcuts, mst, and min-cut. In: Proceedings of the Twenty-Seventh
Annual ACM-SIAM Symposium on Discrete Algorithms, SODA (2016)

23. Henzinger, M., Krinninger, S., Nanongkai, D.: An almost-tight distributed algo-
rithm for computing single-source shortest paths. CoRR, abs/1504.07056 (2015)

42 A. Abboud et al.

24. Holzer, S., Peleg, D., Roditty, L., Wattenhofer, R.: Distributed 3/2-approximation
of the diameter. In: Distributed Computing - 28th International Symposium, Pro-
ceedings, DISC (2014)

25. Holzer, S., Pinsker, N.: Approximation of distances and shortest paths in the broad-
cast congest clique. CoRR, abs/1412.3445 (2014)

26. Holzer, S., Wattenhofer, R.: Optimal distributed all pairs shortest paths and appli-
cations. In: ACM Symposium on Principles of Distributed Computing, PODC
(2012)

27. Kushilevitz, E., Nisan, N.: Communication Complexity. Cambridge University
Press, New York (1997)

28. Lenzen, C., Peleg, D.: Efficient distributed source detection with limited band-
width. In: ACM Symposium on Principles of Distributed Computing, PODC (2013)

29. Leskovec, J., Krevl, A.: SNAP Datasets: stanford large network dataset collection
(2014)

30. Meusel, R., Vigna, S., Lehmberg, O., Bizer, C.: The graph structure in the web -
analyzed on different aggregation levels. J. Web Sci. 1(1) (2015)

31. Nanongkai, D.: Distributed approximation algorithms for weighted shortest paths.
In: Symposium on Theory of Computing, STOC (2014)

32. Nanongkai, D., Sarma, A.D., Pandurangan, G.: A tight unconditional lower bound
on distributed randomwalk computation. In: Proceedings of the 30th Annual ACM
Symposium on Principles of Distributed Computing, PODC (2011)

33. Peleg, D.: Distributed computing: a locality-sensitive approach. In: Society for
Industrial Mathematics (2000)

34. Peleg, D., Roditty, L., Tal, E.: Distributed algorithms for network diameter and
girth. In: Czumaj, A., Mehlhorn, K., Pitts, A., Wattenhofer, R. (eds.) ICALP 2012,
Part II. LNCS, vol. 7392, pp. 660–672. Springer, Heidelberg (2012)

35. Peleg, D., Rubinovich, V.: A near-tight lower bound on the time complexity of
distributed MST construction. In: 40th Annual Symposium on Foundations of
Computer Science, FOCS (1999)

36. Roditty, L., Williams, V.V.: Fast approximation algorithms for the diameter and
radius of sparse graphs. In: Symposium on Theory of Computing Conference,
STOC (2013)

37. Williams, R.: Faster all-pairs shortest paths via circuit complexity. In: Symposium
on Theory of Computing, STOC (2014)

38. Williams, V.V., Williams, R.: Subcubic equivalences between path, matrix and
triangle problems. In: 51th Annual IEEE Symposium on Foundations of Computer
Science, FOCS (2010)

39. Yao, A.C.: Some complexity questions related to distributive computing (prelimi-
nary report). In: Proceedings of the 11th Annual ACM Symposium on Theory of
Computing, April 1979

Fast Distributed Algorithms for Testing Graph
Properties

Keren Censor-Hillel, Eldar Fischer, Gregory Schwartzman(B),
and Yadu Vasudev

Department of Computer Science, Technion – Israel Institute of Technology,
Haifa, Israel

{ckeren,eldar,gregory}@cs.technion.ac.il, yaduvasudev@gmail.com

Abstract. We provide a thorough study of distributed property testing
– producing algorithms for the approximation problems of property test-
ing in the CONGEST model. In particular, for the so-called dense graph
testing model we emulate sequential tests for nearly all graph proper-
ties having 1-sided tests, while in the general and sparse models we
obtain faster tests for triangle-freeness, cycle-freeness and bipartiteness,
respectively. In addition, we show a logarithmic lower bound for testing
bipartiteness and cycle-freeness, which holds even in the LOCAL model.

In most cases, aided by parallelism, the distributed algorithms have
a much shorter running time as compared to their counterparts from
the sequential querying model of traditional property testing. The sim-
plest property testing algorithms allow a relatively smooth transitioning
to the distributed model. For the more complex tasks we develop new
machinery that may be of independent interest.

1 Introduction

The performance of many distributed algorithms naturally depends on properties
of the underlying network graph. Therefore, an inherent goal is to check whether
the graph, or some given subgraph, has certain properties. However, in some
cases this is known to be hard, such as in the CONGEST model [29]. In this
model, computation proceeds in synchronous rounds, in each of which every
vertex can send an O(log n)-bit message to each of its neighbors. Lower bounds
for the number of rounds of type Ω̃(

√
n + D) are known for verifying many

global graph properties, where n is the number of vertices in the network, D is
its diameter and Ω̃ hides polylogarithmic factors (see, e.g. Das-Sarma et al. [34]).

To overcome such difficulties, we adopt the relaxation used in graph property
testing, as first defined in [17,19], to the distributed setting. That is, rather than
aiming for an exact answer to the question of whether the graph G satisfies a
certain property P , we settle for distinguishing the case of satisfying P from the
case of being ε-far from it, for an appropriate measure of being far.

Apart from its theoretical interest, this relaxation is motivated by the com-
mon scenario of having distributed algorithms for some tasks that perform better

Supported in part by the Israel Science Foundation (grant 1696/14).

c© Springer-Verlag Berlin Heidelberg 2016
C. Gavoille and D. Ilcinkas (Eds.): DISC 2016, LNCS 9888, pp. 43–56, 2016.
DOI: 10.1007/978-3-662-53426-7 4

44 K. Censor-Hillel et al.

given a certain property of the network topology, or given that the graph almost
satisfies that property. For example, Hirvonen et al. [23] show an algorithm for
finding a large cut in triangle-free graphs (with additional constraints), and for
finding an (1 − ε)-approximation if at most an ε fraction of all edges are part
of a triangle. Similarly, Pettie and Su [30] provide fast algorithms for coloring
triangle-free graphs.

We construct fast distributed algorithms for testing various graph properties.
An important byproduct of this study is a toolbox that we believe will be useful
in other settings as well.

1.1 Our Contributions

We provide a rigorous study of property testing methods in the realm of dis-
tributed computing under the CONGEST model. We construct 1-sided error
distributed ε-tests, in which if the graph satisfies the property then all vertices
output accept, and if it is ε-far from satisfying the property then at least one
vertex outputs reject with probability at least 2/3. Using the standard amplifi-
cation method of invoking such a test O(log n) times and having a vertex output
reject if there is at least one invocation in which it should output reject, gives
rejection with higher probability at the price of a multiplicative O(log n) factor
for the number of rounds.

The definition of a graph being ε-far from satisfying a property is roughly
one of the following (see the preliminaries section in the full version, [8], for
precise definitions): (1) Changing any εn2 entries in the adjacency matrix does
not give a graph that satisfies the property (dense model), or (2) changing any
ε ·max{n,m} entries in the adjacency matrix does not give a graph that satisfies
the property, where m is the number of edges (general model). A particular case
here is when the degrees are bounded by some constant d, and any resulting
graph must comply with this restriction as well (sparse model).

In a sequential ε-test, access to the input is provided by queries, whose type
depends on the model. In the dense model these are asking whether two vertices
v, u are neighbors, and in the general and sparse models these can be either
asking what the degree of a vertex v is, or asking what the i-th neighbor of v
is (the ordering of neighbors is arbitrary). While a sequential ε-test can touch
only a small handful of vertices with its queries, in a distributed test the lack
of ability to communicate over large distances is offset by having all n vertices
operating in parallel.

Our first contribution is a general scheme for a near-complete emulation
in the distributed context of ε-tests originating from the dense graph model
(Sect. 2). This makes use of the fact that in the dense model all (sequential)
testing algorithms can be made non-adaptive, which roughly means that queries
do not depend on responses to previous queries (see the preliminaries section
in the full version for definition). In fact, such tests can be made to have a
very simple structure, allowing the vertices in the distributed model to “band
together” for an emulation of the test. There is only one additional technical
condition (which we define in Sect. 2), since in the distributed model we cannot

Fast Distributed Algorithms for Testing Graph Properties 45

handle properties whose counter-examples can be “split” to disjoint graphs. For
example, the distributed model cannot hope to handle the property of the graph
having no disjoint union of two triangles, a property for which there exists a test
in the dense model.

Theorem 1. Any ε-test in the dense graph model for a non-disjointed property
that makes q queries can be converted to an O(q2)-round distributed ε-test.

We next move away from the dense graph model to the sparse and general
models, that are sometimes considered to be more realistic. In the general model,
there exists no test for the property of containing no triangle that makes a num-
ber of queries independent of the number of graph vertices [2]. Here the distrib-
uted model can do better, because the reason for this deficiency is addressed by
having all vertices operate concurrently. In Sect. 3 we adapt the interim lemmas
used in the best testing algorithm constructed in [2], and construct a distributed
algorithm whose number of rounds is independent of n.

Theorem 2. There is a distributed ε-test in the general graph model for triangle-
freeness, that requires O(ε−2) rounds.

The sparse and general models inherently require adaptive property testing
algorithms, since there is no other way to trace a path from a given vertex
forward, or follow its neighborhood. Testing triangle-freeness sequentially uses
adaptivity only to a small degree. However, other problems in the sparse and
general models, such as the one we explore next, have a high degree of adaptiv-
ity built into their sequential algorithms, and we need to take special care for
emulating it in the distributed setting.

In the sparse model (degrees bounded by a constant d), we adapt ideas from
the bipartiteness testing algorithm of [18], in which we search for odd-length
cycles. Here again the performance of a distributed algorithm surpasses that of
the test (a number of rounds polylogarithmic in n vs. a number of queries which
is Ω(

√
n) – a lower bound that is given in [19]). The following is proved in Sect. 4.

Theorem 3. There is a distributed ε-test in the bounded degree graph model for
the property of being bipartite, that requires O(poly(ε−1 log(nε−1))) rounds.

In the course of proving Theorem 3 we develop a method that we consider to
be of independent interest1. The algorithm performs 2n random walks concur-
rently (two starting from each vertex). The parallel execution of random walks
despite the congestion restriction is achieved by making sure that the walks have
a uniform stationary distribution, and then showing that congestion is “close to
average”, which for the uniform stationary distribution is constant.

In Sect. 5 we show a fast test for cycle-freeness. This makes use of a com-
binatorial lemma that we prove, about cycles that remain in the graph after
removing edges independently with probability ε/2. The following summarizes
our result for testing cycle-freeness.
1 This was recently independently and concurrently devised in [16] for a different use.

46 K. Censor-Hillel et al.

Theorem 4. There is a distributed ε-test in the general graph model for cycle-
freeness, that requires O(log n/ε) rounds.

We also prove lower bounds for testing bipartiteness and cycle-freeness that
match the upper bound for the latter property. Roughly speaking, these are
obtained by using the probabilistic method with alterations to construct graphs
which are far from being bipartite or cycle-free, but all of their cycles are of
length that is at least logarithmic. This technique bears some similarity to the
classic result by Erdös [12], which showed the existence of graphs with large
girth and large chromatic number. The following are given in Sect. 6.

Theorem 5. Any distributed 1/100-test in the bounded degree or general graph
model for the property of being bipartite requiresΩ(log n) rounds of communication.

Theorem 6. Any distributed 1/100-test in the bounded degree graph or general
model for cycle-freeness requires Ω(log n) rounds of communication.

Roadmap: The paper is organized as follows. The remainder of this section con-
sists of related work and historical background on property testing. The emula-
tion of sequential tests for the dense model is given in Sect. 2. In Sect. 3 we give
our distributed test for triangle-freeness. In Sect. 4 we provide a distributed test
for bipartiteness, along with our new method of executing many random walks,
and in Sect. 5 we give our test for cycle-freeness. Section 6 gives our logarithmic
lower bounds for testing bipartiteness and cycle-freeness. We conclude with a
short discussion in Sect. 7.

1.2 Related Work

The only previous work that directly relates to our distributed setting is due to
Brakerski and Patt-Shamir [7]. They show a tolerant property testing algorithm
for finding large (linear in size) near-cliques in the graph. An ε-near clique is
a set of vertices for which all but an ε-fraction of the pairs of vertices have an
edge between them. The algorithm is tolerant, in the sense that it finds a linear
near-clique if there exists a linear ε3-near clique. That is, the testing algorithm
considers two thresholds of being close to having the property (in this case –
containing a linear size clique). We are unaware of any other work on property
testing in this distributed setting.

Testing in a different distributed setting was considered in Arfaoui et al. [4].
They study testing for cycle-freeness, in a setting where each vertex may collect
information of its entire neighborhood up to some distance, and send a short
string of bits to a central authority who decides whether the graph is cycle-free.

Related to having information being sent to, or received by, a central author-
ity, is the concept of proof-labelling schemes, introduced by Korman et al. [26]
(for extensions see, e.g., Baruch et al. [5]). In this setting, each vertex is given
some external label, and by exchanging labels the vertices need to decide whether
a given property of the graph holds. This is different from our setting in which no
information other than vertex IDs is available. Another setting that is related to

Fast Distributed Algorithms for Testing Graph Properties 47

proof-labelling schemes, but differs from our model, is the prover-verifier model
of Foerster et al. [14].

Sequential property testing has the goal of computing without processing
the entire input. The wider family of local computation algorithms (LCA) is
known to have connections with distributed computing, as shown by Parnas and
Ron [28] and later used by others. A recent study by Göös et al. [22] proves that
under some conditions, the fact that a centralized algorithm can query distant
vertices does not help with speeding up computation. However, they consider
the LOCAL model, and their results apply to certain properties that are not
influenced by distances.

Finding induced subgraphs is a crucial task and has been studied in several
different distributed models (see, e.g., [9–11,25]). Notice that for finding sub-
graphs, having many instances of the desired subgraph can help speedup the
computation, as in [10]. This is in contrast to algorithms that perform faster if
there are no or only few instances, as explained above, which is why we test for,
e.g., the property of being triangle-free, rather for the property of containing
triangles. (Notice that these are not the same, and in fact every graph with 3/ε
or more vertices is ε-close to having a triangle.)

Parallelizing many random walks was addressed in [1], where the question of
graph covering via random walks is discussed. It is shown there that for certain
families of graphs there is a substantial speedup in the time it takes for k walks
starting from the same vertex to cover the graph, as compared to a single walk.
No edge congestion constraints are taken into account. In [35], it is shown how to
perform, under congestion, a single random walk of length L in Õ(

√
LD) rounds,

and k random walks in Õ(
√

kLD + k) rounds, where D is the diameter of the
graph. Our method has no dependence on the diameter, allowing us to perform
a multitude of short walks much faster.

1.3 Historical Overview

The first papers to consider the question of property testing were [6] and [33].
The original motivations for defining property testing were its connection to
some Computerized Learning models, and the ability to leverage some prop-
erties to construct Probabilistically Checkable Proofs (PCPs – this is related
to property testing through the areas of Locally Testable Codes and Locally
Decodable Codes, LTCs and LDCs). Other motivations since then have entered
the fray, and foremost among them are sublinear-time algorithms, and other
big-data considerations. Since virtually no property can be decidable without
reading the entire input, property testing introduces a notion of the allowable
approximation to the original problem. In general, the algorithm has to distin-
guish inputs satisfying the property, from inputs that are ε-far from it. For more
information on the general scheme of “classical” property testing, consult the
surveys [13,20,31].

The older of the graph testing models discussed here is the dense model,
as defined in the seminal work of Goldreich, Goldwasser and Ron [17]. The
dense graph model has historically kick-started combinatorial property testing

48 K. Censor-Hillel et al.

in earnest, but it has some shortcomings. Its main one is the distance function,
which makes sense only if we consider graphs having many edges (hence the
name “dense model”) – any graph with o(n2) edges is indistinguishable in this
model from an empty graph.

The stricter and at times more plausible distance function is one which is
relative to the actual number of edges, rather than the maximum

(
n
2

)
. The general

model was defined in [2], while the sparse model was defined already in [19]. The
main difference between the sparse and the general graph models is that in the
former there is also a guaranteed upper bound d on the degrees of the vertices,
which is given to the algorithm in advance (the query complexity may then
depend on d, either explicitly, or more commonly implicitly by considering d to
be a constant).

2 Distributed Emulation of Sequential Tests in the Dense
Model

We begin by showing that under a certain assumption of being non-disjointed,
which we define below, a property P that has a sequential test in the dense model
that requires q queries can be tested in the distributed setting within O(q2)
rounds. We prove this by constructing an emulation that translates sequential
tests to distributed ones. We first introduce a definition of a witness graph and
then adapt [21, Theorem 2.2], restricted to 1-sided error tests, to our terminology.

Definition 1. Let P be a property of graphs with n vertices. Let G′ be a graph
with k < n vertices. We say that G′ is a witness against P, if it is not an induced
subgraph of any graph that satisfies P .

Notice that if G′ has an induced subgraph H that is a witness against P , then by
the above definition G′ is also a witness against P . The work of [21] transforms
tests of graphs in the dense model to a canonical form where the query scheme is
based on vertex selection. This is useful in particular for the distributed model,
where the computational work is essentially based in the vertices. We require
the following special case for 1-sided error tests.

Lemma 1 ([21, Theorem 2.2]). Let P be a property of graphs with n vertices. If
there exists a 1-sided error ε-test for P with query complexity q(n, ε), then there
exists a 1-sided error ε-test for P that uniformly selects a set of q′ = 2q(n, ε)
vertices, and accepts iff the induced subgraph is not a witness against P .

Our emulation leverages Lemma 1 under an assumption on the property P .

Definition 2. We say that P is a non-disjointed property if for every graph G
that does not satisfy P and an induced subgraph G′ of G such that G′ is a witness
against P , G′ has some connected component which is also a witness against P .
We call such components witness components.

We are now ready to formally state our main theorem for this section.

Fast Distributed Algorithms for Testing Graph Properties 49

Theorem 1. Any ε-test in the dense graph model for a non-disjointed property
that makes q queries can be converted to an O(q2)-round distributed ε-test.

We claim that not satisfying a non-disjointed property cannot rely on sub-
graphs that are not connected, which is exactly what we need to forbid in a
distributed setting. Formally, the property P is a non-disjointed property if and
only if all minimal witnesses that are induced subgraphs of G are connected.
Here minimal refers to the standard terminology, which means that no proper
induced subgraph is a witness against P .

Next, we give the distributed test (its pseudo-code form appears in the full
version). The test has an outer loop in which each vertex picks itself with prob-
ability 5q/n, collects its neighborhood of a certain size of edges between picked
vertices in an inner loop, and rejects if it identifies a witness against P . The
outer loop repeats two times because not only does the sequential test have an
error probability, but also with some small probability we may randomly pick
too many or not enough vertices in order to emulate it. Repeating the main loop
twice reduces the error probability back to below 1/3. In the inner loop, each
vertex collects its neighborhood of picked vertices and checks if its connected
component is a witness against P . To limit communications this is done only
for components of picked vertices that are sufficiently small: if a vertex detects
that it is part of a component with too many edges then it accepts and does not
participate until the next iteration of the outer loop.

To analyze the algorithm, we begin by proving (see full version) that there
is a constant probability of at least 2/3 for the number of picked vertices to be
sufficient and not too large, namely, between q and 10q. Now, we can use the
guarantees of the sequential test to obtain the guarantees of our algorithm.

Lemma 2. Let P be a non-disjointed graph property. If G satisfies P then all
vertices output accept in the emulation algorithm. If G is ε-far from satisfying
P , then with probability at least 2/3 there exists a vertex that outputs reject.

We now address the round complexity. Each vertex only sends and receives
information from its q-neighborhood about edges between the chosen vertices.
If too many vertices are chosen we detect this and accept. Otherwise we only
communicate the chosen vertices and their edges, which requires O(q2) rounds
using standard pipelining2. Together with Lemma 2, this proves Theorem 1.

Applications: k-colorability and perfect graphs. We provide some exam-
ples of usage of Theorem 1. A result by Alon and Shapira [3] states that all graph
properties closed under induced subgraphs are testable in a number of queries
that depends only on ε−1. We note that, except for certain specific properties for
which there are ad-hoc proofs (such as k-colorability), the dependence is usually
a tower function in ε−1 or worse (asymptotically larger).

2 Pipelining means that each vertex has a buffer for each edge, which holds the infor-
mation (edges between chosen vertices, in our case) it needs to send over that edge.
The vertex sends the pieces of information one after the other.

50 K. Censor-Hillel et al.

From this, together with Lemma 1 and Theorem 1, we deduce that if P is a
non-disjointed property closed under induced subgraphs, then it is testable, for
every fixed ε, in a constant number of rounds. Our emulation implies a distrib-
uted 1-sided error ε-test for k-colorability that requires O(poly(kε−1)) rounds,
and a distributed 1-sided error ε-test for being a perfect graph3 whose running
time depends only on ε (see full version for complete details).

3 Distributed Test for Triangle-Freeness

In this section we show a distributed ε-test for triangle-freeness. Notice that
since triangle-freeness is a non-disjointed property, Theorem 1 gives a distributed
ε-test for triangle-freeness under the dense model with a number of rounds that
is O(q2), where q is the number of queries required for a sequential ε-test for
triangle-freeness. However, for triangle-freeness, the known number of queries is
a tower function in log(1/ε) [15].

Here we leverage the inherent parallelism that we can obtain when checking
the neighbors of a vertex, and show a test for triangle-freeness that requires
only O(ε−2) rounds. Importantly, our algorithm works not only for the dense
graph model, but for the general graph model (where distances are relative to
the actual number of edges), which subsumes it. In the sequential setting, a test
for triangle-freeness in the general model requires a number of queries that is
some constant power of n by [2]. Our proof, which appears in the full version,
actually follows the groundwork laid in [2] for the general graph model – their
algorithm picks a vertex and checks two of its neighbors for being connected,
while we perform the check for all vertices in parallel.

Theorem 2. There is a distributed ε-test in the general graph model for triangle-
freeness, that requires O(ε−2) rounds.

4 Distributed Bipartiteness Test for Bounded Degree
Graphs

In this section we show a distributed ε-test for being bipartite for graphs with
degrees bounded by d. Our test builds upon the sequential test of [18] and, as in
the case of triangle freeness, takes advantage of the ability to parallelize queries.
While the number of queries of the sequential test is Ω(

√
n) [19], the number

of rounds in the distributed test is only polylogarithmic in n and polynomial in
ε−1. As in [18], we assume that d is a constant, and omit it from our expressions
(it is implicit in the O notation for L below).

Let us first outline the algorithm of [18], since our distributed test borrows
from its framework and our analysis is in part derived from it. The sequential
test basically tries to detect odd cycles. It consists of T iterations, in each of

3 A graph G is said to be perfect if for every induced subgraph G′ of G, the chromatic
number of G′ equals the size of the largest clique in G′.

Fast Distributed Algorithms for Testing Graph Properties 51

which a vertex s is selected uniformly at random and K random walks of length
L are performed starting from the source s. If, in any iteration with a chosen
source s, there is a vertex v which is reached by an even prefix of a random
walk and an odd prefix of a random walk (possibly the same walk), then the
algorithm rejects, as this indicates the existence of an odd cycle. Otherwise,
the algorithm accepts. To obtain an ε-test the parameters are chosen to be
T = O(ε−1), K = O(ε−4

√
n log1/2 (nε−1)), and L = O(ε−8 log6 n).

The main approach of our distributed test is similar, except that a key ingre-
dient is that we can afford to perform much fewer random walks from every
vertex, namely O(poly(ε−1 log nε−1)). This is because we can run random walks
in parallel originating from all vertices at once. However, a crucial challenge that
we need to address is that several random walks may collide on an edge, violating
its congestion bound. To address this issue, our central observation is that lazy
random walks (chosen to have a uniform stationary distribution) provide for a
very low probability of having too many of these collisions at once. The main
part of the analysis is in showing that with high probability there will never be
too many walks concurrently in the same vertex, so we can comply with the
congestion bound. We begin by formally defining the lazy random walks we use.

Definition 3. A lazy random walk over a graph G with degree bound d is a
random walk, that is, a (memory-less) sequence of random variables Y1, Y2, . . .
taking values from the vertex set V , where the transition probability Pr[Yk =
v|Yk−1 = u] is 1

2d if uv is an edge of G, 1−deg(u)
2d if u = v, and 0 otherwise.

The stationary distribution for the lazy random walk of Definition 3 is uni-
form [32, Section 8]. Next, we describe a procedure to handle one iteration of
moving the random walks (Algorithm 1). Our distributed test for bipartiteness
(its pseudo-code form is in the full version) initiates only 2 lazy random walks
from every vertex concurrently, and searches for odd cycles that can be detected
if an even prefix and an odd prefix of 2 such random walks collide at some vertex.

It is quite immediate that Algorithm 1 takes O(ξ) rounds (the value of ξ
is given below). Our main result here is that using L iterations of Algorithm 1
indeed provides a distributed ε-test for bipartiteness.

Theorem 3. There is a distributed ε-test in the bounded degree graph model for
the property of being bipartite, that requires O(poly(ε−1 log(nε−1))) rounds.

The number of rounds is immediate from the algorithm – it is dominated
by the L calls to Algorithm 1, making a total of O(ξL) rounds, which is indeed
O(poly(ε−1 log(nε−1))). To prove the rest of Theorem 3 we need some notation,
and a lemma from [18] that bounds from below the probabilities for detecting
odd cycles if G is ε-far from being bipartite.

Given a source s, if there is a vertex v which is reached by an even prefix of
a random walk wi from s and an odd prefix of a random walk wj from s, we
say that walks wi and wj detect a violation. Let ps(k, �) be the probability that,
out of k random walks of length � starting from s, there are two that detect
a violation. Using this notation, ps(K,L) is the probability that the sequential

52 K. Censor-Hillel et al.

Algorithm 1. Move random walks once with input ξ

Variables: Wv walks residing in v (multiset), Hv history of walks through v
Input: ξ, the maximum congestion per vertex allowed
each walk is characterized by (i, u) where i is the number of actual

moves and u is the origin vertex

1 for each vertex v simultaneously
2 if |Wv| ≤ ξ then # give up if exceeded the maximum allowed

3 for every (i, u) in Wv do
4 draw next destination w (according to the lazy walk scheme)
5 if w �= v then # walk exits v
6 send (i + 1, u) to w
7 remove (i, u) from Wv

8 wait until the maximum time for all other vertices to process up to ξ walks
9 add the walks received by v to Wv and Hv # walks entering v

algorithm outlined in the beginning rejects in an iteration in which s is chosen.
Since we are only interested in walks of length L, we denote ps(k) = ps(k, L).
A good vertex is a vertex for which this probability is bounded as follows.

We say a vertex s is called good if ps(K) ≥ 1/10. In [18] it was proved that if
G is ε-far from being bipartite then at least an ε/16-fraction of the vertices are
good. In contrast to [18], we do not perform K random walks from every vertex
in each iteration, but rather only 2. Hence, what we need for our analysis is a
bound on ps(2). To this end, we use K as a parameter, and express ps(2) in terms
of K and ps(K), by showing that for every vertex s, ps(2) ≥ 2ps(K)/K(K − 1).

Using this relationship between ps(2), K and ps(K), we prove that our algo-
rithm is an ε-test. First we prove this for the random walks themselves, ignoring
the possibility that Algorithm 1 will skip moving random walks due to its con-
dition in Line 2.

Lemma 3. If G is ε-far from being bipartite, and we perform η iterations of
starting 2 random walks of length L from every vertex, the probability that no
violation is detected is bounded by 1/4.

As explained earlier, the main hurdle on the road to prove Theorem 3 is in
proving that the allowed congestion will not be exceeded. We prove the following
general claim about the probability for k lazy random walks of length � from each
vertex to exceed a maximum congestion factor of ξ walks allowed in each vertex
at the beginning of each iteration. Here, an iteration is a sequence of rounds in
which all walks are advanced by one step (whether or not they actually switch
vertices).

Lemma 4. With probability at least 1 − 1/n, running k lazy random walks of
length � originating from every vertex will not exceed the maximum congestion
factor of ξ = γ + k = 3(2 ln n + ln �) + k walks allowed in each vertex at the
beginning of each iteration, if γ > k.

Fast Distributed Algorithms for Testing Graph Properties 53

If G is bipartite then all vertices output accept in our bipartiteness test,
because there are no odd cycles and thus no violation detecting walks. If G is ε-far
from bipartite, we use Lemma 3, in conjunction with Lemma 4 with parameters
k = 2, � = L and γ = 3(2 ln n+ln L) as used by our bipartiteness test. By a union
bound the probability to accept G will be bounded by 1/4+1/n < 1/3 (assuming
n > 12), providing for the required bound on the rejection probability. This,
with the communication complexity analysis of our distributed bipartiteness
test, gives Theorem 3.

5 Distributed Test for Cycle-Freeness

In this section, we give a distributed algorithm to test if a graph G with m
edges is cycle-free or if at least εm edges have to be removed to make it so.
Intuitively, in order to search for cycles, one can run a breadth-first search (BFS)
and have a vertex output reject if two different paths reach it. The downside
of this exact solution is that its running time depends on the diameter of the
graph. To overcome this, a basic approach would be to run a BFS from each
vertex of the graph, but for shorter distances. However, running multiple BFSs
simultaneously is expensive, due to the congestion on the edges. Instead, we use
a simple prioritization rule that drops BFS constructions with lower priority,
which makes sure that one BFS remains alive.4

Our technique consists of three parts. First, we make the graph G sparser,
by removing each of its edges independently with probability ε/2. We denote the
sampled graph by G′ and prove that if G is far from being cycle-free then so is
G′, and in particular, G′ contains a cycle.

Then, we run a partial BFS over G′ from each vertex, while prioritizing by
ids: each vertex keeps only the BFS that originates in the vertex with the largest
id and drops the rest of the BFSs. The length of this procedure is according to
a threshold T = 20 log n/ε. This gives detection of a cycle that is contained in
a component of G′ with a low diameter of up to T , if such a cycle exists, since
a surviving BFS covers the component. Such a cycle is also a cycle in G. If no
such cycle exists in G′, then G′ has some component with diameter larger than
T . For large components, we take each surviving BFS that reached some vertex
v at a certain distance �, and from v we run a new partial BFS in the original
graph G. These BFSs are again prioritized, this time according to the distance
�. Our main tool is proving that with high probability, if there is a shortest path
in G′ of length T/2 between two vertices, then there is a cycle in G between
them of length at most T . This allows our BFSs on G to find such a cycle. We
start with the following combinatorial lemma that shows the above claim.
4 A more involved analysis of multiple prioritized BFS executions was used in [24],

allowing all BFS executions to fully finish in a short time without too much delay
due to congestion. Since we require a much weaker guarantee, we can avoid the
strong full-fledged prioritization algorithm of [24] and settle for a simple rule that
keeps one BFS tree alive. Also, the multiple BFS construction of [27] does not fit
our demands as it may not reach all desired vertices within the required distance, in
case there are many vertices that are closer.

54 K. Censor-Hillel et al.

Lemma 5. Given a graph G, let G′ be obtained by independently deleting each
edge in G with probability ε

2 . Then, with probability at least 1 − 1
n3 , every vertex

v ∈ G′ that has a vertex w ∈ G′ at a distance 10 log n
ε , has a closed path passing

through it in G, that contains a simple cycle, of length at most 20 log n
ε .

Next, we prove that indeed there is a high probability, of at least 1−e−ε2m/32,
that G′ contains a cycle if G is ε-far from being cycle-free.

In the full version we provide pseudocode for both our prioritized multiple
BFS and an ε-test for cycle freeness.

Theorem 4. Our algorithm is a distributed ε-test in the general graph model
for the property of being cycle-free, that requires O(log n/ε) rounds.

6 Lower Bounds

In this section, we prove that any distributed algorithm for ε-testing bipartiteness
or cycle-freeness in bounded-degree graphs requires Ω(log n) rounds of commu-
nication. This applies even to the less restricted LOCAL model, which does not
limit the size of the messages. We construct bounded-degree graphs that are ε-far
from being bipartite, such that all cycles are of length Ω(log n). We argue that
any distributed algorithm that runs in O(log n) rounds does not detect a wit-
ness for non-bipartiteness. We also show that the same construction proves that
every distributed algorithm for ε-testing cycle-freeness requires Ω(log n) rounds
of communication. Formally, we prove the following theorem.

Theorem 5. Any distributed 1/100-test in the bounded degree or general graph
model for the property of being bipartite requires Ω(log n) rounds of communica-
tion.

To prove Theorem 5, we show the existence of a graph G′ that is far from
being bipartite, but all of its cycles are at least of logarithmic length. Since in
T rounds of a distributed algorithm, the output of every vertex cannot depend
on vertices that are at distance greater than T from it, no vertex can detect a
cycle in G′ in less than O(log n) rounds, which proves Theorem 5. To prove the
existence of G′ we use the probabilistic method with alterations, and prove the
following.

Lemma 6. Let G be a random graph on n vertices where each edge is present
with probability 1000/n. Let G′ be obtained by removing all edges incident with
vertices of degree greater than 2000, and one edge from each cycle of length
at most log n/ log 1000. Then with probability at least 1/2 − e−100 − e−n, G′ is
1/100-far from being bipartite.

Since a graph that is ε-far from being bipartite is also ε-far from being cycle-
free, we immediately obtain the same lower bound for testing cycle-freeness:

Theorem 6. Any distributed 1/100-test in the bounded degree graph or general
model for cycle-freeness requires Ω(log n) rounds of communication.

Fast Distributed Algorithms for Testing Graph Properties 55

7 Discussion

This paper provides a thorough study of distributed property testing. It provides
an emulation technique for the dense graph model and constructs fast distributed
algorithms for testing triangle-freeness, cycle-freeness and bipartiteness. We also
present lower bounds for both bipartiteness and cycle-freeness.

This work raises many important open questions, the immediate of which is to
devise fast distributed testing algorithms for additional problems. One example
is testing freeness of other small subgraphs. More ambitious goals are to handle
dynamic graphs, and to find more general connections between testability in the
sequential model and the distributed model. Finally, there is fertile ground for
obtaining additional lower bounds in this setting, in order to fully understand
the complexity of distributed property testing.

References

1. Alon, N., Avin, C., Koucký, M., Kozma, G., Lotker, Z., Tuttle, M.R.: Many random
walks are faster than one. Comb. Probab. Comput. 20(4), 481–502 (2011)

2. Alon, N., Kaufman, T., Krivelevich, M., Ron, D.: Testing triangle-freeness in gen-
eral graphs. SIAM J. Discrete Math. 22(2), 786–819 (2008)

3. Alon, N., Shapira, A.: A characterization of the (natural) graph properties testable
with one-sided error. SIAM J. Comput. 37(6), 1703–1727 (2008)

4. Arfaoui, H., Fraigniaud, P., Ilcinkas, D., Mathieu, F.: Distributedly testing cycle-
freeness. In: Kratsch, D., Todinca, I. (eds.) WG 2014. LNCS, vol. 8747, pp. 15–28.
Springer, Heidelberg (2014)

5. Baruch, M., Fraigniaud, P., Patt-Shamir, B.: Randomized proof-labeling schemes.
In: Proceedings of the ACM Symposium on Principles of Distributed Computing,
(PODC), pp. 315–324 (2015)

6. Blum, M., Luby, M., Rubinfeld, R.: Self-testing/correcting with applications to
numerical problems. J. Comput. Syst. Sci. 47(3), 549–595 (1993)

7. Brakerski, Z., Patt-Shamir, B.: Distributed discovery of large near-cliques. Distrib.
Comput. 24(2), 79–89 (2011)

8. Censor-Hillel, K., Fischer, E., Schwartzman, G., Vasudev, Y.: Fast distributed algo-
rithms for testing graph properties. CoRR abs/1602.03718 (2016)

9. Censor-Hillel, K., Kaski, P., Korhonen, J.H., Lenzen, C., Paz, A., Suomela, J.:
Algebraic methods in the congested clique. In: Proceedings of the ACM Symposium
on Principles of Distributed Computing, (PODC), pp. 143–152 (2015)

10. Dolev, D., Lenzen, C., Peled, S.: “Tri, tri again”: finding triangles and small sub-
graphs in a distributed setting. In: Aguilera, M.K. (ed.) DISC 2012. LNCS, vol.
7611, pp. 195–209. Springer, Heidelberg (2012)

11. Drucker, A., Kuhn, F., Oshman, R.: The communication complexity of distributed
task allocation. In: Proceedings of the ACM Symposium on Principles of Distrib-
uted Computing (PODC), pp. 67–76 (2012)

12. Erdös, P.: Graph theory and probability. J. Math. 11, 34G38 (1959)
13. Fischer, E.: The art of uninformed decisions: a primer to property testing. Current

Trends Theor. Comput. Sci. Challenge New Century I 2, 229–264 (2004)
14. Foerster, K.T., Luedi, T., Seidel, J., Wattenhofer, R.: Local checkability, no strings

attached. In: Proceedings of the 17th International Conference on Distributed
Computing and Networking (ICDCN), pp. 21: 1–21: 10 (2016)

56 K. Censor-Hillel et al.

15. Fox, J.: A new proof of the graph removal lemma. CoRR abs/1006.1300 (2010)
16. Ghaffari, M., Kuhn, F., Su, H.H.: Manuscript (2016)
17. Goldreich, O., Goldwasser, S., Ron, D.: Property testing and its connection to

learning and approximation. J. ACM 45(4), 653–750 (1998)
18. Goldreich, O., Ron, D.: A sublinear bipartiteness tester for bounded degree graphs.

Combinatorica 19(3), 335–373 (1999)
19. Goldreich, O., Ron, D.: Property testing in bounded degree graphs. Algorithmica

32(2), 302–343 (2002)
20. Goldreich, O., Ron, D.: Algorithmic aspects of property testing in the dense graphs

model. In: Goldreich, O. (ed.) Property Testing. LNCS, vol. 6390, pp. 295–305.
Springer, Heidelberg (2010)

21. Goldreich, O., Trevisan, L.: Three theorems regarding testing graph properties.
Random Struct. Algorithms 23(1), 23–57 (2003)

22. Göös, M., Hirvonen, J., Levi, R., Medina, M., Suomela, J.: Non-local probes do
not help with graph problems. CoRR abs/1512.05411 (2015)

23. Hirvonen, J., Rybicki, J., Schmid, S., Suomela, J.: Large cuts with local algorithms
on triangle-free graphs. CoRR abs/1402.2543 (2014)

24. Holzer, S., Wattenhofer, R.: Optimal distributed all pairs shortest paths and appli-
cations. In: Proceedings of the 2012 ACM Symposium on Principles of Distributed
Computing, pp. 355–364. ACM (2012)

25. Kari, J., Matamala, M., Rapaport, I., Salo, V.: Solving the induced subgraphprob-
lem in the randomized multiparty simultaneous messages model. In: Proceedings of
the 22nd International Colloquium on Structural Informationand Communication
Complexity (SIROCCO), pp. 370–384 (2015)

26. Korman, A., Kutten, S., Peleg, D.: Proof labeling schemes. Distrib. Comput. 22(4),
215–233 (2010)

27. Lenzen, C., Peleg, D.: Efficient distributed source detection with limited band-
width. In: Proceedings of the ACM Symposium on Principles of Distributed Com-
puting (PODC), pp. 375–382 (2013)

28. Parnas, M., Ron, D.: Approximating the minimum vertex cover in sublinear time
and a connection to distributed algorithms. Theor. Comput. Sci. 381(1–3), 183–
196 (2007)

29. Peleg, D.: Distributed computing: a locality-sensitive approach. Soc. Ind. Appl.
Math. 157, 2153–2169 (2000)

30. Pettie, S., Su, H.: Distributed coloring algorithms for triangle-free graphs. Inf.
Comput. 243, 263–280 (2015)

31. Ron, D.: Property testing: a learning theory perspective. Found. Trends Mach.
Learn. 1(3), 307–402 (2008)

32. Ron, D.: Algorithmic and analysis techniques in property testing. Found. Trends
Theor. Comput. Sci. 5(2), 73–205 (2009)

33. Rubinfeld, R., Sudan, M.: Robust characterizations of polynomials with applica-
tions to program testing. SIAM J. Comput. 25(2), 252–271 (1996)

34. Sarma, A.D., Holzer, S., Kor, L., Korman, A., Nanongkai, D., Pandurangan, G.,
Peleg, D., Wattenhofer, R.: Distributed verification and hardness of distributed
approximation. SIAM J. Comput. 41(5), 1235–1265 (2012)

35. Sarma, A.D., Nanongkai, D., Pandurangan, G., Tetali, P.: Distributed random
walks. J. ACM 60(1), 2 (2013)

Further Algebraic Algorithms in the Congested
Clique Model and Applications
to Graph-Theoretic Problems

François Le Gall(B)

Graduate School of Informatics, Kyoto University, Kyoto, Japan
legall@i.u-kyoto.ac.jp

Abstract. Censor-Hillel et al. [PODC’15] recently showed how to effi-
ciently implement centralized algebraic algorithms for matrix multiplica-
tion in the congested clique model, a model of distributed computing that
has received increasing attention in the past few years. This paper devel-
ops further algebraic techniques for designing algorithms in this model.
We present deterministic and randomized algorithms, in the congested
clique model, for efficiently computing multiple independent instances of
matrix products, computing the determinant, the rank and the inverse
of a matrix, and solving systems of linear equations. As applications of
these techniques, we obtain more efficient algorithms for the computa-
tion, again in the congested clique model, of the all-pairs shortest paths
and the diameter in directed and undirected graphs with small weights,
improving over Censor-Hillel et al.’s work. We also obtain algorithms for
several other graph-theoretic problems such as computing the number of
edges in a maximum matching and the Gallai-Edmonds decomposition
of a simple graph, and computing a minimum vertex cover of a bipartite
graph.

1 Introduction

Background. The congested clique model is a model in distributed comput-
ing that has recently received increasing attention [2,6–11,17–19,22,23]. In this
model n nodes communicate with each other over a fully-connected network
(i.e., a clique) by exchanging messages of size O(log n) in synchronous rounds.
Compared with the more traditional congested model [24], the congested clique
model removes the effect of distances in the computation and thus focuses solely
on understanding the role of congestion in distributed computing.

Typical computational tasks studied in the congested clique model are graph-
theoretic problems [2,6–8,11,22], where a graph G on n vertices is initially dis-
tributed among the n nodes of the network (the �-th node of the network knows
the set of vertices adjacent to the �-th vertex of the graph, and the weights of the
corresponding edges if the graph is weighted) and the nodes want to compute
properties of G. Besides their theoretical interest and potential applications,
such problems have the following natural interpretation in the congested clique

c© Springer-Verlag Berlin Heidelberg 2016
C. Gavoille and D. Ilcinkas (Eds.): DISC 2016, LNCS 9888, pp. 57–70, 2016.
DOI: 10.1007/978-3-662-53426-7 5

58 F. Le Gall

model: the graph G represents the actual topology of the network, each node
knows only its neighbors but can communicate to all the nodes of the network,
and the nodes want to learn information about the topology of the network.

Censor-Hillel et al. [2] recently developed algorithms for several graph-theore-
tic problems in the congested clique model by showing how to implement central-
ized algebraic algorithms for matrix multiplication in this model. More precisely,
they constructed a O(n1−2/ω)-round algorithm for matrix multiplication, where
ω denotes the exponent of matrix multiplication (the best known upper bound on
ω is ω < 2.3729, obtained in [16,29], which gives exponent 1−2/ω < 0.1572 in the
congested clique model), improving over the O(n2−ω) algorithm mentioned in [7],
in the following setting: given two n×n matrices A and B over a field, the �-th node
of the network initially owns the �-th row of A and the �-column of B, and needs to
output the �-th row and the �-column of the product AB. Censor-Hillel et al. con-
sequently obtained O(n1−2/ω)-round algorithms for several graph-theoretic tasks
that reduce to computing the powers of (some variant of) the adjacency matrix of
the graph, such as counting the number of triangles in a graph (which lead to an
improvement over the prior best algorithms for this task [6,7]), detecting the exis-
tence of a constant-length cycle and approximating the all-pairs shortest paths in
the input graph (improving the round complexity obtained in [22]). One of the
main advantages of such an algebraic approach in the congested clique model is
its versatility: it makes possible to construct fast algorithms for graph-theoretic
problems, and especially for problems for which the best non-algebraic centralized
algorithm is highly sequential and does not seem to be implementable efficiently in
the congested clique model, simply by showing a reduction to matrix multiplica-
tion (and naturally also showing that this reduction can be implemented efficiently
in the congested clique model).

Our results. In this paper we develop additional algebraic tools for the congested
clique model.

We first consider the task of computing in the congested clique model not only
one matrix product, but multiple independent matrix products. More precisely,
given k matrices A1, . . . , Ak each of size n × m and k matrices B1, . . . , Bk each
of size m × m, initially evenly distributed among the n nodes of the network,
the nodes want to compute the k matrix products A1B1, . . . , AkBk. Prior works
[2,7] considered only the case k = 1 and m = n, i.e., one product of two square
matrices. Our contribution is thus twofold: we consider the rectangular case, and
the case of several matrix products as well. Let us first discuss our results for
square matrices (m = n). By using sequentially k times the matrix multiplication
algorithm from [2], k matrix products can naturally be computed in O(kn1−2/ω)
rounds. In this work we show that we can actually do better.

Theorem 1 (Simplified version). In the congested clique model k indepen-
dent products of pairs of n × n matrices can be computed with round complexity

{
O(k2/ωn1−2/ω) if 1 ≤ k < n,
O(k) if k ≥ n.

Further Algebraic Algorithms in the Congested Clique Model 59

This generalization of the results from [2] follows from a simple strategy: divide
the n nodes of the network into k blocks (when k ≤ n), each containing roughly
n/k nodes, compute one of the k matrix products per block by using an app-
roach similar to [2] (i.e., a distributed version of the best centralized algorithm
computing one instance of square matrix multiplication), and finally distribute
the relevant part of the k output matrices to all the nodes of the network. Ana-
lyzing the resulting protocol shows that the dependence in k in the overall round
complexity is reduced to k2/ω. This sublinear dependence in k has a significant
number of implications (see below).

The complete version of Theorem 1, given in Sect. 3, also considers the gen-
eral case where the matrices may not be square (i.e., the case m �= n), which will
be crucial for some of our applications to the All-Pairs Shortest Path problem.
The proof becomes more technical than for the square case, but is conceptually
very similar: the main modification is simply to now implement a distributed
version of the best centralized algorithm for rectangular matrix multiplication.
The upper bounds obtained on the round complexity depend on the complex-
ity of the best centralized algorithms for rectangular matrix multiplication (in
particular the upper bounds given in [15]). While the major open problem is
still whether the product of two square matrices can be computed in a constant
(or nearly constant) number of rounds, our results show that for m = O(n0.651...),
the product of an n × m matrix by an m × n matrix can indeed be computed in
O(nε) rounds for any ε > 0. We also show lower bounds on the round complexity
of the general case (Proposition 1 in Sect. 3), which are tight for most values of
k and m, based on simple arguments from communication complexity.

We then study the following basic problems in linear algebra: computing the
determinant, the rank or the inverse of an n × n matrix over a finite field F of
order upper bounded by a polynomial of n, and solving a system of n linear equa-
tions and n variables. We call these problems DET(n,F), Rank(n,F), INV(n,F)
and SYS(n,F), respectively (the formal definitions are given in Sect. 2). While it
is known that in the centralized setting these problems can be solved with essen-
tially the same time complexity as matrix multiplication [1], these reductions
are typically sequential and do not work in a parallel setting. In this paper we
design fast deterministic and randomized algorithm for these four basis tasks,
and obtain the following results.

Theorem 2. Assume that F has characteristic greater than n. In the congested
clique model, the deterministic round complexity of DET(n,F) and INV(n,F) is
O(n1−1/ω).

Theorem 3. Assume that F has order |F| = Ω(n2 log n). In the congested clique
model, the randomized round complexity of DET(n,F), SYS(n,F) and Rank(n,F)
is O(n1−2/ω log n).

The upper bounds of Theorems 2 and 3 are O(n0.5786) and O(n0.1572), respec-
tively, by basing our implementation on the asymptotically fastest (but imprac-
tical) centralized algorithm for matrix multiplication corresponding to the upper

60 F. Le Gall

bound ω < 2.3729. These bounds are O(n2/3) and O(n1/3 log n), respectively, by
basing our implementation on the trivial (but practical) centralized algorithm
for matrix multiplication (corresponding to the bound ω ≤ 3). These algorithms
are obtained by carefully adapting to the congested clique model the relevant
known parallel algorithms [5,12–14,25] for linear algebra, and using our efficient
algorithm for computing multiple matrix products (Theorem 1) as a subroutine.
An interesting open question is whether INV(n,F) can be solved with the same
(randomized) round complexity as the other tasks. This problem may very well
be more difficult; in the parallel setting in particular, to the best of our knowl-
edge, whether matrix inversion can be done with the same complexity as these
other tasks is also an open problem.

Applications of our results. The above results give new algorithms for many
graph-theoretic problems in the congested clique model, as described below and
summarized in Table 1.

Table 1. Summary of the applications of our algebraic techniques to graph-theoretic
problems in the congested clique model. Here n both represents the number of vertices
in the input graph and the number of nodes in the network.

Problem Round complexity Previously

APSP (undirected, weights in {0, 1, . . . , M}) Õ
(
M

2
ω n1− 2

ω

)
Õ
(
Mn1− 2

ω

)

APSP (directed, constant weights) O(n0.2096) Õ(n1/3)

Diameter (undirected, weights in {0, 1, . . . , M}) Õ
(
M

2
ω n1− 2

ω

)
Õ
(
Mn1− 2

ω

)

Computing the size of a maximum matching O
(
n1− 2

ω log n
)

—

Computing allowed edges in a perfect matching O(n1−1/ω) —

Gallai-Edmonds decomposition O(n1−1/ω) —

Minimum vertex cover in bipartite graphs O(n1−1/ω) —

Our main key tool to derive these applications is Theorem 7 in Sect. 3, which
gives an algorithm computing efficiently the distance product (defined in Sect. 2)
of two matrices with small integer entries based on our algorithm for multi-
ple matrix multiplication of Theorem 1. Computing the distance product is a
fundamental graph-theoretic task deeply related to the All-Pairs Shortest Path
(APSP) problem [27,28,30]. Combining this result with techniques from [28], and
observing that these techniques can be implemented efficiently in the congested
clique model, we then almost immediately obtain the following result.

Theorem 4. In the congested clique model, the deterministic round complex-
ity of the all-pairs shortest paths problem in an undirected graph of n vertices
with integer weights in {0, . . . , M}, where M is an integer such that M ≤ n, is
Õ(M2/ωn1−2/ω).

Further Algebraic Algorithms in the Congested Clique Model 61

Since computing the diameter of a graph reduces to solving the all-pairs shortest
paths, we obtain the same round complexity for diameter computation in the
same class of graphs. This improves over the Õ(Mn1−2/ω)-round algorithm for
these tasks (implicitly) given in [2]. The main application of our results neverthe-
less concerns the all-pair shortest paths problem over directed graphs (for which
the approach based on [28] does not work) with constant weights. We obtain the
following result by combining our algorithm for distance product computation
with Zwick’s approach [30].

Theorem 5. In the congested clique model, the randomized round complexity of
the all-pairs shortest paths problem in a directed graph of n vertices with integer
weights in {−M, . . . , 0, . . . , M}, where M = O(1), is O(n0.2096).

Prior to this work, the upper bound for the round complexity of this problem was
Õ(n1/3), obtained by directly computing the distance product (as done in [2]) in
the congested clique model. Again, Theorem 5 follows easily from Theorem 7 and
the observation that the reduction to distance product computation given in [30]
can be implemented efficiently in the congested clique model. The exponent
0.2096 in the statement of Theorem 5 is derived from the current best upper
bounds on the complexity of rectangular matrix multiplication in the centralized
setting [15].

Theorems 2 and 3 also enable us to solve a multitude of graph-theoretic prob-
lems in the congested clique model with a sublinear number of rounds. Examples
described in this paper are computing the number of edges in a maximum match-
ing of a simple graph with O(n1−2/ω log n) rounds, computing the set of allowed
edges in a perfect matching, the Gallai-Edmonds decomposition of a simple
graph, and a minimum vertex cover in a bipartite graph with O(n1−1/ω) rounds.
These results are obtained almost immediately from the appropriate reductions
to matrix inversion and similar problems known the centralized setting [3,20,26]
— indeed it is not hard to adapt all these reductions so that they can be imple-
mented efficiently in the congested clique model. Note that while non-algebraic
centralized algorithms solving these problems also exist (see, e.g., [21]), they are
typically sequential and do not appear to be efficiently implementable in the
congested clique model. The algebraic approach developed in this paper, made
possible by our algorithms for the computation of the determinant, the rank
and the inverse of matrix, appears to be currently the only way of obtaining fast
algorithms for these problems in the congested clique model.

Remarks on the organization of the paper. Due to space constraints, most of
the technical proofs are not included, but can be found in the full version of
the present paper. The discussion of randomized algorithms for the determinant
(Theorem 3) is also omitted from this version. The whole discussion detailing
the applications of our algebraic methods is omitted as well, with the exception
of the statement of Theorem 7 given in Sect. 3.

62 F. Le Gall

2 Preliminaries

Notations. Through this paper we will use n to denote the number of nodes in
the network. The n nodes will be denoted 1, 2, . . . , n. The symbol F will always
denote a finite field of order upper bounded by a polynomial in n (which means
that each field element can be encoded with O(log n) bits and thus sent using
one message in the congested clique model). Given any positive integer p, we use
the notation [p] to represent the set {1, 2, . . . , p}. Given any p × p′ matrix A, we
will write its entries as A[i, j] for (i, j) ∈ [p] × [p′], and use the notation A[i, ∗]
to represent its i-th row and A[∗, j] to represent its j-th column.

Graph-theoretic problems in the congested clique model. As mentioned in the
introduction, typically the main tasks that we want to solve in the congested
clique model are graph-theoretical problems. In all the applications given in this
paper the number of vertices of the graph will be n, the same as the number
of nodes of the network. The input will be given as follows: initially each node
� ∈ [n] has the �-th row and the �-th column of the adjacency matrix of the
graph. Note that this distribution of the input, while being the most natural,
is not essential; the only important assumption is that the entries are evenly
distributed among the n nodes since they can then be redistributed in a constant
number of rounds as shown in the following Lemma by Dolev et al. [6], which
we will use many times in this paper.

Lemma 1. [6] In the congested clique model a set of messages in which no node
is the source of more than n messages and no node is the destination of more
than n messages can be delivered within two rounds if the source and destination
of each message is known in advance to all nodes.

Algebraic problems in the congested clique model. The five main algebraic prob-
lems that we consider in this paper are defined as follows.

MM(n,m, k,F) — Multiple Rectangular Matrix Multiplications
Input: matrices A1, . . . , Ak ∈ F

n×m and B1, . . . , Bk ∈ F
m×n distributed

among the n nodes
(Node � ∈ [n] has A1[�, ∗], . . . , Ak[�, ∗] and B1[∗, �], . . . , Bk[∗, �])

Output: the matrices A1B1, . . . , AkBk distributed among the n nodes
(Node � ∈ [n] has A1B1[�, ∗], . . . , AkBk[�, ∗] and
A1B1[∗, �], . . . , AkBk[∗, �])

DET(n,F) — Determinant
Input: matrix A ∈ F

n×n distributed among the n nodes
(Node � ∈ [n] has A[�, ∗] and A[∗, �])

Output: det(A) (Each node of the network has det(A))

Rank(n,F) — Rank
Input: matrix A ∈ F

n×n distributed among the n nodes
(Node � ∈ [n] has A[�, ∗] and A[∗, �])

Further Algebraic Algorithms in the Congested Clique Model 63

Output: rank(A) (Each node of the network has rank(A))

INV(n,F) — Inversion
Input: invertible matrix A ∈ F

n×n distributed among the n nodes
(Node � ∈ [n] has A[�, ∗] and A[∗, �])

Output: matrix A−1 distributed among the n nodes
(Node � ∈ [n] has A−1[�, ∗] and A−1[∗, �])

SYS(n,F) — Solution of a linear system
Input: invertible matrix A ∈ F

n×n and vector b ∈ F
n×1, distributed among

the n nodes (Node � ∈ [n] has A[�, ∗], A[∗, �] and b)

Output: the vector x ∈ F
n×1 such that Ax = b (Node � ∈ [n] has x[�])

Note that the distribution of the inputs and the outputs assumed in the above
five problems is mostly chosen for convenience. For instance, if needed the whole
vector x in the output of SYS(n,F) can be sent to all the nodes of the network
in two rounds using Lemma 1. The only important assumption is that when
dealing with matrices, the entries of the matrices must be evenly distributed
among the n nodes.

We will also in this paper consider the distance product of two matrices,
defined as follows.

Definition 1. Let m and n be two positive integers. Let A be an n × m matrix
and B be an m×n matrix, both with entries in R∪{∞}. The distance product of A
and B, denoted A∗B, is the n×n matrix C such that C[i, j] = mins∈[m]{A[i, s]+
B[s, j]} for all (i, j) ∈ [n] × [n].

We will be mainly interested in the case when the matrices have integer
entries. More precisely, we will consider the following problem.

DIST(n,m,M) — Computation of the distance product
Input: an n × m matrix A and an m × n matrix B, with entries in

{−M, . . . ,−1, 0, 1, . . . ,M} ∪ {∞}
(Node � ∈ [n] has A[�, ∗] and B[∗, �])

Output: the matrix C = A ∗ B distributed among the n nodes
(Node � ∈ [n] has C[�, ∗] and C[∗, �])

Centralized algebraic algorithms for matrix multiplication. We now briefly
describe algebraic algorithms for matrix multiplication and known results about
the complexity of rectangular matrix multiplication. We refer to [1] for a detailed
exposition of these concepts.

Let F be a field and m,n be two positive integer. Consider the problem of
computing the product of an n × m matrix by an m × n matrix over F. An
algebraic algorithm for this problem is described by three sets {αijμ}, {βijμ}
and {λijμ} of coefficients from F such that, for any n × m matrix A and any
m × n matrix B, the equality

64 F. Le Gall

C[i, j] =
t∑

μ=1

λijμS(μ)T (μ)

holds for all (i, j) ∈ [n] × [n], where C = AB and

S(μ) =
n∑

i=1

m∑

j=1

αijμA[i, j], T (μ) =
n∑

i=1

m∑

j=1

βijμB[j, i],

for each s ∈ [t]. Note that each S(μ) and each T (μ) is an element of F. The
integer t is called the rank of the algorithm, and corresponds to the complexity
of the algorithm.

For instance, consider the trivial algorithm computing this matrix product
using the formula

C[i, j] =
m∑

s=1

A[i, s]B[s, j].

This algorithm can be described in the above formalism by taking t = n2m,
writing each μ ∈ [n2m] as a triple μ = (i′, j′, s′) ∈ [n] × [n] × [m], and choosing

λij(i′,j′,s′) =
{

1 if i = i′and j = j′,
0 otherwise,

αij(i′,j′,s′) =
{

1 if i = i′and j = s′,
0 otherwise, βij(i′,j′,s′) =

{
1 if i = j′and j = s′,
0 otherwise.

Note that this trivial algorithm, and the description we just gave, also works
over any semiring.

The exponent of matrix multiplication. For any non-negative real number γ,
let ω(γ) denote the minimal value τ such that the product of an n × 	nγ

matrix over F by an 	nγ
 × n matrix over F can be computed by an algebraic
algorithm of rank nτ+o(1) (i.e., can be computed with complexity O(nτ+ε) for
any ε > 0). As usual in the literature, we typically abuse notation and simply
write that such a product can be done with complexity O(nω(γ)), i.e., ignoring
the o(1) in the exponent. The value ω(1) is denoted by ω, and often called the
exponent of square matrix multiplication. Another important quantity is the
value α = sup{γ | ω(γ) = 2}.

The trivial algorithm for matrix multiplication gives the upper bound ω(γ) ≤
2 + γ, and thus ω ≤ 3 and α ≥ 0. The current best upper bound on ω is
ω < 2.3729, see [16,29]. The current best bound on α is α > 0.3029, see [15].
The best bounds on ω(γ) for γ > α can also be found in [15].

3 Matrix Multiplication in the Congested Clique Model

In this section we discuss the round complexity of Problems MM(n,m, k,F) and
DIST(n,m,M).

Our first result is the following theorem.

Further Algebraic Algorithms in the Congested Clique Model 65

Theorem 6 (Complete version). For any positive integer k ≤ n, the deter-
ministic round complexity of MM(n,m, k,F) is

⎧
⎨

⎩

O(k) if 0 ≤ m ≤ √
kn,

O(k2/ω(γ)n1−2/ω(γ)) if
√

kn ≤ m < n2/k,
O(km/n) if m ≥ n2/k,

where γ is the solution of the equation
(

1 − log k

log n

)
γ = 1 − log k

log n
+

(
log m

log n
− 1

)
ω(γ). (1)

For any k ≥ n, the deterministic round complexity of MM(n,m, k,F) is
{

O(k) if 1 ≤ m ≤ n,
O(km/n) if m ≥ n.

The proof of Theorem 1, which will also show that Eq. (1) always has a solution
when k ≤ n and

√
kn ≤ m < n2/k, can be found in the full version of the

paper (a short discussion of the proof ideas was presented in the introduction).
As briefly mentioned in the introduction, the round complexity is constant for
any k ≤ √

n, and we further have round complexity O(nε), for any ε > 0, for
all values k ≤ n(1+α)/2 (the bound α > 0.3029 implies (1 + α)/2 > 0.6514). For
the case m = n the solution of Eq. (1) is γ = 1, which gives the bounds of the
simplified version of Theorem 1 presented in the introduction.

We now give lower bounds on the round complexity of MM(n,m, k,F) that
show that the upper bounds of Theorem 1 are tight, except possibly in the case√

kn ≤ m < n2/k when k ≤ n.

Proposition 1. The randomized round complexity of MM(n,m, k,F) is
{

Ω(k) if 1 ≤ m ≤ n,
Ω(km/n) if m ≥ n.

Proof. We first prove the lower bound Ω(km/n) for any m ≥ n. Let us consider
instances of MM(n,m, k,F) of the following form: for each s ∈ [k] all the rows of
As are zero except the first row; for each s ∈ [k] all the columns of Bs are zero
except the second column. Let us write Cs = AsBs for each s ∈ [k]. We prove the
lower bound by partitioning the n nodes of the network into the two sets {1} and
{2, . . . , n}, and considering the following two-party communication problem. Alice
(corresponding to the set {1}) has for input As[1, j] for all j ∈ [m] and all s ∈ [k].
Bob (corresponding to the set {2, . . . , n}) has for input Bs[i, 2] for all i ∈ [m] and
all s ∈ [k]. The goal is for Alice to output Cs[1, 2] for all s ∈ [k]. Note that Cs[1, 2] is
the inner product (over F) of the first row of As and the second column of Bs. Thus∑k

s=1 Cs[1, 2] is the inner product of two vectors of size km. Alice and Bob must
exchange Ω(km log |F|) bits to compute this value [4], which requires Ω(km/n)
rounds in the original congested clique model.

66 F. Le Gall

We now prove the lower bound Ω(k) for any m ≥ 1. Let us consider instances
of MM(n,m, k,F) of the following form: for each s ∈ [k], all entries of As are
zero except the entry As[1, 1] which is one; for each s ∈ [k], Bs[i, j] = 0 for all
(i, j) /∈ {(1, j) | j ∈ {2, . . . , n}} (the other n − 1 entries are arbitrary). Again,
let us write Cs = AsBs for each s ∈ [k]. We prove the lower bound by again
partitioning the n nodes of the network into the two sets {1} and {2, . . . , n},
and considering the following two-party communication problem. Alice has no
input. Bob has for input Bs[1, j] for all j ∈ {2, . . . , n} and all s ∈ [k]. The goal is
for Alice to output Cs[1, j] for all j ∈ {2, . . . , n} and all s ∈ [k]. Since the output
reveals Bob’s whole input to Alice, Alice must receive Ω(k(n − 1) log |F|) bits,
which gives round complexity Ω(k) in the original congested clique model. �

One of the main applications of Theorem 1 is the following result, which will
imply all our results on the all-pairs shortest paths and diameter computation,
including Theorems 4 and 5.

Theorem 7. For any M ≤ n and m ≤ n, the deterministic round complexity
of DIST(n,m,M) is

⎧
⎨

⎩

O(M log m) if 0 ≤ m ≤ √
Mn log m,

O
(
(M log m)2/ω(γ)n1−2/ω(γ)

)
if

√
Mn log m ≤ m ≤ n2/(M log m),

O (mM log m/n) if n2/(M log m) ≤ m ≤ n,

where γ is the solution of the equation
(
1− log M

log n

)
γ = 1− log M

log n +
(

log m
log n −1

)
ω(γ).

The proof of Theorem 7 is omitted, but can be found in the full version of the
paper. The idea is to show that DIST(n,m,M) reduces to MM(n,m, k,F) for
k ≈ M log m and a well-chosen finite field F, and then use Theorem 1 to get
a factor (M log m)2/ω(γ), instead of the factor M obtained in a straightforward
implementation of the distance product, in the complexity. This reduction is done
by first applying a standard encoding of the distance product into a usual matrix
product of matrices with integer entries of absolute value exp(M), and then
using Fourier transforms to split this latter matrix product into roughly M log m
independent matrix products over a small field.

4 Deterministic Computation of Determinant and Inverse
Matrix

In this section we present deterministic algorithms for computing the determi-
nant of a matrix and the inverse of a matrix in the congested clique model, and
prove Theorem 2. Our algorithms can be seen as efficient implementations of the
parallel algorithm by Preparata and Sarwate [25] based on the Faddeev-Leverrier
method.

Let A be an n×n matrix over a field F. Let det(λI −A) = λn+c1λ
n−1+ · · ·+

cn−1λ + cn be its characteristic polynomial. The determinant of A is (−1)ncn

and, if cn �= 0, its inverse is

Further Algebraic Algorithms in the Congested Clique Model 67

A−1 = −An−1 + c1A
n−2 + · · · + cn−2A + cn−1I

cn
.

Define the vector c = (c1, . . . , cn)T ∈ F
n×1. For any k ∈ [n] let sk denote the

trace of the matrix Ak, and define the vector s = (s1, . . . , sn)T ∈ F
n×1. Define

the n × n matrix

S =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

1
s1 2
s2 s1 3
...

...
...

. . .
sn−1 sn−2 sn−3 ... s1 n

⎞

⎟
⎟
⎟
⎟
⎟
⎠

.

It can be easily shown (see, e.g., [5,25]) that Sc = −s, which enables us to recover
c from s if S is invertible. The matrix S is invertible whenever n! �= 0, which
is true in any field of characteristic zero or in any finite field of characteristic
strictly larger than n. The following proposition shows that the inverse of an
invertible triangular matrix can be computed efficiently in the congested clique
model.

Proposition 2. Let F be any field. There is a deterministic algorithm with
round complexity O(n1−2/ω) that solves INV(n,F) when the input A is an invert-
ible lower triangular matrix.

We are now ready to give the proof of Theorem 2.

Proof (of Theorem 2). For convenience we assume that n is a square, and write
p =

√
n. If n is not a square we can easily adapt the proof by taking p = 	√n
.

Observe that any integer a ∈ {0, 1, . . . , n − 1} can be written in a unique way as
a = (a1 − 1)p + (a2 − 1) with a1, a2 ∈ [p]. Below when we write a = (a1, a2) ∈ [n],
we mean that a1 and a2 are the two elements in [p] such that a = (a1−1)p+(a2−1).

For any � ∈ [n], let R� be the p × n matrix such that the i-th row of R� is
the �-th row of A(i−1)p, for each i ∈ [p]. Similarly, for any � ∈ [n], let C� be the
n × p matrix such that the j-th column of C� is the �-th column of Aj−1, for
each j ∈ [p]. For each � ∈ [n] define U� = R�C�, which is a p× p matrix. Observe
that, for any k = (k1, k2) ∈ [n], the identity

sk =
n∑

�=1

U�[k1, k2] (2)

holds. We will use this expression, together with the equation c = −S−1s to
compute the determinant in the congested clique model.

In order to compute the inverse of A we then use the following approach. For
any (a1, a2) ∈ [p] × [p], define the coefficient ca1,a2 ∈ F as follows:

ca1,a2 =
{

cn−1−(a1−1)p−(a2−1) if (a1, a2) �= (p, p),
1 if (a1, a2) = (p, p).

68 F. Le Gall

For any a2 ∈ [p], define the n × n matrix Ea2 as follows:

Ea2 =
p∑

a1=1

ca1,a2A
(a1−1)p.

Note that the following holds whenever cn �= 0:

A−1 = −
∑n−1

a=0 cn−1−aAa

cn
= −

∑p
a1=1

∑p
a2=1 ca2,a1A

(a1−1)p+(a2−1)

cn
,

which gives

A−1 = −
∑p

a2=1 Ea2A
a2−1

cn
. (3)

The algorithm for DET(n,F) and INV(n,F) is described in Fig. 1. Steps 1
and 7.2 can be implemented in O(p2/ωn1−2/ω) rounds from Theorem 1 (or its
simplified version in the introduction). Step 5 can be implemented in O(n1−2/ω)
rounds, again from Theorem 1. At Steps 2, 3 and 6 each node receives n ele-
ments from the field F, so each of these three steps can be implemented in

Fig. 1. Distributed algorithm for computing the determinant of an n × n matrix A
and computing A−1 if det(A) �= 0. Initially each node � ∈ [n] has as input A[�, ∗] and
A[∗, �].

Further Algebraic Algorithms in the Congested Clique Model 69

two rounds from Lemma 1. The other steps (Steps 4, 7.1 and 7.3) do not
require any communication. The total round complexity of the algorithm is thus
O

(
p2/ωn1−2/ω

)
= O

(
n1−1/ω

)
, as claimed. �

Acknowledgments. The author is grateful to Arne Storjohann for precious help con-
cerning the computation of the determinant and to anonymous reviewers for their
comments. This work is supported by the Grant-in-Aid for Young Scientists (A)
No. 16H05853, the Grant-in-Aid for Scientific Research (A) No. 16H01705, and the
Grant-in-Aid for Scientific Research on Innovative Areas No. 24106009 of the Japan
Society for the Promotion of Science and the Ministry of Education, Culture, Sports,
Science and Technology in Japan.

References

1. Bürgisser, P., Clausen, M., Shokrollahi, M.A.: Algebraic Complexity Theory.
Springer, Heidelberg (1997)

2. Censor-Hillel, K., Kaski, P., Korhonen, J.H., Lenzen, C., Paz, A., Suomela, J.:
Algebraic methods in the congested clique. In: Proceedings of the 34th Symposium
on Principles of Distributed Computing, pp. 143–152 (2015)

3. Cheriyan, J.: Randomized Õ(M(|V |)) algorithms for problems in matching theory.
SIAM J. Comput. 26(6), 1635–1669 (1997)

4. Chu, J.I., Schnitger, G.: Communication complexity of matrix computation over
finite fields. Math. Syst. Theor. 28(3), 215–228 (1995)

5. Csanky, L.: Fast parallel matrix inversion algorithms. In: Proceedings of the 16th
Annual Symposium on Foundations of Computer Science, pp. 11–12 (1975)

6. Dolev, D., Lenzen, C., Peled, S.: “Tri, tri again”: finding triangles and small sub-
graphs in a distributed setting. In: Aguilera, M.K. (ed.) DISC 2012. LNCS, vol.
7611, pp. 195–209. Springer, Heidelberg (2012)

7. Drucker, A., Kuhn, F., Oshman, R.: On the power of the congested clique model.
In: Proceedings of the ACM Symposium on Principles of Distributed Computing,
pp. 367–376 (2014)

8. Hegeman, J.W., Pandurangan, G., Pemmaraju, S.V., Sardeshmukh, V.B.,
Scquizzato, M.: Toward optimal bounds in the congested clique: Graph connectiv-
ity and MST. In: Proceedings of the ACM Symposium on Principles of Distributed
Computing, pp. 91–100 (2015)

9. Hegeman, J.W., Pemmaraju, S.V.: Lessons from the congested clique applied to
mapreduce. In: Halldórsson, M.M. (ed.) SIROCCO 2014. LNCS, vol. 8576, pp.
149–164. Springer, Heidelberg (2014)

10. Hegeman, J.W., Pemmaraju, S.V., Sardeshmukh, V.B.: Near-constant-time dis-
tributed algorithms on a congested clique. In: Kuhn, F. (ed.) DISC 2014. LNCS,
vol. 8784, pp. 514–530. Springer, Heidelberg (2014)

11. Henzinger, M., Krinninger, S., Nanongkai, D.: A deterministic almost-tight distrib-
uted algorithm for approximating single-source shortest paths. In: Proceedings of
the 48th Annual ACM Symposium on Theory of Computing, pp. 489–498 (2016)

12. Kaltofen, E., Pan, V.Y.: Processor efficient parallel solution of linear systems over
an abstract field. In: Proceedings of the 3rd Annual ACM Symposium on Parallel
Algorithms and Architectures, pp. 180–191 (1991)

70 F. Le Gall

13. Kaltofen, E., Pan, V.Y.: Processor-efficient parallel solution of linear systems II:
the positive characteristic and singular cases (extended abstract). In: Proceedings
of the 33rd Annual Symposium on Foundations of Computer Science, pp. 714–723
(1992)

14. Kaltofen, E., Saunders, B.D.: On Wiedemann’s method of solving sparse linear
systems. In: Proceedings of the 9th International Symposium on Applied Algebra,
Algebraic Algorithms and Error-Correcting Codes, pp. 29–38 (1991)

15. Le Gall, F.: Faster algorithms for rectangular matrix multiplication. In: Proceed-
ings of the 53rd Annual IEEE Symposium on Foundations of Computer Science,
pp. 514–523 (2012)

16. Le Gall, F.: Powers of tensors and fast matrix multiplication. In: Proceedings of
the 39th International Symposium on Symbolic and Algebraic Computation, pp.
296–303 (2014)

17. Lenzen, C.: Optimal deterministic routing and sorting on the congested clique. In:
Proceedings of the ACM Symposium on Principles of Distributed Computing, pp.
42–50 (2013)

18. Lenzen, C., Wattenhofer, R.: Tight bounds for parallel randomized load balancing:
extended abstract. In: Proceedings of the 43rd ACM Symposium on Theory of
Computing, pp. 11–20 (2011)

19. Lotker, Z., Pavlov, E., Patt-Shamir, B., Peleg, D.: MST construction in o(log log n)
communication rounds. In: Proceedings of the Fifteenth Annual ACM Symposium
on Parallelism in Algorithms and Architectures, pp. 94–100 (2003)

20. Lovász, L.: On determinants, matchings, and random algorithms. In: Fundamentals
of Computation Theory, pp. 565–574 (1979)

21. Lovász, L., Plummer, M.D.: Matching Theory. American Mathematical Society
(2009)

22. Nanongkai, D.: Distributed approximation algorithms for weighted shortest paths.
In: Proceedings of the 46th Symposium on Theory of Computing, pp. 565–573
(2014)

23. Patt-Shamir, B., Teplitsky, M.: The round complexity of distributed sorting:
extended abstract. In: Proceedings of the 30th Annual ACM Symposium on Prin-
ciples of Distributed Computing, pp. 249–256 (2011)

24. Peleg, D.: Distributed computing: a locality-sensitive approach. Society for Indus-
trial and Applied Mathematics (2000)

25. Preparata, F.P., Sarwate, D.V.: An improved parallel processor bound in fast
matrix inversion. Inf. Process. Lett. 7(3), 148–150 (1978)

26. Rabin, M.O., Vazirani, V.V.: Maximum matchings in general graphs through ran-
domization. J. Algorithms 10(4), 557–567 (1989)

27. Seidel, R.: On the all-pairs-shortest-path problem in unweighted undirected graphs.
J. Comput. Syst. Sci. 51(3), 400–403 (1995)

28. Shoshan, A., Zwick, U.: All pairs shortest paths in undirected graphs with inte-
ger weights. In: Proceedings of the 40th Annual Symposium on Foundations of
Computer Science, pp. 605–615 (1999)

29. Vassilevska Williams, V.: Multiplying matrices faster than coppersmith-winograd.
In: Proceedings of the 44th Symposium on Theory of Computing, pp. 887–898
(2012)

30. Zwick, U.: All pairs shortest paths using bridging sets and rectangular matrix
multiplication. J. ACM 49(3), 289–317 (2002)

Towards a Universal Approach for Monotonic
Searchability in Self-stabilizing

Overlay Networks

Christian Scheideler, Alexander Setzer, and Thim Strothmann(B)

Paderborn University, Paderborn, Germany
{scheidel,asetzer,thim}@mail.uni-paderborn.de

Abstract. For overlay networks, the ability to recover from a variety
of problems like membership changes or faults is a key element to pre-
serve their functionality. In recent years, various self-stabilizing overlay
networks have been proposed that have the advantage of being able to
recover from any illegal state. However, the vast majority of these net-
works cannot give any guarantees on its functionality while the recov-
ery process is going on. We are especially interested in searchability,
i.e., the functionality that search messages for a specific identifier are
answered successfully if a node with that identifier exists in the network.
We investigate overlay networks that are not only self-stabilizing but
that also ensure that monotonic searchability is maintained while the
recovery process is going on, as long as there are no corrupted messages
in the system. More precisely, once a search message from node u to
another node v is successfully delivered, all future search messages from
u to v succeed as well. Monotonic searchability was recently introduced
in OPODIS 2015, in which the authors provide a solution for a sim-
ple line topology. We present the first universal approach to maintain
monotonic searchability that is applicable to a wide range of topologies.
As the base for our approach, we introduce a set of primitives for manip-
ulating overlay networks that allows us to maintain searchability and
show how existing protocols can be transformed to use theses primitives.
We complement this result with a generic search protocol that together
with the use of our primitives guarantees monotonic searchability. As an
additional feature, searching existing nodes with the generic search pro-
tocol is as fast as searching a node with any other fixed routing protocol
once the topology has stabilized.

1 Introduction

In this paper, we continue our research started in [16] and investigate protocols
for self-stabilizing overlay networks that guarantee the monotonic preservation
of a characteristic that we call searchability, i.e., once a search message from node
u to another node v is successfully delivered, all future search messages from u to

This work was partially supported by the German Research Foundation (DFG)
within the Collaborative Research Center “On-The-Fly Computing” (SFB 901).

c© Springer-Verlag Berlin Heidelberg 2016
C. Gavoille and D. Ilcinkas (Eds.): DISC 2016, LNCS 9888, pp. 71–84, 2016.
DOI: 10.1007/978-3-662-53426-7 6

72 C. Scheideler et al.

v succeed as well. Instead of focusing on a specific topology, as done in [16], we
present an approach that is aimed at universality. As a base, we present a set of
primitives for overlay network maintainance for which we prove that they enable
monotonic searchability. On top of that, we give a generic search protocol that,
together with a protocol that solely uses these primitives, guarantees monotonic
searchability. Additionally, we show that existing self-stabilizing overlay network
protocols can be transformed to use our primitives.

To the best of our knowledge, we are the first to investigate monotonic search-
ability as an attempt to explore maintaining properties beyond the traditional
“time and space” metrics during stabilization. We believe that the question of
how to maintain monotonic searchability and similar properties during topolog-
ical stabilization has a lot of potential for future research.

1.1 Model

We consider a distributed system consisting of a fixed set of nodes in which
each node has a unique reference and a unique immutable numerical identifier
(or short id). The system is controlled by a protocol that specifies the variables
and actions that are available in each node. In addition to the protocol-based
variables there is a system-based variable for each node called channel whose
values are sets of messages. We denote the channel of a node u as u.Ch and
it contains all incoming messages to u. Its message capacity is unbounded and
messages never get lost. A node can add a message to u.Ch if it has a reference
of u. Besides these channels there are no further communication means, so only
point-to-point communication is possible.

There are two types of actions that a protocol can execute. The first type
has the form of a standard procedure 〈label〉(〈parameters〉) : 〈command〉, where
label is the unique name of that action, parameters specifies the parameter list of
the action, and command specifies the statements to be executed when calling
that action. Such actions can be called locally (which causes their immediate
execution) and remotely. In fact, we assume that every message must be of the
form 〈label〉(〈parameters〉), where label specifies the action to be called in the
receiving node and parameters contains the parameters to be passed to that
action call. All other messages are ignored by nodes. The second type has the
form 〈label〉 : 〈guard〉 −→ 〈command〉, where label and command are defined
as above and guard is a predicate over local variables. We call an action whose
guard is simply true a timeout action.

The system state is an assignment of values to every variable of each node and
messages to each channel. An action in some node u is enabled in some system
state if its guard evaluates to true, or if there is a message in u.Ch requesting to
call it. In the latter case, when the corresponding action is executed, the message
is processed (and it is removed from u.Ch). An action is disabled otherwise.
Receiving and processing a message is considered as an atomic step.

A computation is an infinite fair sequence of system states such that for each
state Si, the next state Si+1 is obtained by executing an action that is enabled in
Si. This disallows the overlap of action execution, i.e., action execution is atomic.

Towards a Universal Approach for Monotonic Searchability 73

We assume weakly fair action execution and fair message receipt. Weakly fair
action execution means that if an action is enabled in all but finitely many states
of a computation, then this action is executed infinitely often. Note that a time-
out action of a node is executed infinitely often. Fair message receipt means that
if a computation contains a state in which there is a message in a channel of a
node that enables an action in that node, then that action is eventually executed
with the parameters of that message, i.e., the message is eventually processed.
Besides these fairness assumptions, we place no bounds on message propagation
delay or relative nodes execution speeds, i.e., we allow fully asynchronous com-
putations and non-FIFO message delivery. A computation suffix is a sequence of
computation states past a particular state of this computation. In other words,
the suffix of the computation is obtained by removing the initial state and finitely
many subsequent states. Note that a computation suffix is also a computation.
We say a state S′ is reachable from a state S if starting in S there is a sequence
of action executions such that we end up in state S′. We use the notion S < S′

as a shorthand to indicate that the state S happened chronologically before S′.
We consider protocols that do not manipulate the internals of node refer-

ences. Specifically, a protocol is compare-store-send if the only operations that
it executes on node references is comparing them, storing them in local memory
and sending them in a message. In a compare-store-send protocol, a node may
learn a new reference of a node only by receiving it in a message. A compare-
store-send protocol cannot create new references. It can only operate on the
references given to it.

The overlay network of a set of nodes is determined by their knowledge of
each other. We say that there is a (directed) edge from a to b, denoted by (a, b),
if node a stores a reference of b in its local memory or has a message in a.Ch
carrying the reference of b. In the former case, the edge is called explicit, and
in the latter case, the edge is called implicit. Messages can only be sent via
explicit edges. Note that message receipt converts an implicit edge to an explicit
edge since the message is in the local memory of a node while it is processed.
With NG we denote the directed network (multi-)graph given by the explicit
and implicit edges. ENG is the subgraph of NG induced by only the explicit
edges. A weakly connected component of a directed graph G is a subgraph of
G of maximum size so that for any two nodes u and v in that subgraph there
is a (not necessarily directed) path from u to v. Two nodes that are not in
the same weakly connected component are disconnected. We assume that the
positions of the processes in the topology are encapsulated in their identifier
and that there is a distance measure which is based on the identifiers of the
processes and which can be checked locally. That is, for a given identifier ID,
each node u can decide for each neighbor v whether v is closer to the node w
with id(w) = ID if such a node exists (we also say that id(v) is closer to ID
than id(u) or ds(id(v), ID) < ds(id(u), ID)). For a node u, we define R(u, ID)
as the set containing u and all processes v for which there is a path Q from u
to v via explicit edges such that for each edge (a, b) that is traversed in Q it

74 C. Scheideler et al.

holds that ds(id(b), ID) < ds(id(a), ID). Furthermore, for a set U , we define
R(U, ID) :=

⋃
u∈U R(u, ID).

We are particularly concerned with search requests, i.e., Search(v, destID)
messages that are routed along ENG according to a given search protocol, where
v is the sender of the message and destID is the identifier of a node we are looking
for. We assume that Search() requests are initiated locally by an (possibly user
controlled) application operating on top of the network. Note that destID does
not need to be an id of an existing node w, since it is also possible that we are
searching for a node that is not in the system. If a Search(v, destID) message
reaches a node w with id(w) = destID, the search request succeeds; if the
message reaches some node u with id(u) �= destID and cannot be forwarded
anymore according to the given search protocol, the search request fails.

1.2 Problem Statement

A protocol is self-stabilizing if it satisfies the following two properties as long as
no transient faults occur: (i) Convergence: starting from an arbitrary system
state, the protocol is guaranteed to arrive at a legitimate state and (ii) Clo-
sure: starting from a legitimate state the protocol remains in legitimate states
thereafter.

A self-stabilizing protocol is thus able to recover from transient faults regard-
less of their nature. Moreover, a self-stabilizing protocol does not have to be
initialized as it eventually starts to behave correctly regardless of its initial
state. In topological self-stabilization we allow self-stabilizing protocols to per-
form changes to the overlay network NG. A legitimate state may then include a
particular graph topology or a family of graph topologies. We are interested in
self-stabilizing protocols that stabilize to static topologies, i.e., in every compu-
tation of the protocol that starts from a legitimate state, ENG stays the same,
as long as the node set stays the same.

In this paper we are not focusing on building a self-stabilizing protocol for a
particular topology. Instead we are interested in providing a reliable protocol for
searching in a wide range of topologies that fulfill certain requirements. Tradi-
tionally, search protocols for a given topology were only required to deliver the
search messages reliably once a legitimate state has been reached. However, it
is not possible to determine when a legitimate state has been reached. Further-
more, searching reliably during the stabilization phase is much more involved.
We say a self-stabilizing protocol satisfies monotonic searchability according
to some search protocol R if it holds for any pair of nodes v, w that once a
Search(v, id(w)) request (that is routed according to R) initiated at time t
succeeds, any Search(v, id(w)) request initiated at a time t′ > t will succeed.
We do not mention R if it is clear from the context. A protocol is said to sat-
isfy non-trivial monotonic searchability if (i) it satisfies monotonic searchability
and (ii) every computation of the protocol contains a suffix such that for each
pair of nodes v, w, Search(v, id(w)) requests will succeed if there is a path
from v to w in the target topology. Throughout the paper we will only inves-
tigate non-trivial monotonic searchability. Consequently, whenever we use the

Towards a Universal Approach for Monotonic Searchability 75

term monotonic searchability in the following, we implicitly refer to non-trivial
monotonic searchability.

A message invariant is a predicate of the following form: If there is a mes-
sage m in the incoming channel of a node, then a logical predicate P must hold.
A protocol may specify one or more message invariants. An arbitrary message
m in a system is called corrupted if the existence of m violates one or multiple
message invariants. A state S is called admissible if there are no corrupted mes-
sages in S. We say a (self-stabilizing) protocol admissibly satisfies a predicate P
if the following two conditions hold: (i) the predicate is satisfied in all compu-
tation suffixes of the protocol that start from admissible states, and (ii) every
computation of the protocol contains at least one admissible state. A protocol
unconditionally satisfies a predicate if it satisfies this predicate starting from
any state.

The following was proven in [16]:

Lemma 1. No self-stabilizing compare-store-send protocol can unconditionally
satisfy monotonic searchability.

Consequently, to prove monotonic searchability for a protocol (according to
a given search protocol R) it is sufficient to show that: (i) in every computation
of the protocol that starts from an admissible state, every state is admissible,
(ii) in every computation of the protocol there is an admissible state, and (iii)
the protocol satisfies monotonic searchability according to R in every compu-
tation that starts from an admissible state. Note that we have not defined any
invariants yet and it is possible to pick invariants such that the set of admissible
states equals the set of legitimate states, in which the problem becomes trivial.
However, for the invariants we provide, any initial topology can be an admissible
state. In particular, as long as no corrupt messages are initially in the system,
our protocols satisfy monotonic searchability throughout the computation.

We will show that a broad class of existing self-stabilizing protocols can be
transformed to satisfy monotonic searchability. More specifically, we will consider
protocols that fulfill the mdl property, i.e., for any action a of the protocol it
holds that (i) a node u executing action a will always keep a reference of another
node v in its local memory if an edge (u, v) is part of the final topology, and
(ii) if a node u executing action a in state S decides not to keep a reference of
another node v in its local memory, every other action of the protocol executed
by u in a subsequent state will decide to not keep the reference of v, and (iii)
a node u executing action a decides deterministically and solely based on its
local memory whether to send and where to send the reference of v, and (iv) in
every legitimate state, for every reference of a node v contained in a message
m in the channel of a node u (i.e., for any implicit edge (u, v)), there are fixed
cycle-free paths (u = u1, u2, . . . , uk) such that ui sends the reference of v to
ui+1, and uk has an explicit edge (uk, v) (note that there is only one path if
the reference is never duplicated), i.e., the reference of v is forwarded along
fixed paths until it finally fuses with an existing reference. Informally speaking,
the first two properties imply that the protocol monotonically converges to its
desired topology, since edges of the topology are always kept and edges that are

76 C. Scheideler et al.

not part of the topology are obviated over time. The last property implies that
in legitimate states, all implicit edges will eventually merge with explicit edges.
Note that the mdl property is generally not a severe restriction. Most existing
protocols that stabilize to static topologies naturally fulfill this property.

In addition to the mdl property and the assumption that the final topology
is static, we have one more condition on the topologies and their distance mea-
sures. The generic search protocol we will use to achieve monotonic searchability
assumes that in the target topology for every pair of nodes u, v within the same
connected component, there is a path of explicit edges from u to v with the
property that each edge on the path strictly decreases the distance to v (i.e., for
each edge (a, b) that is traversed in the path, ds(id(b), id(v)) < ds(id(a), id(v))).
Note that many topologies naturally fulfill this property (in particular, whenever
the distance is defined as the number of nodes on a shortest path).

1.3 Our Contribution

To the best of our knowledge, we are the first to solve the problem of searching
reliably during the stabilization phase in self-stabilizing topologies. Although
routing with a low dilation is a major motivation behind the use of overlay
topologies, prior to this work, one could not rely on the routing paths in such
topologies1: In previous approaches, it can happen that a node u is able to send
a message to a node v, while it is unable to do so in a later state, only because
the system has not stabilized yet (which is not locally detectable by the nodes).
In our solution, once a search message from a node u has successfully arrived
at a node v, every further search message from u to v will also arrive at its
destination, regardless of whether the system has fully stabilized or not.

We present a universal set of primitives for manipulating edges that protocols
should use and a simple generic search protocol, which together satisfy monotonic
searchability. Moreover, we provide a general description of how a broad class of
self-stabilizing protocols for overlay networks can be transformed such that they
use these primitives, thus satisfying monotonic searchability afterwards.

Our results of Sect. 3 may be of independent interest, where we reinvesti-
gate the fundamental primitives for manipulating edges introduced in [13] and
strengthen the results concerning the universality of these primitives.

2 Related Work

The idea of self-stabilization in distributed computing was introduced by
E.W. Dijkstra in 1974 [4], in which he investigated the problem of self-stabilization
in a token ring. In order to recover certain network topologies from any weakly con-
nected state, researchers started with simple line and ring networks (e.g., [7,18]).
Over the years more and more topologies were considered, ranging from skip lists

1 Note that [16] did solve the problem of monotonic searchability for the list, but the
list has a worst-case routing time of Ω(n), thus not offering a low dilation.

Towards a Universal Approach for Monotonic Searchability 77

and skip graphs [8,14], to expanders [6], and small-world graphs [12]. Also a uni-
versal algorithm for topological self-stabilization is known [1].

In the last 20 years many approaches have been investigated that focus on
maintaining safety properties during convergence phase of self-stabilization, e.g.
snap-stabilization [2,3], super-stabilization [5], safe convergence [11] and self-
stabilization with service guarantee [10]. Closest to our work is the notion of
monotonic convergence by Yamauchi and Tixeuil [19]. A self-stabilizing protocol
is monotonically converging if every change done by a node p makes the system
approach a legitimate state and if every node changes its output only once.
The authors investigate monotonically converging protocols for different classical
distributed problems (e.g., leader election and vertex coloring) and focus on the
amount of non-local information that is needed for them.

Research on monotonic searchability was initiated in [16], in which the
authors proved that it is impossible to satisfy monotonic searchability if cor-
rupted messages are present. In addition, they presented a self-stabilizing pro-
tocol for the line topology that is able to satisfy monotonic searchability.

3 Primitives for Topology Maintenance

An important property for every overlay management protocol is that weak
connectivity is never lost by its own actions. Therefore, it is highly desirable that
every node only executes actions that preserve weak connectivity. Koutsopoulos
et al. [13] introduced the following four primitives for manipulating edges in an
overlay network.

Introduction. If a node u has a reference of two nodes v and w with v �= w, u
introduces w to v if u sends a message to v containing a reference of w while
keeping the reference.

Delegation. If a node u has a reference of two nodes v and w s.t. u, v, w are
all different, then u delegates w’s reference of v if u sends a message to v
containing a reference of w and deletes the reference of w.

Fusion. If a node u has two references v and w with v = w, then u fuses the
two references if it only keeps one of these references.

Reversal. If a node u has a reference of some other node v, then u reverses the
connection if it sends a reference of itself to v and deletes its reference of v.

Note that the four primitives can be executed locally by every node in a wait-
free fashion. Furthermore, for the Introduction primitive, it is possible that w =
u, i.e., u introduces itself to v. The authors show that these four primitives are
safe in a sense that they preserve weak connectivity (as long as there is no fault).
This implies that any distributed protocol whose actions can be decomposed into
these four primitives is guaranteed to preserve weak connectivity.

We define IDF as the set containing the first three primitives: Introduction,
Delegation and Fusion. Let PIDF denote the set of all distributed protocols where
all interactions between processes can be decomposed into the primitives of IDF .
According to [13] these protocols even preserve strong connectivity in a sense that

78 C. Scheideler et al.

for any pair of nodes u, v with a directed path in NG there will always be a directed
path from u to v in NG. To the best of our knowledge, all self-stabilizing topol-
ogy maintenance protocols proposed so far (such as the list [7,15,18], the Delau-
nay graph [9], etc.) satisfy this property. Moreover, in [13], the four primitives were
shown to be universal, i.e. the primitives allow one to get from any weakly con-
nected graph G = (V,E) to any other weakly connected graph G′ = (V,E′) for
NG. In fact, only the first three primitives (i.e., IDF) are necessary to get from
any weakly connected graph to any strongly connected graph, which is sufficient in
our case ([13] denote this by weak universality). Note that the notion of universal-
ity for a set of primitives is not constructive, i.e., only in principle the primitives
allow one to get from any weakly connected graph to any other weakly connected
graph. We strengthen the results concerning universality of the primitives with the
following theorem (the proof can be found in the full version [17]).

Theorem 1. Any compare-store-send protocol that self-stabilizes to a static
strongly-connected topology and preserves weak connectivity can be transformed
such that the interactions between nodes can be decomposed into the primitives
of IDF .

4 Primitives for Monotonic Searchability

Although the primitives of [13] are general enough to construct any conceivable
overlay, they do not inherently satisfy monotonic searchability. This is due to
the fact that the Delegation primitive replaces an explicit edge (u, v) by a path
(u,w, v) consisting of an explicit edge (u,w) and an implicit edge (w, v) and thus
a search message from u to v issued after the delegation may be processed by w
before there is a path from w to v via explicit edges, causing the search message
to fail (even though an earlier message sent while (u, v) was still an explicit edge
was delivered successfully). Consequently, we are going to introduce a new set
of primitives that enables monotonic searchability. We say a set of primitives is
search-universal according to a set of Invariants I if the following holds:

1. the set of primitives is weakly universal,
2. starting from every state in which the invariants in I hold, for every pair of

nodes u and v as soon as there is a path via explicit edges from u to v, there
will be a path via explicit edges from u to v in every subsequent step.

We are now going to introduce a modified set of primitives that are search-
universal. Moreover, we will show that these new primitives are also general
enough to cover all self-stabilizing protocols that can be built by the original
primitives. Consequently, we ultimately aim at a result similar to Theorem 1 for
the new primitives.

Remember that we assume the mdl property. Therefore, in every fixed state
S in every execution of a self-stabilizing protocol, each node u can divide its
explicit edges into two subsets: the stable edges and the temporary edges (not to
be confused with implicit edges). The first set contains those explicit edges that

Towards a Universal Approach for Monotonic Searchability 79

u wants to keep, given its current neighborhood in S; the second set holds the
explicit edges that are not needed from the perspective of u in S. Note that the
set of temporary edges can also be the empty set.

For the new primitives, a node does not only store references of its neighbors,
but additionally stores sequence numbers for every reference in its local memory,
i.e., every node u stores for each neighbor v an entry u.eseq[id(v)] (or u.eseq[v],
in short). We keep the Introduction primitive as in Sect. 3 and change Delegation
and Fusion in the following way:

Safe-Delegation. Consider a node u that has references of two different nodes
v and w. In order to perform Safe-Delegation, u has to distinguish between
(u,w) being implicit or temporary.

If (u,w) is an implicit edge, it is delegated as in the original delega-
tion primitive (we will later refer to this case as an implicit delegation or
ImplDelegate(t) o avoid confusion with the original primitives). If (u,w)
is a temporary edge, it can only be delegated to a node v if (u, v) is a sta-
ble edge. Whenever an explicit edge (u,w) is to be delegated to another
node v, u sends a DelegateREQ(u,w, eseq) message to v, where eseq =
u.eseq[w]. Additionally, it sets u.eseq[v] to max{u.eseq[v], u.eseq[w] + 1}.
Any node v that receives a DelegateREQ(u,w, eseq) message, adds (v, w)
to its set of explicit edges (if it does not already exist), sets v.eseq[w] to
max{v.eseq[w], eseq+1} and sends a DelegateACK(w, eseq) message back
to u. Upon receipt of this message, u checks whether eseq = u.eseq[w] and
whether (u,w) is actually a temporary edge (note that the last check is nec-
essary to handle corrupt initial states). If both conditions hold, u removes
the temporary explicit edge to w and sends an ImplDelegate(w) message
to one of its neighbors. Otherwise, u simply acts as it would upon receipt of
an ImplDelegate(w) message.

Fusion. If a node u has two references v and w with v = w, then u fuses the two
references if it only keeps one of these references. Note that when a node u
receives a DelegateREQ(v,w,eseq) message and already stores a reference
of w, it also behaves as described in the Safe-Delegation primitive.

We define ISF as the set containing the three primitives Introduction, Safe-
Delegation and Fusion. Throughout the paper we assume that DelegateREQ()
and DelegateACK() messages are only sent in the Safe-Delegation primitive.
Analogous to PIDF , let PISF denote the set of all distributed protocols where all
interactions between processes can be decomposed into the primitives of ISF .
Likewise to the mdl property, we say that a protocol fulfills the stable mdl

property, if the protocol fulfills the mdl property with respect to stable explicit
edges. More specifically, for any action a of the protocol it holds that a node
u executing action a will always keep a reference of another node v in its local
memory (i.e., the stable edge (u, v)) if an edge (u, v) is part of the final topology,
and if a node u executing action a in some state S decides to not keep a reference
of another node v in its local memory (i.e., the temporary or implicit edge (u, v)),

80 C. Scheideler et al.

every other action of the protocol executed by u in any state S′ > S will decide
to not keep the reference of v.

4.1 Universality of the New Primitives

To show that our primitives are search-universal we first show that they are
weakly universal. The corresponding proof can be found in the full version.

Lemma 2. ISF is weakly universal.

In order to enable monotonic searchability, we define the following two mes-
sage invariants:

1. If there is a DelegateREQ(u,w,eseq) message in v.Ch, then there exists a
path P = (u = x1, x2, . . . , xk = v) that does not contain (u,w) and for every
1 ≤ i < k, xi.eseq[xi+1] > u.eseq[w], or u.eseq[w] > eseq.

2. If there is a DelegateACK(w,eseq) message in u.Ch, then there exists a
path P = (u = x1, x2, . . . , xk = w) that does not contain (u,w) and for every
1 ≤ i < k, xi.eseq[xi+1] > u.eseq[w], or u.eseq[w] > eseq.

Intuitively, Invariant 1 says that whenever node v has aDelegateREQ(u,w,eseq)
message in v.Ch (i.e., node u asked v to establish the edge (v, w) such that it
may remove its own (u,w) edge), then there is a path from u to v that does
not use the edge (u,w). Invariant 2 states that whenever a node u has a Dele-

gateACK(w,seq) message in u.Ch (i.e., some other node v which u asked to estab-
lish the edge (v, w) has already done so), then there is a path from u to w that
does not use the edge (u,w). However, both statements only need to hold if the
value of eseq indicates that the messages belong to a current safe-delegation, i.e.,
if u.seq[w] > eseq, the DelegateREQ() or DelegateACK() message can be
ignored.

We define the predicate E(u, v) to be true if and only if there exists a directed
path from u to v via explicit edges. In order to show search-universality, we prove
the following lemma.

Lemma 3. Consider a computation of a protocol P ∈ PISF that fulfills the
stable mdl property. If there is a state S such that Invariants 1 and 2 hold, then
they will hold in every subsequent state. Additionally, for every state S′ ≥ S
it holds that if E(u, v) ≡ TRUE in S′, then E(u, v) ≡ TRUE in every state
S′′ ≥ S′.

Lemmas 2 and 3 imply the following corollary:

Corollary 1. ISF is search-universal according to Invariants 1 and 2.

We conclude this section by showing that a protocol A ∈ PIDF that fulfills
the mdl property and self-stabilizes to some topology can be transformed into a
protocol B ∈ PISF that fulfills the stable mdl property and for which it holds
that in every computation of B there is a state in which Invariant 1–2 hold. The
corresponding proof can be found in the full version [17].

Towards a Universal Approach for Monotonic Searchability 81

Theorem 2. Consider a protocol A ∈ PIDF that self-stabilizes to a strongly-
connected topology T and that fulfills the mdl property. Then A can be trans-
formed into another protocol B ∈ PISF such that B fulfills the stable mdl

property, B self-stabilizes to the same topology, and in every computation of B
there exists a computation suffix in which Invariants 1 and 2 hold.

5 The Generic Search Protocol

In this section we describe a generic search protocol such that every protocol in
PISF fulfilling the stable mdl property satisfies monotonic searchability accord-
ing to that search protocol. We assume that when a node u wants to search for
a node with identifier ID, it performs an InitiateNewSearch(ID) action in
which a Search(u, ID) message is created. The search request is regarded as
answered as soon as the Search(u, ID) message is either dropped, i.e., it fails,
or is received by the node w with id(w) = ID, i.e. it succeeds.

The principle idea of the generic search protocol is the following: A node u
with a Search(u, ID) message does not directly forward this message through
the network but buffers it. Instead, u initiates a probing algorithm whose goal
is to either receive the reference of the node w with id(w) = ID, or to get a
negative response in case this node does not exist or cannot be reached yet. In
the former case, u directly sends Search(u, ID) to w. In the latter case, u drops
Search(u, ID). Whenever an additional Search(u, ID) message for the same
identifier ID is initiated at u while a probing for ID is still in progress, this
message is combined with previous Search(u, ID) messages waiting at u.

For the probing, a node u with a buffered Search(u, ID) message periodically
initiates a new Probe() message in its Timeout action. This Probe() message
contains four arguments: First, a reference source of the source of the Probe()
message., i.e., a reference of u. Second, the identifier destID of the node that is
searched, i.e., ID. Third, a set Next that holds references of all neighbors of u with
a closer distance to destID than id(u). Last, a sequence number seq that is used
to distinguish probe messages that belong to different probing processes from the
same node and for the same target, i.e., seq = u.seq[ID], where u.seq[ID] is a value
stored at u. This is necessary because in each execution of the Timeout action, a
new probe message is sent, although upon receival of the first response to such a
message, the set of buffered search messages is sent out to the target or dropped
completely. Thus, future repliesmay arrive afterwards anduhas to know that these
are outdated. All in all, u initiates a Probe(source, destID,Next, seq) message
and sends this message to the node in Next whose identifier has the maximum
distance to ID (i.e., it is the closest to u).

Any intermediate node v that receives a Probe(source, destID,Next, seq)
message first checks whether id(v) = destID. If so, v sends a reference of
itself to source via a ProbeSuccess(destID, dest) message with dest = v.
Otherwise, v removes itself from Next and adds all its neighbors to Next
that have a closer distance to destID than itself. If Next is empty after this
step, v responds to source via a ProbeFail(destID, seq) message. Otherwise,

82 C. Scheideler et al.

v forwards the Probe(source, destID,Next, seq) message (with the already
described changes performed to Next) to the node in Next whose identifier has
the maximum distance to ID. If the initiator u of a probe receives a Probe-

Success(destID, dest) or a ProbeFail(destID, seq) message, it first checks
whether seq ≥ u.seq[destID], i.e., it checks whether the received message is a
response to the current batch of search requests. If it is from an earlier probe,
u simply drops the received message. Otherwise, u acts depending on the mes-
sage it received: In case of a ProbeSuccess(destID, dest) message, u sends
out all (possibly combined) Search(u, destID) messages waiting at u to dest
(thus stopping the probing). In case of a ProbeFail(destID, seq) message, u
drops all Search(u, destID) messages waiting at u to dest (thus also stopping
the probing). In both cases, u additionally increases u.seq[destID] such that
probe messages that are still in the system at this point in time cannot have any
effects on future requests. The pseudocode of the generic search protocol and
supplementary details can be found in the full version [17].

Using the protocol as specified above could cause a high dilation because each
probe message in each step is always sent to the node with the highest distance
to the target in Next, even if a shorter path is possible. Luckily, if there exists
a fast routing protocol for the stabilized target topology (i.e., o(n) hops in the
worst case), it is possible to speed up search messages in legitimate states (and
possibly even earlier). Details can be found in the full version [17].

As the generic search protocol cannot guarantee to function properly under
the presence of corrupt messages, we define the following additional invariants
that are maintained during the execution of the generic search protocol (that
did not start with corrupt messages):

3. If there is a Probe(source, destID,Next, seq) message in u.Ch, then
(a) u ∈ Next and ∀w ∈ Next \ {u} : ds(id(w), destID) ≤ ds(id(u), destID),
(b) R(Next, ID) ⊆ R(source, ID), and
(c) if v exists with id(v) = destID and v /∈ R(Next, destID), then for every

admissible state with source.seq[destID] < seq, v /∈ R(source, destID).
If there is a FastProbe(source, destID) message in u.Ch, then
(d) u ∈ R(source, destID).

4. If there is a ProbeSuccess(destID, dest) message in u.Ch, then id(dest) =
destID and dest ∈ R(u, destID).

5. If there is a ProbeFail(destID, seq) message in u.Ch, then if v exists such
that id(v) = destID, then for every admissible state with u.seq[destID] <
seq, v /∈ R(u, destID).

6. If there is a Search(v, destID) message in u.Ch, then id(u) = destID and
u ∈ R(v, destID).

We say a protocol for the self-stabilization of a topology is monotonic-
searchability-sufficient (ms-sufficient) if (i) all interactions between processes
can be decomposed into the primitives in ISF , (ii) it fulfills the stable mdl

property, (iii) it uses the generic search protocol for searching, (iv) no Probe(),

Towards a Universal Approach for Monotonic Searchability 83

ProbeSuccess(), ProbeFail(), or Search() message is sent at any other occa-
sion than the ones specified in the generic search protocol, and (v) in every com-
putation of the protocol there is a state in which the first two invariants hold.
Note that Theorem 2 implies the following:

Corollary 2. Any conventional protocol A ∈ PIDF that self-stabilizes to a
strongly-connected topology T and that fulfills the mdl property can be trans-
formed into an ms-sufficient protocol that stabilizes the same topology.

For an ms-sufficient protocol, we define a state as admissible if all six invariants
hold. The proof of the following theorem can be found in the full version [17].

Theorem 3. Every ms-sufficient protocol satisfies monotonic searchability
according to Invariant 1–6.

The following result follows from the description of the generic search protocol:

Corollary 3. Every ms-sufficient protocol P that stabilizes to a topology T and
in which the generic search protocol uses a routing strategy with a worst-case
routing time of O(T (n)) for the fast search as described in the protocol, then P
answers successful search requests in legitimate states in time O(T (n)).

6 Conclusion and Outlook

In this work we further strengthened the notion of monotonic searchability intro-
duced in [16] by presenting a universal approach for adapting conventional pro-
tocols for topological self-stabilization such that they satisfy monotonic search-
ability. Even more, we carved out some design principles that protocols should
adhere to in order to enable reliable searches even during the stabilization phase.

Although our results solve the problem of monotonic searchability for a wide
range of topologies, there are certain aspects that have not been studied yet.
For example, we did not consider the additional cost of convergence (i.e., the
amount of additional messages to be sent), nor the impact of our methods on
the convergence time of the topology. Additionally, while our generic search
protocol enables us to search existing nodes in legitimate states with a low
dilation, searching for a non-existing node can still cause a message to travel
Ω(n) hops, even in a legitimate state. Whether this is provably necessary or
could be improved is still an open question.

References

1. Berns, A., Ghosh, S., Pemmaraju, S.V.: Building self-stabilizing overlay networks
with the transitive closure framework. Theor. Comput. Sci. 512, 2–14 (2013)

2. Bui, A., Datta, A.K., Petit, F., Villain, V.: Snap-stabilization and PIF in tree
networks. Distrib. Comput. 20(1), 3–19 (2007)

3. Delaët, S., Devismes, S., Nesterenko, M., Tixeuil, S.: Snap-stabilization in message-
passing systems. J. Parallel Distrib. Comput. 70(12), 1220–1230 (2010)

84 C. Scheideler et al.

4. Dijkstra, E.W.: Self-stabilizing systems in spite of distributed control. Commun.
ACM 17(11), 643–644 (1974)

5. Dolev, S., Herman, T.: Superstabilizing protocols for dynamic distributed systems.
Chicago J. Theor. Comput. Sci. 1997 (1997)

6. Dolev, S., Tzachar, N.: Spanders: distributed spanning expanders. Sci. Comput.
Program. 78(5), 544–555 (2013)

7. Gall, D., Jacob, R., Richa, A.W., Scheideler, C., Schmid, S., Täubig, H.: A note on
the parallel runtime of self-stabilizing graph linearization. Theory Comput. Syst.
55(1), 110–135 (2014)

8. Jacob, R., Richa, A.W., Scheideler, C., Schmid, S., Täubig, H.: Skip+: a self-
stabilizing skip graph. J. ACM 61(6), 36:1–36:26 (2014)

9. Jacob, R., Ritscher, S., Scheideler, C., Schmid, S.: Towards higher-dimensional
topological self-stabilization: a distributed algorithm for delaunay graphs. Theor.
Comput. Sci. 457, 137–148 (2012)

10. Johnen, C., Mekhaldi, F.: Robust self-stabilizing construction of bounded size
weight-based clusters. In: D’Ambra, P., Guarracino, M., Talia, D. (eds.) Euro-Par
2010, Part I. LNCS, vol. 6271, pp. 535–546. Springer, Heidelberg (2010)

11. Kakugawa, H., Masuzawa, T.: A self-stabilizing minimal dominating set algorithm
with safe convergence. In: 20th International Parallel and Distributed Processing
Symposium (IPDPS 2006), Proceedings, 25–29 April 2006. Rhodes, Island, Greece
(2006)

12. Kniesburges, S., Koutsopoulos, A., Scheideler, C.: A self-stabilization process
for small-world networks. In: 26th IEEE International Parallel and Distributed
Processing Symposium, IPDPS 2012, Shanghai, China, 21–25 May 2012, pp. 1261–
1271 (2012)

13. Koutsopoulos, A., Scheideler, C., Strothmann, T.: Towards a universal approach
for the finite departure problem in overlay networks. In: Pelc, A., Schwarzmann,
A.A. (eds.) SSS 2015. LNCS, vol. 9212, pp. 201–216. Springer, Heidelberg (2015)

14. Nor, R.M., Nesterenko, M., Scheideler, C.: Corona: a stabilizing deterministic
message-passing skip list. Theor. Comput. Sci. 512, 119–129 (2013)

15. Onus, M., Richa, A.W., Scheideler, C.: Linearization: locally self-stabilizing sorting
in graphs. In: Proceedings of the Nine Workshop on Algorithm Engineering and
Experiments, ALENEX 2007, New Orleans, Louisiana, USA, 6 January 2007

16. Scheideler, C., Setzer, A., Strothmann, T.: Towards establishing monotonic search-
ability in self-stabilizing data structures. In: Principles of Distributed Systems -
19th International Conference, OPODIS 2015, Proceedings (2015)

17. Scheideler, C., Setzer, A., Strothmann, T.: Towards a universal approach for
monotonic searchability in self-stabilizing overlay networks (full version). ArXiv
e-prints, July 2016

18. Shaker, A., Reeves, D.S.: Self-stabilizing structured ring topology P2P systems. In:
Fifth IEEE International Conference on Peer-to-Peer Computing (P2P 2005), 31
August–2 September 2005, Konstanz, Germany, pp. 39–46 (2005)

19. Yamauchi, Y., Tixeuil, S.: Monotonic stabilization. In: Lu, C., Masuzawa, T.,
Mosbah, M. (eds.) OPODIS 2010. LNCS, vol. 6490, pp. 475–490. Springer,
Heidelberg (2010)

Asynchronous Embedded Pattern Formation
Without Orientation

Serafino Cicerone1, Gabriele Di Stefano1, and Alfredo Navarra2(B)

1 Dipartimento di Ingegneria e Scienze dell’Informazione e Matematica,
Università degli Studi dell’Aquila, Via Vetoio, Coppito, 67100 L’aquila, Italy

{serafino.cicerone,gabriele.distefano}@univaq.it
2 Dipartimento di Matematica e Informatica, Università degli Studi di Perugia,

Via Vanvitelli 1, 06123 Perugia, Italy
alfredo.navarra@unipg.it

Abstract. We consider the Embedded Pattern Formation (epf) prob-
lem introduced in [Fujinaga et al., SIAM J. on Comput., 44(3), 2015].
Given a set F of distinct points in the Euclidean plane (called here fixed-
points) and a set R of robots such that |R| = |F |, the problem asks for
a distributed algorithm that moves robots so as to occupy all points in
F . Initially, each robot occupies a distinct position.

Robots operate in standard Look-Compute-Move cycles. In one cycle,
a robot perceives the current configuration in terms of the robots’ posi-
tions and the fixed-points (Look) according to its own coordinate system,
decides whether to move (Compute), and in the positive case it moves
(Move). Cycles are performed asynchronously for each robot. Robots are
oblivious, anonymous and execute the same algorithm.

In the mentioned paper, the problem has been investigated by assum-
ing chirality, that is robots share a common left-right orientation. The
obtained solution has been used as a sub-procedure to solve the Pattern
Formation problem, without fixed-points but still with chirality.

Here we investigate the other branch, that is, we are interested in
solving epf without chirality. We fully characterize when the epf prob-
lem can be accomplished and we design a deterministic distributed algo-
rithm that solves the problem for all configurations but those identified
as unsolvable. Our approach is also characterized by the use of logi-
cal predicates in order to formally describe our algorithm as well as its
correctness.

1 Introduction

The pattern formation problem has been largely investigated in the last years
under different assumptions [7,9,13,15]. One of the latest results, see [12], solves

The work has been partially supported by the European project “Geospatial
based Environment for Optimisation Systems Addressing Fire Emergencies” (GEO-
SAFE), contract no. H2020-691161 and by the Italian projects: PRIN 2012C4E3KT
“AMANDA – Algorithmics for MAssive and Networked DAta”; “RISE: un nuovo
framework distribuito per data collection, monitoraggio e comunicazioni in contesti
di emergency response”, Fondazione Cassa Risparmio Perugia, code 2016.0104.021.

c© Springer-Verlag Berlin Heidelberg 2016
C. Gavoille and D. Ilcinkas (Eds.): DISC 2016, LNCS 9888, pp. 85–98, 2016.
DOI: 10.1007/978-3-662-53426-7 7

86 S. Cicerone et al.

the problem for robots empowered with few capabilities. Initially, no robots
occupy the same location, and they are assumed to be: Dimensionless: modeled
as geometric points in the plane; Anonymous: no unique identifiers; Autonomous:
no centralized control; Oblivious: no memory; Homogeneous: they all execute
the same deterministic algorithm; Asynchronous: there is no global clock that
synchronizes their actions; Silent : no means of communication; Chiral : they share
a common left-right orientation.

Robots operate in standard Look -Compute-Move cycles. In one cycle a robot
takes a snapshot of the current global configuration (Look) in terms of robots’
positions according to its own coordinate system. Successively, in the Compute
phase it decides whether to move along a specific trajectory toward a target
position or not, and in the positive case it moves (Move).

Cycles are performed asynchronously, i.e., the time between Look, Compute,
and Move phases is finite but unbounded, and it is decided by an adversary for
each robot. Moreover, during the Look phase, a robot does not perceive whether
other robots are moving or not. Hence, robots may move based on outdated
perceptions. In fact, due to asynchrony, by the time a robot takes a snapshot
of the configuration, this might have drastically changed when it starts moving.
The scheduler determining the Look-Compute-Move cycles timing is assumed to
be fair: each robot performs its cycle within finite time and infinitely often.

The distance traveled within a move is neither infinite nor infinitesimally
small. More precisely, the adversary has also the power to stop a moving robot
before it reaches its destination, but there exists an unknown constant δ > 0 such
that if the destination point is closer than δ, the robot will reach it, otherwise
the robot will be closer to it of at least δ. Note that, without this assumption, an
adversary would make it impossible for any robot to ever reach its destination.

In order to solve the problem within the described model, the authors of
[10–12] first introduced the so-called Embedded Pattern Formation (epf) prob-
lem. In this variant, during the Look phase robots can also detect |R| distinct
points from now on called fixed-points, and the problem asks to move the robots
to occupy all such points. In practice, the pattern to be formed is provided as a
set of points in the plane.

In this paper, we are interested in the epf problem, but we want to get rid of
the assumed chirality. This represents a step forward for the main open question
left in [12] concerning the resolution of the more general Pattern Formation
problem in the described setting but without fixed points and without chirality.

So far, the only sub-problems solved within the weakest setting are the circle-
formation problem [8], where robots must form a regular n-gon, the gathering
problem [4], where robots must move toward a common point, and the case
of asymmetric configurations [2]. Further research directions concern random-
ized approaches like in [1,16]. Instead of exploring yet another specific case, we
investigate on a different branch, that is the epf problem without chirality.

Intuitively, having fixed-points instead of chirality or randomness increases
difficulties in designing distributed algorithms. In fact, usually main troubles
come from symmetries. To this respect, chirality or randomness are powerful

Asynchronous Embedded Pattern Formation Without Orientation 87

means to break possible symmetries. Having fixed points, instead, might be
helpful in some cases where the matching between robots and fixed-points is
trivial, but in general this is not the case, and the provided strategies must
cope with unbreakable symmetries. It comes out that some configurations for
epf are unsolvable, that is, they do not admit any deterministic algorithm. This
unsolvability result holds even though synchronous robots are considered. Any
algorithm designed for solving epf must take care of this result, since unsolvable
configurations must be avoided by robots during their movements.

In this paper, we fully characterize the configurations for epf that can be
solved, and we provide a resolution algorithm. The formalization of the algorithm
and the proof of correctness are provided by making use of basic predicates, that
composed in a Boolean logic way provide all the invariants needed to be checked
during the execution of the algorithm. This methodology reveals to be rather
effective, and it could be very useful for formal verifications like in [5,6,14].

2 Definitions and Impossibility Results

In this section, we formally define the epf problem, and then we recall from [3]
the view of a configuration and some relations between configuration symme-
tries and the view. We conclude by providing a characterization result about
configurations where the epf problem cannot be solved.

Problem definition. The system is composed of n ≥ 1 mobile robots. At any
time, the multiset R = {r1, r2, . . . , rn}, with ri ∈ R

2, contains the positions of
all the robots. F = {f1, f2, . . . , fn} is a set of n distinct fixed-points in the plane.
The pair C = (R,F) represents a system configuration. If more than one robot
occupies the same position, a multiplicity occurs. Robot are not endowed with
any multiplicity detection, that is they do not realize from their view whether
a point is occupied by more than one robot. A robot is said to be stationary
in a configuration C if it is not moving and either the last snapshot acquired
is C or it will perform the Look phase as next operation. A configuration C
is said to be stationary if all robots are stationary in C. A configuration C
is initial if it is stationary and all robots have distinct positions. Unlike the
initial configuration, in general, not all robots are stationary in a non-initial
configuration C ′, but at least one robot that takes the snapshot C ′ is stationary
by definition. A configuration C is final if it is stationary and R ≡ F .

The embedded pattern formation problem (shortly, epf), asks to trans-
form an initial configuration into a final one. An algorithm for epf is a deter-
ministic distributed algorithm able to bring the robots to a final configuration
in a finite number of cycles from any given initial configuration I, regardless of
the activation scheduling and delays (which are decided by the adversary). We
say that an initial configuration I is unsolvable if there are no algorithms for
epf with respect to I.

Configuration view and symmetries. Given a configuration C = (R,F), cg(F)
is the center of gravity of points in F , that is the point whose coordinates are

88 S. Cicerone et al.

the mean values of the coordinates of the points of the set. In [3], it has been
defined a data structure called view and computable by each robot r for any point
p ∈ R∪F . Essentially, a robot r that needs to compute the view of a configuration
C from a point p, first computes cg(F) and then, starting from the half-line
from p to cg(F) and looking around from p (in clockwise and counter-clockwise
manner), it determines the order in which all robots and fixed-points appear. For
instance, in Fig. 1, the counter-clockwise sequence of points perceived by r from
itself is (r, f1, r1, r2, f2, r3, f3). Each point in such a sequence is then replaced by
information referred to angles, distances, and type of points (i.e., robots, fixed-
points). The result of this process computed by r is a pair of strings V+

r (p) and
V−

r (p) representing the clockwise and counter-clockwise view of C from the point
p. For instance, in Fig. 1, robot r gets V−

r (r) = (0◦, d(r, cg(F)), r, α1, d(r, f1),
f, α2, d(r, r1), r, α2, d(r, r2), r, α3, d(r, f2), f, α4, (r, r3), r, α5, d(r, f3), f). It
is possible to define a lexicographic order that leads to define the view from p
as Vr(p) = min{V+

r (p),V−
r (p)}, and then Vr(C) =

⋃
p∈R∪F {Vr(p)}. Notice that

clockwise and counter-clockwise directions always refer to the local coordinate
system of each robot. Moreover, even though robots do not share a common
left-right orientation (chirality), by computing Vr(C), every robot r acquires the
same information.

α5

α4

cg(F)

r α2

α1f3

f2
r3

r2
α3

r1

f1

Fig. 1. A sequence of points and
angles in C perceived by robot r.

Every robot r can use Vr(C) not only to
share a common view about C but also to
determine whether a configuration is “sym-
metric” or not. A map ϕ : R2 → R

2 is called
an isometry or distance preserving if for any
a, b ∈ R

2 one has d(ϕ(a), ϕ(b)) = d(a, b).
Examples of isometries in the plane are rota-
tions and reflections. An isometry of a con-
figuration C = (R,F) is an isometry in the
plane that maps robots to robots (i.e., points
of R into R) and fixed-points to fixed-points
(i.e., points of F into F). If C admits only
the identity isometry, then C is said asymmetric, otherwise it is said symmetric
(i.e., C admits rotations or reflections). If C is symmetric due to an isometry ϕ,
a robot cannot distinguish its position at r ∈ R from r′ = ϕ(r). In such a case
we say that r and r′ are equivalent. As a consequence, two equivalent robots
can decide to move simultaneously, as any algorithm is unable to distinguish
between them. In such a case, there might be a so called pending move, that is,
without loss of generality r performs its entire Look-Compute-Move cycle while
r′ does not terminate the Move phase, i.e. its move is pending. Clearly, all the
other robots performing their cycles are not aware whether there is a pending
move, that is they cannot deduce the global status from their view. This fact
greatly increases the difficulty to devise a distributed algorithm for symmetric
configurations.

The following result from [3] states that each robot r can use the view Vr(C)
to determine whether C is symmetric or not.

Asynchronous Embedded Pattern Formation Without Orientation 89

Lemma 1. [3] Let C = (R,F), |F | > 1, be a configuration without multiplicities
and let r ∈ R be a robot that has taken a snapshot of C during its last Look
phase. Then, (1) C admits a reflection iff there exist two points p, q ∈ R ∪ F ,
not necessarily distinct, such that V+

r (p) = V−
r (q), and (2) C admits a rotation

iff there exist two distinct points p, q ∈ R ∪ F , such that V+
r (p) = V+

r (q).

From this result we get that, for an asymmetric configuration C, it is unique the
point (robot or fixed-point) having the minimum view.

Unsolvable configurations. The following lemmata provide a characterization
about configurations that cannot be solved in the epf problem, even in the
synchronous setting.

Lemma 2. If C = (R,F) is a configuration containing a multiplicity, then the
epf problem is unsolvable even though robots are synchronized and endowed with
the multiplicity detection.

In the following, we denote by I the set of all the initial configurations. Then a
configuration C = (R,F) ∈ I implies that R is a set with distinct elements. We
provide a sufficient condition for a configuration in I to be unsolvable: if this
applies, then the epf problem cannot be solved.

Lemma 3. Let C = (R,F) ∈ I. If C admits an axis of reflection � such that
�∩F �= ∅ and �∩R = ∅, then C (and hence the epf problem) is unsolvable even
though robots are synchronized.

Figure 2.i shows an unsolvable configuration. By Lemma 3, if the epf problem
can be solved in a configuration that admits an axis of reflection � with fixed-
points, then there must be robots on �, see Fig. 2.ii.

Fig. 2. (i): an unsolvable configuration for the epf problem (cf. Lemma 3). White
and black circles represent fixed-points and robots, respectively; dashed lines are axes
of reflection. (ii): a solvable configuration where it is necessary to move robots out
of the axes, otherwise, given the symmetry, a multiplicity might be created in cg(F)
(cf. Lemma 2). (iii) Transitions among phases (cf. Theorem 1).

90 S. Cicerone et al.

3 The Algorithm for EPF

The general idea of our algorithm is based on the following observation. If the
initial configuration C = (R,F) is asymmetric, then we can solve epf by pro-
ceeding in two phases.

In the first phase a unique robot is chosen and moved far from cg(F) in such
a way it always guarantees the configuration remains asymmetric, regardless of
the movements of other robots. Once such a “guard” is positioned, the second
phase can start. In the second phase still one unique robot per time is chosen.
This is the one not on a point in F , closest to a non-occupied fixed-point, and
of minimum view in case of ties. By Lemma 1, we are ensured that always one
single robot will be selected since the configuration is asymmetric. The selected
robot is then moved toward one of the closest fixed-point until it reaches such
a point. In the following, we will refer to this approach as distmin-approach.
This is iterated until only the guard has to move toward the unique empty
fixed-point remained. By Lemma 2, all moves must be performed so as to avoid
the occurrence of multiplicities. It follows that sometimes movements are not
straightforward toward the target point but robots may deviate their trajectories.

Such an approach can be generalized in order to deal also with symmetric
configurations. In particular, the strategy selects a set of (possibly) equivalent
robots G ⊆ R called guards and move them in specific positions so that (G,F)
has no axis with fixed-points only. In this situation the epf problem can be
solved in the sub-configuration formed by the remaining robots, by means of the
distmin-approach. In particular, to solve the epf problem our algorithm performs
five main steps:

1. select a set G ⊆ R of pairwise equivalent robots in C among the furthest
robots from cg(F);

2. if required, move the selected robots, denoted as guards, such that:
(a) guards are placed so as they can be always recognized. In particular, as

final positions for the guards, we chose a sufficiently large distance d from
cg(F), greater than the radius of OF , where OF is the smallest circle
containing all fixed-points in F ;

(b) guards can be pre-assigned to some fixed-points according to distances
and view (i.e., we define an injective function μ : G → F that associates
a distinct fixed-point to each guard);

(c) robots in the configuration (G,F) are pairwise equivalent.
3. if (G,F) admits axes of reflection with fixed-points, robots in G cannot serve

as guards. Hence:
(a) select a new set G′ of guards among the robots belonging to the axes of

reflection,1 and pull them along the axes until reaching a certain distance
d′ > d from cg(F);

1 The existence of such robots is guaranteed by the fact that the initial configuration
was solvable, and hence by Lemma 3 there were no axes with only fixed-points.
Moreover, the moves performed from the initial configuration until the current step
guarantee to not create such kind of axes.

Asynchronous Embedded Pattern Formation Without Orientation 91

(b) break the reflection symmetry by rotating the robots in G′ along the circle
of radius d′;

(c) define G = G′ and go back to Step 3.
4. partially solve the epf problem by using (a variant of) the distmin-approach,

but limited to the robots in R \ G and the fixed-points in F \ μ(G).
5. finalize the pattern by moving each guard r ∈ G toward its pre-assigned

fixed-point μ(r).

One difficulty arising from the above strategy is that symmetric and asymmet-
ric configurations cannot be managed really separately as it is likely to happen
that a symmetric configuration becomes asymmetric after some moves. More-
over, from a symmetric configuration where some robots are equivalent, it is
not always possible to break the symmetry due to the impossibility to select
one single robot to move. To handle such situations we sometimes apply a sort
of “simulation”, to check whether the current configuration could have been
obtained from a symmetric one. If yes, then moves to (re-)establish the sym-
metry are performed, otherwise the strategy for asymmetric configurations is
applied. It follows that sometimes configurations that start as asymmetric are
transformed into symmetric ones by our strategy. Also, it might happen that the
set of guards selected in step 1 is bigger than the current set of robots furthest
from cg(F).

By Lemma 3, there are configurations in I (from now on denoted by U) that
are unsolvable. Hence, our algorithm solves the epf problem when the input
configuration belongs to I \ U . We construct our algorithm in such a way that
the execution consists of a sequence of phases denoted by A1, A2, B1, B2, C,
D, E , and F , see Table 3. To each phase, we assign an invariant such that every
configuration satisfies exactly one of the invariants so that robots can correctly
recognize the phase they have to perform. Moreover, each time robots switch
to a different phase, the current configuration is stationary, that is each phase
is initiated from a stationary configuration. This property is crucial to prove
the correctness of our algorithm, as it implies specific configurations (a sort of
check-points) that robots eventually reach without leaving pending moves. The
possible transitions among phases are shown in Fig. 2.iii. Since we will show that
each configuration satisfies exactly one of the invariants, then each phase has a
natural association with a subset of I \ U . It follows that, if G denotes the set
of all the final configurations for the epf problem where no moves have to be
performed, then {A1,A2,B1,B2, C,D, E ,F ,G} is a partition of I \ U .

Concerning the informal description of the algorithm provided above, the
phases/subsets play the following roles: C performs Steps 1 and 2, A1 and A2
perform Step 3.(a), B1 and B2 perform Step 3.(b), D performs Step 4, and E
and F perform Step 5.

3.1 Formal Details

To formally define our algorithm, let C = (R,F) be a configuration, then:

92 S. Cicerone et al.

– Axes(C) is a set containing all the axes of reflection of C; for sake of simplicity,
we write Axes(F) instead of Axes((∅, F));

– Axesf (C) ⊆ Axes(C) contains only the axes with fixed-points, i.e. each
� ∈ Axes(C) such that � ∩ F �= ∅. Symmetrically, Axes¬f (C) = Axes(C) \
Axesf (C).

– SemiAxes(C) contains the semi-axes of C, that is all the half-lines starting
from cg(F) and lying on an axis of Axes(C);

– SemiAxesf (C) ⊆ SemiAxes(C) contains only the semi-axes lying on some
element of Axesf (C); Symmetrically, SemiAxes¬f (C) = SemiAxes(C) \
SemiAxesf (C).

– Rays(F) contains the half-lines starting from cg(F) and passing through ele-
ments in F \ cg(F);

– OF is the smallest circle centered in cg(F) enclosing all points of F (cf.
Fig. 3.i);

– An orbit is a circle Ok centered at cg(F) and with radius k·ρF /n, k ≥ 1 integer,
where ρF is the radius of OF (cf. Fig. 3.i). The radius of Ok is denoted by ρk.

– Ot is the smallest orbit enclosing all robots in R (cf. Fig. 3.ii);
– At is the annulus of C, that is the area comprised between Ot and Ot−1,

including Ot−1 but excluding Ot;
– let α = 2π

2n2 (cf. Fig. 3.iv) and � ∈ SemiAxes(F): p�
0 is the point at � ∩ Ot,

P �
1/2 is the set containing the points p such that �(p�

0, cg(F), p) = α/2 (where
�(a, b, c) is the angle centered at point b and with sides [a, b] and [b, c]), and
P �
1 is the set containing the points p such that �(p�

0, cg(F), p) = α;
– Rob(·) is a function that takes a region of the plane (e.g., annulus, orbit, axis,

ray, ...) as input and returns the set of robots lying in the given region;
– Rt denotes the set containing all robots on Ot, i.e. Rt = Rob(Ot) (e.g., in

Fig. 3.ii there are four robots in Rt);
– Rf

t denotes the set containing all robots both on Ot and on some element of
Axesf (F), i.e. Rf

t = Rob(Ot ∩ Axesf (F));
– R¬f

t denotes the set containing all robots on Ot but those in Rf
t , i.e. R¬f

t =
Rt \ Rf

t (e.g., in Fig. 3.iii there are two robots in Rf
t and four in R¬f

t);
– μ : Rt → F , defined when each robot in Rt is not on an axis of Axes¬f (F).

Function μ(r) returns the fixed-point furthest from cg(F) on the half-line in
Rays(F) closest to r. In case of ties, that is there are two candidate fixed-
points f1 and f2, if (Rt, F) is asymmetric, then μ(r) selects among f1 and
f2 the point with minimum view in (Rt, F); if (Rt, F) is symmetric then, as
it will better specified later, necessarily (Rt, F) admits a rotation and hence
μ(r) selects the first point among f1 and f2 met in the direction induced by
the minimum view in (Rt, F) (cf. Lemma 1).

The phases required by our algorithm are defined in Table 3 according to
the invariants specified in Tables 1 and 2. In particular, Table 3 shows that the
algorithm essentially consists of a single move associated to each phase (i.e.,
robots that detect the membership of the current configuration to a phase, sim-
ply perform the move associated to the detected phase). Details about moves are

Asynchronous Embedded Pattern Formation Without Orientation 93

Fig. 3. Configurations in phase C (i), A1s and A1d (ii), A2s and A2d (iii), B1 and B2
(iv), D (v), E and F (vi). In (v), the numbers close to movement directions represent
the order in which the moves are performed.

given in Table 4. It is worth to remark that each phase is started from a station-
ary configuration. All the moves described in Table 4 are simple, except for m3

and m6 that require the sub-procedures Simulate and DistMin, respectively.
Here we just provide an intuition of their roles, while the pseudo-codes and the
correctness proofs are omitted.

When the algorithm deals with symmetric configurations, move m3 could
be performed at the same time by a set of equivalent robots. In particular,
move m3 is responsible of setting the guards at a sufficiently large distance from
cg(F), Steps 1 and 2 of the above informal description. Since the adversary may
stop some of the guards at different distances from the target, then Procedure
Simulate is used to identify all the robots that have to complete their move-
ments. This is the case where asymmetric configurations may become symmetric
as the simulation performed by Simulate outputs a set of equivalent robots.

Once guards have been suitably positioned, that is, the movements of the
other robots cannot generate unsolvable configurations, DistMin is invoked.
This procedure moves all robots but the guards toward suitable fixed-points,
Step 4 of the above informal description. Once all robots but the guards have
reached their final destinations, guards are all equivalent, and they are all
matched with different fixed-points not yet occupied by robots.

The possible transitions among phases are shown in Fig. 2.iii.

Theorem 1. If the algorithm described in Table 3 processes an initial configu-
ration C ∈ I \ U , then it leads to a final configuration in G, eventually.

94 S. Cicerone et al.

Table 1. Basic Boolean variables used to define the phases’ invariants.

Var Definition

a0 (1) ρt−1 > ρF and Simulate(C) = ∅ and (2) Rob(At) = ∅
a1 let C′ = (R¬f

t , F); (1) ρt−1 > ρF ∧ Simulate(C) = ∅, and
(2) Rob(At \ Axesf (C′)) = ∅ ∧ ∀� ∈ SemiAxesf (C′) : |Rob(�) ∩ Rob(At ∪ Ot)| ≤ 1

b all robots in Rt are on some element of Axes(F)

c0 C′ = (R¬f
t , F) has axes with fixed-points, i.e. ∃ � ∈ Axes(C′) s. t. � ∩ F
= ∅

c1 let C′ = (R¬f
t , F); ∀ � ∈ Axes(C′) s. t. � ∩ F
= ∅, � ∩ R
= ∅

c2 let C′ = (R¬f
t , F); ∀ � ∈ SemiAxesf (C′), if � ∩ R
= ∅ then � ∩ Rt
= ∅

e0 in C = (R, F) all robots in Rt are equivalent, i.e. ∀ r, r′ ∈ Rt, ∃ ϕ isometry of C s. t.
ϕ(r) = r′

e1 in C′ = (Rt, F) all robots are equivalent, i.e. ∀ r, r′ ∈ Rt, ∃ ϕ isometry of C′ s. t.
ϕ(r) = r′

e2 in C′ = (R¬f
t , F) all robots are equivalent, i.e. ∀ r, r′ ∈ R¬f

t , ∃ ϕ isometry of C′ s. t.
ϕ(r) = r′

f on each � ∈ Rays(F) there exists at most one fixed-point f s. t. f
∈ R; if such a point
f exists on �, then:

(1) d(cg(F), f) > d(cg(F), f ′) for each f ′ ∈ (F \ {f}) ∩ �, and
(2) there exists r ∈ (R \ F) ∩ � s. t. there are neither robots nor fixed-points between f
and r

i1 (1) ∃r ∈ Rt s. t. r
∈ ⋃� P �
1/2

, and

(2) ∀ r ∈ Rt, ∃P �
1/2

= {p, q} s. t. r lies on the the smallest arc [p, q] of Ot

i2 (1) ∃r ∈ Rt s. t. r
∈ ⋃� P �
1 , and

(2) ∀ r ∈ Rt, ∃P �
1 = {p, q} s. t. r lies on the smallest arc [p, q] of Ot

i3 ∀r ∈ Rt, r ∈ ⋃� P �
1

m0 (1) μ : Rt → F is injective and μ(Rt) ∩ R = ∅, and
(2) R \ Rt ⊆ F

p ∀r1, r2 ∈ R¬f
t , let �1, �2 be the half-lines s. t. μ(r1) ∈ �1 and μ(r2) ∈ �2, and let p1, p2

be the points in P �1
1 and P �2

1 closest to r1, r2, respectively. Then in ({p1, p2}, F),
predicate ¬c0 holds

s0 let λ : Rt → ⋃
�∈SemiAxes(F){p�

0} s. t. λ(r) is the point closest to r:

(1) C∗ = (R \ Rt ∪ λ(Rt), F) ∈ I \ U , and
(2) in C∗ the predicate a0 ∧ b ∧ e1 is true

s1 let λ : Rt → ⋃
�∈Rays(F){p�

0} s. t. λ(r) is the point closest to r:

(1) C∗ = ((R \ Rt) ∪ λ(Rt), F) does not contain any multiplicity, and
(2) in C∗ the predicate f is true

w R = F : epf solved, see phase G

3.2 Extended Example

In order to better describe the used predicates and the defined phases, we now
provide an extended example. Figure 3.i shows a configuration belonging to phase
C. This is inferred by the fact that the configuration is asymmetric and hence is
not in U ; predicates a0 and a1 are false since ρt−1 < ρF , and hence C is not in
A1s, A1d, A2s, B1, B2, D, E ; predicate b is false, and hence C �∈ A2d; predicate
f is false, and hence C �∈ F .

Asynchronous Embedded Pattern Formation Without Orientation 95

Table 2. Composed Boolean variables used to define the phases’ invariants.

Var Definition Comment

r0 (i1 ∨ i2) ∧ s0 Necessary conditions for rotating possible guards

r1 a0 ∧ i1 ∧ s0 Rotation of guards toward α/2, see phase B1

r2 a0 ∧ i2 ∧ s0 Rotation of guards toward α, see phase B2

r3 a0 ∧ i3 ∧ s0 Rotation of guards completed, see phase D
g0 c0 ∧ c1 ∧ e2 ∧ ¬r0 Possible guards pulling along axes, see phases A1 and A2

g1 a0 ∧ b ∧ e1 Possible guards are on axes ready to rotate, see phase B1

g2 a0 ∧ ¬b ∧ ¬c0 ∧ e1 Possible guards are positioned, see phase D
m1 ¬c0 ∧ m0 Distmin-approach completed, see phase E

Table 3. Algorithm for epf. The first column specifies a different phase to which a
configuration belongs to. Then, for each phase, in the upper (shaded) side it is specified
the invariant that the configuration satisfies at the beginning of the phase (start), once
some robots have started moving (during), and at the end of the phase (end). In the
lower side, it is specified the corresponding move performed by the algorithm, and on
the last column the possible phases that can be reached.

96 S. Cicerone et al.

According to our algorithm, move m3 is applied, that is procedure Simulate

is invoked. It outputs four robots to move. In fact, it considers the more external
robots contained in between the current Ot−1 and Ot, and looks for a potential
symmetric configuration from which C could have been obtained if a subset or
all the considered robots are moved radially further from cg(F).

Move m3 allows the four robots to reach the current Ot and from there
they are moved toward Ot+1. This is repeated until they all occupy Ot and a0
holds, that is, the annulus between Ot and Ot−1 does not contain robots and
ρt−1 > ρF . The reached configuration shown in Fig. 3.ii is stationary and belongs
to A1, since it is symmetric and there are fixed-points on axes.

Move m1 is then applied which pulls guards along axes. It means that the
robots currently on Ot cannot serve as guards, since (R ∩ Ot, F) induces axes
with fixed-points, and we have already observed from Fig. 2.ii why this should be
avoided. The two robots on the axis are first moved toward Ot. As long as they
both do not reach Ot, the configuration belongs to A1s or A1d, but in either
case m1 is applied. Once all robots reach Ot, the configuration is stationary and
belongs to A2s, see Fig. 3.iii. Move m2 is then applied. It involves all equivalent
robots from the axis of symmetry and residing on Ot, of minimum view.

In our example the two robots on the axis are equivalent and they both move
toward Ot+1. As soon as one robot moves, the configuration belongs to A2d, from
where move m3 is applied. In this switch from A2s to A2d, the configuration is
not stationary (and in fact the phase has not changed) but m3 guarantees to
move the same set of robots allowed to move by m2 toward the same targets.
Similarly as before, the two robots are moved until a0 holds again.

The reached configuration depicted in Fig. 3.iv is stationary and belongs to
B1, and the candidate guards (the two robots on Ot) are rotated along Ot of
an angle α = 2π

2n2 according to arbitrary directions. The value of α is chosen so
that the final point of each moving robot assures that, in case such robots will
be the final guards, the function μ : G → F that associates each guard to its
closer fixed-point is injective. The rotation is made in two steps: first the robots
rotate of α/2 (reaching a stationary configuration in B2) and then they start
again to complete the rotation. This is done for ensuring that all the rotating
robots leave the axes before starting the next step.

Once guards are positioned, see Fig. 3.v, the configuration is stationary and
belongs to D. Here guards ensure that any movement of all other robots can-
not induce axes of symmetry with fixed-points, that is unsolvable configurations
cannot be generated. Now, the distmin-approach is applied, that is guards are
associated to the closest fixed-points according to function μ, and all other robots
are moved according to the minimal view toward the closest (and not occupied)
fixed-points excluding those associated to the guards. After, a stationary config-
uration in phase E is reached, see Fig. 3.vi. From here, guards are moved toward
the associated fixed-points. Again the movement is done in two steps in order to
distinguish it from that of phases B1 and B2. First each guard rotates toward the
closest axis of F with the associated fixed-point, and a stationary configuration

Asynchronous Embedded Pattern Formation Without Orientation 97

Table 4. Description of the moves performed by the algorithm.

Move name Move

m1 Let C′ = (R¬f
t , F), and � ∈ SemiAxesf (C′). The robot on � (if any)

furthest from cg(F) moves toward the point at � ∩ Ot

m2 Each robot with minimum view in Rf
t moves toward the point at

� ∩ Ot+1, where � is the axis where the robot lies

m3 If Simulate(C) = ∅, then each robot with minimum view in Rt moves
radially toward Ot+1, else each robot in Simulate(C) moves
radially toward Ot

m4 Each robot in Rt rotates along Ot toward a closest point in⋃
�∈SemiAxes(F) P �

1/2

m5 Each robot in Rt rotates along Ot toward a closest point in⋃
�∈SemiAxes(F) P �

1

m6 Each robot in R \ Rt executes Procedure DistMin

m7 Each robot in Rt rotates along Ot toward the closest half-line in
Rays(F)

m8 Each robot not on a fixed-point moves along the half-line in Rays(F)
where it resides toward the closest fixed-point not occupied by a
robot

belonging to F is reached. Then, they move along the axes toward the assigned
fixed-points hence obtaining the required pattern, that is phase G.

4 Conclusion

Starting from [12], we have studied a new branch of investigation about the so-
called Embedded Pattern Formation problem. Anonymous and oblivious robots
moving in the plane operate in the Look-Compute-Move model without any
orientation capability nor randomness feature. Starting from different locations,
robots must form the pattern provided by fixed-points in the plane. We design a
new deterministic distributed algorithm that solves the epf problem for all initial
configurations but those proved to be unsolvable. The used techniques, as well
as the methodology, applied to formalize our algorithm might open intriguing
directions for further research. For instance, can our algorithm be exploited to
solve the Pattern Formation problem without chirality in a similar way the one
proposed in [10] has been used in [12]?

References

1. Bramas, Q., Tixeuil, S., Announcement, B.: Probabilistic asynchronous arbitrary
pattern formation. In: Proceedings of the 35th ACM Symposium on Principles of
Distributed Computing (PODC) (2016)

98 S. Cicerone et al.

2. Chaudhuri, S.G., Ghike, S., Jain, S., Mukhopadhyaya, K.: Pattern formation for
asynchronous robots without agreement in chirality. CoRR, abs/1403.2625 (2014)

3. Cicerone, S., Di Stefano, G., Navarra, A.: Minimum-traveled-distance gathering
of oblivious robots over given meeting points. In: Gao, J., Efrat, A., Fekete, S.P.,
Zhang, Y. (eds.) ALGOSENSORS 2014. LNCS, vol. 8847, pp. 57–72. Springer,
Heidelberg (2015)

4. Cieliebak, M., Flocchini, P., Prencipe, G., Santoro, N.: Distributed computing by
mobile robots: gathering. SIAM J. Comput. 41(4), 829–879 (2012)

5. Courtieu, P., Rieg, L., Tixeuil, S., Urbain, X.: Impossibility of gathering, a certifi-
cation. Inf. Process. Lett. 115(3), 447–452 (2015)

6. Courtieu, P., Rieg, L., Tixeuil, S., Urbain, X., Announcement, B.: Certified univer-
sal gathering in R2 for oblivious mobile robots. In: Proceedings of the 35th ACM
Symposium on Principles of Distributed Computing (PODC) (2016)

7. Das, S., Flocchini, P., Santoro, N., Yamashita, M.: Forming sequences of geometric
patterns with oblivious mobile robots. Dist. Comp. 28(2), 131–145 (2015)

8. Flocchini, P., Prencipe, G., Santoro, N., Viglietta, G.: Distributed computing by
mobile robots: solving the uniform circle formation problem. In: Aguilera, M.K.,
Querzoni, L., Shapiro, M. (eds.) OPODIS 2014. LNCS, vol. 8878, pp. 217–232.
Springer, Heidelberg (2014)

9. Flocchini, P., Prencipe, G., Santoro, N., Widmayer, P.: Arbitrary pattern formation
by asynchronous, anonymous, oblivious robots. Theoret. Comput. Sci. 407(1–3),
412–447 (2008)

10. Fujinaga, N., Ono, H., Kijima, S., Yamashita, M.: Pattern formation through opti-
mum matching by oblivious CORDA robots. In: Lu, C., Masuzawa, T., Mosbah,
M. (eds.) OPODIS 2010. LNCS, vol. 6490, pp. 1–15. Springer, Heidelberg (2010)

11. Fujinaga, N., Yamauchi, Y., Kijima, S., Yamashita, M.: Asynchronous pattern
formation by anonymous oblivious mobile robots. In: Aguilera, M.K. (ed.) DISC
2012. LNCS, vol. 7611, pp. 312–325. Springer, Heidelberg (2012)

12. Fujinaga, N., Yamauchi, Y., Ono, H., Kijima, S., Yamashita, M.: Pattern formation
by oblivious asynchronous mobile robots. SIAM J. Comput. 44(3), 740–785 (2015)

13. Ghike, S., Mukhopadhyaya, K.: A distributed algorithm for pattern formation by
autonomous robots, with no agreement on coordinate compass. In: Janowski, T.,
Mohanty, H. (eds.) ICDCIT 2010. LNCS, vol. 5966, pp. 157–169. Springer, Heidel-
berg (2010)

14. Millet, L., Potop-Butucaru, M., Sznajder, N., Tixeuil, S.: On the synthesis of mobile
robots algorithms: the case of ring gathering. In: Felber, P., Garg, V. (eds.) SSS
2014. LNCS, vol. 8756, pp. 237–251. Springer, Heidelberg (2014)

15. Yamauchi, Y., Uehara, T., Kijima, S., Yamashita, M.: Plane formation by syn-
chronous mobile robots in the three dimensional euclidean space. In: Moses, Y.,
et al. (eds.) DISC 2015. LNCS, vol. 9363, pp. 92–106. Springer, Heidelberg (2015).
doi:10.1007/978-3-662-48653-5 7

16. Yamauchi, Y., Yamashita, M.: Randomized pattern formation algorithm for asyn-
chronous oblivious mobile robots. In: Kuhn, F. (ed.) DISC 2014. LNCS, vol. 8784,
pp. 137–151. Springer, Heidelberg (2014)

http://dx.doi.org/10.1007/978-3-662-48653-5_7

Polynomial Lower Bound for Distributed Graph
Coloring in a Weak LOCAL Model

Dan Hefetz1,2, Fabian Kuhn3, Yannic Maus3(B), and Angelika Steger4

1 Hebrew University, Jerusalem, Israel
danny.hefetz@gmail.com

2 Tel Aviv University, Tel Aviv, Israel
3 University of Freiburg, Freiburg im Breisgau, Germany

{kuhn,yannic.maus}@cs.uni-freiburg.de
4 ETH Zurich, Zürich, Switzerland

steger@inf.ethz.ch

Abstract. We show an Ω
(
Δ

1
3 − η

3
)

lower bound on the runtime of any
deterministic distributed O(Δ1+η

)
-graph coloring algorithm in a weak

variant of the LOCAL model.
In particular, given a network graph G = (V, E), in the weak LOCAL

model nodes communicate in synchronous rounds and they can use
unbounded local computation. The nodes have no identifiers, but instead,
the computation starts with an initial valid vertex coloring. A node can
broadcast a single message of unbounded size to its neighbors and
receives the set of messages sent to it by its neighbors.

The proof uses neighborhood graphs and improves their understand-
ing in general such that it might help towards finding a lower (runtime)
bound for distributed graph coloring in the standard LOCAL model.

Keywords: Lower bound · Distributed graph coloring · Color reduc-
tion · Neighborhood graphs · LOCAL model · Distributed symmetry
breaking

1 Introduction

In the distributed message passing model, an n-node communication network is
represented as a graph G = (V,E). Each node hosts a processor and processors
communicate through the edges of G. In the standard LOCAL model, time is
divided into synchronous rounds and in each round, simultaneously, each node
v ∈ V performs an unbounded amount of local computations, sends a single
message of unbounded size to each of its neighbors and receives the messages
sent to it by its neighbors. The time complexity of an algorithm is measured by
the total number of rounds.

A full version of this paper with all proofs is avalaible on arXiv.org [1].
F. Kuhn and Y. Maus—Supported by ERC Grant No. 336495 (ACDC).

c© Springer-Verlag Berlin Heidelberg 2016
C. Gavoille and D. Ilcinkas (Eds.): DISC 2016, LNCS 9888, pp. 99–113, 2016.
DOI: 10.1007/978-3-662-53426-7 8

http://arxiv.org/abs/

100 D. Hefetz et al.

This paper deals with lower bounds on the time complexity of distributed
graph coloring algorithms. A c-(vertex)-coloring of a graph G = (V,E) is a func-
tion ϕ : V → {1, . . . , c} such that ϕ(u) �= ϕ(v) for all {u, v} ∈ E. Coloring
a graph with the minimum number of colors is one of Karp’s 21 NP-complete
problems [2] and the problem is even hard to approximate within a factor n1−ε

for any constant ε > 0 [3]. A simple centralized greedy coloring algorithm which
sequentially colors the nodes with the smallest available color guarantees a col-
oring with at most Δ + 1 colors, where Δ denotes the maximum degree of the
graph. In the distributed setting, one is usually interested in competing with this
greedy algorithm and to therefore find a coloring with Δ + 1 or more colors [4].

In this paper we consider deterministic color reduction algorithms, where
before the start of the algorithm the graph is equipped with an m-coloring
(usually m � Δ). Apart from their initial color, nodes are indistinguishable
and therefore, in particular, nodes do not have unique IDs. However, unique IDs
in the range {1, . . . , N} for some N ≥ n are a special instance of the problem
because they form an N -coloring. All recent deterministic coloring algorithms
(e.g., [4–6]) begin with the seminal O(log∗ n)-round algorithm by Linial which
computes an O(Δ2)-coloring [7].1 Afterwards none of the algorithms make use
of the unique IDs again and even Linial’s algorithm does not require unique IDs
but only an initial coloring of the nodes, i.e., the algorithms fit in the framework
of color reduction algorithms. A lower bound for color reduction algorithms is
thus almost as relevant as a lower bound for unique IDs.

More specifically, we consider color reduction algorithms in a weak variant
of the standard LOCAL model, which we name the SET-LOCAL model. In each
round, each node can send an arbitrarily large message to its neighbors. However,
instead of receiving one message from each neighbor, each node only receives the
set of messages sent to it by its neighbors. That is, if two or more neighbors send
the same message to a node u, u only receives this message once.2 When assuming
unique IDs, there is no difference in power between the SET-LOCAL model and
the standard LOCAL model. Every node can just add its ID to all its messages
and each node can then always easily distinguish between the messages sent to
it by different neighbors. However, when considering color reduction algorithms,
neighbors with the same inital color might send the same message even when
including their color or any other local knowledge in their messages.

Contributions: As our main result, we prove the following polynomial (in
the maximum degree Δ) lower bound on the time required by color reduction
algorithms in the SET-LOCAL model (for a formal definition of color reduction
and of the SET-LOCAL model, see Sect. 2).

Theorem 1 (Color Reduction Lower Bound). Let 0 ≤ η < 1 and C > 0 be
two constants and assume that m ≥ 2CΔ1+η. Any deterministic color reduction
algorithm which, given an initial m-coloring, computes a coloring with at most

1 The function log∗ x denotes the number of iterated logarithms needed to obtain a
value at most 1, that is, ∀x ≤ 1 : log∗ x = 0, ∀x > 1 : log∗ x = 1 + log∗ log x.

2 A similar model, but for completely anonymous graphs, has been studied in [8].

Lower Bound for Distributed Graph Coloring in a Weak LOCAL Model 101

CΔ1+η colors in graphs with maximum degree at most Δ in the SET-LOCAL
model requires Ω

(
Δ

1−η
3

)
rounds.

Thus, in particular, any color reduction algorithm for computing a (Δ + 1)-
coloring needs at least Ω

(
Δ

1
3
)
rounds.

Note that the theorem in particular implies that the time required for com-
puting a Δ2−ε-coloring for any constant ε > 0 is at least polynomial in Δ when
using color reduction algorithms in the SET-LOCAL model. In a d-defective col-
oring each color class induces a graph with maximum degree d. A modification
of our proofs yield that any one round d-defective color reduction algorithm in
the standard LOCAL model needs Ω(Δ2/(d+1)2) colors if m ≥ 2Δ2. In order to
establish that there are non-trivial color reduction algorithms in the SET-LOCAL
model, we show that an existing distributed coloring algorithm from [9] works in
this setting. For space reasons, the discussion of the lower bound for d-defective
coloring and the following theorem appears in [1].

Theorem 2 (Color Reduction Upper Bound). In graphs with maximum
degree at most Δ and an initial m-coloring, there is a deterministic distributed
color reduction algorithm in the SET-LOCAL model which computes a (Δ + 1)-
coloring in O(Δ log Δ + log∗ m) rounds.

Related Work: Distributed coloring has been identified as one of the prototyp-
ical problems to understand the problem of breaking symmetries in distributed
and parallel systems. In the following, we discuss the work which is most rela-
vant in the context of this paper. For a more general overview of the research
on distribted coloring, we refer to the monograph of Barenboim and Elkin [4].

In a classic paper, Cole and Vishkin showed that a ring network can be 3-
colored in O(log∗ N) synchronous rounds, where N is the size of the space of
possible node IDs [10]. Most relevant in the context of this work is the seminal
paper by Linial [7], where he in particular shows that the O(log∗ N) algorithm of
[10] is asymptotically optimal and that in O(log∗ N) rounds, it is possible to color
arbitrary graphs with O(Δ2) colors. All the above algorithms are deterministic
and at the core, they are all based on iterative color reduction schemes where a
given valid vertex coloring is improved in a round-by-round manner. A different
approach is taken in [11,12], where it is shown how to compute a (Δ+1)-coloring
in 2O(

√
log n) rounds (n is the number of nodes) based on first computing a

decomposition of the network into clusters of small diameter. When measuring
the time as a function of n, this is still the best known deterministic distributed
(Δ + 1)-coloring algorithm for general graphs.

There has been significant recent progress on developing faster determinis-
tic distributed coloring algorithms, particularly for graphs with moderately small
maximum degree Δ. In [9], it was shown that combined with a simple iterative color
reduction scheme, the algorithm of [7] can be turned into a O(Δ log Δ + log∗ N)-
time (Δ+1)-coloringalgorithm.Bydecomposingagraph into subgraphswith small
maximum degree, an improved time complexity of O(Δ + log∗ N) was achieved
in [13]. The basic ideas of [13] were extended and generalized in [14], where in

102 D. Hefetz et al.

particular it was shown that an O(Δ1+o(1))-coloring can be computed in time
O(Δo(1)+log∗ N).The timecomplexity for (Δ+1)-coloringswas recently improved
in [5,6], where upper bounds of Õ(Δ3/4)+log∗ N and Õ(

√
Δ)+log∗ N rounds were

shown. Both algorithm also work for the more general list coloring problem.3

While the best deterministic algorithms for distributed (Δ+1)-coloring have
time complexities which are polynomial in Δ or exponential in

√
log n, much

faster randomized algorithms are known. Based on the distributed maximal
independent set algorithm of [15,16] and a reduction described in [7], by using
randomizatiion, a (Δ+1)-coloring can be computed in O(log n) rounds. This has
recently been improved in [17], where it was shown that a (Δ + 1)-coloring can
be computed in time O(log Δ)+2O(

√
log log n) and in [18], where the current best

time bound of O(
√

log Δ) + 2O(
√
log log n) was proven. Closing or understanding

the gap between the distributed complexities of randomized and deterministic
algorithms for (Δ+1)-coloring and other basic symmetry breaking tasks is one of
the main open problems in the area of distributed graph algorithms. Even though
we are dealing with a weaker, non-standard communication model, we hope that
the present paper contributes in this direction. Note that for Δ-coloring trees
with max. degree at most Δ, an exponential separation between randomized and
deterministic algorithms has been shown in [19].

Although there has been steady progress on developing upper bounds for dis-
tributed coloring, much less is known about lower bounds. While by now there
exist many distributed time lower bounds for related graph problems in the LOCAL
model (e.g., [20–24]), the Ω(log∗ n) lower bound for coloring rings with O(1) colors
by Linial [7] is still the only time lower bound for the standard distributed coloring
problem. Linial’s lower bound is based on the fundamental insight that for a given
r ≥ 1, the minimum number of colors which any r-round coloring algorithm needs
to use can be expressed as the chromatic number of a graph Linial names the neigh-
borhood graph. Linial then shows that the chromatic number of the r-round neigh-
borhood graph for n-node rings is Ω(log(2r) n), where logk x is the k-times iterated
log-function. For a more detailed discussion of how to use neighborhood graphs
for proving distributed coloring lower bounds, we refer to Sect. 3. Using neigh-
borhood graphs, a combination of techniques of [7,25] also shows that coloring
d-regular trees with less than o(log d/ log log d) colors requires Ω(log d/ log log d)
rounds; [26] uses this result to show that O(a)-coloring graphs with arboricity a
takes Ω(log(n)/ log(a)) rounds. Further, in [9,27], neighborhood graphs were used
to show that in a single round, when starting with an m-coloring with m sufficiently
large, in graphs with maximum degree at most Δ, the number of colors cannot be
reduced to fewer than Ω(Δ2) colors. Similar, slightly weaker results were before
already proven in [28]. In [20], it has been shown that coloring d-regular graphswith
d colors requires at least Ω(log log n) rounds. In addition, in [29], it was shown that
Ω(log n/ log log n) rounds are needed to compute a (Δ + 1)-coloring where in the
end, each node has the smallest possible color which is consistent with the colors
chosen by its neighbors.

3 The algorithm of [6] works for the even more general conflict coloring problem and Õ
ignores polylog factors in log Δ.

Lower Bound for Distributed Graph Coloring in a Weak LOCAL Model 103

2 Model and Problem Statement

Mathematical Notation: For a graph G = (V,E) and a node v ∈ V , ΓG(v)
denotes the set of neighbors of v in G. Sometimes we write Γ (v) if the graph G
is clear from the context. Given a graph G, we use Δ(G) to denote the maximum
degree of G and χ(G) to denote the chromatic number of G (i.e., the number of
colors of a minimum valid vertex coloring). We sometimes abuse notation and
identify a set of nodes S of G with the subgraph induced by S. For example, we
might write S ⊆ G, where S denotes a subset of the nodes of G and also the
subgraph induced by S. By [m] we denote the set of integers {1, . . . ,m}.

The Color Reduction Problem: In the distributed color reduction problem, we are
given a network graph G = (V,E) of max. degree at most Δ. Each node v ∈ V
is equipped with an initial color ϕ(v) ∈ [m] such that the coloring ϕ provides a
valid vertex coloring of G. At the start, nodes can only be distinguished by their
initial color and thus at the beginning, except for the value of their initial color,
all nodes start in the same state. The goal of a color reduction algorithm is to
compute a new color ϕ′(v) for each v ∈ V such that the coloring ϕ′ also provides
a valid vertex coloring of G, but such that the colors ϕ′(v) are from a much
smaller range. We say that a color reduction algorithm computes a c-coloring of
G if ϕ′(v) ∈ [c] for all v ∈ V .

Communication Model: We work with an adapted version of the LOCAL model
[7,30], which we call the SET-LOCAL model. A communication network is mod-
eled as an n-node graph G = (V,E), where the nodes of G can use unbounded
local computation and communicate through the edges of G in synchronized
rounds. In each round, a node can broadcast a single message of unbounded
size to its neighbors and each node receives the set of messages sent to it by
its neighbors. That is, if two or more neighbors of a node v ∈ V send the same
message to v, v will receive the message only a single time. Thus, without any
further knowledge, v cannot know whether a message was sent by only one or
more than one neighbor. Note that a node which broadcasts a single message
of arbitrary size can send different messages to different neighbors by indicating
which part of the message is for which neighbor. However, to do so it is necessary
that the node can already distinguish its neighbors by some property, e.g., by
the use of (different) messages received from them previously. In [8], different
weak variants of the LOCAL model were studied for problems where the network
nodes are completely anonymous without any initial labeling. The SET-LOCAL
model corresponds to the SB model in the hierarchy of models discussed in [8].

When running a distributed color reduction algorithm in the SET-LOCAL
model, we assume that all nodes are aware of the parameters m and Δ and of
the number of nodes n of G. Note that since our main focus is proving a lower
bound, this assumption only makes the results stronger.

The Role of Randomness: Generally, there is a large gap between the best known
randomized and deterministic distributed coloring algorithms and understanding

104 D. Hefetz et al.

whether this large gap is inherent or to what extent it can be closed is one of
the major open problems in the area of distributed graph algorithms. When
considering color reduction algorithms as introduced above, randomness can
only help if either an upper bound on n is known or if the running time can
depend on n. To see this, assume that we have a randomized color reduction
algorithm which computes a c(m,Δ)-coloring in T (m,Δ) rounds. To have an
algorithm which cannot be derandomized trivially, the algorithm must either fail
to terminate in T (m,Δ) rounds with positive probability ε > 0 or it must fail
to compute a valid c-coloring with positive probability ε > 0. Let G be a graph
on which the algorithm fails in one of the two ways with a positive probability
ε > 0. Consider a graph Hk which consists of k identical disjoint copies of G.
As the randomness in the k copies has to be independent, when running the
algorithm, one of the k copies fails with probability at least 1 − (1 − ε)k. Note
that the parameters m and Δ are the same for the two graphs G and Hk. For
sufficiently large k, this failure probability becomes arbitrarily close to 1.

3 Neighborhood Graphs to Prove Lower Bounds

Neighborhood graphs were introduced by Linial in his seminal paper [7] in which
he uses them to derive his Ω(log∗ n) lower bound for 3-coloring rings. We quickly
recall his main ideas: In the LOCAL model, w.l.o.g., one can assume that an r-
round algorithm first collects all data, which it can learn in r rounds, and only
then decides on its output. The data, which a synchronous r-round distributed
algorithm running at a node v can learn in this model, consists of the IDs and
the topology of all nodes in distance at most r, except for edges between nodes
in distance exactly r. This is called the r-view of a node and corresponds exactly
to the knowledge a node obtains if every node forwards everything it knows
(i.e., its current state) to all neighbors in every round, which it can do due to
unbounded message size. If the number of IDs n, the maximum degree Δ, and
the number of rounds r are fixed, there are finitely many r-views and an r-round
c-coloring algorithm is a function from those r-views to [c]. Neighborhood graphs
formalize the neighborhood relation between r-views. The neighborhood graph
N LOC

r (n,Δ) for the LOCAL model has a node for each feasible r-view and there
is an edge between two such nodes if the corresponding r-views can occur at
neighboring nodes in some n-node graph with max. degree Δ.

Neighborhood graphs are extensively useful when studying distributed graph
coloring because any (correct) r-round c-coloring algorithm yields a c-coloring of
the r-round neighborhood graph N LOC

r and vice versa, [7,9]. Thus the existence
of an r-round c-coloring algorithm reduces to the question whether the chromatic
number of N LOC

r (n,Δ) is smaller than or equal to c. Particularly, Linial showed
χ
(N LOC

r (n, 2)
) ∈ Ω

(
log(2r) n

)
which yields his lower bound of Ω(log∗ n) rounds.

3.1 Neighborhood Graphs in the SET-LOCAL Model

In the same way as in the LOCAL model we obtain the data a node v can learn
in an r-round algorithm of the SET-LOCAL model if every node forwards its

Lower Bound for Distributed Graph Coloring in a Weak LOCAL Model 105

knowledge to all neighbors in every round. After 0 rounds a node knows nothing
but its own color, after one round it knows its own color and the set of colors
of its neighbors, and so on. Definition 1 formalizes the data which a node can
learn in r rounds in the SET-LOCAL model. A node cannot detect cycles unless
unique IDs are given (this holds in the SET-LOCAL model and in the standard
LOCAL model). The r-views are thus not formed by the actual topology of the
neighborhood, but by the tree unfolding of the neighborhood. Thus for color
reduction algorithms, w.l.o.g., we can restrict our attention to the case of trees.

Definition 1 (r-Neighborhood). Let G = (V,E) be a tree with maximum
degree at most Δ and an initial m-coloring ϕ : V → {1, . . . , m}. We define

SG
0 (v) := ϕ(v) (0-round view).

SG
r+1(v) :=

(SG
r (v),

{SG
r (u) | u ∈ ΓG(v)

})
(r + 1-round view),

where r ≥ 0 and SG
r (v) equals the data which a node v ∈ V can learn in an

r-round distributed algorithm (r-view of v) in the SET-LOCAL model.

The r-view SG
r (v) depends on the tree G, the coloring ϕ, and the node v. If we

fix the number of initial colors m, the maximum degree Δ, and the number of
rounds r, the number of feasible r-views which can occur at any node in any tree
with maximum degree Δ and initial m-coloring is finite. The following definition
adapts the neighborhood graphs of the LOCAL model to the SET-LOCAL model.

2

33

4 4

5

1
7

6
6

2
1 2

1

4

3
2

4

3

5

2

4

3 3

5

4

Fig. 1. Left: An extract of a tree graph. Images in Fig. 2 correspond to views of the
gray node for two rounds in different models. Right top: The 1-round view in the
SET-LOCAL model of the gray node in the left image. Right bottom: The 1-round
view in the LOCAL model of the gray node in the left image. In [9, Lemma 3.1] the

authors prove that χ(N LOC
1 (m, D)) = χ(Ñ1(m, D)) holds.

Definition 2 (Neighborhood Graph in the SET-LOCAL Model). Let m,
Δ, and r ≥ 0 be fixed. Consider the following finite graph N SL

r (m,Δ)

V (N SL
r) :=

{SG
r (v) | ∃ m-colored tree G : Δ(G) ≤ Δ and v ∈ V (G)

}
,

E(N SL
r) :=

{{SG
r (v),SG

r (u)} | ∃ m-colored tree G : Δ(G) ≤ Δ, {u, v} ∈ E(G)
}

.

106 D. Hefetz et al.

Just as in the LOCAL model, any r-round c-coloring algorithm in the SET-LOCAL
model with an initial m-coloring can be transformed into an equivalent algorithm
in which every node first collects its r-neighborhood and then decides on its
output. Such an algorithm is a function f : V (N SL

r) → {1, . . . , c} such that
f(x) �= f(y) for all {x, y} ∈ E(N SL

r), that is, f is a c-coloring of the graph N SL
r .

A proof of the following lemma can be found in the full version of the paper [1].

Lemma 1. Any deterministic r-round distributed algorithm in the SET-LOCAL
model, which correctly c-colors any intially m-colored graph with maximum degree
Δ, yields a feasible c-coloring of N SL

r (m,Δ) and vice versa.

Thus a lower bound χ(N SL
r (m,Δ) > c on the chromatic number implies that

there is no r-round color reduction algorithm in the SET-LOCAL model which
(correctly) c-colors all initially m-colored graphs with maximum degree Δ.

4 Lower Bound Proof

We begin with a lower bound of Ω(Δ2) on the number of colors for any one-
round color reduction algorithm in the standard LOCAL model (Sect. 4.1), i.e.,
χ(N LOC

1) ∈ Ω(Δ2). This result was shown before in [27], but our proof is much
simpler and we believe that it is also instructive as it contains the core idea for
the subsequent general lower bound proof for the SET-LOCAL model.

Afterwards, the goal is to device a lower bound on the chromatic number of
N SL

r . For this purpose, we (recursively) define graphs Nr and Ñr. The recursive
structure of the graph Nr is simpler than the one of N SL

r such that the repetitive
application of the ideas of Sect. 4.1 amplify to a lower bound on χ(Nr) (Sect. 4.2).
Any graph homomorphism h : G → H implies χ(G) ≤ χ(H) and in Sect. 4.3, we
show that for the correct choice of parameters there is a chain of homomorphisms
Nr −→ Ñr −→ N SL

r . Hence the lower bound on χ(Nr) translates into a lower
bound on χ(N SL

r). In Sect. 4.4 we combine all results to compute a runtime lower
bound on any distributed color reduction algorithm in the SET-LOCAL model.
All omitted proofs in this part can be found in the full version of the paper [1].

4.1 One-Round Lower Bound in the LOCAL Model

For a set S let A � S denote that A is a multiset consisting of elements of S.
For integers Δ ≥ 2 and m > Δ, we define the one-round neighborhood graph

V
(N LOC

1 (m,Δ)
)

:= {(x,A)|x ∈ [m], A � [m], |A| ≤ Δ,x �∈ A} .

There is an edge between nodes (x,A), (y,B) ∈ N LOC
1 (m,Δ) if x ∈ B and y ∈ A.

The above definition is the most general version of one-round neighborhood
graphs in the LOCAL model; however, in [9, Lemma 3.1] the authors show that for
a single round it is sufficient (i.e., to obtain a corresponding version of Lemma1)
to let A be a simple subset of [m] (not a multiset) having exactly Δ elements.
After all, we do not know whether multisets are necessary when extending the
definition for more than a single round.

Lower Bound for Distributed Graph Coloring in a Weak LOCAL Model 107

Theorem 3. For all Δ ≥ 2 and m ≥ Δ2

4 +Δ
2 +1, we have χ

(N LOC
1 (m,Δ)

)
> Δ2

4 .

The following proof captures the main idea of the constructions of Sect. 4.2 in a
simpler setting. In particular, it contains the main idea for the proof of Lemma4.
Additionally, it provides an alternative characterization of the terms source and
non-source (cf. Definition 4). We believe that this characterization gives a deeper
understanding of subsequent proofs.

Proof. Let I ⊆ V
(N LOC

1

)
be an independent set of N LOC

1 (m,Δ). Then I induces
an orientation DI of the edges of the complete graph Km on the vertices [m] in
the following way: For each x, y ∈ [m], if there exists a node (x,A) ∈ I for which
y ∈ A, we say that the edge {x, y} of Km is oriented from x to y (x →I y). As
I is an independent set, it is not possible that an edge {x, y} is oriented in both
directions. If I does not lead to an orientation of an edge {x, y}, we orient it
arbitrarily. We say that an independent set covers a node (x,A) if x →I y holds
for all y ∈ A. Clearly, I covers all nodes with (x,A) ∈ I.

For a set W ⊆ Km we say that x ∈ Km is a W -source of I if for all y ∈ W \{x}
we have x →I y. If W = Km we simply call x a source.

Now assume for contradiction that we are given a vertex coloring of the graph
N LOC

1 (m,Δ) that uses c = Δ2/4 colors. For each of the colors k ∈ [c], the nodes
Ik colored with color k form an independent set of N LOC

1 (m,Δ). The given c-
coloring therefore also induces c orientations D1, . . . , Dc of Km such that for
every (x,A) ∈ V

(N LOC
1

)
, one of the c orientations covers (x,A).

Let S ⊆ [m] be the set of nodes of Km, which are a source of some orientation
Dk, k ∈ [c]. Note that every orientation has at most 1 source and therefore
|S| ≤ c. For the remainder of the proof, we restrict our attention to integers in
S̄ = [m] \S. We first fix an arbitrary set T ⊆ S̄ of size |T | = �Δ/2+1. Because
m ≥ Δ2/4 + Δ/2 + 1, such a set T exists. Clearly, each orientation Dk can have
at most one T -source. By the pigeonhole principle there exists an x ∈ T such
that x is a T -source for at most c/|T | orientations. W.l.o.g., assume that x ∈ T
is a T -source for orientations D1, . . . , Dq, where q ≤ c/|T |.

Now, we construct a set A such that the node (x,A) ∈ V
(N LOC

1

)
is not

covered by any of the c orientations D1, . . . , Dc. First, we add all �Δ/2 elements
of T \ {x} to A. Because x is a T -source only for orientations D1, . . . , Dq, none
of the remaining c − q orientations can cover (x,A). We have to add additional
elements to A in order to make sure that the orientations D1, . . . , Dq also do
not cover (x,A). As T only consists of elements that are not sources of any of
the orientations, for each orientation Dk, k ∈ [c], there is an element yk ∈ [m]
such that the edge {yk, x} of Km is oriented from yk to x. For each orientation
Dk ∈ {D1, . . . , Dq}, we pick such an element yk and add yk to A. We obtain a
node (x,A) that is not covered by any of the orientations D1, . . . , Dq. The size
of A is

|A| ≤ |T | − 1 + q ≤
⌊

Δ

2

⌋
+

c

|T | <
Δ

2
+

c

Δ/2
= Δ

and thus, (x,A) is a node of N LOC
1 (m,Δ) which is not covered by any independent

set. In particular, it does not have a color, a contradiction.

108 D. Hefetz et al.

4.2 Recursive Structure of the Neighborhood Graph

In this section we study the recursive structure of N SL
r (the graph N SL

r can
be built from N SL

r−1). We define two recursively defined sequences of graphs,
(N0,N1, . . .) and (Ñ0, Ñ1, . . .). The graphs N0 and Ñ0 are equal to the m-node
clique on the nodes [m]. The nodes of the remaining graphs of the sequences are
built according to the following recursive procedure: For i ≥ 0, in each of the
two sequences, a node of the (i + 1)-st graph is created by a node x of the i-th
graph and a subset A of its neighbors in the i-th graph. The sequences differ in
the way which combinations of x’s neighbors are allowed to form the set A.

To specify this we need to introduce some notation: For i ≥ 0 each node of
the graph Ni+1

(
or Ñi+1

)
will be of the form (x,A), where x ∈ Ni

(
or Ñi

)
and

A ⊆ Γ (x). Define the center of a node (x,A) as z((x,A)) = x and the types of
a node as R((x,A)) = A. For any set of nodes A let z(A) = {z(a) | a ∈ A}. For
x ∈ N0

(
or Ñ0

)
we define z(x) = ⊥ and R(x) = {⊥}.

Definition 3. Let m,D and r be fixed. N0(m,D) := Ñ0(m,D) := Km, i.e., the
clique on the nodes [m]. For 0 ≤ i < r we have the following recursive definitions

V
(Ni+1(m,D)

)
:= {(x,A) | x ∈ V (Ni(m,D)), A ⊆ Γ (x), |A| ≤ D},

V
(Ñi+1(m,D)

)
:=

{
(x,A) |x ∈ V (Ñi(m,D)), A ⊆ Γ (x), |A| ≤ D,R(x)=z(A)

}
.

There is an edge between (x,A), (y,B) ∈ Ni+1 (or Ñi+1) if x ∈ B and y ∈ A.

We denote Ni+1(m,D) and Ñi+1(m,D) simply as Ni+1 and Ñi+1 whenever m
and D are clear from the context. There is no restriction on the set A ⊆ ΓNi

(x)
to build a node of Ni+1(m,D) as long as the size of A is at most D. For a node
(x,A) ∈ Ñi+1(m,D) the set A needs at least one fitting element for every type
of x (cf. Fig. 2). For neighborhood graphs in the standard LOCAL model this
restriction is even tighter. Then A, R(x) and z(A) need to be multisets and A
needs exactly one fitting element for every type of x. We are not aware of a
computational model which motivates the sequence (N0,N1,N2, . . .).

In the proof of the lower bound on χ(Nr) we assume that we have a proper
c-coloring of Nr which implies (partial) c-colorings of the graphs Ni, i < r, cf.
Lemma 2 and Corollary 1. If c is too small, we can use these partial colorings
to construct an uncolored node (x,A) ∈ Nr, i.e., a contradiction. The partial
coloring of N0 yields an uncolored clique in N0, which implies a smaller uncolored
clique in N1 and then a smaller uncolored clique in N2 and so on until we reach
an uncolored node in Nr. The construction of a single uncolored node of Ni+1,
denoted as (x,A), is similar to the proof in Sect. 4.1: For its construction we pick
a suitable center node x from the uncolored clique of Ni and then (carefully)
select up to D neighbors to form the set A which will ensure that the resulting
node is uncolored. To iterate the argument we slightly modify this procedure to
obtain an uncolored clique in Ni+1.

A center x is suitable for the above process (this corresponds to a non-source
in Sect. 4.1) if for every color there exists a neighbor which, if contained in A,

Lower Bound for Distributed Graph Coloring in a Weak LOCAL Model 109

2 5

4

3

3 1

2

7

3

2

6

5

4

3

2

4

1

2

2

3

5

4
4

3

5

4

3

2

4

1

24

2

1

3 1

2

7

3

2

6

2 5

4

3

5

4

3

2

5 1

3

2

5

2

8

7

3 1

2

7

3

2

6

Fig. 2. Images (from left to right) explain the recursive structure of Ñ2, N LOC
2 and N2,

respectively. The colors indicate types. The left image is the 2-round view of the gray
node in Fig. 1 in the SET-LOCAL model. Here, after a single round node 2 only knows
that its degree is at least 3, after the second round it learned that its degree is at least
4 as it can now distinguish two neighbors with color 3. In the second image there is a
neighbor of every type of the center with the corresponding multiplicity. For feasible
nodes of N2 the combination of neighbors is arbitrary w.r.t. to types of the center, e.g.,
in the third image there is no node for type 4, i.e., no red node. We are not aware of a
computational model to motivate N2. (Color figure online)

implies that (x,A) does not have this color. The (partial) c-coloring of Ni induced
by the (partial) c-coloring of Ni+1 is formed by all unsuitable centers (sources).
The following definitions and lemmata make this more precise.

Definition 4 (W -source, source). For any set I ⊆ Ni+1 and any set W ⊆ Ni,
a node x ∈ Ni is called aW -source of I if

∀w ∈ W ∩ ΓNi
(x) : ∃(x,A) ∈ I with w ∈ A.

If W = Ni we call x simply a source of I.

Here, we define sources without the orientations from Sect. 4.1 to shorten
proofs and we hope that this version is easier to be generalized in order to obtain
a lower bound in the standard LOCAL model. Another intuition for sources is
the following: Given a c-coloring of Ni+1 one realizes that c can only be small
if many nodes with the same center have the same color and nodes with the
same center can never be adjacent. A natural approach would not consider a
center x if x already uniquely determines the color of (x,A), independently of
A. However, this is too restrictive and sources generalize this approach.

In the following we show how a c-coloring of Nr implies partial c-colorings
of Ni, i < r. For a set I ⊆ Nr set Sr(I) := I and for i = r − 1, . . . , 0 inductively
define Si(I) := {x ∈ Ni | x is source of Si+1(I)}.

Lemma 2. Let I be an independent set of Nr.
Then for all i = 0, . . . , r the set Si(I) is an independent set of Ni.

Each color class of a c-coloring is an independent set. Thus any (partial)
c-coloring corresponds to c (disjoint) independent sets. Vice versa any c inde-
pendent sets induce a partial c-coloring though a node might have more than

110 D. Hefetz et al.

one color. But still any of those colors is different from any color of its neigh-
bors. This identification of colorings and independent sets yields the following
corollary.

Corollary 1. Let I1, . . . , Ic be a c-coloring of Nr.
Then Si(I1), . . . , Si(Ic) corresponds to a (partial) c-coloring of Ni.

The following properties are needed for the construction of uncolored nodes.

Lemma 3. Let W ⊆ Ni be a clique, I1, . . . , Ic independent sets of Ni+1 and
k ∈ [c].

(a) If x ∈ Ni is not a source of Ik there exists w ∈ ΓNi
(x) such that (x,A) /∈ Ik,

whenever w ∈ A.
(b) There is at most one W -source of Ik within W .
(c) There exists a node x ∈ W which is a W -source for at most c

|W | of the inde-
pendent sets I1, . . . , Ic. Furthermore, for any choice of A with W \ {x} ⊆ A
we have (x,A) /∈ Ik for all but c

|W | many independent sets.

For I1, . . . , Ic ⊆ Nr we call T ⊆ Ni uncolored if we have ∀k ∈ [c] : T ∩Si(Ik) = ∅.

Lemma 4. Let p, c, d be in N and I1, . . . , Ic independent sets of Nr with p+d−
1+ c

d ≤ D. Any uncolored clique T ⊆ Ni of size p+d implies an uncolored clique
T ′ ⊆ Ni+1 of size p.

Proof. We inductively determine nodes t1, . . . , tp ∈ T which will form the centers
of the clique nodes in Ni+1. Assume that nodes t1, . . . , tj−1 ∈ T are already
determined and let Tj be any subset of T \ {t1, . . . , tj−1} with size d. Such a set
exists because |T \ {t1, . . . , tj−1}| ≥ p + d − (j − 1) ≥ d.

Tj is a clique in Ni and by Lemma 2 the sets Si+1(I1), . . . , Si+1(Ic) are inde-
pendent sets in Ni+1. Hence there exists a node in Tj which is a Tj-source for
at most q ≤ c

|Tj | = c
d independent sets by Lemma 3 (c). Denote this node by tj

and continue with determining the node tj+1.
After determining t1, . . . , tp construct the uncolored clique of Ni+1 as follows:

For j = 1, . . . , p let xj := (tj , Aj) = (tj , (T \ {tj}) ∪ Bj), where Bj will be
constructed later. Regardless of the choice of the Bj ’s the nodes x1, . . . , xp form
a clique because tj′ ∈ Aj and tj ∈ Aj′ for j �= j′.

We argue how to choose the set Bj such that xj is uncolored in Ni+1. Due
to the choice of tj and Tj \ {tj} ⊆ Aj all but q independent sets do not con-
tain xj and we eliminate each of those one-by-one with the choice of Bj . W.l.o.g.
let the remaining independent sets be Si+1(I1), . . . , Si+1(Iq). Because tj ∈ T is
uncolored in Ni it is not a source for any of the independent sets Si+1(Ik), k∈ [q].
Hence via Lemma 3 (a) there exist b1, . . . , bq ∈ ΓNi

(tj) such that (tj , Aj)
is not contained in any of the independent sets Si+1(Ik), k ∈ [q], whenever
Bj := {b1, . . . , bq} ⊆ Aj . Hence xj is uncolored. The node xj is a valid node of Ni+1

(cf. Definition 3), as Aj ⊆ ΓNi
(tj) and |Aj | = |T\{tj}∪Bj | ≤ p+ d− 1+ c

d ≤ D.
Hence x1, . . . , xp is an uncolored clique of Ni+1.

Lower Bound for Distributed Graph Coloring in a Weak LOCAL Model 111

An identical proof for the neighborhood graphs in the LOCAL model fails in the
last step because the newly constructed node might not be a node of N LOC

i+1 due
to mismatching types (cf. the comment after Definition 3).

Theorem 4. Let m ≥ D2

4r + D
2 + 1. Then we have χ(Nr(m,D)) > D2

4r .

Proof (sketch). A full proof can be found in [1]. We assume for contradiction
that a coloring of Nr(m,D) with c = D2

4r colors exists. Let d = D
2r . In N0 at

most c nodes are colored and thus the size of m implies an uncolored clique in
N0 of size rd + 1. Repeated applications of Lemma 4 yield uncolored cliques in
Ni, i = 0, . . . , r of size rd − id + 1, until we reach an uncolored node in Nr.

4.3 Graph Homomorphisms

The existence of a graph homomorphism from Ñr(m,D) to N SL
r (m,D) is intu-

itive as the recursive structure of both graphs is exactly the same.

Lemma 5. There is a graph homomorphism hr : Ñr(m,D) → N SL
r (m,D).

Lemma 6. There is a graph homomorphism fr : Nr(m,D) → Ñr (m, (r + 1)D).

4.4 Proof of Theorem 1

Any graph homomorphism f : G → H implies χ(G) ≤ χ(H) and we devised

Nr(m,D)
fr−→ Ñr(m, (r + 1)D) hr−→ N SL

r (m, (r + 1)D) h−→ N SL
r (m, 2rD).

The existence of h is trivial and with Theorem4 this implies χ
(N SL

r (m, 2rD)
)

>
D2

4r for m ≥ D2

4r + D
2 + 1. To prove Theorem 1 assume an r-round (CΔ1+η)-

coloring algorithm. Set the parameter D :=
(
2CΔ2+η

) 1
3 . Then the condition on

m is satisfied for Δ sufficiently large. With r :=
(

1
16C Δ1−η

) 1
3 , this implies the

contradiction χ
(N SL

r (m,Δ)
)

> CΔ1+η. Theorem 1 follows with Lemma 1. ��

References

1. Hefetz, D., Kuhn, F., Maus, Y., Steger, A.: A polynomial lower bound for distrib-
uted graph coloring in a weak LOCAL model. CoRR, abs/1607.05212 (2016)

2. Karp, R.M.: Reducibility among combinatorial problems. In: Proceedings of the
Symposium on Complexity of Computer Computations, pp. 85–103 (1972)

3. Zuckerman, D.: Linear degree extractors and the inapproximability of max clique
and chromatic number. Theory Comput. 3(1), 103–128 (2007)

4. Barenboim, L., Elkin, M.: Distributed Graph Coloring: Fundamentals and Recent
Developments. Morgan & Claypool Publishers (2013)

5. Barenboim, L.: Deterministic (Δ + 1)-coloring in sublinear (in Δ) time in static,
dynamic and faulty networks. In: Proceedings of the 34th ACM Symposium on
Principles of Distributed Computing (PODC), pp. 345–354 (2015)

112 D. Hefetz et al.

6. Fraigniaud, P., Heinrich, M., Kosowski, A.: Local conflict coloring. CoRR,
abs/1511.01287 (2015)

7. Linial, N.: Locality in distributed graph algorithms. SIAM J. Comput. 21(1), 193–
201 (1992)

8. Hella, L., Järvisalo, M., Kuusisto, A., Laurinharju, J., Lampiäinen, T., Luosto, K.,
Suomela, J., Virtema, J.: Weak models of distributed computing, with connections
to modal logic. Distrib. Comput. 28(1), 31–53 (2015)

9. Kuhn, F., Wattenhofer, R.: On the complexity of distributed graph coloring. In:
Proceedings of the 25th ACM Symposium on Principles of Distributed Computing
(PODC), pp. 7–15 (2006)

10. Cole, R., Vishkin, U.: Deterministic coin tossing with applications to optimal par-
allel list ranking. Inf. Control 70(1), 32–53 (1986)

11. Awerbuch, B., Goldberg, A.V., Luby, M., Plotkin, S.A.: Network decomposition
and locality in distributed computation. In: Proceedings of the 30th Symposium
on Foundations of Computer Science (FOCS), pp. 364–369 (1989)

12. Panconesi, A., Srinivasan, A.: On the complexity of distributed network decompo-
sition. J. Algorithms 20(2), 581–592 (1995)

13. Barenboim, L., Elkin, M., Kuhn, F.: Distributed (Delta+1)-coloring in linear (in
Delta) time. SIAM J. Comput. 43(1), 72–95 (2015)

14. Barenboim, L., Elkin, M.: Deterministic distributed vertex coloring in polyloga-
rithmic time. In: Proceedings of the 29th Symposium on Principles of Distributed
Computing (PODC) (2010)

15. Alon, N., Babai, L., Itai, A.: A fast and simple randomized parallel algorithm for
the maximal independent set problem. J. Algorithms 7(4), 567–583 (1986)

16. Luby, M.: A simple parallel algorithm for the maximal independent set problem.
SIAM J. Comput. 15, 1036–1053 (1986)

17. Barenboim, L., Elkin, M., Pettie, S., Schneider, J.: The locality of distributed
symmetry breaking. In Proceedings of the 53rd Symposium on Foundations of
Computer Science (FOCS) (2012)

18. Harris, S.G., Schneider, J., Su, H.-H.: Distributed (Δ + 1)-coloring in sublogarith-
mic rounds. In: Proceedings of the 48th Symposium on the Theory of Computing
(STOC) (2016)

19. Chang, Y.-J., Kopelowitz, T., Pettie, S.: An exponential separation between
randomized and deterministic complexity in the LOCAL model. CoRR,
abs/1602.08166 (2016)

20. Brand, S., Fischer, O., Hirvonen, J., Keller, B., Lempiäinen, T., Rybicki, J.,
Suomela, J., Uitto, J.: A lower bound for the distributed Lovász local lemma. In:
Proceedings of the 48th Symposium on the Theory of Computing (STOC) (2016)

21. Göös, M., Suomela, J.: No sublogarithmic-time approximation scheme for bipartite
vertex cover. Distrib. Comput. 27(6), 435–443 (2014)

22. Göös, M., Hirvonen, J., Suomela, J.: Linear-in-Delta lower bounds in the LOCAL
model. In: Proceedings of the 33rd Symposium on Principles of Distributed Com-
puting (PODC), pp. 86–95 (2014)

23. Kuhn, F., Moscibroda, T., Wattenhofer, R.: What cannot be computed locally!
In: Proceedings of the 23rd Symposium on Principles of Distributed Computing
(PODC), pp. 300–309 (2004)

24. Kuhn, F., Moscibroda, T., Wattenhofer, R.: Local computation: lower and upper
bounds. J. ACM 63(2) (2016). http://dl.acm.org/citation.cfm?id=2742012. Article
No. 17

http://dl.acm.org/citation.cfm?id=2742012

Lower Bound for Distributed Graph Coloring in a Weak LOCAL Model 113

25. Alon, N.: On constant time approximation of parameters of bounded degree graphs.
In: Goldreich, O. (ed.) Property Testing. LNCS, vol. 6390, pp. 234–239. Springer,
Heidelberg (2010)

26. Barenboim, L., Elkin, M.: Sublogarithmic distributed MIS algorithm for sparse
graphs using nash-williams decomposition. Distr. Comput. 22(5), 363–379 (2010)

27. Kuhn, F.: Local multicoloring algorithms: computing a nearly-optimal TDMA
schedule in constant time. In: Proceedings of Symposium on Theoretical Aspects
of Computer Science (STACS), pp. 613–624 (2009)

28. Szegedy, M., Vishwanathan, S.: Locality based graph coloring. In: Proceedings of
the 25th ACM Symposium on Theory of Computing (STOC), pp. 201–207 (1993)

29. Gavoille, C., Klasing, R., Kosowski, A., Kuszner, �L., Navarra, A.: On the com-
plexity of distributed graph coloring with local minimality constraints. Technical
report 6399, INRIA (2007)

30. Peleg, D.: Distributed Computing: A Locality-Sensitive Approach. SIAM (2000)

Optimal Consistent Network Updates
in Polynomial Time

Pavol Černý1, Nate Foster2, Nilesh Jagnik1(B), and Jedidiah McClurg1

1 University of Colorado Boulder, Boulder, USA
2 Cornell University, Ithaca, USA

{nilesh.jagnik,jedidiah.mcclurg}@colorado.edu

Abstract. Software-defined networking (SDN) enables controlling the
behavior of a network in software, by managing the forwarding rules
installed on switches. However, it can be difficult to ensure that certain
properties are preserved during periods of reconfiguration. The widely-
accepted notion of per-packet consistency requires every packet to be
forwarded using the new configuration or the old configuration, but not
a mixture of the two. A (partial) order on switches is a consistent order
update if updating the switches in that order guarantees per-packet con-
sistency. A consistent order update is optimal if it allows maximal par-
allelism, where switches may be updated in parallel if they are incompa-
rable in the order. This paper presents a polynomial-time algorithm for
computing optimal consistent order updates. This contrasts with other
recent results, which show that for other properties (e.g., loop-freedom
and waypoint enforcement), the optimal update problem is np-complete.

1 Introduction

Software-defined networking (SDN) replaces conventional network management
interfaces with higher-level APIs. SDN can be used to build a variety of applica-
tions, but it can be difficult for operators to correctly and efficiently reconfigure
the network—i.e., update the global set of forwarding rules installed on switches
(known as a configuration). Even if the initial and final configurations are cor-
rect, näıvely updating individual switches (known as switch-updates) can lead
to incorrect transient behaviors such as forwarding loops, blackholes, bypass-
ing a firewall, etc. Switch-updates can often be parallelized, but this too can
cause incorrect behavior. Hence, we need a partial order on switch-updates which
ensures that correctness properties hold before, during, and after the update.

Consistent order updates. This paper investigates the problem of computing
a consistent order update. Given an initial and final network configuration, a
consistent order update is a partial order on switch-updates, such that if the
switches are updated according to this order, an important consistency property
called per-packet consistency [16] is guaranteed throughout the update process.
This property guarantees that each packet traversing the network will follow

c© Springer-Verlag Berlin Heidelberg 2016
C. Gavoille and D. Ilcinkas (Eds.): DISC 2016, LNCS 9888, pp. 114–128, 2016.
DOI: 10.1007/978-3-662-53426-7 9

Optimal Consistent Network Updates in Polynomial Time 115

a single global configuration: either the initial one, or the final one, but not
a mixture of the two. In particular, this means that if the initial and the final
configurations are loop-free and blackhole-free, prevent bypassing a firewall, etc.,
then so do all of the intermediate configurations.

Optimal consistent order updates. In implementing a consistent order update,
we would generally prefer to use one that is optimal. A consistent order update
is optimal if it allows the most parallelism among all consistent order updates.
Formally, recall that a consistent order update is a partial order on switch-
updates—an optimal partial order is one where the length of the longest chain
in the order is the smallest among all possible correct partial orders. Intuitively,
this means the update can be performed in the smallest number of “rounds,”
where rounds are separated by waiting for in-flight packets to exit the network
and by waiting for all the switch updates from the previous rounds to finish.

Single flow vs. multiple flows. A flow is a restriction of a network configuration to
packets of a single type, corresponding to values in packet headers. A packet type
might include the destination address, protocol number (TCP vs. UDP), etc.
We show that if we consider flows to be symbolic (i.e., represented by predicates
over packet headers, potentially matching multiple flows), then the problem is
co-np-hard. In this paper, we focus on the problem of updating an individual
flow—i.e., we are interested in the situation where the flows to be updated can
be enumerated. Furthermore, as we are looking for efficient consistent order
updates, we focus on the case where each switch can be updated at most once,
from its initial to its final configuration.

Main result. Our main result is that for updating a single flow, there is a
polynomial-time algorithm, with O(n2(n+m)) complexity where n is the num-
ber of switches and m the number of links. The result is interesting both theo-
retically and practically. On the theoretical side, recent papers have presented
complexity results for network updates. However, for many other consistency
properties (loop-freedom, waypoint enforcement) and network models, the opti-
mal network update problem is np-hard [4,6,9–12]. The same is true for results
that study these problems with a model which is the same as ours (single flows,
update every switch at most once). In contrast, we provide a positive result that
there exists a polynomial-time algorithm for optimal order updates for a sin-
gle flow, with respect to the per-packet consistency property. The consistency
properties studied in these papers (loop-freedom and waypoint enforcement) are
weaker than per-packet consistency, which offers a trade-off: enforcing only (for
instance) loop-freedom allows more updates to be found, but it is an (expo-
nentially) harder problem. In practice, network operators might wish to update
only a small number of flows, and here our polynomial-time algorithm would
be advantageous. A potential limitation is that if many flows are considered
separately, it could lead to large forwarding tables.

116 P. Černý et al.

Algorithm. Our algorithm models a network configuration as a directed graph
with unlabeled edges, and an update from an initial configuration to a final con-
figuration as a sequence of individual switch-updates—i.e., updating the out-
going edges at each switch. In order to determine whether a switch n can be
updated while properly respecting the per-packet consistency property, we define
a set of conditions on the paths upstream and downstream from n. We show that
these conditions can be checked in O(n(n+m)) time. In this way, the algorithm
produces a partial order on switches, representing the consistent order update
(if such an order does not exist, our algorithm reports a failure). Additionally, we
show that if the partial order is constructed greedily (i.e., all nodes that can be
updated are immediately updated in parallel), it results in an optimal consistent
order update. The challenging part of the proof is to show that this algorithm is
complete (i.e., always finds a consistent order update if one exists) and optimal.

2 Overview

This section presents a number of simple examples to help develop further intu-
ition about the consistent order updates problem and the challenges that any
solution must address.

Consistent order updates. Consider Fig. 1. In the initial configuration Ci

(denoted by solid edges), the forwarding-table rules (outgoing edges) on each
switch are set up such that host H1 is sending packets to H2 along the path
H1→A→C→B→H2. Let us assume that switch C is scheduled for maintenance,
meaning we must first transition to configuration Cf (denoted by the dashed
edges). Note that the two configurations differ only for nodes A and D. If the
node A is updated before node D, packets from H1 will be dropped at D. On the
other hand, updating D before A leads to a consistent order update. Note that
since we model networks as graphs, we will use the terms switch and node inter-
changeably based on the context, and similarly for the terms edge and forwarding
rule. Path will be used to describe a sequence of adjacent edges.

In Fig. 2, regardless of the order in which we update nodes, there will always
be inconsistency. Note that here the nodes A and D can be updated first, but a
problem arises due to nodes H1 and C. Specifically, if C is updated before H1,

H1

A

C

H2

B

D

Fig. 1. Trivial update.

H1

A

B

C

D

E

H2

Fig. 2. Double diamond: no consistent
update order exists.

Optimal Consistent Network Updates in Polynomial Time 117

H1 A

B

C

D

E

F

G

H

I

J K H2

L

M

Fig. 3. Removable double diamond.

H1 B

A

C

Fig. 4. Wait example.

then the network is in a configuration containing a path H1→B→C⇢D⇢H2,
which is not in either Ci or Cf . In other words, H1 cannot be updated unless
the (downstream) path from C to H2 is first updated. On the other hand, C
cannot be updated unless the (upstream) path from H1 to C is first updated. We
refer to this case as a double diamond. If we consider the notion of dependency
graphs [13], where there is an edge from a node x to node y if the update of y
can only be executed after the update of x, then our double diamond example
corresponds to a cyclic dependency graph between H1 and C.

Unfortunately, the presence of a double diamond (cyclic dependency) does
not necessarily indicate that there cannot be a solution. Consider Fig. 3, where
there is a double diamond between D and J . Updating B removes the old traffic
to D, and then after updating B, the nodes D,E,G,F,H, I, J have no incoming
traffic. At this point, these nodes can be updated without violating per-packet
consistency. Thus, the circular dependency has been eliminated, allowing a valid
update order such as [A,H1,K,L,B,D,E,F,G,H, I, J,C,M]. This shows that
an approach (such as [7,18]) based on a static dependency graph might miss
some cases where a consistent order update exists—this is a limitation that is
not exhibited by our algorithm.

Waits. As mentioned, it may be impossible to parallelize certain updates—we
may need to make sure that some node x is updated before another node y.
In other words, we may need to wait during the sequence of switch-updates to
ensure that such updates are executed one after the other. This requirement can
arise because when updating a node, we may need to ensure that (1) all of the
previous switch-updates have been completed, and (2) all of the packets that
were in the network since before the previous update have exited the network.
The former type we call a switch-wait, and the latter a packet-wait.

In Fig. 3, we see that L must be updated before updating B. To ensure
that edges outgoing from L are ready, we must wait after sending the update
command to L, in order to ensure that its forwarding rules have been fully
installed. In other words, we say that there is a switch-wait required between
updates of L and B. After updating B, the switch D becomes disconnected, but
there may still be some packets in transit on the B→D path. Before updating D,
we must ensure that packets along these old removed paths have been flushed

118 P. Černý et al.

from the network. For this reason, we say that a packet-wait is needed between
updates of nodes D and B.

If we are interested only in finding a correct sequence of updates, we can
wait (for an amount of time larger than the maximum switch-wait and packet-
wait duration) after every node update. However, waits may not be necessary
after every update if we update switches from separate parts of the network.
For the Fig. 3 example, the correct sequence with a minimal number of waits
is [A,H1,K,L, s◯,B, p◯,D,E,F,G,H, I, J, s◯,C,M], where p◯ denotes a packet-
wait and s◯ denotes a switch-wait. In this example, nodes A, H1, K, L can be
updated in parallel. Similarly, nodes D, E, F , G, H, I can be updated in parallel,
etc. There are three waits, meaning this consistent order update requires four
switch-update rounds.

The example in Fig. 4 highlights the relationship between switch-waits and
packet-waits. Observing that the configurations are roughly symmetrical, let us
examine the relationship between nodes A, B, C. The correct order of updates
between these nodes is H1,A, p◯,B, s◯,C. This is because there must be a switch-
wait between the updates of B and C, due to the presence of a Cf path C⇢B.
There must be a packet-wait between updates of switches A and B, due to the
presence of a Ci path A→B.

As is common in various other works (e.g., [9]), in this paper, we do not
distinguish between packet-waits and switch-waits, and only use the term wait—
our goal is to maximize the parallelism of switch-updates, i.e., minimize the
number of switch-update rounds.

3 Network Model

Network and Configurations. A topology of a network is a graph G = (N,E),
where N is a set of nodes, and E is a set of directed edges. A configuration
C ∈ P(E) is a subset of edges in E. A proper configuration is one that (a) has
one source H1, and (b) is acyclic. Here, a source is a designated node with no
incoming edges, representing the point where packets enter the network. Note
that cycles in a configuration are undesirable, as this would mean that traffic
might loop forever in the network. We first consider the case with one source, and
in Sect. 6, we describe a simple reduction for the case of multiple sources. Our
goal is to transition from an initial configuration Ci to a final configuration Cf

by updating individual nodes. We will consider Ci and Cf to be fixed throughout
the paper, and assume that both are proper.

Updates. Let u be a node, and let C be a configuration. We define a function
out(C,u) which returns the set of edges from C whose source is u. The func-
tion upd1(C,u) returns the configuration C′ such that C′ = (C ∖ out(Ci, u)) ∪
out(Cf , u), that is, node u is updated to the final configuration in C′. Let R
be the set of all sequences of nodes in N without repetition. We extend upd1

to sequences of nodes by defining the function upd that, given a configura-
tion C and a sequence of nodes S, returns a configuration C′ = upd(C,S).

Optimal Consistent Network Updates in Polynomial Time 119

The function upd is defined by upd(C, ε) = C (where ε is the empty sequence),
and upd(C,uS) = upd(upd1(C,u), S). We consider sequences without repetition,
because our goal is to find sequences that update every node at most once.

Paths. Given a configuration C, a C-path is a directed path (finite or infinite)
whose edges are in C. For a path p, we write p ∈ C if p is a C-path. A Ci-only
path is one which is in Ci and not in Cf . Similarly, a Cf -only path is in Cf but
not Ci. The function nodes takes a path q as an argument and returns a set Q of
all nodes on a path. Let s and t be two nodes, and let C be a configuration. The
function paths(s, t,C) returns the set of all paths between s and t in configuration
C. A path p in a configuration C is maximal if it is either (a) finite, and its last
node has no outgoing edges in C, or (b) infinite. The function maxpaths(s,C)
returns the set of all maximal paths starting at node s in configuration C.

Path and Configuration Consistency. We say that a path p is consistent if and
only if p ∈ maxpaths(H1,Ci) ∨ p ∈ maxpaths(H1,Cf), and a configuration C is
consistent if and only if ∀p ∈maxpaths(H1,C) we have that p is consistent. Intu-
itively, all maximal paths starting at H1 are maximal paths in either the old
configuration or the new configuration— this corresponds to per-packet consis-
tency [16]. If Ci and Cf are proper, then so is every consistent configuration.

Waits. Let U = u1u2⋯uk be a sequence of node updates. Let Cj = upd(Ci, Uj) be
the configuration reached after updating a sequence U = u1u2⋯uj for 1 ≤ j ≤ k,
and let C0 = Ci. For l, u such that 0 ≤ l ≤ u ≤ k, let Cu

l be the configuration
obtained as a union of configurations Cl ∪⋯∪Cu. We say that a wait is needed
between uj and uk in U if and only if the configuration Ck

j−1 is not consistent.
To illustrate, let us return to the example in Fig. 4 (note that we no longer dis-
tinguish between packet-waits and switch-waits). As mentioned, after updating
H1 and A, we need a wait before updating B. Let the configuration Cv be the
union of all the intermediate configurations until after the update to B. Then
Cv has the path H1→A→B→, where we take the solid edge from A to B and a
dashed outgoing edge from B, meaning a wait is needed. In this case, using the
union of the configurations captures the reason for the wait.

Consistent update sequence. For any set of nodes S, let π(S) be the set of
sequences that can be formed by nodes in S, without repetition. Let Z =
S1S2⋯Sk be a sequence such that each Si is a subset of N . Let π(Z) be the
set of sequences defined by {r1r2⋯rk ∣ r1 ∈ π(S1) ∧ r2 ∈ π(S2) ∧⋯ ∧ rk ∈ π(Sk)}.

The sequence Z = S1S2⋯Sk is a consistent update sequence if and only if

1. The sets S1, S2,⋯, Sk partition the set of nodes N . This ensures that ∀U ∈
π(Z), we have upd(Ci, U) = Cf , i.e., after updating u, we are in Cf .

2. ∀U ∈ π(Z), for every prefix U ′ of U , C=upd(Ci, U
′) is a consistent configura-

tion.
3. ∀U ∈ π(Z), let U ′ = u1u2⋯uj and U ′′ = u1u2⋯uk be prefixes of u, s.t. k > j,

then if a wait is needed between uj , uk in U , then uj , uk are in different sets
S and S′.

120 P. Černý et al.

Consistent Order Update Problem. Given an initial configuration Ci and the
final configuration Cf , the consistent order update problem is to find a consistent
update sequence if there exists one.

Optimal Consistent Order Update Problem. Given Ci and Cf , if a consistent
update sequence exists, the optimal consistent update problem is to find a con-
sistent update sequence of minimal length.

4 OrderUpdate Algorithm

This section presents an algorithm (Algorithm 1) that solves the consistent order
update problem. It works by repeatedly finding and updating a node that can be
updated without violating consistency. For clarity, we focus first on correctness.
Section 5 presents an improved version that finds an optimal update.

Correct Sequence. A correct sequence of node updates T = t1t2⋯t
∣N ∣ refers to a

consistent update sequence of singleton sets Z = S1S2⋯S
∣N ∣ s.t. ∀j ∈ [1, ∣N ∣] ∶ Sj =

{tj}. Algorithm 1 uses a subroutine at Line 6 (in this section, the subroutine is
Algorithm 2—in Sect. 5 we will replace it with Algorithm 3 to achieve optimality)
to find a correct update sequence. It takes Ci and Cf as inputs and returns two
sequences of nodes, R and Rw. Sequence R is the solution to the consistent order
update problem (a sequence of singleton sets). Sequence Rw contains information
about the placement of waits, which will be the same as R in this section, since
we initially wait after every node update.

4.1 Necessary Conditions for Updating a Node

To determine which node updates lead to consistent configurations, we assume
the network is in a consistent configuration Cc, and identify a set of necessary
conditions that must hold for the update to preserve consistency. We classify
nodes into five categories based on the types of paths that are incoming to them
from H1. The classification is given in the left-hand side of Fig. 5.

Upstream Paths and Candidate Nodes. Paths from source H1 to a node s are
called upstream paths to s (in some configuration). The condition on these paths
is called the upstream condition. If a node satisfies the upstream condition for
one of the five categories/types, it is known as a candidate of that type.

Downstream Paths and Valid Nodes. Downstream paths from a node s are max-
imal paths starting at s (in some configuration). For each of the upstream condi-
tions, there is a downstream condition which must be satisfied, in order to ensure
that all maximal paths starting from H1 in upd(Cc, s) through s are consistent.
If a candidate node satisfies the corresponding downstream condition, it is called
valid. A node which is not valid is called invalid. Note that upstream paths to s
are the same in Cc and upd(Cc, s).

Optimal Consistent Network Updates in Polynomial Time 121

Fig. 5. Necessary conditions for updating a node s in current configuration Cc

Lemma 1. In a consistent configuration Cc, if a valid node s is updated, then
upd(Cc, s) is consistent.

Proof Sketch. Figure 5 identifies nodes as Types A–E based on upstream condi-
tions. The upstream conditions are exhaustive and mutually exclusive, meaning
each node is a candidate of exactly one of the types. For each type described in
Fig. 5, our downstream condition ensures that updating preserves consistency.
Upstream paths to a node may be fully contained in Ci or Cf (Type C and Type
D respectively). For these cases, we need to ensure that downstream paths are
also contained in Ci and Cf respectively. They may be in Ci∩Cf or Ci∪Cf (Type
B and Type E respectively). For these cases, we need to ensure that downstream
paths are in Ci ∪Cf (for Type B) and Ci ∩Cf (for Type E). Type A is a special
case, as nodes of this type (also referred to as disconnected nodes) do not have
any upstream paths. These nodes can be updated without the requirement of
a downstream condition. However, we enforce a downstream condition (denoted
Z†
a in the table) in order to streamline the proofs. ⊓⊔

The proof of this and other theorems/lemmas are in the extended version [3].
Using Lemma 1, each node updated by OrderUpdate leads to a valid intermediate
configuration. So, we change from Ci to Cf without going through an inconsistent
state, and since we wait between all updates, we obtain a consistent sequence.

Theorem 1. Any sequence R of nodes produced by Algorithm 1 (using subrou-
tine Algorithm 2) is correct.

122 P. Černý et al.

Algorithm 1. OrderUpdate
Input: set of all nodes (N), initial configuration (Ci), final configuration (Cf)
Result: consistent order of node updates (R), updates before which there are

waits (Rw)
1 R = Rw = P0 ← ∅;k ← 1 // initialize R, Rw, P0 and k
2 Cc ← Ci // Cc starts with the initial value of Ci

3 while Cc ≠ Cf do // stop when Cc and Cf are equal

4 U ← {s ∣ s ∈ N ∧ ((Ya(s) ∧Za(s)) ∨ (Yb(s) ∧Zb(s)) ∨
(Yc(s) ∧Zc(s)) ∨ (Yd(s) ∧Zd(s)) ∨ (Ye(s) ∧Ze(s)))} // valid nodes

5 if U = ∅ then EXIT // no consistent order of updates exists

6 s = PickAndWait() // by default, use Algorithm 2

7 Cc ← (Cc ∖ out(s,Ci)) ∪ out(s,Cf) // update Cc

8 N ← N − {s} // remove updated nodes from node list

9 return (R,Rw)

Algorithm 2. SequentialPickAndWait
1 s = Pick(U) // pick any valid node

2 Rw ← Rw.s // by default, there is a wait after every update

3 R ← R.s // append s to the end of result R

4.2 Careful Sequences

Previously, we said that Type A candidates (disconnected nodes) do not require
a downstream condition to be updated. However, Algorithm 1 imposes a down-
stream condition on disconnected nodes for them to be valid and updated. We
refer to sequences that respect this downstream condition (i.e., update only valid
nodes) as careful sequences. Let s be a node and C be a configuration, and define
valid1(C, s) to be true if and only if s in valid in configuration C. We extend
valid1 to a sequence of nodes by defining valid as valid(ε,C) = true (where ε is
the empty sequence) and valid(C,uS) = valid(upd(C,u), S) ∧ valid1(C,u).

Careful Sequence. A careful sequence T = t1t2⋯t
∣N ∣ is a correct sequence of nodes

s.t. ∀l ∈ [1, ∣N ∣] ∶ valid(upd(Ci, t1t2⋯tl−1), tl).

Theorem 2. If a correct sequence of updates exists, then a careful sequence
also exists.

4.3 Completeness of the OrderUpdate Algorithm

The OrderUpdate Algorithm (with the SequentialPickAndWait subroutine) is
complete, i.e., if there exists any correct sequence, we find one. We can observe
that if two nodes a and b are both valid in configuration Cc, then upd(Cc, ab)
and upd(Cc, ba) are both consistent configurations. This property holds for any
number of nodes and for all careful sequences, but not for all correct sequences.

Optimal Consistent Network Updates in Polynomial Time 123

Algorithm 3. OptimalPickAndWait
1 if k = 1 then // we do not need a wait before first node

2 P0 ← U // all nodes initially valid are P0

3 if P0 = ∅ then // we have to pick a lower priority node

4 P0 ← U // all nodes in U become P0 after waiting.

5 s = Pick(P0); R ← R.s; Rw ← Rw.s; k ← k + 1; // pick P0 node, append s
to result R, add wait, increment number of rounds k

6 else
7 s = Pick(P0); R ← R.s // pick any P0 node, add s to result R

We prove this behavior in the following lemma, which is the key to confirming
completeness of the OrderUpdate Algorithm.

Lemma 2. If T = UV nY is a careful sequence, and valid(upd(Ci, U), n), then
T ′ = UnV Y is also careful.

In other words, Lemma 2 shows that if there are multiple valid nodes in
some configuration C, then these nodes can be updated in any order. This is
because once a node becomes valid, it does not become invalid. This is why we
introduced careful sequences, because this lemma is not true for arbitrary correct
sequences. Using this lemma, we can prove the completeness of Algorithm 1 (with
the Algorithm 2 subroutine).

Theorem 3. Algorithm 1, using subroutine Algorithm 2, generates a correct
order of updates R if one exists, and otherwise fails (in Line 5).

Running Time. Let ∣V ∣ be the number of nodes and ∣E∣ be the number of edges in
G. In each iteration of its outer loop, Algorithm 1 using SequentialPickAndWait
(Algorithm 2) as a subroutine, makes a list of valid nodes and picks one to
update. The set of valid nodes U in Line 4 can be found using a graph search on
Cc for each node, which takes O(∣V ∣(∣V ∣ + ∣E∣)) steps. The loop runs ∣V ∣ times
and updates each node, so the overall runtime is O(∣V ∣2(∣V ∣+∣E∣)). This analysis
relies on the fact that the graph search is implemented in a way that goes through
each edge and node a constant number of times. Once a node has been visited,
it is marked F , I, or B, based on whether the maximal paths downstream from
it are maximal paths starting from it in Ci, Cf , or both. This ensures that we
avoid visiting the node (and its outgoing edges) again.

5 Optimal OrderUpdate Algorithm

Thus far, we solved the consistent order update problem by generating a con-
sistent sequence with only singleton sets. This corresponds to requiring a wait
at every step of the update sequence, which does not allow any parallelism.

124 P. Černý et al.

However, we have seen in Sect. 2 that some nodes can be updated in paral-
lel. In Sect. 3, we defined when a wait is needed in the sequence of updates.
In this section, we provide a sequence of updates where there is a wait if and
only if it is needed, solving the optimal version of the problem. We use Algo-
rithm 1, but replace the subroutine SequentialPickAndWait (Algorithm 2) with
OptimalPickAndWait (Algorithm 3). The algorithm returns a solution for the
optimal consistent update problem in the following format.

Correct Waited Sequence. A correct waited sequence is a tuple (T,W) of node
sequences without repetition, where W is a subsequence of T and (T,W) =
(t1t2⋯t

∣N ∣,w1w2⋯wk−1), such that a consistent update sequence S1S2⋯Sk can
be formed by taking S1 = {t1,⋯, tm} where tm1 = w1, ∀i ∈ (1, k) ∶ Si = {tli ,⋯, tmi

}
where tli = wi−1 and tmi

= wi, and Sk = {tlk ,⋯, t
∣N ∣} where tlk = wk−1.

Intuitively, T specifies a correct sequence of updates, with some waits, while
W specifies the nodes, immediately before which a wait is placed. If we simply
group the nodes between i-th and (i + 1)-st waits into a set Si+1 we obtain the
consistent update sequence of Sect. 3. Considering solutions to the problem in
the form of a sequence of nodes and waits simplifies the arguments we use to
prove correctness and optimality.

Minimal Correct Waited Sequence. A minimal correct waited sequence is a cor-
rect waited sequence (T,W) such that ∣W ∣ is minimal. Since we always pick valid
nodes, we need to prove that if a minimal correct waited sequence exists, then
there exists a minimal correct waited sequence that updates only valid nodes.

Careful Waited Sequence. A careful waited sequence of updates (T,W) = (t1t2⋯
t
∣N ∣,w1w2⋯wk−1) is a correct waited sequence s.t. ∀j ∈ [1, ∣N ∣] ∶ valid
(upd(Ci, t1⋯tj−1), tj) A minimal careful waited sequence is a careful waited
sequence (T,W) s.t. ∣W ∣ is minimal. We prove the following for such sequences.

Theorem 4. If a minimal correct waited sequence exists, then a minimal careful
sequence exists as well.

5.1 Condition for Waits

Partial Careful Waited Sequence. Given careful waited sequence Z = (T =
t1⋯t

∣N ∣,W = w1⋯wk−1), a partial careful waited sequence is Z′ = (T ′ =
t1⋯tr,W

′ = w1⋯ws) such that T ′ is a prefix of T and W ′ is a prefix of W .
We start with a partial careful waited sequence with no nodes, and at every step
adds a node while ensuring that the obtained sequence is a partial careful waited
sequence, i.e., can be extended to a careful waited sequence.

Wait Condition. Consider a function wait that takes a partial careful waited
sequence S = (t1t2⋯tr,w1w2⋯ws) and node n s.t. valid(Ci, Ut1⋯tr) as an argu-
ment and returns true if there needs to be a wait before its update. Specifically:
wait(n,S) = true if and only if node ∃x ∈ [1, r] ∶ ¬valid(upd(Ci, t1⋯tx), n) ∧

Optimal Consistent Network Updates in Polynomial Time 125

¬(∃y ∈ [1, s],∃z ∈ (x, r] ∶ wy = tz), i.e., in the partial careful waited sequence,
there must be a wait before updating a valid node n if and only if it was not valid
until its dependencies were updated, and there was no wait after their update.
In this case, n must be updated in a new round, after a wait.

We now show completeness of the wait condition, i.e., if a wait is needed (as
defined in Sect. 3) after updating S and before updating n, then wait(n,S) is
true.

Lemma 3. If (1) n is the node picked for update, and (2) the partial careful
waited sequence built before updating n is S = (t1t2⋯tr,w1w2⋯ws), and (3)
ws = ty for some y ∈ [1, r], and (4) we define ∀x ∈ [1, r] ∶ Ctx = upd(Ci, t1⋯tx),
and then wait(n,S) ↔ Cty ∪⋯∪Ctr ∪ upd(Ctr , n) is inconsistent.

5.2 Algorithm for Optimal Consistent Order Updates

The OptimalPickAndWait (Algorithm 3) subroutine minimizes waits, solving
the optimal consistent update problem. We minimize waits by assigning priority
P0 (higher priority) or P1 (lower priority) to nodes. Let S be a partial sequence.
A node is in P0 if and only if ¬wait(n,S), i.e., P0 nodes do not require waiting
before update. A node is in P1 if and only if wait(n,S), i.e., we must wait before
updating a P1 node. We greedily update P0 nodes first.

Correctness and optimality follow from the correctness argument in the pre-
vious section, and from Lemma 3. Intuitively, updating a node in P0 which does
not need a wait allows the P1 list to build up. This means we need to place a
single wait for as many P1 nodes as possible. When we place a wait in the par-
tial careful waited sequence, every valid node that was in P1 moves to P0. The
last key property needed for the following theorems is that once a node acquires
priority P0, it retains priority P0.

Theorem 5. Algorithm 1 with Algorithm 3 as its subroutine on Line 6 produces
a correct waited sequence.

Theorem 6. Algorithm 1 with Algorithm 3 as its subroutine on Line 6 produces
a correct and optimal waited sequence of updates, if one exists.

Running Time. The OrderUpdate Algorithm with the OptimalPickAndWait sub-
routine has the same time complexity that it had with the SequentialPickAndWait
subroutine. The OptimalPickAndWait subroutine introduces a priority-based
node selection mechanism— after every wait, it simply moves nodes from the valid
set U to the higher priority list P0, which requires only O(∣N ∣) additional steps in
each iteration.

6 Discussion

Multiple hosts and sinks. We can extend our single-source approach to a network
with multiple sources HA,HB ,HC ,⋯. To do this, we assume that there is a
master source H1, and every actual source is connected to H1, as shown in
Fig. 6. This approach works because we update every node only once, meaning
we cannot artificially disable and then re-enable some sources and keep others.

126 P. Černý et al.

H1 HB

HA

HC

Fig. 6. Multiple sources. Fig. 7. Double diamond with symbolic
forwarding rules.

Multiple packet types. Our approach can be applied when there are multiple
(discrete) packet types, as long as each forwarding rule matches on a single
packet type—in this case, we compute an update for each packet type, and
perform these (rule-granularity) updates independently. In the more realistic
case with symbolic forwarding rules (i.e., matching based on first-order formulae
over packet header fields), deciding whether a consistent update exists is co-
np-hard. Specifically, there is a reduction from SAT to this problem. We can
consider each edge in a configuration as being labeled by a formula, and only
packets whose header fields satisfy this formula can be forwarded along that
edge. Consider a double diamond (Fig. 7) with one edge labelled by ϕ, and all
other edges labelled with true (⊺). We have seen that a consistent update for this
double diamond example is not possible in the situation where packets (of any
type) can flow along all of the edges, so we can see that there exists a consistent
update if and only if ϕ is unsatisfiable. This completes the reduction.

7 Related Work

Consistency. Our core problem is motivated by earlier work by Reitblatt et al.
[16] that proposed per-packet consistency and provided basic update mechanisms.

Exponential Search-Based Network Update Algorithms. There are various
approaches for producing a sequence of switch updates guaranteed to respect
certain path-based consistency properties (e.g., properties representable using
temporal logic, etc.). For example, McClurg et al. [15] use counter-example
guided search and incremental LTL model checking, FLIP [17] uses integer linear
programming, and CCG [19] uses custom reachability-based graph algorithms.
Other works such as Dionysus [7], zUpdate [8], and Luo et al. [12], seek to per-
form updates with respect to quantitative properties.

Complexity results. Mahajan and Wattenhofer [13] propose dependency-graphs
as a representation for network updates, and propose properties that can be
solved using this general approach, including loop freedom, which is handled in
a minimal way. Yuan et al. [18] detail general algorithms for building dependency
graphs and using these graphs to perform a consistent update. Förster et al. [6]

Optimal Consistent Network Updates in Polynomial Time 127

show that for blackhole-freedom, computing an update with a minimal num-
ber of rounds is np-hard (assuming memory limits on switches). They also show
np-hardness results for rule-granular loop-free updates with maximal parallelism.
Per-packet consistency in our problem is stronger than loop and blackhole free-
dom, but we consider solutions where each switch is updated once, and where a
switch update replaces the entire old forwarding table with the new one.

Förster and Wattenhofer [5] examine loop-freedom, showing that maximiz-
ing the number for forwarding rules updated simultaneously is np-hard. Ludwig
et al. [10] show how to minimize the number of update rounds with respect
to loop-freedom. They show that deciding whether a k-round schedule exists is
np-complete, and they present a polynomial algorithm for computing a weaker
variant of loop-freedom. Amiri et al. [1] present an np-hardness result for greed-
ily updating a maximal number of forwarding rules in this context. Additionally,
Ludwig et al. [9] investigate optimal updates with respect to a stronger prop-
erty, namely waypoint enforcement in addition to loop freedom. They produce
an update sequence with a minimal number of waits, using mixed-integer pro-
gramming. Ludwig et al. [11] show that the decision problem is np-hard.

Mattos et al. [14] propose a relaxed variant of per-packet consistency, where
a packet may be processed by several subsequent configurations (rather than
a single one), and present a polynomial graph-based algorithm for computing
updates. Dudycz et al. [4] show that simultaneously computing two network
updates while minimizing the number of switch updates (“touches”) is np-hard.
Brandt et al. [2] give a polynomial algorithm to decide if a congestion-free update
is possible when flows are “splittable” and/or not restricted to be integer.

8 Conclusion

We presented a polynomial-time algorithm to find a consistent update order for
a single packet type. We then described a modification to the algorithm which
finds a consistent update order with a minimal number of waits. Finally, we
proved that this modification is correct, complete, and optimal.

References

1. Amiri, S.A., Ludwig, A., Marcinkowski, J., Schmid, S.: Transiently consistent SDN
updates: being greedy is hard. In: SIROCCO (2016)

2. Brandt, S., Förster, K.-T., Wattenhofer, R.: On consistent migration of flows in
SDNs. In: INFOCOM (2016)

3. Černý, P., Foster, N., Jagnik, N., McClurg, J.: Updates, optimal consistent network
in polynomial time (extended version). arXiv:1607.05159 (2016)

4. Dudycz, S., Ludwig, A., Schmid, S.: This, can’t touch: consistent network updates
for multiple policies. In: DSN (2016)

5. Förster, K.-T., Wattenhofer, R.: The power of two in consistent network updates:
hard loop freedom, easy flow migration. In: ICCCN (2016)

6. Förster, K.-T., Mahajan, R., Wattenhofer, R.: Consistent updates in software
defined networks: on dependencies, loop freedom, and blackholes. In: IFIP (2016)

http://arxiv.org/abs/1607.05159

128 P. Černý et al.

7. Jin, X., Liu, H.H., Gandhi, R., Kandula, S., Mahajan, R., Zhang, M., Rexford, J.,
Wattenhofer, R.: Dynamic scheduling of network updates. In: SIGCOMM (2014)

8. Liu, H.H., Xin, W., Zhang, M., Yuan, L., Wattenhofer, R., Maltz, D.: zUpdate:
updating data center networks with zero loss. In: SIGCOMM (2013)

9. Ludwig, A., Rost, M., Foucard, D., Schmid. S.: Good network updates for bad
packets: waypoint enforcement beyond destination-based routing policies. In: Hot-
Nets (2014)

10. Ludwig, A., Marcinkowski, J., Schmid, S.: Updates, scheduling loop-free network:
it’s good to relax! In: PODC (2015)

11. Ludwig, A., Dudycz, S., Rost, M., Schmid, S.: Transiently secure network updates.
In: SIGMETRICS (2016)

12. Luo, S., Yu, H., Luo, L., Li, L.M.: Arrange your network updates as you wish. In:
IFIP (2016)

13. Mahajan, R., Wattenhofer, R.: On consistent updates in software defined networks.
In: HotNets (2013)

14. Mattos, D.M.F., Duarte, O.C.M.B., Pujolle, G.: Reverse update: a consistent policy
update scheme for software defined networking. IEEE Commun. Lett. 20(5), 886–
889 (2016)

15. McClurg, J., Hojjat, H., Černý, P., Foster, N.: Efficient synthesis of network
updates. In: PLDI (2015)

16. Reitblatt, M., Foster, N., Rexford, J., Schlesinger, C., Walker, D.: Abstractions for
network update. In: SIGCOMM (2012)

17. Vissicchio, S., Cittadini, L.: FLIP the (Flow) table: Fast LIghtweight Policy-
preserving SDN updates. In: INFOCOM (2016)

18. Yuan, Y., Ivančić, F., Lumezanu, C., Zhang, S., Gupta, A.: Generating consistent
updates for software-defined network configurations. In: HotSDN (2014)

19. Zhou, W., Jin, D., Croft, J., Caesar, M., Brighten Godfrey, P.: Enforcing customiz-
able consistency properties in software-defined networks. In: NSDI, May 2015

Distributed Construction of Purely Additive
Spanners

Keren Censor-Hillel1, Telikepalli Kavitha2, Ami Paz1(B), and Amir Yehudayoff3

1 Department of Computer Science, Technion, Haifa, Israel
{ckeren,amipaz}@cs.technion.ac.il

2 Tata Institute of Fundamental Research, Mumbai, India
kavitha@tcs.tifr.res.in

3 Department of Mathematics, Technion, Haifa, Israel
amir.yehudayoff@gmail.com

Abstract. This paper studies the complexity of distributed construction
of purely additive spanners in the CONGEST model. We describe algo-
rithms for building such spanners in several cases. Because of the need to
simultaneously make decisions at far apart locations, the algorithms use
additional mechanisms compared to their sequential counterparts.

We complement our algorithms with a lower bound on the number of
rounds required for computing pairwise spanners. The standard reduc-
tions from set-disjointness and equality seem unsuitable for this task
because no specific edge needs to be removed from the graph. Instead,
to obtain our lower bound, we define a new communication complex-
ity problem that reduces to computing a sparse spanner, and prove a
lower bound on its communication complexity using information theory.
This technique significantly extends the current toolbox used for obtain-
ing lower bounds for the CONGEST model, and we believe it may find
additional applications.

1 Introduction

A graph spanner is a sparse subgraph that guarantees some bound on how much
the original distances are stretched. Graph spanners, introduced in 1989 [43,44],
are fundamental graph structures which are central for many applications, such as
synchronizing distributed networks [44], information dissemination [13], compact
routing schemes [14,45,50], and more.

Due to the importance of spanners, the trade-offs between their possible
sparsity and stretch have been the focus of a huge amount of literature. More-
over, finding time-efficient constructions of spanners with optimal guarantees
has been a major goal for the distributed computing community, with ingenious
algorithms given in many studies. One particular type of spanners are purely
additive spanners, in which the distances are promised to be stretched by no

Keren Censor-Hillel and Ami Paz were Supported by ISF individual research grant
1696/14. Part of this work was done while Ami Paz was visiting TIFR, Mumbai.

c© Springer-Verlag Berlin Heidelberg 2016
C. Gavoille and D. Ilcinkas (Eds.): DISC 2016, LNCS 9888, pp. 129–142, 2016.
DOI: 10.1007/978-3-662-53426-7 10

130 K. Censor-Hillel et al.

more than an additive term. However, distributed constructions of such span-
ners have been scarce, with the only known construction being a (+2)-additive
spanner construction with O(n3/2 log n) edges in O(

√
n log n + D) rounds in a

network of size n and diameter D [38] (also follows from [34]).
The absence of distributed constructions of purely additive spanners is explic-

itly brought into light by Pettie [47], and implicitly mentioned in [20].
This paper remedies this state of affairs, by providing a study of the com-

plexity of constructing sparse purely additive spanners in the synchronous
CONGEST model [41], in which each of n nodes can send an O(log n)-bit mes-
sage to each of its neighbors in every round. Our contribution is twofold: first,
we provide efficient constructions of several spanners with different guarantees,
and second, we present new lower bounds for the number of rounds required for
such constructions, using tools that are not standard in this context.

1.1 The Challenge

A subgraph H of an undirected unweighted graph G = (V,E) is called a purely
additive spanner with stretch β if for every every pair (u, v) ∈ V × V , we have
δH(u, v) ≤ δG(u, v) + β, where δH(u, v) is the u-v distance in H and δG(u, v) is
the u-v distance in G. The goal in spanner problems is to construct a subgraph
H that is as sparse as possible with β as small as possible, i.e., we seek a sparse
subgraph of G which approximates all distances with a small stretch.

The problem of computing sparse spanners with small stretch β is well-
studied and we know how to construct sparse purely additive spanners for
β = 2, 4, 6. These have sizes O(n3/2) [3], Õ(n7/5) [15], and O(n4/3) [6], respec-
tively. In a very recent breakthrough, it was shown that there is no purely addi-
tive spanner of size at most n4/3/2O(

√
log n) [1].

In a bid to get sparser subgraphs than all-pairs spanners with the same stretch,
the following relaxation of pairwise spanners has attracted recent interest. Here we
are given P ⊆ V ×V : these are our “relevant pairs” and we seek a sparse subgraph
which approximates distances between all pairs in P with a small stretch. That
is, for every pair (u, v) ∈ P, the graph H should satisfy δH(u, v) ≤ δG(u, v) + β
and for pairs (u, v) outside P, the value δH(u, v) could be arbitrarily large. Such a
subgraph H is called a (+β)-pairwise spanner. We use τ(P) to denote the number
of nodes appearing in P, i.e. τ(P) = |{u | ∃v : {u, v} ∈ P}|.

The problem of constructing sparse pairwise spanners was first studied by Cop-
persmith andElkin [16]who showed sparse subgraphswheredistances for pairs inP
were exactly preserved; these subgraphs were called pairwise preservers. A natural
case for P is when P = S ×V , where S ⊆ V is a set of source nodes — here we seek
for a sparse subgraph that well-approximates s-v distances for all (s, v) ∈ S × V .
Such pairwise spanners are called sourcewise spanners. Another natural setting is
when P = S × S and such pairwise spanners are called subsetwise spanners.

Purely additive spanners are usually built in three steps: first, building clusters
which contain all high-degree nodes and adding all the edges of the unclustered
nodes; second, buildingBFS treeswhich (+2)-approximate all the pathswithmany
missing edges; and third, adding more edges to approximate the other paths.

Distributed Construction of Purely Additive Spanners 131

While our constructions follow the general outline of known sequential con-
structions of pairwise additive spanners [35,36], their techniques cannot be
directly implemented in a distributed setting. In the sequential setting, the clus-
tering phase is implemented by repeatedly choosing a high-degree node and
adding some of its edges to the spanner; these neighbors are marked and ignored
in the rest of the phase. In the distributed setting, going over high degree nodes
one by one, creating clusters and updating the degrees is too costly. Instead,
we choose the cluster centers at random, as done by Thorup and Zwick [51],
Baswana and Sen [9], and Chechik [15] (see also Aingworth et al. [3] for an
earlier use of randomization for the a dominating set problem).

Sources for BFS trees are carefully chosen in the sequential setting by approx-
imately solving a set-cover problem, in order to cover all paths with many missing
edges. Once again, this cannot be directly implemented in the distributed set-
ting, as the knowledge of all paths cannot be quickly gathered in one location,
so we choose the BFS sources randomly [15]. In both the clustering and BFS
phases, the number of edges increases by a multiplicative logc n factor, for c < 1.

The main challenge left is to choose additional edges to add to the spanner in
order to approximate the remaining paths well. To this end, we make heavy use
of the parallel-BFS technique of Holzer and Wattenhofer [34], which allows to
construct BFS trees rooted at s different nodes in O(s+D) rounds. We use this
technique to count edges in a path, to count missing edges in it, and to choose
which edges to add to the spanner. Yet, interestingly, we are unable to match
the guarantee on the number of edges of more sophisticated algorithms [6,35,53].
Some of these algorithms use the value of a path, which is roughly the number
of pairs of cluster that get closer if the path is added to the spanner. We are not
able to measure this quantity efficiently in the distributed setting, and this is
one of the reasons we are unable to introduce (+6)-all-pairs spanner matching
the sequential constructions.

1.2 Our Contribution

We provide various spanner constructions in the CONGEST model, as summa-
rized in Tables 1 and 2.

The distributed spanner construction algorithms we present have three main
properties: stretch, number of edges, and running time. All three properties hold
w.h.p. (with high probability). That is, the algorithm stops in the desired time,
with the desired number of edges and the spanner produced has the desired
stretch with probability 1 − n−c, where c is constant of choice. However, we can
trade the properties and guarantee two of the three to always hold: if the spanner
is too dense or the stretch is too large, we can repeat the algorithm; if the running
time exceeds some threshold, we can stop the execution and output the whole
graph to get 0 stretch, or output an empty graph to get the desired number of
edges. The edges of the constructed spanner can be counted over a BFS tree
in G within O(D) rounds. In sourcewise, subsetwise and pairwise spanners, the
stretch is measured by running BFS from the relevant nodes (nodes of S of
appearing in P) for O(D) rounds in G and again in H; in all-pairs spanners,

132 K. Censor-Hillel et al.

Table 1. The number of edges in our new constructions versus prior, sequential work.
Due to space limitations, most of our results are only stated here, and their proofs
appear in the full version of the article. We compare our (+4)-subsetwise with a sequen-
tial construction of a (+2)-subsetwise spanner, and our (+8)-all-pairs spanner with a
(+6)-all-pairs spanner.

Spanner type Number of edges — distributed Number of edges — sequential

(+2)-sourcewise O
(
n5/4 |S|1/4 log3/4 n

)
(Theorem1) O

(
n5/4 |S|1/4 log1/4 n

)
[36]

(+2)-pairwise O
(
n |P|1/3 log2/3 n

)
O
(
n |P|1/3

)
[2]

(+4)-pairwise O
(
n |P|2/7 log6/7 n

)
O
(
n |P|2/7 log3/7 n

)
[35]

(+4)-all-pairs O
(
n7/5 log4/5 n

)
O
(
n7/5 log1/5 n

)
[15]

(+8)-all-pairs O
(
n15/11 log10/11 n

)
O
(
n4/3

)
[6]

(+2)-subsetwise O
(
n |S|2/3 log2/3 n

)
O
(
n |S|1/2

)
[17,46]

(+4)-subsetwise O
(
n |S|4/7 log6/7 n

)
O
(
n |S|1/2

)
[17,46]

Table 2. Running time: algorithms versus lower bounds, for number of edges as in
Table 1. Due to space limitations, most of our results are only stated here, and their
proofs appear in the full version of the article. Ω̃ hides polylogarithmic factors.

Spanner Type Number of Rounds Lower Bounds

(+2)-sourcewise O (|S| + D) (Thm. 1) min
{

Ω̃
(

n3/8

|S|1/8

)
, Ω (D)

}
[47]

(+2)-pairwise O (τ(P) + D) min
{

Ω̃
(

n1/2

|P|1/6

)
, Ω (D)

}
[47]

Ω
(

|P|
n log n

)
(Thm. 3)

(+4)-pairwise O (τ(P) + D) min
{

Ω̃
(

n1/2

|P|1/7

)
, Ω (D)

}
[47]

Ω
(

|P|
n log n

)

(+4)-all-pairs O(n3/5 log1/5 n + D) min
{

Ω̃
(

n3/10
)

, Ω (D)
}

[47]

(+8)-all-pairs O(n7/11 log1/11 n + D) min
{

Ω̃
(

n7/22
)

, Ω (D)
}

[47]

(+2)-subsetwise O(|S| + D) min
{

Ω̃
(

n1/2

|S|1/3

)
, Ω (D)

}
[47]

(+4)-subsetwise O(|S| + D) min
{

Ω̃
(

n1/2

|S|2/7

)
, Ω (D)

}
[47]

the stretch is measured by measuring the stretch of the underlying sourcewise
or subsetwise spanner.

We complement our algorithms with some lower bounds for the CONGEST
model. We show that any algorithm that constructs an additive (+2)-pairwise

Distributed Construction of Purely Additive Spanners 133

spanner with m edges on p ≤ m pairs must have at least Ω(p/(n log n)) rounds,
as long as m ≤ n3/2. For example, a CONGEST construction of a (+2)-pairwise
spanner must take Ω̃(

√
n) rounds. We also prove lower bounds for (α, β)-pairwise

spanners (i.e., for which δH(u, v) ≤ α δG(u, v)+β). We show that any algorithm
that constructs an (α, β)-pairwise spanner with m edges on p ≤ m pairs must
have at least Ω(p/(n log n)) rounds, as long as m ≤ n1+ 4

9α+3β−10 , where the
constant in the Ω notation depends on α, β.

We believe the difficulty in obtaining this lower bound arises from the fact
that standard reductions from set-disjointness and equality are unsuitable for
this task. At a high level, in most standard reductions the problem boils down
to deciding the existence of an edge (which can represent, e.g., the intersecting
element between the inputs); when constructing spanners, no specific edge needs
to be added to the spanner or omitted from it, so the solution is allowed a
considerable amount of slack that is not affected by any particular edge alone.

Instead, to obtain our lower bound, we define a new communication com-
plexity problem that reduces to computing a sparse spanner, and prove a lower
bound on its communication complexity using information theory. In this new
problem, which we call PART-COMPm,p, Alice has a set x ⊆ {1, . . . ,m} of size
|x| = p, and Bob has to output a set y ⊆ {1, . . . ,m} of size |y| = m/2 so that
x ∩ y = ∅. We show that any protocol that solves PART-COMPm,p must convey
Ω(p) bits of information about the set x. This technique significantly extends
the current toolbox used for obtaining lower bounds for the CONGEST model.
As such, we believe it may find additional applications, especially in obtaining
lower bounds for computing in this model.

Roadmap. We conclude this section with a further discussion of related work.
Section 2 contains the definition of the model and some basic routines. In Sect. 3
we present distributed algorithms for computing the various types of spanners
discussed above. In Sect. 4 we present our new lower bounds, and we conclude
with a short discussion in Sect. 5.

1.3 Related Work

Sparse spanners with a small multiplicative stretch are well-understood: Althöfer
et al. [4] in 1993 showed that any weighted graph G on n vertices has a spanner
of size O(n1+1/k) with multiplicative stretch 2k−1, for every integer k ≥ 1. Since
then, several works [9,23,26,29,37,46,48,49,52] have considered the problem of
efficiently constructing sparse spanners with small stretch and have used span-
ners in the applications of computing approximate distances and approximate
shortest paths efficiently.

For unweighted graphs, one seeks spanners where the stretch is purely addi-
tive and as mentioned earlier, an almost tight bound of n4/3 is known for how
sparse a purely additive spanner can be. Bollobás et al. [11] were the first to study
a variant of pairwise preservers called distance preservers, where the set of rele-
vant pairs is P = {(u, v) : δG(u, v) ≥ d}, for a given parameter d. Coppersmith
and Elkin [16] showed pairwise preservers of size O(n

√|P|) and O(n + |P|√n)

134 K. Censor-Hillel et al.

for any P ⊆ V ×V . For |P | = ω
(
n3/4

)
, the bound of O(n

√|P|) for pairwise pre-
servers has very recently been improved to O(n2/3|P|2/3 + n|P|1/3) by Bodwin
and Williams [10].

The problem of designing sparse pairwise spanners was first considered by
Cygan et al. [17] who showed a tradeoff between the additive stretch and size of
the spanner. The current sparsest pairwise spanner with purely additive stretch
has size O(n|P|1/4) and additive stretch 6 [35]. Woodruff [53] and Abboud and
Bodwin [1,2] showed lower bounds for additive spanners and pairwise spanners.
Parter [40] showed sparse multiplicative sourcewise spanners and a lower bound
of Ω(n|S|1/k/k) on the size of a sourcewise spanner with additive stretch 2(k−1),
for any integer k ≥ 1.

Distributed construction of sparse spanners with multiplicative stretch was
addressed in several studies [6,9,19–21,25,47]. Constructions of (α, β)-spanners
were addressed in [6,22,47]. Towards the goal of obtaining purely additive span-
ners, for which α = 1, Elkin and Peleg [29] introduced nearly-additive spanners,
for which α = 1+ε. Additional distributed constructions of nearly-additive span-
ners are given in [22,26,30,47]. Finally, somewhat related, are constructions of
various spanners in the streaming model, and in dynamic settings, both central-
ized and distributed [5,7,8,27,28].

In his seminal paper, Pettie [47] presents lower bounds for the number of
rounds needed by distributed algorithms in order to construct several families of
spanners. Specifically, it is shown that computing an all-pair additive β-spanner
with size n1+ρ in expectation, for a constant β, requires Ω

(
n(1−ρ)/2

)
rounds

of communication. Because this is an indistinguishability-based lower bound, it
holds even for the less restricted LOCAL mode, where message lengths can be
unbounded.

The lower bound is obtained by showing an n-node graph with diameter
D = Θ

(
n(1−ρ)/2

)
where, roughly speaking, removing wrong edges induces a

stretch that is too large, and identifying these wrong edges takes Ω(D) rounds.
This gives a lower bound of min

{
Ω

(
n(1−ρ)/2

)
, Ω (D)

}
rounds. Examining the

construction in detail, it is not hard to show it works for other types of spanners
as well: even for a single pair of nodes, or a set S of size 2, at least Ω(D) rounds
are necessary in order to avoid removing wrong edges.

2 Preliminaries

The Model. The distributed model we assume is the well-known CONGEST
model [41]. Such a system consists of a set of n computational units, who
exchange messages according to an undirected communication graph G = (V,E),
|V | = n, where nodes represent the computational units and edges the commu-
nication links. Each node has a unique identifier which can be encoded using
O(log n) bits. The diameter of G is denoted by D.

When the computation starts, each node knows its own identifier and the
identifiers of its neighbors; when there is a set S of nodes or a set P of node-
pairs involved in the computation, it also knows if it belongs to S, or all the pairs

Distributed Construction of Purely Additive Spanners 135

in P it belongs to. The computation proceeds in rounds, where in each round
each node sends an O(log n)-bits message to each of its neighbors, receives a
message from each neighbor, and performs a computation. We use the number
of rounds as our complexity measure, while ignoring the local computation time;
however, in our algorithms all local computations take polynomial time. When
the computation ends, each node knows which of its neighbors is also its neighbor
in the new graph H = (V,E′) generated. We do not assume that the global
structure of H is known to any of the nodes.

Clustering and BFS. The first building block in all of our algorithms is clustering.
A cluster Ci around a cluster center ci is a subset of ΓG(ci), the set of neighbors
of ci in G (which does not include ci itself). A node belonging to a cluster is
clustered, while the other nodes of G are unclustered. We use C to denote the set
of cluster centers and Ĉ to denote the set of clusters.

In the clustering phase of our algorithms we divide some of the nodes into
clusters. We create a new graph containing all the edges connecting a clustered
node to its cluster center, and all the edges incident on unclustered nodes.

Another building block is BFS trees. A BFS tree in a graph G, rooted at a
node r, consists of shortest paths from r to all other nodes in G. The process
of creating a BFS tree, known as BFS search, is well-known in the sequential
setting. In the distributed setting, a single BFS tree can be easily constructed
by a techniques called flooding (see, e.g. [41, Sect. 3]), and a celebrated result of
Holzer and Wattenhofer [34] asserts that multiple BFS trees, rooted at a set S of
nodes, can be constructed in O(|S|+D) rounds. Here, D denotes the diameter of
the graph, i.e. the maximal distance between two nodes. We use this technique
to add BFS trees to the spanner we construct, and to measure distances in the
original graph.

3 Building Spanners

In this section we discuss the distributed construction of (+2)-sourcewise span-
ners. We first present an algorithm and analyze the constructed spanner in terms
of stretch and number of edges, and then discuss the implementation of this algo-
rithm in the CONGEST model and analyze its running time. Other families of
spanners, and their construction, are discussed in the full version of this article.

In a nutshell, our algorithms have three steps: first, each node tosses a coin
to decide if it will serve as a cluster center; second, each cluster center tosses
another coin to decide if it will serve as a root of a BFS tree; third, add to the
current graph edges that are part of certain short paths. The parameters of the
coins and the meaning of “short” are carefully chosen, depending on the input
to the problem and the desired stretch.

Proving that the algorithms perform well is about analyzing the probability of
failure. This analysis uses the graph structure as well as standard concentration
bounds. In all of our algorithms, c is a constant that can be chosen according to
the desired exponent of 1/n in the failure probability.

136 K. Censor-Hillel et al.

3.1 A (+2)-Sourcewise Spanner

Our first algorithm constructs a (+2)-sourcewise spanner. Given a set S ⊆ V ,
the algorithm returns a subgraph H of G satisfying δH(s, v) ≤ δG(s, v) + 2 for
all (s, v) ∈ S × V , with guarantees as given in the following theorem.

Theorem 1. Given a graph G with n nodes and a set S of source nodes, a
(+2)-sourcewise spanner with O(n5/4 |S|1/4 log3/4 n) edges can be constructed in
O(|S| + D) rounds in the CONGEST model w.h.p.

This is only a factor O(log1/2 n) more than the number of edges given by the
best sequential algorithm known for this type of spanners [36]. We first present
a sequential algorithm achieving the desired size and stretch, and then discuss
its distributed implementation.

Algorithm 2S. Input: a graph G = (V,E); a set of source nodes S ⊆ V
Output: a subgraph H
Initialization: n = |V |, h = (n |S|)1/4 log3/4 n, and H = (V, ∅)

Clustering. Pick each node as a cluster center w.p. c log n
h , and denote the set

of selected nodes by {c1, c2, . . .}. For each node v ∈ V , choose a neighbor ci of
v which is a cluster center, if such a neighbor exists, add the edge (v, ci) to H,
and add v to Ci; if none of the neighbors of v is a cluster center, add to H all
the edges v belongs to.

BFS. Pick each cluster center as a root of a BFS tree w.p. h2

cn log n , and add to
H a BFS tree rooted at each chosen root.

Path Buying. For each source-cluster pair (s, Ci) ∈ S × Ĉ: build a temporary
set of paths, containing a single, arbitrary shortest path from s to each x ∈ Ci;
omit from the set all paths with more than 2c2n log2 n

h2 missing edges (i.e. edges
in G but not in H); if any paths are left, add to H the shortest among them.

Analysis of Algorithm 2S. There are O(n5/4 |S|1/4 log3/4 n) edges in the span-
ner w.h.p.: in the clustering phase, all nodes of degree at least h are clustered,
so unclustered nodes add O(nh) edges; in the BFS phase, the number of BFS
trees is at most 4h, for another O(nh) edges; finally, |C| = O

(
n log n

h

)
for another

O
(

|S|n2 log3 n
h3

)
edges. The choice of h gives the stated size of the spanner.

The stretch of each path form s ∈ S to v ∈ V is at most +2 w.h.p.: a paths
with more than 2c2n log2 n

h2 missing edges has a source of a BFS tree adjacent to
it, and the BFS tree gives the +2 approximation; for a path with fewer missing
edges, let u be first unclustered node on the path when traversing it from v, so
the algorithm buys a shortest path from s to some node u′ in the cluster of u,
and the path s − u′ − u − v gives a (+2)-approximation of the original path.

Distributed Construction of Purely Additive Spanners 137

Implementing Algorithm 2S in the CONGEST Model

Lemma 1. Algorithm 2S can be implemented in O(|S|+D) rounds in the CON-
GEST model, w.p. at least 1 − o(n−c).

Proof (sketch). We sketch distributed implementations for each of the phases in
Algorithm 2S, and analyze their running time.

Preprocessing. The parameters |S| and n are gathered along a BFS tree rooted
at a predetermined node, and then spread to all the nodes over the same tree,
in O(D) rounds.

Clustering. Each node becomes a cluster center w.p. c log n
h and inform its neigh-

bors; each node that gets at least one message joins a cluster of one of its neigh-
bors arbitrarily; finally, the rest of the nodes and add all their incident edges to
the graph. The round complexity of this phase is constant.

BFS. Each cluster center becomes a root of a BFS tree w.p. ch2

n log n , without
communication. The number of BFS trees is O(h) w.p. 1 − o (n−c), and this
number of BFS searches is run in parallel in O(D+h) rounds, using an algorithm
of Holzer and Wattenhofer [34, Sect. 6.1].

Path Buying. This phase starts with measuring all the distances between pairs of
nodes in S×V , and the number of missing edges in each shortest path measured.
To this end, we run a BFS search from each s ∈ S in parallel in O(|S|+D) rounds,
as before, where each BFS also counts the missing edges on each path.

Each node x ∈ V , upon receiving a BFS message initiated in s, knows its
distance form s and the number of missing edges on a path from S; we henceforth
only consider this specific path. After all BFS searches are over, x reports these
parameters to its cluster center; this sub-phase takes O(|S|) rounds to complete.

Each cluster center ci now chooses, for each s ∈ S, the shortest among all
paths with at most 2c2n log2 n

h2 missing edges from s to some x′ ∈ Ci; this path is
added to H by sending a “buy” message from x′ and up the BFS tree of s. This
sub-phase requires O(|S| + D) rounds.

In total, the running time of the algorithm is O(h + |S| + D), w.h.p. If
h = Ω(|S|), we replace the algorithm by a simpler algorithm that returns the
union of BFS trees rooted at all nodes of S; this exactly preserves all distances
and comply with the size and time restrictions.

4 Lower Bounds

In this section we prove lower bounds on the number of rounds that are needed
for constructing spanners in the CONGEST model. All previous lower bounds
for the distributed construction of spanners [47] use an indistinguishability argu-
ment: while many edges should be omitted from the graph in order to create a
sparse spanner, there are few edges that must not be omitted. However, in order

138 K. Censor-Hillel et al.

to distinguish these few edges from the rest, some nodes must learn a consider-
able part of the graph. In a nutshell, the heart of the proof is that information
must travel a constant portion of the diameter D, yielding an Ω(D) lower bound.

The lower bounds from [47] apply also to the LOCAL model, where the
message sizes are unbounded. Here, we present the first lower bound that is
specific for the CONGEST model. As in previous lower bounds for the CON-
GEST model, our proof uses a reduction from a communication complexity prob-
lem. However, previous lower bounds used reductions either from the equality
problem [42] or from set-disjointness, e.g., [12,18,24,31–33]. These seem unsuit-
able for our purposes, and hence we diverge from this approach and define a
new communication complexity problem we call partial complement. We bound
the communication complexity of this problem from below, using information
theory.

Here, we prove a lower bound for the construction of a (+2)-pairwise spanner.
In the full version of this paper, we generalize this lower bound for the construc-
tion of an (α, β)-pairwise spanner, where α ≥ 1 and β ≥ 0 are constants.

4.1 A Communication Complexity Problem

Let m, p be two positive integers so that p ≤ m/3. The partial complement
communication problem, denoted PART-COMPm,p, is defined as follows: Alice
has a set x ⊆ {1, . . . ,m} of size |x| = p, and Bob has to output a set y ⊆
{1, . . . , m} of size |y| = m/2 so that x ∩ y = ∅. Note that the goal of this
communication problem is to compute a relation, not a function. In the full
version of this paper we prove that the randomized communication complexity
of the partial complement problem is high.

Theorem 2. If π is a (1/3)-error randomized protocol computing PART-
COMPm,p then the length of π is at least p/100.

4.2 A Lower Bound for Constructing a (+2)-Pairwise Spanner

Theorem 3. There is a constant c > 0 so that the following holds. Any dis-
tributed protocol for the CONGEST model with success probability at least 2/3
which, given a graph with n nodes and a set of p ≤ cn3/2 pairs of nodes, outputs
a (+2)-pairwise spanner with at most cn3/2 edges, must take Ω(p

n log n) rounds
to complete. The lower bound holds even for graphs with constant diameter.

The theorem implies a lower bound of Ω (
√

n/ log n) on the number of rounds
needed for an algorithm in the CONGEST model to output a (+2)-pairwise
spanner, when |P| = Θ(n3/2). For comparison, the time for constructing such a
spanner using Algorithm 2P can (roughly) vary between n3/4 and n, depending
on the structure of P.

The graph G for which the lower bound is proved is defined as follows. Let n
be such that there is a finite projective plane with n/4 points and n/4 lines. Let
G′ be the point-line incidence graph with n/2 nodes (see e.g. [39, Sect. 4.5]). The

Distributed Construction of Purely Additive Spanners 139

graph G′ has Θ(n3/2) edges, girth 6 and diameter 3.1 We denote the nodes of
G′ by VB = {v′

1, . . . , v
′
n/2}. The graph G consists of G′, an additional n/2 nodes

denoted VA = {v1, . . . , vn/2}, and an additional n/2 edges of the form (vi, v
′
i).

In the pairwise spanner we construct, we wish to approximately preserve
distances between pairs of nodes in VA, i.e. P ⊆ VA × VA. The main observation
is that, since the girth of G′ is 6, if e′ = {v′

i, v
′
j} is an edge of G′ then the

following holds. If (vi, vj) ∈ P then any (+2)-pairwise spanner must contain the
edge e′, as otherwise the distance is stretched from 3 to 7, which exceeds the
required +2 stretch. On the other hand, if (vi, vj) /∈ P then the edge e′ can be
safely omitted from the spanner.

Proof (of Theorem 3). Fix a distributed protocol σ for constructing a (+2)-
pairwise spanner with at most m/2 edges. Let G be the graph described above,
and denote the edges of G′ by e1, . . . , em.

We describe a reduction from PART-COMPm,p to σ. Assume Alice has a set
x ⊆ {1, . . . ,m} of size p, and Bob has to output a set y ⊆ {1, . . . ,m} of size m/2
satisfying x ∩ y = ∅. Alice and Bob simulate σ on the graph G with the set of
pairs

P =
{
(vi, vj) : ∃k ∈ x ek = {v′

i, v
′
j}

}
.

That is, a pair (vi, vj) is in P if the corresponding pair (v′
i, v

′
j) is an edge ek

whose index k is in x. Alice simulates the nodes in VA, and Bob simulates the
nodes VB and the edges among them. To simulate communication on edges of
the form (vi, v

′
i), Alice and Bob communicate. Note that P contains only pairs

of nodes that are simulated by Alice.
The spanner constructed is a subgraph H of G with at most m/2 edges,

satisfying δH(vi, vj) ≤ δG(vi, vj) + 2 for all (vi, vj) ∈ P. For each such pair,
by definition of P, we have δG(vi, vj) = 3, which implies δH(vi, vj) ≤ 5 and
δH(v′

i, v
′
j) ≤ 3. The fact that G′ has girth 6 implies that the edge {v′

i, v
′
j} must

be in H. Let
y = {k : ek ∈ EG \ EH} .

The spanner size implies |y| ≥ m/2, while the above discussion implies x∩y = ∅.
Thus, Bob can output a subset of y of size m/2, solving the communication
complexity problem.

By the communication complexity lower bound, Alice and Bob must com-
municate Ω(p) bits during the simulation. The number of edges they simulate
together is n/2, and O(log n) bits are sent over each edge at each round. Thus,
the protocol must take Ω

(
|P|

n log n

)
rounds to complete.

5 Discussion

This paper presents various algorithms for computing sparse purely additive
spanners in the CONGEST model. Our algorithms exhibit tradeoffs between the

1 The girth of a graph is the length of the shortest simple cycle in it.

140 K. Censor-Hillel et al.

running time and the sparsity of the constructed spanners. By choosing different
values for the parameter h, one can obtain a spanner with the same stretch in
a smaller number of rounds but at the expense of increasing the density. This
tradeoff is an important direction for future work.

Our lower bound uses a new communication complexity problem, and lever-
ages the distributed nature of the system by using the fact that each node
initially only knows the pairs in P to which it belongs2. That is, the topology
of the graph used for the lower bound reduction is known completely to both
Alice and Bob, regardless of their inputs to the PART-COMPm,p instance, while
the uncertainty about the identity of the pairs in P is what makes the prob-
lem hard. While it might be unnatural to assume that other nodes know about
these pairs, it is theoretically interesting to ask whether one can design faster
distributed constructions given this information.

Finally, we believe that our new lower bound technique can be useful for
proving additional lower bounds in the CONGEST model, as it diverges from
reducing to the set-disjointness problem.

Acknowledgements. We thank Merav Parter for a helpful discussion on the lower
bound, and the anonymous referees for helpful comments.

References

1. Abboud, A., Bodwin, G.: The 4/3 additive spanner exponent is tight. In: ACM
SIGACT Symposium on Theory of Computing, STOC (2016)

2. Abboud, A., Bodwin, G.: Error amplification for pairwise spanner lower bounds.
In: Annual ACM-SIAM Symposium on Discrete Algorithms, SODA (2016)

3. Aingworth, D., Chekuri, C., Indyk, P., Motwani, R.: Fast estimation of diameter
and shortest paths (without matrix multiplication). SIAM J. Comput. 28(4), 1167–
1181 (1999)

4. Althöfer, I., Das, G., Dobkin, D.P., Joseph, D., Soares, J.: On sparse spanners of
weighted graphs. Discrete Comput. Geom. 9, 81–100 (1993)

5. Baswana, S.: Streaming algorithm for graph spanners - single pass and constant
processing time per edge. Inf. Process. Lett. 106(3), 110–114 (2008)

6. Baswana, S., Kavitha, T., Mehlhorn, K., Pettie, S.: Additive spanners and (alpha,
beta)-spanners. ACM Trans. Algorithms 7(1), 5 (2010)

7. Baswana, S., Khurana, S., Sarkar, S.: Fully dynamic randomized algorithms for
graph spanners. ACM Trans. Algorithms 8(4), 35 (2012)

8. Baswana, S., Sarkar, S.: Fully dynamic algorithm for graph spanners with poly-
logarithmic update time. In: ACM-SIAM Symposium on Discrete Algorithms,
SODA (2008)

9. Baswana, S., Sen, S.: A simple and linear time randomized algorithm for computing
sparse spanners in weighted graphs. Random Struct. Algorithm 30(4), 532–563
(2007)

10. Bodwin, G., Williams, V.V.: Better distance preservers and additive spanners. In:
ACM-SIAM Symposium on Discrete Algorithms, SODA, pp. 855–872 (2016)

2 In fact, our lower bound holds even if all nodes in pairs in P know all of P.

Distributed Construction of Purely Additive Spanners 141

11. Bollobás, B., Coppersmith, D., Elkin, M.: Sparse distance preservers and additive
spanners. SIAM J. Discrete Math. 19(4), 1029–1055 (2005)

12. Censor-Hillel, K., Ghaffari, M., Kuhn, F.: Distributed connectivity decomposition.
In: ACM Symposium on Principles of Distributed Computing, PODC (2014)

13. Censor-Hillel, K., Haeupler, B., Kelner, J.A., Maymounkov, P.: Global computa-
tion in a poorly connected world: fast rumor spreading with no dependence on
conductance. In: Symposium on Theory of Computing Conference, STOC, 2012

14. Chechik, S.: Compact routing schemes with improved stretch. In: ACM Symposium
on Principles of Distributed Computing, PODC (2013)

15. Chechik, S.: New additive spanners. In: ACM-SIAM Symposium on Discrete Algo-
rithms, SODA (2013)

16. Coppersmith, D., Elkin, M.: Sparse sourcewise and pairwise distance preservers.
SIAM J. Discrete Math. 20(2), 463–501 (2006)

17. Cygan, M., Grandoni, F., Kavitha, T.: On pairwise spanners. In: Symposium on
Theoretical Aspects of Computer Science, STACS (2013)

18. Das Sarma, A., Holzer, S., Kor, L., Korman, A., Nanongkai, D., Pandurangan, G.,
Peleg, D., Wattenhofer, R.: Distributed verification and hardness of distributed
approximation. SIAM J. Comput. 41(5), 1235–1265 (2012)

19. Derbel, B., Gavoille, C.: Fast deterministic distributed algorithms for sparse span-
ners. Theor. Comput. Sci. 399(1–2), 83–100 (2008)

20. Derbel, B., Gavoille, C., Peleg, D.: Deterministic distributed construction of linear
stretch spanners in polylogarithmic time. In: Pelc, A. (ed.) DISC 2007. LNCS, vol.
4731, pp. 179–192. Springer, Heidelberg (2007)

21. Derbel, B., Gavoille, C., Peleg, D., Viennot, L.: On the locality of distributed
sparse spanner construction. In: ACM Symposium on Principles of Distributed
Computing, PODC, pp. 273–282 (2008)

22. Derbel, B., Gavoille, C., Peleg, D., Viennot, L.: Local computation of nearly addi-
tive spanners. In: Keidar, I. (ed.) DISC 2009. LNCS, vol. 5805, pp. 176–190.
Springer, Heidelberg (2009)

23. Dor, D., Halperin, S., Zwick, U.: All-pairs almost shortest paths. SIAM J. Comput.
29(5), 1740–1759 (2000)

24. Drucker, A., Kuhn, F., Oshman, R.: On the power of the congested clique model.
In: ACM Symposium on Principles of Distributed Computing, PODC (2014)

25. Dubhashi, D.P., Mei, A., Panconesi, A., Radhakrishnan, J., Srinivasan, A.: Fast
distributed algorithms for (weakly) connected dominating sets and linear-size skele-
tons. J. Comput. Syst. Sci. 71(4), 467–479 (2005)

26. Elkin, M.: Computing almost shortest paths. ACM Trans. Algorithm 1(2), 283–323
(2005)

27. Elkin, M.: A near-optimal distributed fully dynamic algorithm for maintaining
sparse spanners. In: ACM Symposium on Principles of Distributed Computing,
PODC, pp. 185–194 (2007)

28. Elkin, M.: Streaming and fully dynamic centralized algorithms for constructing and
maintaining sparse spanners. In: Arge, L., Cachin, C., Jurdziński, T., Tarlecki, A.
(eds.) ICALP 2007. LNCS, vol. 4596, pp. 716–727. Springer, Heidelberg (2007)

29. Elkin, M., Peleg, D.: (1+epsilon, beta)-spanner constructions for general graphs.
SIAM J. Comput. 33(3), 608–631 (2004)

30. Elkin, M., Zhang, J.: Efficient algorithms for constructing (1+epsilon, beta)-
spanners in the distributed and streaming models. Distrib. Comput. 18(5), 375–385
(2006)

142 K. Censor-Hillel et al.

31. Frischknecht, S., Holzer, S., Wattenhofer, R.: Networks cannot compute their diam-
eter in sublinear time. In: ACM-SIAM Symposium on Discrete Algorithms, SODA,
pp. 1150–1162 (2012)

32. Ghaffari, M., Kuhn, F.: Distributed minimum cut approximation. In: Afek, Y. (ed.)
DISC 2013. LNCS, vol. 8205, pp. 1–15. Springer, Heidelberg (2013)

33. Holzer, S., Pinsker, N.: Approximation of distances and shortest paths in the broad-
cast congest clique. CoRR, abs/1412.3445 (2014)

34. Holzer, S., Wattenhofer, R.: Optimal distributed all pairs shortest paths and appli-
cations. In: ACM Symposium on Principles of Distributed Computing, PODC
(2012)

35. Kavitha, T.: New pairwise spanners. In: Symposium on Theoretical Aspects of
Computer Science, STACS, pp. 513–526 (2015)

36. Kavitha, T., Varma, N.M.: Small stretch pairwise spanners. In: International Col-
loquium on Automata, Languages, and Programming, ICALP (2013)

37. Knudsen, M.B.T.: Additive spanners: a simple construction. In: Ravi, R., Gørtz,
I.L. (eds.) SWAT 2014. LNCS, vol. 8503, pp. 277–281. Springer, Heidelberg (2014)

38. Lenzen, C., Peleg, D.: Efficient distributed source detection with limited band-
width. In: ACM Symposium on Principles of Distributed Computing, PODC (2013)

39. Matousek, J.: Lectures on Discrete Geometry. Springer, New York (2002)
40. Parter, M.: Bypassing Erdős’ girth conjecture: hybrid stretch and sourcewise span-

ners. In: International Colloquium on Automata, Languages and Programming,
ICALP (2014)

41. Peleg, D.: Distributed Computing: A Locality-Sensitive Approach. SIAM Mono-
graphs on Discrete Mathematics and Applications. Society for Industrial and
Applied Mathematics, Philadelphia (2000)

42. Peleg, D., Rubinovich, V.: A near-tight lower bound on the time complexity of dis-
tributed MST construction. In: Symposium on Foundations of Computer Science,
FOCS, pp. 253–261 (1999)

43. Peleg, D., Schäffer, A.A.: Graph spanners. J. Graph Theory 13(1), 99–116 (1989)
44. Peleg, D., Ullman, J.D.: An optimal synchronizer for the hypercube. SIAM J.

Comput. 18(4), 740–747 (1989)
45. Peleg, D., Upfal, E.: A trade-off between space and efficiency for routing tables. J.

ACM 36(3), 510–530 (1989)
46. Pettie, S.: Low distortion spanners. ACM Trans. Algorithms 6(1) (2009)
47. Pettie, S.: Distributed algorithms for ultrasparse spanners and linear size skeletons.

Distrib. Comput. 22(3), 147–166 (2010)
48. Roditty, L., Thorup, M., Zwick, U.: Deterministic constructions of approximate dis-

tance oracles and spanners. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi,
C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 261–272. Springer, Heidel-
berg (2005)

49. Roditty, L., Zwick, U.: On dynamic shortest paths problems. Algorithmica 61(2),
389–401 (2011)

50. Thorup, M., Zwick, U.: Compact routing schemes. In: ACM Symposium on Parallel
Algorithms and Architectures, SPAA, pp. 1–10 (2001)

51. Thorup, M., Zwick, U.: Approximate distance oracles. J. ACM 52(1), 113–116
(2005)

52. Thorup, M., Zwick, U.: Spanners and emulators with sublinear distance errors. In:
ACM-SIAM Symposium on Discrete Algorithms, SODA, pp. 802–809 (2006)

53. Woodruff, D.P.: Additive spanners in nearly quadratic time. In: Abramsky, S.,
Gavoille, C., Kirchner, C., Meyer auf der Heide, F., Spirakis, P.G. (eds.) ICALP
2010. LNCS, vol. 6198, pp. 463–474. Springer, Heidelberg (2010)

Optimal Fair Computation

Rachid Guerraoui and Jingjing Wang(B)

EPFL, IC, Station 14, 1015 Lausanne, Switzerland
{rachid.guerraoui,jingjing.wang}@epfl.ch

Abstract. A computation scheme among n parties is fair if no party
obtains the computation result unless all other n − 1 parties obtain the
same result. A fair computation scheme is optimistic if n honest parties
can obtain the computation result without resorting to a trusted third
party. We prove, for the first time, a tight lower-bound on the message
complexity of optimistic fair computation for n parties among which n−1
can be malicious in an asynchronous network. We do so by relating the
optimal message complexity of optimistic fair computation to the length
of the shortest permutation sequence in combinatorics.

1 Introduction

In fair computation [1,2], n parties possess n pieces of information and need
to output a function of these n pieces of information (the inputs) atomically.
Namely, a party obtains the output of the function if and only if the other
n − 1 parties obtain the same output. A prominent example is auctions: after n
parties offer a price for some item, they wish to determine the highest price and
the winner without ambiguity, e.g., when more than one party claims to win the
item. A solution is the fair computation of the n bids (prices).

The difficulty of fair computation stems from the fact that a party might
be malicious (dishonest) and try to obtain other parties’ inputs, twist other
parties’ outputs, or arbitrarily delay other parties from obtaining an output.
Still, honest parties should eventually obtain an output in a fair manner: they
should all obtain the function of the n inputs, or all obtain a specific value ⊥
(denoted abort in [1]). In fact, (deterministic) fair computation is in general
impossible without a trusted third party [3]. Yet, this third party is not needed
in every execution of a (deterministic) fair computation protocol.

Optimistic (deterministic) fair computation stipulates that the third party
does not need to be invoked if all n parties are honest [1,2,4]. An execution where
n honest parties output without invoking the third party is called an optimistic
execution [1,4]. Given that cheating is seldom and the third party is consid-
ered a bottleneck, optimism is practically appealing. To claim true practicality,
however, optimistic executions should be efficient. To be specific, the number of
messages exchanged among n honest parties (which compute the function with-
out resorting to the third party) should not be prohibitive. Until the present
paper, the optimal number of messages was unknown.

c© Springer-Verlag Berlin Heidelberg 2016
C. Gavoille and D. Ilcinkas (Eds.): DISC 2016, LNCS 9888, pp. 143–157, 2016.
DOI: 10.1007/978-3-662-53426-7 11

144 R. Guerraoui and J. Wang

We prove in this paper that � + 2n − 3 is the optimal number of messages
that an optimistic execution of optimistic fair computation may achieve in the
presence of n − 1 potentially malicious parties in an asynchronous network,
where � is the length of the shortest sequence that contains all permutations of
n symbols as subsequences [5]. Given recent results in combinatorics [6–9], the
optimal number of messages for optimistic fair computation is 4 for n = 2, n2+1
for 3 ≤ n ≤ 7, and asymptotically Θ(n2) for n ≥ 8.1

The main idea behind our proof of the �+2n− 3 lower-bound is the identifi-
cation of a decision propagation pattern according to which the n parties reach
an agreement when any of the parties decides to stop the computation. Such
ability of a party to stop at any time without jeopardizing fairness has been
called timely termination [1]. It prevents an honest party from waiting forever
and is crucial in an asynchronous context. The decision propagation pattern is
between at least two parties P and Q. To get an intuition, consider an opti-
mistic execution E, let event EP =“P does not receive message mP ” and let
event EQ =“Q does not receive message mQ”. An honest party P ’s stop is a
result of EP . However, a malicious P ’s stop can impose an honest Q’s stop: if
when P and Q complete E, ĒP (the complement of EP) occurs before ĒQ and
Q does not receive any message between ĒP and ĒQ, then without mQ, Q is
unable to distinguish whether EP really occurs or not. An immediate result is
that malicious P ’s decision may propagate to Q. To prevent fairness from being
jeopardized by malicious propagation, in the context of possibly n − 1 malicious
parties, every party should participate in this propagation so that none has a
chance to pretend being honest in front of the trusted third party T .

This yields a subsequence of n events EP (one for each party P) and n
messages (whose destinations are the n parties) in E. Clearly, the order of the
parties does not matter and therefore, any permutation of the n events must
occur as a subsequence in E. Hence the relation between the least number of
messages of an optimistic execution and �, the length of the shortest sequence
that contains all permutations of n symbols as subsequences.

Our lower-bound on the number of messages is tight in the following
sense. We present an (� + 2n − 3)-message optimistic fair computation scheme
of some function f given a shortest permutation sequence s. Our protocol,
where the n parties are honest and compute without the third party, con-
sists of three phases: (a) the n parties send verifiable encryption [12] of
their n inputs respectively, in order to recover those inputs (if needed) in a
non-optimistic execution, which defines the first n messages; (b) the n par-
ties exchange � − 2 messages defined by s; and (c) the n parties exchange
the concatenation of the n inputs, which defines the last n − 1 messages.
The � − 2 messages m1m2 . . . m�−2 in phase (b) have their sources and

1 Newey [6] (and then many others [7–11]) studied the length � of the shortest permu-
tation sequence. Although Newey [6] showed that � = 3 for n = 2, and � = n2−2n+4
for 3 ≤ n ≤ 7, the exact � for n ≥ 8 is still considered as an open problem [7,8]. Up
until now, the best upper-bound is �n2 − 7

3
n+ 19

3
� for n ≥ 7 [8], while a lower-bound

of � is of the form n2 − cn7/4 + ε for some constant c and some ε > 0 [9].

Optimal Fair Computation 145

destinations defined by the sequence s = s1s2 . . . s� as follows. The party repre-
sented by symbol sj is the source of mj−1 for j = 2, . . . , �−1, and the destination
of mj−2 for j = 3, 4, . . . , �. (s1 is the source of the last message m0 of phase (a)
and s2 is the destination of m0.) When a party resorts to T in a non-optimistic
execution, T uses the decision propagation pattern to decide an output. The
pattern is the same as in our proof of the lower-bound so that the number of
messages in every optimistic execution is minimal.

As we will explain in Sect. 5, many results have been published on problems
related to fair computation [13–18]. None implies our lower-bound. On the other
hand, our (�+2n−3)-message optimistic fair computation scheme can be used to
implement fair exchange of certain digital signatures (including Schnorr signatures
[19], DSS signatures [20], Fiat-Shamir signatures [21], Ong-Schnorr signatures [22],
GQ signatures [23]). Thus, our scheme is also a message-optimal optimistic fair
exchange scheme [1]. Moreover, combined with our proof of the lower-bound, this
optimistic fair exchange scheme of digital signatures also implies that �+2n−3 is
the optimal number of messages for optimistic fair contract signing [16]. Finally,
our optimal message complexity may be considered as a first step to the optimal
(round) complexity. For example, the decision propagation pattern is applicable
for any optimistic execution, no matter whether the protocol is in a similar form
as our optimal protocol or not.

The rest of this paper is organized as follows. Section 2 presents our general
model and defines optimistic fair computation. Section 3 presents our lower-
bound on the number of messages. Section 4 presents our (� + 2n − 3)-message
optimistic fair computation scheme. Section 5 discusses related work. For space
limitation, we put the details of the proof of our lower-bound and the details of
the correctness proof of our message-optimal scheme to our full version [24].

2 Model and Definitions

2.1 The Parties

We consider a set Ω of n parties P1, P2, . . . , Pn (sometimes also denoted by P ,
Q). These parties are all interactive in the sense that they can communicate with
each other by exchanging messages. All parties are computationally-bounded [25]
in the sense that they run in time polynomial in some security parameter s.2

In addition to the n parties, we also assume a computationally-bounded
trusted third party T . T follows the protocol assigned to it. The communication
with T is such that when T is communicating with P , Q needs to wait for Q’s
turn to communicate with T for any two parties P,Q ∈ Ω.

At most n − 1 parties can be malicious. A malicious party could deviate
arbitrarily from the protocol assigned to it. A malicious party could interact
arbitrarily with the others as well as T . For example, a malicious party may

2 Hereafter, when we say that a probability is negligible, we mean that the probability
is a negligible function g(s) of the security parameter s; i.e., ∀c ∈ N, ∃C ∈ N such
that ∀s > C, g(s) < 1

sc
.

146 R. Guerraoui and J. Wang

drop certain messages. A party that crashes at some point in time is considered
as a malicious party that drops all the messages from that point. Malicious
parties may also collude (e.g., to obtain an output for themselves and to prevent
an output to an honest party, i.e., to break fairness, which is defined later).

Communication channels do not modify, inject, duplicate or lose messages.
Every message sent eventually reaches its destination. Any modified, injected,
duplicate, or lost message is considered to be due to malicious parties. The delay
on message transmission is finite but unbounded. Messages could be reordered.
Communication channels are authenticated and secure such as Transport Layer
Security [26]. No party can be masqueraded and no message can be eavesdropped.

2.2 Fair Computation

We consider the problem of optimistic fair computation in the classical sense of
[1,2]. The problem involves a deterministic function f to be computed by the n
parties. Function f is agreed upon by the n parties in advance. We assume that f
takes n strings x1 ∈ {0, 1}�1 , x2 ∈ {0, 1}�2 , . . . , xn ∈ {0, 1}�n as inputs and returns
z ∈ {0, 1}�z as its output.

Definition 1 (Computation). A computation scheme for f is a collection
(P1, P2, . . . , Pn) of n algorithms. The algorithms can carry out two protocols:3

– Compute: Each party Pi, i ∈ {1, 2, . . . , n} is initialized with a local input xi.
If Pi finishes this protocol, Pi returns a local output which can take a value in
{0, 1}�z ∪ {⊥}. If Compute is interrupted by Stop (which we introduce below),
Compute returns the same output as Stop.

– Stop: Pi invokes Stop when Pi wants to stop the computation. Pi can invoke
this protocol at any point in time. Pi obtains Pi’s status of Compute so far
(i.e., the sequence of messages that have arrived at Pi so far) as a local input
to Stop. Pi makes a local output which can take a value in {0, 1}�z ∪ {⊥}.
In the classical definition of fair computation [2], the problem is defined

in the simulatability paradigm [27], which basically expresses a solution to fair
computation in terms of a simulation of the ideal process. We recall the notion
of the ideal process in Definition 2, and then fair computation in Definition 3.

Definition 2 (Ideal process [2]). The ideal process for fair computation of f
is a collection (P̄1, P̄2, . . . , P̄n, U) of n + 1 algorithms. Each P̄i, i ∈ {1, 2, . . . , n}
is initialized with a local input xi. U is parameterized by f . P̄i sends message
ai = xi to U . Messages are delivered instantly. U returns a message mi to Pi

3 We consider deterministic protocols here (for Compute and Stop). In this paper,
deterministic protocols consists of two classes of protocols: D1 and D2. In any pro-
tocol of D1, each party runs a deterministic algorithm and sends deterministic mes-
sages; and we define D2 based on D1: for any protocol π1 in class D1, we can create
a protocol π2 in class D2 such that π1 and π2 are the same except for the message
contents of π2 which can be randomized.

Optimal Fair Computation 147

according to Eq. (1) as soon as a1, a2, . . . , an have arrived at U or one message
of ⊥ has arrived at U . P̄i outputs whatever U returns to it.

∀i ∈ {1, 2, . . . , n},mi =

{
f(a1, a2, . . . , an) if a1 �= ⊥, a2 �= ⊥, . . . , an �= ⊥
⊥ if ⊥ ∈ {a1, a2, . . . , an}

(1)

Definition 3 (Fair computation4). A computation scheme α solves fair com-
putation for f [2] if it satisfies the following properties:

– Fairness: for any e ∈ N, 1 ≤ e ≤ n − 1 and any e malicious parties Pd1 ,
Pd2 , . . . , Pde

, for any computationally-bounded algorithm A that controls
the e malicious parties5, there exists a computationally-bounded algorithm
S that controls P̄d1 , P̄d2 , . . . , P̄de

6 such that for any x1, x2, . . . , xn, OP1,P2,...,

Pn,A(x1, x2, . . . , xn) and OP̄1,P̄2,...,P̄n,S(x1, x2, . . . , xn) are computationally
indistinguishable [28,29];

– Termination: If an honest party Pi invokes Stop, then Pi eventually outputs.
– Completeness: ∀x1, x2, . . . , xn, if P1, P2, . . . , Pn are honest and none invokes

Stop, then all parties output z = f(x1, x2, . . . , xn); if P1, P2, . . . , Pn are honest
and some invokes Stop, then either all parties output z = f(x1, x2, . . . , xn),
or all parties output ⊥.

– Non-triviality: There is at least one execution in which P1, P2, . . . , Pn are hon-
est and none invokes Stop.

W.l.o.g., we assume that Pd1 , Pd2 , . . . , Pde
output nothing but A may output arbi-

trarily, and similarly, P̄d1 , P̄d2 , . . . , P̄de
output nothing but S may output arbi-

trarily; we denote by OP1,P2,...,Pn,A(x1, x2, . . . , xn), the joint output of P1, P2, . . . ,
Pn,A when running α for inputs x1, x2, . . . , xn, and denote by OP̄1,P̄2,...,P̄n,S(x1,
x2, . . . , xn), the joint output of P̄1, P̄2, . . . , P̄n,S when running the ideal process
for inputs x1, x2, . . . , xn.

Definition 4 (Optimistic fair computation). A fair computation scheme
is optimistic [1] if it satisfies the following property.

– Optimism: If P1, P2, . . . , Pn are honest and none invokes Stop, then all parties
output without interacting with T .

4 The original definition in [2] is ambiguous when all parties are honest: (1) if an
algorithm A delays every message, then to ensure termination, every honest party
should output ⊥ at some point in time; however, by the original definition, all honest
parties output z, except with negligible probability, which yields a contradiction; and
(2) if in a protocol, all parties send no message and only outputs ⊥, then this protocol
also matches the ideal process, which however is a trivial protocol.

5 A also plays the role of the asynchronous network as defined in Sect. 2.1.
6 In the ideal process, S sees xd1 , xd2 , . . . , xde , may change ad1 , ad2 , . . . , ade and also

sees md1 , md2 , . . . , mde but S cannot see other messages from or to U , or U ’s internal
state (which makes U universally trusted and the process ideal).

148 R. Guerraoui and J. Wang

When P1, P2, . . . , Pn are honest and none invokes Stop, P1, P2, . . . , Pn carry
out Compute only. Thus, an optimistic execution is an execution of Compute.

We focus on the class C of function f such that for any x1 ∈ {0, 1}�1 , x2 ∈
{0, 1}�2 , . . . , xn ∈ {0, 1}�n , no computationally-bounded algorithm is able to out-
put f(x1, x2, . . . , xn) using only n−1 out of the n strings, except with negligible
probability.7 For a function f in the complement of C, a protocol that solves opti-
mistic fair computation can still be vulnerable to the following attack: a subset
of parties colludes, leaves with the evaluation of f immediately but an honest
party outputs ⊥. In the literature [30,31], fair protocols for the complement of
C are considered, but they ensure fairness different from Definitions 2 and 3, and
are not the focus here. We also assume that T does not have prior knowledge of
x1, x2, . . . , xn, and therefore no computationally-bounded algorithm, even with
the help of T , is able to compute z from any n − 1 out of the n inputs of
P1, P2, . . . , Pn. We call this assumption no prior knowledge of T .

3 Lower Bound

In this section, we prove our lower-bound on the number of messages exchanged
during an optimistic execution. We express our lower-bound in terms of n and �,
the length of the shortest sequence that contains all permutations of n symbols
as subsequences.

Theorem 1 (Message complexity). For any function f ∈ C, for any opti-
mistic fair computation scheme for f (for n parties, among which n − 1 can be
malicious), the n parties exchange at least �+2n−3 messages in every optimistic
execution.

Proof sketch. (The full proof is in our full version [24].)
To prove Theorem 1, we view every optimistic execution E as a sequence of

messages ordered according to when they reach their destinations respectively.
We first pinpoint two necessary messages in E, and then show that between
these two messages, there must exist certain patterns of messages.

Intuitively, when starting E, no party knows anything about other parties’
inputs; there is a border-line message m∗

1 such that, after m∗
1 reaches its des-

tination, one and only one party knows something about all the other parties’
inputs. If any honest party Pi stops before m∗

1 arrives at its destination, then Pi

is unable to output z = f(x1, x2, . . . , xn) with non-negligible probability by no
prior knowledge of T .

By the end of E, every party receives sufficient messages to compute z by
the optimism property; there is another border-line message m∗

2 such that, after
m∗

2 reaches its destination, one and only one party has sufficient messages to
compute z. If any honest party Pi stops after m∗

2 arrives at its destination, Pi

outputs z by the completeness property. Figure 1a illustrates the two messages.

7 For example, f = x1 · x2 · · · xn is not in C (since if one of the values is 0, the output
is 0 with probability 1) while f = x1 + x2 + · · · + xn is.

Optimal Fair Computation 149

Fig. 1. The output of Pi if Pi stops at some point in execution E

What Pi should output if it stops between m∗
1 and m∗

2 requires a closer look.
Suppose that when Pi wants to stop, Pi has not received some message mi.
(We clarify some terminology here. When we say that Pi has not received or
does not receive some message mi, we mean that Pi has not received mi but
received every message with destination Pi before mi in E.) When Pi wants
to stop, either no other party has decided an output (and then Pi can easily
decide), or some party Pj , j �= i has decided. If Pj claims that it has not received
message mj and mi is the first message with destination Pi after mj in E, then
Pi must adopt Pj ’s decision, or in other words, Pj ’s decision propagates to Pi.
Because n − 1 parties can be malicious, Pi is unable to distinguish whether Pj ’s
claim is honest or not and then Pi has to decide the same output as Pj , except
with negligible probability, by the fairness property. Figure 1b illustrates this
agreement.

This agreement between two parties induces a decision propagation pattern,
which gives rise to a certain pattern of messages in E: after a message mj with
destination Pj , there must exist a message mi with destination Pi so that Pj

could enforce Pi on the same output if (a) Pj does not receive mj , (b) Pj invokes
Stop and outputs ⊥, and (c) Pi does not receive mi and invokes Stop.

We use this decision propagation pattern to build the following scenario.
Suppose one party P1 stops before m∗

1 arrives at its destination and then the
other n − 1 parties stop following the decision propagation pattern above: for
k = 1, we denote by m1 the message which P1 has not received when P1 stops;
then for k = 2, 3, . . . , n, if there is a message mk in E that is the first message
with destination Pk between mk−1 and m∗

2, then Pk stops when Pk has not
received mk, and if not, Pk stops after m∗

2 arrives at its destination.
Clearly, if the pattern of the n messages whose destinations are P1, P2, . . . , Pn

does not exist between m∗
1 and m∗

2 in E, then Pn would output z by the property
of m∗

2. However, P1, as well as other parties P2, P3, . . . , Pk for which messages
m2,m3, . . . ,mk exist, would output ⊥ by the property of m∗

1 and decision prop-
agation. This would violate the fairness property. Therefore, the pattern of the
n messages whose destinations are n parties, or in fact any permutation of the
n parties must exist as a subsequence of E between between m∗

1 and m∗
2.

Thus, the number of messages between m∗
1 and m∗

2 (inclusive) of E is at least
�. In the meantime, in E, before m∗

1, there are at least n − 1 messages to meet
the definition of m∗

1 and after m∗
2, there are at least n − 2 messages to meet the

definition of m∗
2. We add together the minimum numbers of messages before m∗

1,

150 R. Guerraoui and J. Wang

after m∗
2 and between m∗

1 and m∗
2, and then have �+2n−3 as the final minimum

number of messages during every optimistic execution.

4 An Optimal Protocol

To show that � + 2n − 3 is a tight lower-bound, we describe in this section an
(� + 2n − 3)-message optimistic fair computation scheme for the function that
implements fair exchange of n inputs. Our optimal protocol relies on a publicly
verifiable transcript. I.e., each destination can verify in any execution whether
previous messages have arrived at their destinations correctly. This is realized by
adding digital signatures [25,32]. To help T recover the n inputs when some party
invokes Stop, the n parties exchange verifiable encryption [12] of the n inputs
in Compute. Section 4.1 recalls the basics of digital signatures and verifiable
encryption before describing our optimal protocol.

4.1 Preliminaries

We denote a digital signature on message m by σ = Sigsk(m), and the verifi-
cation algorithm by V erpk(σ,m), where pk is a public key and sk is the corre-
sponding secret key. We denote the signature of party Pi, i ∈ {1, 2, . . . , n} simply
by Sigi(m). A digital signature scheme is secure if no adversary is able to forge
a signature even after seeing polynomially many valid signatures. See [25,32] for
a discussion on digital signature schemes and their levels of security.

A verifiable encryption scheme is a recovery algorithm D and a two-party
protocol between prover P and verifier V [12]. To run the protocol, P and V ’s
common inputs are public key vk, public value x, condition κ and binary rela-
tion R. P takes witness w as an extra input. At the end of the protocol, if
(x,w) /∈ R, V rejects and outputs ⊥; if V accepts, then V also obtains string
α such that D(sk, κ, α) = w and (x,w) ∈ R. We denote an instance of verifi-
able encryption by V E(vk, κ, w, x,R). A verifiable encryption scheme is secure
if no malicious verifier is able to learn w without sk and no malicious prover
is able to make V accept α̂ which gives ŵ by D but (x, ŵ) /∈ R except with
negligible probability. See [12] for a formal definition of security for verifiable
encryption schemes. A prominent example of verifiable encryption is Asokan
et al.’s non-interactive constructions of verifiable encryption for a list of digi-
tal signature schemes, which includes Schnorr signatures, DSS signatures, Fiat-
Shamir signatures, Ong-Schnorr signatures and GQ signatures [1].

4.2 Protocol Description

We show the tightness of our lower-bound of �+2n−3 messages in a constructive
way: given any sequence i that contains all the permutations of {1, 2, . . . , n}, we
build a (l+2n−3)-message Compute π (Algorithm 1) with Stop μ (Algorithm 2),
where l is the length of i, as an (l +2n− 3)-message optimistic fair computation

Optimal Fair Computation 151

Algorithm 1. Compute π

Require: a sequence i of length l that contains all the permutations of {1, 2, . . . , n}
Ensure: (l + 2n − 3)-message Compute π
1: Build sequence j: j1, j2, . . . , jn−2, i, jn+l−1, jn+l, . . . , jl+2n−3, where (a)

j1, j2, . . . , jn−2, i1 are n − 1 different symbols; and (b) il, jn+l−1, jn+l, . . . , jl+2n−3

are n different symbols.
2: Set j0 = {1, 2, . . . , n}\{i1, j1, j2, . . . , jn−2}.
3: In π, Pjk−1 sends a message mk−1 to Pjk upon receiving mk−2 for k = 1, 2, . . . , l +

2n − 3 (except Pj0 who sends m0 = V Ej0 upon initialization) where

mk−1 =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

mk−2||V Ejk−1 ||Sigjk−1(mk−2||V Ejk−1) 2 ≤ k ≤ n

mk−2||Sigjk−1(mk−2) n + 1 ≤ k ≤ endjk−1

mk−2||xjk−1 ||Sigjk−1(mk−2||xjk−1) endjk−1 + 1 ≤ k ≤ l + n − 2

(x1, x2, . . . , xn) l + n − 1 ≤ k ≤ l + 2n − 3

(2)
and

V Ejk−1 = V E(vkT , κ, xjk−1 , ajk−1 , Rjk−1);

κ = (a1, R1), (a2, R2), . . . , (an, Rn), which identifies the intended x1, x2, . . . , xn;

endjk−1 = max
K∈{1,2,...,l}

{K|iK = jk−1} + n − 2

4: P1, P2, . . . , Pn output z = (x1, x2, . . . , xn).

scheme for the following function (of which the correctness proof is in our full
version [24]):

f(x1, x2, . . . , xn) =

{
(x1, x2, . . . , xn) (ai, xi) ∈ Ri for i = 1, 2, . . . , n

⊥ otherwise
(3)

where R1, R2, . . . , Rn are n relations that allow non-interactive construction of
verifiable encryption and a1, a2, . . . , an are n public values.8 R1, R2, . . . , Rn, a1,
a2, . . . , an are included in the public description of f .

Theorem 2. Given a sequence i of length l that contains all the permutations
of {1, 2, . . . , n}, the protocol consisting of π and μ is an (l + 2n − 3)-message
optimistic fair computation scheme for function f in Eq. (3) in an asynchronous
network with n − 1 potentially malicious parties.

The one-time setup is not included in Algorithm 1 or Algorithm 2. Before π and
μ are carried out, a one-time setup (a) distributes necessary keys: T ’s public
key vkT and secret key skT , n parties’ public and secret keys; (b) distributes
the public description of f ; and (c) executes the one-time setup of the verifiable

8 We also assume that for i ∈ {1, 2, . . . , n}, given ai, any computationally-bounded
algorithm outputs xi with negligible probability, and given (ai, xi) such that
(ai, xi) ∈ Ri, any computationally-bounded algorithm outputs yi, yi
= xi such that
(ai, yi) ∈ Ri with negligible probability.

152 R. Guerraoui and J. Wang

Algorithm 2. Stop μ

Require: sequence j of length l + 2n − 3 built for π
Ensure: Stop μ that accompanies π
1: For any k ∈ {0, 1 . . . , l + 2n − 3}, Pjk invokes μ when Pjk wants to stop in π;

otherwise, if π has not started, the n parties output ⊥, or if π has finished, the n
parties output (x1, x2, . . . , xn).

2: For k = 0, when invoking μ, if Pjk has not sent mk, Pjk quietly leaves π and μ
and outputs ⊥. For 1 ≤ k ≤ n − 1, when invoking μ, if Pjk has not received mk−1

correctly, then Pjk quietly leaves π and μ, and Pjk outputs ⊥.
3: For n ≤ k ≤ l + 2n − 3, let Ik = {ix|jix = jk, ix ∈ {1, 2, . . . , k − 1}}, let lastk =

max Ik when Ik
= ∅ and let lastk = 0 when Ik = ∅, and define m−1 as an empty
string. Then, for n ≤ k ≤ l+2n−3, when invoking μ, if Pjk has not received mk−1

correctly and has received mlastk−1, then Pjk sends to T message reqk = mlastk .
By sending reqk, Pjk claims that Pjk does not receive mk−1.

4: T verifies that reqk is consistent with Pjk ’s claim; and T calculates response

resp =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

‘‘aborted” if reqk and Pjk ’s claim are not consistent

or Pjk has sent a request before

z = (x1, x2, . . . , xn) else if variable z (initialized to ⊥) is not ⊥
“aborted” else if reqk does not contain V E1, V E2, . . . , V En

z ← (x1, x2, . . . , xn) else if k > minix∈{prog+1,...,l+2n−3}{ix|jix = jk}
and xi ← D(skT , κ, V Ei) for i = 1, 2, . . . , n

z ← (x1, x2, . . . , xn) else if k ≥ l + n − 1

and xi ← D(skT , κ, V Ei) for i = 1, 2, . . . , n

“aborted” otherwise

T updates prog (which is initialized to 0) to k if k > prog, reqk and Pjk ’s claim
are consistent and Pjk has not sent a request before. T then sends resp to Pjk .

5: Pjk outputs ⊥ if resp =“aborted”; and Pjk outputs z if resp = z.

encryption. (If implemented, a trusted party Certificate Authority [33] can do
this one-time setup.)

Some remarks on μ are in order: (a) as each part of the request message is
publicly verifiable, T is able to verify efficiently whether a party P ’s request and
P ’s claim are consistent by following Eq. (2); and (b) P may invoke Stop at any
point in time, e.g., when a message received by P in π is incorrect, or when P
is impatient while waiting for some message. Our protocol allows P to define
its own strategy of invoking Stop, independent of the other n − 1 parties, but if
messages are delivered correctly and instantly, P does not invoke Stop.

Given a shortest permutation sequence, π and μ together form an (�+2n−3)-
message optimistic fair computation scheme. Combined with Theorem 1, � +
2n − 3 is indeed a tight lower-bound on the number of messages for optimistic
fair computation. Now that f implements fair exchange among n parties for
items x1, x2, . . . , xn that satisfy relations R1, R2, . . . , Rn, Algorithms 1 and 2
also form a compiler that can transform a shortest permutation sequence into

Optimal Fair Computation 153

an (� + 2n − 3)-message optimistic fair exchange scheme. An application is a
message-optimal optimistic fair exchange scheme of digital signatures [1].9

5 Related Work

5.1 Optimistic Fair Computation

Cachin and Camenisch [2] formalized optimistic fair computation for two parties
and a third party T (that can also be malicious). Asokan et al. [1] formalized opti-
mistic fair exchange of digital signatures between two parties and T (where T is
honest). In this paper, we assume that T is honest. We briefly compare here the
two definitions above. Cachin and Camenisch [2] formalized fair computation using
the simulatability paradigm [27], while Asokan et al. [1] formalized fair exchange
through games [25]. As the former can provide stronger security guarantee, we fol-
low the definition of fair computation in [2]. Both formalizations consider the ter-
mination property in an asynchronous setting. We model this property using Stop,
which is equivalent to the signal of termination in [1]. Asokan et al. [1] also defined
the completeness property regarding the case where all parties are honest, while
there is an ambiguity regarding this case in [2]. We adapt the definition of the com-
pleteness property from [1]. The optimism property was defined differently in [1,2].
In [2], the trusted party does not communicate with the n parties when n parties
are honest and messages are delivered instantly, whereas in [1], the trusted party
does not communicate with the n parties, when n parties are honest but the asyn-
chronous network is allowed to delivermessages arbitrarily.We adopt the optimism
property from [1], as it provides a stronger guarantee. In addition, we include the
non-triviality property to rule out trivial protocols that send no message and abort
all the time. (Our proof of the lower-bound is based on the existence of at least one
optimistic execution guaranteed by non-triviality and optimism, but our fair com-
putation scheme, on theotherhand, allowsarbitrarilymanyoptimistic executions.)

5.2 Optimistic Fair Exchange

For two parties, Asokan et al. [1] proposed a 4-message optimistic fair exchange
scheme that ensures termination. Since � = 3 for two parties, our Theorem1 shows
that 4-message fair exchange schemes are optimal for two parties. This implies that
a 3-message fair exchange scheme does not meet all of the required properties.
For example, the optimistic fair exchange scheme proposed in [4] was criticized
by Asokan et al. [1] as not ensuring termination. Another example is Ateniese’s
3-message optimistic fair exchange scheme [34], which also does not ensure termi-
nation as noted by the author himself [34]. A recent follow-up work [35] has the
same drawback. To the best of our knowledge, up to this paper (and our fair com-
putation scheme), no message-optimal optimistic fair exchange or optimistic fair
computation scheme among n parties for an arbitrary n (with n − 1 potentially
malicious parties) has been proposed.
9 In the application of fair exchange of digital signatures, Ri is an homomorphism θ

depending on the given digital signature scheme [1]; each of the first n messages of π
is appended with an image of θ such that its pre-image produces a correct signature.

154 R. Guerraoui and J. Wang

5.3 Optimal Optimistic Schemes

We explain here the relation between the optimal efficiency of optimistic schemes
of related problems and our optimal message efficiency. Pfitzmann, Schunter,
and Waidner (PSW) [16] determined the optimal efficiency of fair two-party
contract signing, Schunter [17] determined the optimal efficiency of fair two-
party certified email, whereas Dashti [18] determined the optimal efficiency of
two-party fair exchange in the crash-recovery model with no amnesia [36]. None
of these results implies our Theorem 1, even only for n = 2. For PSW’s result as
well as Schunter’s result, this is because there is no reduction of the problem of
fair computation to the problem of fair contract signing10 or fair certified email;
for Dashti’s result, this is because our model can be considered as the Byzantine
failure model [36], and is thus stronger than the model considered by Dashti.
Our proof of the lower-bound, together with our message-optimal scheme, can be
applied to prove that � + 2n − 3 is the optimal message efficiency of fair n-party
contract signing in the model of PSW. The special case where n = 2 can be used
to prove PSW’s result, while PSW’s proof was, unfortunately, flawed.

5.4 The Shortest Permutation Sequence

Mauw, Radomirović and Dashti (MRD) [13] proved that the optimal number
of messages of totally-ordered fair contract signing schemes falls between � +
n − 1 and � + 2n − 3. Later, Mauw and Radomirović (MR) [15] generalized the
result of MRD to DAG-ordered fair contract signing schemes. Both [13] and [15]
considered fair contract signing as fair exchange of digital signatures. They use
a model different from PSW, and fall within the coverage of our Theorem 1.
Neither MRD’s result nor MR’s result implies our Theorem 1. Neither allows
arbitrarily interleaved messages as our Theorem 1; instead, they assume that
communication steps are either totally ordered or ordered following a directed
acyclic graph (DAG). In addition, both results [13,15] propose a range of the
optimal efficiency for fair exchange, instead of a concrete lower-bound for fair
computation in general (as does our Theorem 1).

It is important to note that our Theorem1 is not a generalization of MRD’s
result nor of MR’s result. What MRD or MR counts are the messages sent
from some signer. This makes their proof difficult to extend: after a message
m leaves its source s, due to the asynchronous network, m does not help s’s
knowledge about other parties’ possible states. Thus m should not help s reach
an agreement if s wants to stop after sending m, unless the messages after m
are defined and ordered in advance (as MRD and MR assume). On the contrary,
what we count throughout our proof are the messages received (or not) at a
destination d, which affects d’s stop event. This is key to requiring no ordering.

Another crucial concept in MRD is the idealized protocol. An idealized pro-
tocol is informally defined as a totally-ordered fair exchange protocol of which

10 The main difference is that contract signing outputs a proof which binds a contract
agreed in advance, while computation usually does not require such binding.

Optimal Fair Computation 155

the number of messages in an optimistic execution is optimal [13]. At the end
phase of the idealized protocol, each of the n signers is supposed to send exactly
one message [13]. However, it is not clear yet whether the assumption can be
justified or not: the main theorem in [13] relates the end of the idealized protocol
with the end of the shortest permutation sequence; however, (the form of the
end of) the shortest permutation sequence is still open for a large n [5]. This
also leads to a non-optimal fair exchange protocol in [13] and a non-optimal pro-
tocol compiler in [14] which generates a protocol specification of an optimistic
fair contract signing scheme given a shortest permutation sequence.11 Compared
with MRD’s idealized protocol, our proof of Theorem 1 shows that, at the end
of an optimal protocol, each of the n parties may receive exactly one message,
and moreover, the end of an optimal protocol is not related to the shortest
permutation sequence.

Acknowledgements. We are very grateful to the second author of [16] for the time
devoted to understanding our argument and for his fairplay in recognizing the mistake.
This work has been supported in part by the European ERC Grant 339539 - AOC.

References

1. Asokan, N., Shoup, V., Waidner, M.: Optimistic fair exchange of digital signatures.
Sel. Areas Commun. IEEE J. 18(4), 593–610 (2000)

2. Cachin, C., Camenisch, J.L.: Optimistic fair secure computation. In: Bellare, M.
(ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 93–111. Springer, Heidelberg (2000)

3. Cleve, R.: Limits on the security of coin flips when half the processors are faulty.
In: STOC 1986, pp. 364–369 (1986)

4. Micali, S.: Simple and fast optimistic protocols for fair electronic exchange. In:
PODC (2003)

5. Knuth, D.E.: Open problems with a computational flavor, mimeographed notes for
a seminar on combinatorics (1971)

6. Newey, M.C.: Notes on a problem involving permutations as subsequences. Tech-
nical Report (1973)

7. Zălinescu, E.: Shorter strings containing all k-element permutations. Inf. Process.
Lett. 111(12), 605–608 (2011)

8. Radomirović, S.: A construction of short sequences containing all permutations of
a set as subsequences. Electron. J. Comb. 19(4) (2012). Paper 31

9. Kleitman, D., Kwiatkowski, D.: A lower bound on the length of a sequence con-
taining all permutations as subsequences. J. Comb. Theor. Ser. A 21(2), 129–136
(1976)

10. Adleman, L.: Short permutation strings. Discrete Math. 10(2), 197–200 (1974)
11. Koutas, P., Hu, T.: Shortest string containing all permutations. Discrete Math.

11(2), 125–132 (1975)

11 Although [14] proved that the resulting protocol needs at least �+2n−3 messages in
an optimistic execution, the number of messages exchanged during every optimistic
execution is actually strictly larger than �+2n−3 for n ≥ 3, and is thus not optimal.

156 R. Guerraoui and J. Wang

12. Camenisch, J.L., Damg̊ard, I.B.: Verifiable encryption, group encryption, and their
applications to separable group signatures and signature sharing schemes. In:
Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 331–345. Springer,
Heidelberg (2000)

13. Mauw, S., Radomirović, S., Dashti, M.: Minimal message complexity of asynchro-
nous multi-party contract signing. In: CSF (2009)

14. Kordy, B., Radomirović, S.: Constructing optimistic multi-party contract signing
protocols. In: CSF (2012)

15. Mauw, S., Radomirović, S.: Generalizing multi-party contract signing. In: Focardi,
R., Myers, A. (eds.) POST 2015. LNCS, vol. 9036, pp. 156–175. Springer,
Heidelberg (2015)

16. Pfitzmann, B., Schunter, M., Waidner, M.: Optimal efficiency of optimistic contract
signing. In: PODC 1998, pp. 113–122 (1998)

17. Schunter, M.: Optimistic fair exchange. Ph.D. dissertation, Universität des Saar-
landes (2000). http://scidok.sulb.uni-saarland.de/volltexte/2004/233

18. Dashti, M.T.: Efficiency of optimistic fair exchange using trusted devices. ACM
Trans. Auton. Adapt. Syst. 7(1), 3:1–3:18 (2012)

19. Schnorr, C.: Efficient signature generation by smart cards. J. Cryptology 4(3),
161–174 (1991)

20. Kravitz, D.: Digital signature algorithm. US Patent 5,231,668 (1993)
21. Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification

and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263,
pp. 186–194. Springer, Heidelberg (1987)

22. Ong, H., Schnorr, C.-P.: Fast signature generation with a fiat shamir-like scheme.
In: Damg̊ard, I.B. (ed.) EUROCRYPT 1990. LNCS, vol. 473, pp. 432–440.
Springer, Heidelberg (1991)

23. Guillou, L.C., Quisquater, J.-J.: A “paradoxical” indentity-based signature scheme
resulting from zero-knowledge. In: Goldwasser, S. (ed.) Advances in Cryptology —
CRYPTO’88. LNCS, vol. 403, pp. 216–231. Springer, Heidelberg (2000)

24. Guerraoui, R., Wang, J.: Optimal fair computation. Technical Report (2016).
http://infoscience.epfl.ch/record/219171

25. Oded, G.: Foundations of Cryptography. Basic Applications, vol. 2. Cambridge
University Press, New York (2009)

26. Dierks, T.: The transport layer security (tls) protocol version 1.2 (2008)
27. Canetti, R.: Security and composition of multiparty cryptographic protocols. J.

Cryptology 13(1), 143–202 (2000)
28. Goldwasser, S., Micali, S.: Probabilistic encryption. J. Comput. Syst. Sci. 28(2),

270–299 (1984)
29. Yao, A.C.: Theory and application of trapdoor functions. In: SFCS 1982, pp. 80–91

(1982)
30. Gordon, S.D., Katz, J.: Complete fairness in multi-party computation without an

honest majority. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 19–35.
Springer, Heidelberg (2009)

31. Gordon, S.D., Hazay, C., Katz, J., Lindell, Y.: Complete fairness in secure two-
party computation. J. ACM

32. Menezes, A.J., Vanstone, S.A., Oorschot, P.C.V.: Handbook of Applied Cryptog-
raphy. CRC Press Inc., Boca Raton (1996)

33. I. 9594–8. Information technology - open systems interconnection - the directory:
Authentication framework (1995). (equivalent to ITU-T Recommendation X.509,
1993)

http://scidok.sulb.uni-saarland.de/volltexte/2004/233
http://infoscience.epfl.ch/record/219171

Optimal Fair Computation 157

34. Ateniese, G.: Efficient verifiable encryption (and fair exchange) of digital signa-
tures. In: CCS 1999, pp. 138–146 (1999)

35. Alaraj, A.M.: Simple and efficient contract signing protocol. CoRR, vol.
abs/1204.1646 (2012). http://arxiv.org/abs/1204.1646

36. Guerraoui, R., Rodrigues, L.: Introduction to Reliable Distributed Programming.
Springer, New York (2006)

http://arxiv.org/abs/1204.1646

Near-Optimal Low-Congestion Shortcuts
on Bounded Parameter Graphs

Bernhard Haeupler1(B), Taisuke Izumi2, and Goran Zuzic1(B)

1 Carnegie Mellon University, Pittsburgh, PA, USA
{haeupler,gzuzic}@cs.cmu.edu

2 Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya, Aichi, Japan
t-izumi@nitech.ac.jp

Abstract. We show that many distributed network optimization prob-
lems can be solved much more efficiently in structured and topologically
simple networks.

It is known that solving essentially any global network optimization
problem in a general network requires Ω(

√
n) rounds in the CONGEST

model, even if the network diameter is small, e.g., logarithmic. Many
networks of interest, however, have more structure which allows for sig-
nificantly more efficient algorithms. Recently Ghaffari, Haeupler, Izumi
and Zuzic [SODA’16,PODC’16] introduced low-congestion shortcuts as
a suitable abstraction to capture this phenomenon. In particular, they
showed that graphs with diameter D embeddable in a genus-g surface
have good shortcuts and that these shortcuts lead to Õ(gD)-round algo-
rithms for MST, Min-Cut and other problems.

We generalize these results by showing that networks with pathwidth
or treewidth k allow for good shortcuts leading to fast Õ(kD) distrib-
uted optimization algorithms. We also improve the dependence on genus
g from Õ(gD) to Õ(

√
gD). Lastly, we prove lower bounds which show

that the dependence on k and g in our shortcuts is optimal. Overall, this
significantly refines and extends the understanding of how the complexity
of distributed optimization problems depends on the network topology.

Keywords: Distributed algorithm · CONGEST model · Treewidth ·
Pathwidth · Bounded-genus graph · Minimum spanning tree · Minimum
cut

1 Introduction

We show that many distributed network optimization problems can be solved
much more efficiently in pathwidth bounded, treewidth bounded and bounded
genus graphs.

Consider the problem of finding the minimum spanning tree (MST) on
a distributed network with n independent processing nodes. The network is

This work was supported in part by KAKENHI No. 15H00852 and 16H02878 as well
as NSF grants CCF-1527110 and CCF-1618280.

c© Springer-Verlag Berlin Heidelberg 2016
C. Gavoille and D. Ilcinkas (Eds.): DISC 2016, LNCS 9888, pp. 158–172, 2016.
DOI: 10.1007/978-3-662-53426-7 12

Near-Optimal Low-Congestion Shortcuts on Bounded Parameter Graphs 159

abstracted as a graph G = (V,E) with n nodes and diameter D. The nodes com-
municate by synchronously passing O(log n)-bit messages to each of its direct
neighbors. The goal is to design the algorithms (protocols) that minimize the
number of synchronous rounds before the nodes collaboratively solve the opti-
mization problem. The setting we described is a standard message passing model
called CONGEST [12].

Kutten and Peleg [8] describe a protocol for the MST problem in Õ(
√

n + D)
CONGESTrounds and.Moreover, andperhapsmore surprisingly, there is no faster
algorithm for general graphs. Specifically, there are graphs in which one cannot do
any better than Ω̃(

√
n + D) rounds. To make matters worse, this lower bound

was shown to be far reaching. It applies to a multitude of important network opti-
mization problems including MST, Min-Cut, weighted shortest-path, connectivity
verification, and so on [13].

However, the authors believe that in practice one should not be stifled by
this lower bound as networks often exhibit special properties. However, very
little progress has been done on this topic. In this paper we exploit the structure
that pathwidth, treewidth and genus bounded networks provide to circumvent
the Ω̃(

√
n + D) lower bound.

The main tool we use to obtain these results is the low-congestion shortcut
framework. It is a general abstraction for designing distributed algorithms [4]. On
a high level, if we can always find good-quality shortcuts in a graph, then we can
efficiently solve network optimization problems on it. An important construction
result states that if a special class of shortcuts (called tree-restricted short-
cuts) are known to exist in a graph, then we can always find them efficiently [6].
This enables us to convert a purely existential graph-theoretic problem into a
practical algorithm: if we can prove that good tree-restricted shortcuts exist in a
certain family of graphs, we can effectively design efficient distributed algorithms
for various network optimization problems.

This paper is roughly structured as follows: we first give a high-order view of
shortcuts in the next section and then give a run-down of related work, mostly
focusing on shortcuts. Next, we formally define a different kind of shortcuts and
give important prior results such as their construction and application theorems.
We then show the existence of good shortcuts for pathwidth, treewidth and genus
bounded graphs. Finally, we present nearly tight lower bounds on the quality of
shortcuts, implying that one cannot do much better using our techniques.

1.1 Low-Congestion Shortcuts

We now give a short introduction of the low-congestion shortcuts [4]. Con-
sider the following scenario, which is a recurring theme throughout distributed
approaches for many network optimization problems:

A graph G is partitioned into a number of disjoint individually-connected
parts P1, P2, ..., PN , and we need to compute a (typically simple) function
for each of the parts in isolation.

160 B. Haeupler et al.

A classical example for such a scenario is the 1926 algorithm of Boruvka
for computing Minimum Spanning Tree (MST): starting with a trivial partition
of each node being its own part, in every iteration each part computes the
minimum-weighted outgoing edge and merges with the part incident to this
edge. After O(log n) iterations, we arrive at the MST, where n is the number of
nodes of G.

A key concern in designing a distributed version of Boruvka’s algorithm is
finding good communication schemes that allow each part to collaborate with
other nodes inside the same part and without interference from other parts.
While a natural solution would be to allow communication only inside the same
part, this could take a long time. The problem appears when the diameter of
a part in isolation is much larger than the diameter D of the original graph G.
The low-congestion shortcut is one of the promising frameworks to overcome
this issue: each part Pi is given a subgraph of extra edges Hi that it can use
to more efficiently communicate within itself. More precisely, each part Pi is
associated with a shortcut subgraph Hi and is permitted to use G[Pi] + Hi

for communication, where G[Pi] means the subgraph induced by Pi and operator
+ represents the union of two graphs.

To measure the quality of a shortcut, we define two quality parameters:
congestion and dilation. A shortcut has congestion c and dilation d if (i) the
diameter of every G[Pi] + Hi is at most d, and (ii) every edge is assigned to
at most c different subgraphs G[Pi] + Hi. Ghaffari and Haeupler [4] also show
that, given a shortcut with congestion c and dilation d, we can solve several
fundamental problems such as MST and Min-Cut approximation in Õ(c + d)
rounds. Therefore, designing an distributed algorithm can be reduced to finding
good-quality shortcuts.

We now state a formal definition of shortcuts. Note that with a small abuse
of notation, Hi will indicate both a subgraph and an edge set.

Definition 1. Let G = (V,EG) be an undirected graph with nodes subdivided
into disjoint and connected subsets P = (P1, P2, ..., PN), Pi ⊆ V . In other
words, G[Pi] is connected and Pi ∩ Pj = ∅ for i �= j. We call these sub-
sets Pi parts. We define a shortcut H as a tuple of N shortcut subgraphs
(H1,H2, ...,HN), Hi ⊆ G. A shortcut is characterized by the following parame-
ters: (i) H has congestion c if each edge e ∈ EG is used in at most c different
subgraphs G[Pi] + Hi, i.e. ∀e ∈ ET : |{i : e ∈ Hi}| ≤ c; (ii) H has dilation d if
the diameter of any subgraph G[Pi] + Hi is at most d.

2 Related Work

The complexity theoretic issues in the design of distributed graph algorithms for
the CONGEST model have received much attention in the last decade, and got
an extensive progress for many problems: Minimum-Spanning Tree [8], Maximum
flow [5], Minimum Cut [11], Diameter [10], and so on. Most of those problems
have Θ̃(

√
n + D)-round upper and lower bounds for some sort of approximation

guarantee [13]. The notion of low-congestion shortcuts is invented as a framework

Near-Optimal Low-Congestion Shortcuts on Bounded Parameter Graphs 161

of circumventing these lower bounds [4]. Specifically, their ideas can be turned
into a very short and clean O((D +

√
n) log n) round MST algorithm for general

graphs, as well as provide a simple heuristical reasoning why the lower bounds
of Ω̃(D +

√
n) rounds are pervasive in many distributed optimization problems.

Not much work has been done on circumventing this lower bound prob-
lems like MST and Min-Cut. A Õ(D)-round algorithm is known for planar
graphs [4]. Their methods could in principle be used to achieve a similar result
for genus bounded graphs, but their presented algorithms have a major tech-
nical obstacle: they require a surface embedding of the planar/genus bounded
graph. While computing a distributed embedding for planar graphs has a com-
plex O(D logO(1) D)-round solution [3], this remains an open problem for genus
bounded graphs [4].

In a subsequent advancement, a slightly different version of shortcuts called
tree-restricted shortcuts are proposed. They offer a distinct advantage as
they can be simply and efficiently constructed [6]. In particular, there is a dis-
tributed algorithm that finds universally near-optimal tree-restricted shortcuts
in any graph G that admits them. The algorithm is completely oblivious to
the intricacies of the underlying topology and only requires that a good tree-
restricted shortcut exists. This approach can be used to design a Õ(gD)-round
algorithm for genus-g networks.

To the best of our knowledge, the work initiating the shortcut notion [4] is
the first attempt at considering a non-trivial graph class for global optimization
problems. For local problems such as maximal independent set, vertex cover,
and coloring there are a number of results focusing on some specific graph class:
planar graphs [9], unit-disk graphs [7], and so on.

3 Preliminaries

3.1 CONGEST Model

We work in the classical CONGEST model [12], i.e., a network is given as a
connected undirected graph G = (V,EG) with diameter D. Initially, nodes
only know their immediate neighbors and they collaborate to compute some
global function of the graph like the MST. Communication occurs in synchro-
nous rounds; during a round each node can send O(log n) bits to each of its
neighbors1. The nodes always correctly follow the protocol and never fail. The
goal is to design protocols that minimize the number of rounds before the nodes
compute the solution.

We now precisely formalize what does solving a problem in this model exactly
mean, e.g. how are the input and output given. We specifically formalize the MST
problem, but other problems are completely analogous. All nodes synchronously
wake up in the first round and start executing some given protocol. Every node
initially only knows its immediate neighbors and the weight of each of its incident

1 Note that the nodes also know some polynomially tight bound on n, otherwise send-
ing O(log n) bits does not make sense.

162 B. Haeupler et al.

edges. After a specific number of rounds, all nodes must simultaneously output
(i) the weight of the computed MST τ (ii) for each edge e incident to it, a 0/1
bit indicating if e ∈ τ .

3.2 Tree-Restricted Shortcuts

Tree-restricted shortcuts are shortcuts with the additional property that any
shortcut subgraph Hi is restricted to some spanning tree T . The user of the
shortcut can typically fix any tree T , so a cogent choice would be the BFS tree
because of its optimal depth.

Definition 2 (Tree-restricted shortcuts [6]). Let G = (V,EG) be a graph
with a shortcut H with respect to the parts P = (Pi)N

i=1. Given a rooted spanning
tree T = (V,ET) ⊆ G we say that a shortcut H is T -restricted if for each
i ∈ [N],Hi ⊆ ET i.e. every edge of Hi is a tree edge of T .

Congestion and dilation are still well-defined for tree-restricted shortcuts.
However, it is more convenient to use an alternative block parameter in place
of dilation. The block parameter upper-bounds the number of connected compo-
nents of each Hi that intersects Pi. Note that Hi is not connected if we consider
it in isolation, regardless of the fact that G[Pi] (and therefore G[Pi]+Hi) is con-
nected is isolation. Also, note that the intersection property ensures that (i) we
only count components that have vertices in Pi (ii) we penalize isolated vertices
in G[Pi] + Hi.

Definition 3. Let H = (H1,H2, ...,HN) be a T -restricted shortcut on the graph
G = (V,EG). Fix a part Pi and consider the connected components of the span-
ning subgraph (V,Hi). If such a connected component intersects Pi we call it a
block component. Furthermore, we define the block parameter b of H to be
any upper bound to the number of block components for all parts.

A block parameter implies a bound on dilation, hence the block parameter
can be seen as a stronger measure of quality. Lemma 1 argues that a block
parameter of b implies the dilation of O(b · depth(T)). It also suggests that it’s
often beneficial to fix T to a BFS tree of G.

Lemma 1. Let T be a spanning tree with depth D and let H = (Hi : i ∈ [N])
be a T -restricted shortcut with congestion c and block parameter b with respect
to parts P = (Pi : i ∈ [N]). Then the dilation of H is at most b(2D + 1).

Proof. Fix i ∈ [N]. If we contract every block component of Hi into a supernode
and remove all other nodes, supergraph will contain b′ ≤ b supernodes and will
be connected (because G[Pi] is connected). Hence its diameter is b′ − 1 ≤ b − 1.
Every supernode consists of a block component of diameter 2D, so the diameter
of Hi is at most 2bD + b − 1 < b(2D + 1).

The graphs of interest typically have the property that for any partition and
any spanning tree we can find good-quality shortcuts. We formalize this notion
in the following definition.

Near-Optimal Low-Congestion Shortcuts on Bounded Parameter Graphs 163

Definition 4. A graph G admits tree-restricted shortcuts with congestion c
and block parameter b if for all spanning trees T and all node partitions P =
(P1, ..., PN) there exists a T -restricted shortcut with the given parameters.

3.3 Construction and Application of Tree-Restricted Shortcuts

The usefulness of shortcuts can be primarily summarized by the following two
theorems:

Construction Theorem provides an efficient construction framework of
tree-restricted shortcuts for graph classes that admit them.

Theorem 1 ([6]). Let G be a graph that admits a tree-restricted shortcut with
congestion c and block parameter b. Given a spanning tree T with depth D,
there is a distributed algorithm that finds a T -restricted shortcut with conges-
tion O(c log N) and block parameter 3b w.h.p. This shortcut can be found in
O(D log n log N + bD log N + bc log N) rounds.

MST Application Theorem certifies the existence of efficient distributed
algorithms for graphs that admit tree-restricted shortcuts. It uses the Construc-
tion Theorem and extends it to a full-fledged MST algorithm.

Theorem 2 ([6]). Let G be a graph with n nodes and diameter D that admits
a tree-restricted shortcut with congestion c and block parameter b. There is an
distributed algorithm that finds the MST in O(D log3 n + bD log2 n + bc log2 n)
CONGEST rounds.

We also note a different variation of the application theorem for low-
congestion shortcuts that relies on an external black box construction of short-
cuts.

Theorem 3 ([4]). Given an oracle that finds low-congestion shortcuts with
dilation d and congestion c for any partition P, there is a MST algorithm that
runs in Õ(d + c) CONGEST rounds.

For example, planar graphs admit tree-restricted shortcuts with congestion
O(D log D) and block parameter O(log D) [4,6]. Then the Theorem 2 implies a
Õ(D) MST algorithm for planar graphs.

4 Summary of Technical Results

The contribution of this paper is to show the existence of good-quality tree-
restricted shortcuts for multiple classes of graphs: bounded pathwidth, bounded
treewidth and bounded genus graphs. These results, using Theorem 2, imply the
first distributed MST algorithm that circumvents the Ω̃(

√
n) lower bound for

pathwidth and treewidth bounded graphs.
Furthermore, we show that by using the low-congestion shortcut framework,

one cannot hope to do much better. Specifically, we prove a lower bound on d+c
for any low-congestion shortcut with dilation d and congestion c on pathwidth

164 B. Haeupler et al.

Table 1. Upper and lower bounds for shortcuts

Graph Family Tree-restricted Shortcut Quality Lower Bound

Block Congestion O(bD + c) Ω(d + c)

Pathwidth k O(k) O(k) O(kD) Ω(kD)

Treewidth k O(k) O(k log n) O(kD + k log n) Ω(kD)

Genus g Graphs O(
√

g) O(
√

gD log D) O(
√

gD log D) Ω(
√
gD

log g
)

Planar Graphs [4] O(log D) O(D log D) O(D log D) Ω(D logD
log logD

)

bounded and genus bounded graphs. These lower bounds almost match (within
logarithmic factors) the proved upper bounds. Those two lower bounds show that
one typically does not lose any power by restricting oneself from low-congestion
shortcuts to tree-restricted shortcuts and that the algorithms achieved by using
Theorem 3 cannot be made significantly faster. The results and lower bound are
summarized in Table 1. Note that O(bD + c) is the analogue of O(d + c) for the
tree-restricted case.

We note here one important technical difficulty that applies to distributed
algorithms on genus bounded graphs. While we prove that optimal Õ(

√
gD)

congestion and Õ(
√

g) block parameter shortcuts do exist, their construction
via Theorem 1 takes Õ(gD) rounds. To mitigate this, it is possible to tweak
the Construction Theorem to produce the same quality shortcuts in Õ(bD + c)
rounds, giving a Õ(

√
gD) construction for optimal genus bounded shortcuts.

However, this is currently an unpublished result that we will expand upon in the
journal version of [6].

5 Pathwidth Bounded Graphs

In this section we show that k-pathwidth graphs admit tree-restricted shortcuts
with congestion O(k) and block parameter O(k). As noted before, this enables
us to leverage the Construction Theorem 1 to design efficient algorithms for
pathwidth bounded graphs.

Given a graph G = (V,EG), a path decomposition of G is a sequence
of subsets PD = (X1,X2, ...,X|PD|),Xi ⊆ V with the following properties: (i)
(Xi) form a partition of V ; (ii) For all {v, w} ∈ EG there exists i such that
u ∈ Xi, v ∈ Xi; (iii) For all v ∈ V there exists 1 ≤ sv ≤ tv ≤ |PD| such that
v ∈ Xi ⇐⇒ i ∈ [sv, tv]. We call the subsets Xi bags. The width of the path
decomposition PD is k := maxi |Xi| − 1. The minimal possible width of a path
decomposition of G is called the pathwidth of G.

For v ∈ V let I(v) be the set of indices of bags that contain v. Note that
property (iii) implies that I(v) is an interval of integers. Similarly, for a set
P ⊆ V we define I(P) as

⋃
v∈P I(v). Note that for a connected vertex set P

(such as any part), I(P) is also an interval of integers.

Near-Optimal Low-Congestion Shortcuts on Bounded Parameter Graphs 165

Lemma 2. Let PD be a k-width path decomposition of a graph G = (V,EG). For
any rooted spanning tree T = (V,ET) ⊆ G, there exists a T -restricted shortcut
with congestion O(k) and block parameter O(k).

Proof. Denote the parts as P = (P1, P2, ..., PN) and fix a part Pi. Call a node
v ∈ V admissible if I(v) ⊆ I(Pi), i.e. if the interval of the node if a subset of
the partwise interval. Let Ai be the set of all admissible nodes.

The shortcut subgraphs Hi can be constructed in the following way: Hi

contains all tree edges {a, b} ∈ ET (where a is closer to the root) iff b ∈ Ai.
We first prove that congestion of this tree-restricted shortcut is O(k). Fix

an edge e = {a, b} ∈ ET as before and denote by Lb the lowest-numbered bag
containing b. If a shortcut subgraph Hi � e then by construction there exist a
node v ∈ Pi that is contained in Lb. Hence the number of shortcut subgraphs
that contain e is at most |Lb| = O(k).

To bound the block parameter, fix a part Pi. Call a node v ∈ V absorbing if
it is contained in either the lowest-numbered or highest-numbered bag of I(Pi).
Denote all absorbing nodes by Bi and note that |Bi| ≤ 2k +2 = O(k). To upper
bound the number of block components of part i, we will count the number of
nodes that can be the root of a block component (each block component can be
bijectively represented by its root). Since every block component of part i must
intersect Pi, we can generate the set of roots in the following manner: start with
a node v ∈ Pi and travel along its T -parent edges while the edge exists and is
in Hi. The process clearly ends in the root of the block component rbc. It is
sufficient to prove that either rbc is the root of T or rbc ∈ Bi, hence there can be
O(k) different possibilities for rbc and, consequently, O(k) block components.

We start the process in some v ∈ Pi. By construction, v ∈ Ai =⇒ v ∈ Ai∪Bi.
In each step it holds that either: (i) v is the root of T , in which case we are done;
(ii) v ∈ Bi, in which case rbc = v and we are done. Note that its parent is not
in Hi; (iii) v ∈ Ai, in which case we move to its T -parent v′. Note that, by
construction, v′ ∈ Ai ∪Bi. Hence by induction we can prove that we always end
in the root of T or Bi, which proves the claim.

6 Treewidth Bounded Graphs

In this section we show that k-treewidth graphs with n nodes admit tree-
restricted shortcuts with congestion O(k log n) and block parameter O(k).

Given a graph G = (V,EG), a tree decomposition of G is a tree TD =
(X , ET). The nodes of TD, X = (X1, ...,X|X |) are called bags. Each bag cor-
responds to a subset of V , the nodes of the original graph G. For the sake of
presentation, we will identify the bag Xi and this corresponding subset of nodes.
The tree decomposition has to satisfy these properties: (i) the union of all sets
Xi equals V and they are pairwisely disjoint, i.e. X is a partition of V ; (ii) for
each v ∈ V the bags containing vertex v form a connected subtree of TD; (iii)
for every edge {a, b} ∈ EG there is a bag Xi that contains both a and b. The
width of the tree decomposition TD is k := maxi |Xi|−1. The minimal possible
width of a tree decomposition of G is called the treewidth of G.

166 B. Haeupler et al.

Lemma 3. Let TD be a k-width tree decomposition of a graph G = (V,EG)
rooted in an arbitrary bag such that its depth is DTD. For any rooted spanning tree
T = (V,ET) ⊆ G there exists a T -restricted shortcut with congestion O(kDTD)
and block parameter O(k).

Proof Sketch. Due to space constraints we will only sketch the construction and
the proof. Fix a part Pi and identify all the bags that intersect Pi. Let their
lowest common ancestor (in the tree decomposition TD) be the bag Li. We now
define the shortcut subgraph Hi to be composed of all edges {a, b} ∈ ET (a
is closer to the root of T) such that b is not contained in Li and there exist a
TD-descendent of Li that contains b.

The congestion of this T -restricted shortcut is O(kDTD) because each part
Pi that contains some fixed {a, b} can only have one of O(DTD) possible lowest
common ancestor bags, each of which contains only O(k) nodes.

The number of block components is determined in the same way as in the
pathwidth construction proof - by starting from v ∈ Pi and walking up the T -
tree until hitting a block component root. We can prove that this process will
either end in the root of T or in Li. This proves that the block parameter is
O(k).

Corollary 1. Given a n-node graph G with treewidth k and a spanning tree
T ⊆ G, there exist a T -restricted shortcut with congestion O(k log n) and block
parameter O(k).

Proof. By Bodlaender and Hagerup [1], for a graph with treewidth k there exists
a O(k)-width tree decomposition with depth O(log n). Applying Lemma 3 fin-
ishes the argument.

7 Lower Bound for Pathwidth Bounded Graphs

In this section we prove a lower bound for general low-congestion shortcuts for
pathwidth bounded graphs. In particular, we prove that there exists a family
of pathwidth bounded graphs GP (Γ,w, δ) for which any low-congestion shortcut
either must have large congestion or large dilation. More precisely, we exhibit a k-
pathwidth graph family such that for any shortcut with dilation d and congestion
c it must hold that d + c = Ω(kD). Note that this result also implies a lower
bound for treewidth bounded graphs as k-pathwidth graphs are also k-treewidth
graphs.

We now describe the graph family GP (Γ,w, δ) in detail, depicted in Fig. 1. All
parameters of the graph Γ,w, δ are positive integers. Furthermore, Γ ≥ 2, w ≥
2, δ ≥ 2 and w is a power of 2.

The construction consists of two main parts: Γ different lanes and a tree
T . The lanes are denoted by {L1, L2, ..., LΓ }. Each lane Ll is constructed in
two steps: first we take a path consisting of w named nodes vl

0, v
l
1, ..., v

l
w−1

connected by single edges, and then we subdivide each edge by adding 2δ − 1
unnamed nodes in its interior.

Near-Optimal Low-Congestion Shortcuts on Bounded Parameter Graphs 167

u0
0 u0

1 u0
2 u0

3 u0
w−1u0

w−2

u1
0 u1

1 u1
w/2−1

up−2
0

up−1
0

v0
0 v0

1 v0
2 v0

w−1

vΓ−1
w−1vΓ−1

2vΓ−1
1vΓ−1

0

L0

LΓ−2

LΓ−1

2δ 2δ

Fig. 1. Graph GP (Γ, w, δ)

u0
0 u0

1 u0
2 u0

3 u0
w−1u0

w−2

u1
0 u1

1 u1
w/2−1

up−2
0

up−1
0

v0
0

v1
0

v0
1 v0

w−1
v0

w−2

v1
w−1

vw−1
w−1

vw−1
0

L0

L1

Lδ−1

Lδ

Lδ(w−1)
Lδ(w−1)−1

Fig. 2. Graph GG(w, δ)

The tree T is a perfect binary tree with w leaves (note again that w is a
power of 2). T has p = 1 + log2 w different levels (depths) where the root is on
level p−1 and the leaves are on level 0. The tree nodes on level l are denoted by
ul

0, u
l
1, ..., u

l
2l−1. Finally, the tree and the lanes are connected: each named node

on the lane vl
i is connected by a cross edge to the leaf u0

i in the tree.

Claim. The graph GP (Γ,w, δ) has Θ(Γwδ) nodes. Its diameter is Θ(log w + δ)
and pathwidth is O(w).

Proof. The only non-trivial part is the pathwidth. We construct a O(w)-width
path decomposition of GP . First, construct a O(1)-width path decomposition of
each lane Ll in isolation. Next, to each bag in a decomposition of the lane Ll we
add all w named nodes of that lane. Next, concatenate the path decompositions
together and obtain a O(w) path decomposition of the union of all lanes. Next,
add all the nodes of the tree T to each bag in every lane (there are O(w) nodes
that are added). Finally, we have a valid O(w)-width path decomposition of GP .

Lemma 4. There exists a node partition on GP (Γ,w, δ) such that the (general)
shortcut for this partition either has dilation Ω(wδ) or congestion Ω(Γ

log w).

Proof. We let each lane Ll be its own part Pl, l ∈ [Γ], as depicted by a red box
in Fig. 1. There are Γ parts in total.

In order to prove that a shortcut subgraph for a part either has large dilation
or has to congested edges of T , we define potential on all of the edges in
GP (Γ,w, δ) in the following way:

– every cross edge is assigned a potential of 0
– every edge between two nodes on a lane is assigned a potential of 1
– every tree edge between ul

i and ul+1
j is assigned a potential of δ2l

Define the potential of a path as the sum of potentials of the edges on that
path. Observe that the potential of any path between any leftmost node of a
lane vl

0 and rightmost node of the same lane vl
w−1 is at least (w−1)2δ = Ω(wδ).

Also, note that the sum of potentials of all edges in T is O(δw log w).
For the sake of contradiction assume that there exists a shortcut H with

dilation d = o(wδ) and congestion c. Then for each part (i.e. lane) Pl there exists

168 B. Haeupler et al.

a path in GP [Pl] + Hl of length O(d) between the leftmost and rightmost node
in its lane. The potential of that path is at least Ω(wδ), but at most O(d) of this
potential can come from edges from a lane. Hence, at least Ω(wδ − d) = Ω(wδ)
of the potential has to come from edges on the tree T . In other words, if we
define Tl as the subset of tree edges of T that shortcut subgraph Hl uses and
define φ(Tl) as the sum of their potentials, then φ(Tl) = Ω(wδ). Consequently,∑Γ−1

i=0 φ(Tl) = Ω(Γwδ).
But on the other hand, each (tree) edge in T can only be contained in c

different shortcut subgraphs, so
∑Γ−1

i=0 φ(Tl) = O(cδw log w) since the sum of
potentials of all tree edges in T is O(δw log w). If follows that c = Ω(Γ

log w), as
required.

Corollary 2. Given k ≥ 2,D = Ω(log k) and a sufficiently large n, there exists
a graph with O(n) nodes that has (i) pathwidth O(k), (ii) diameter Θ(D), (iii)
there exists a node partition P such that any (general) shortcut for that partition
must have either dilation Ω(kD) or congestion Ω(n

Dk log k).

Proof. This corollary follows directly from Lemma 4 by taking the graph
GP (Γ,w, δ) with Γ = n

kD , δ = D and w = Θ(k) (note that we can always
find a power of 2 within a constant factor of any k).

8 Genus Bounded Graphs

The main idea of our construction for bounded genus graphs is a reduction from
the planar-graph case: We first construct another planar graph J related to the
original genus-g graph G, and compute a good shortcut for J . Then, we map
each shortcut subgraph in J to a subgraph in G as a shortcut in G. We first
introduce the general framework of this “mapping” strategy.

8.1 Graph Extension

Definition 5. A graph J is an extension of a graph G if G is obtained from J by
deleting edges or contracting vertex pairs (contracting pair may not be adjacent,
and multiedges caused by a contraction is merged into a single edge).

Throughout this section we use notation V (G) and E(G) to indicate the sets
of vertices and edges in G respectively. Node contraction maps several nodes
in J to a node in G. The mapping is denoted by f : V (J) → V (G). Let E
be the set of deleted edges. By the definition of contraction, for any two nodes
v, u ∈ V (J) such that f(v) �= f(u), if (v, u) ∈ E(J) \ E holds, (f(v), f(u)) ∈
E(G) also holds. That is, there exists a mapping from E(J) \ E to E(G). We
commonly use function f to indicate this edge mapping. We define, we define
f−1(v) = {v′ ∈ V (J)|f(v′) = v} for any v ∈ V (G), and define f−1(e) for edge
e ∈ E(G) similarly. The cardinality of f−1(e) for edge e ∈ E(G) is called the
multiplicity of e. The maximum multiplicity of all edges in G are denoted by μ.
The mappings f and f−1 are also extended for the set of vertices or edges. For

Near-Optimal Low-Congestion Shortcuts on Bounded Parameter Graphs 169

example, for U ∈ V (G), we define f−1(U) = ∪u∈Uf−1(u). All other cases are
defined similarly. Let λ = |V (J)| − |V (G)| for short.

A hurdle of converting a shortcut in J to G is that given a connected com-
ponent U in G, G[f−1(U)] is not necessarily connected (i.e., each part in G is
fragmented into several subparts in J). The following lemma states the bound
on the number of fragments.

Lemma 5. Let G be a graph and J be its extension. Given a node subset U ⊂
V (G) such that the subgraph of G induced by U is connected, the subgraph of J
induced by f−1(U) consists of at most |f−1(U)|− |U |+1 connected components.

Proof. (Omitted due to space constraints)

Now consider a part Pi in G, which is separated into γ(i) connected compo-
nents (say subparts) in J . In the construction of shortcuts in J , each subpart
must be treated as an indepentdent part. Thus when mapping the shortcuts
augmented with those subparts into the shortcut for Pi in G, the number of
blocks is multiplied by γ(i). That is, if each subpart in J achieves a shortcut
with b block components, their mapping into G yields a shortcut with bγ(i) block
components. Thus a part Pi with high γ(i) suffers a high block parameter. To
overcome that matter, we additionally adopt the second strategy: If γ(i) is so
large, every edge in T is augmented with Pi as a shortcut edge. While it causes
the increase of the congestion, by a careful analysis, we can bound the extra
congestion derived from the second strategy by a moderately small value. The
argument above is summarized by the following lemma:

Lemma 6. Let G be a graph, J be its extension, T be a spanning tree of G, T−1

be a spanning tree of J , and ν = |E(T−1) \ f−1(T)|. If J has a T−1-restricted
shortcut with congestion c and block parameter b, then G has a T -restricted
shortcut with congestion μc + α and block parameter (λb + νc)/α + 1 for any
α ≥ 1.

Proof. (Omitted due to space constraints)

8.2 Optimal Shortcut for Genus-g Graphs

The core of the proof for genus-g graphs is the following lemma.

Lemma 7. Let G be any graph of genus g and diameter D. Then there exists an
extension J of G satisfying the following conditions: (i) J is planar, (ii) There
exists a spanning tree T−1 with depth at most 2D+1, and (iii) μ = 2, λ ≤ 12gD,
and ν ≤ 12g for T−1.

To explain how this lemma is proved, we prepare several notions related to
graph embeddings on surfaces: Let G be a graph of genus g. In the following
argument we assume that G is 2-cell embedded in an orientable surface of genus

170 B. Haeupler et al.

g, which is denoted by Σg
2. A loop on a surface Σ is a continuous function

f : [0, 1] → Σ satisfying f(0) = f(1). For any spanning tree T of G and an edge
e not contained in T , graph G + e contains exactly one simple cycle. We denote
it by loop(T, e). We also use the notation loop(T, e) as the loop on surface Σ if
G is embedded in Σ. A key tool of our proof is the following theorem.

Theorem 4 (Eppstein [2]). Let G be a graph of genus g and consider its arbi-
trary 2-cell embedding on Σg. Given any node vx ∈ V , let T be the shortest path
tree of G rooted by vx. Then there exists a set B of 2g edges = {e′

1, e
′
2, . . . , e

′
2g}

such that a set of loops loop(T, e′
1), loop(T, e′

2), . . . , loop(T, e′
2g) generates the fun-

damental group of the surface Σg whose base point is vx.

Let G′ be the subgraph of G induced by the set of edges ∪2g
i=1E(loop(T, e′

i)),
and T ′ be a subtree of T obtained from G′ by removing all edges in B. Then the
following lemma holds:

Lemma 8. Given any 2-cell embedding of G into Σg, we remove all edges and
vertices in G−G′. After the removal, we obtain a embedding of G′ into Σg. This
embedding is still a 2-cell embedding and the number of faces is one.

Proof. It is obvious that the embedding of G′ stated by the lemma is 2-cell
embedding: If it has a face not topologically isomorphic to a disk, by cutting
and capping all the boundaries in that face by disks, we can obtain an embedding
of G′ on a surface with genus g − 1 or less, which contradicts the fact that G′ is
the union of the generators of Σg. The number of faces is obtained by applying
Euler’s formula. Since E(G′) consists of a subtree T ′ of T spanning G′ and 2g
edges not in T but whose endpoints are both in T ′. Thus the total number of
the edges is |V (G′)| − 1 + 2g. Since G′ is 2-cell embedded in Σg, by applying
Euler’s formula, we can conclude that the number of faces for that embedding
is one.

This lemma implies that by “cutting” Σg along the (embedded) edges in
E(G′), it becomes topologically equivalent to a disk. In other words, if we embed
some graph on Σg without crossing ∪2g

i=1loop(T, e′
i), it becomes a planar embed-

ding. The proof of lemma 7 is to identify a graph J which is an extension of G
and planarly embeddable on Σg in the sense above (the proof details are omitted
due to lack of space).

It is known that any planar graph has a T -restricted shortcut for congestion
O((DT log DT)) and block parameter O(log DT) [4,6], where DT is the depth of
T . Combining that fact with Lemmas 6 and 7 with α =

√
gD log D, we obtain

the main theorem.

Theorem 5. Any graph with genus g has a T -restricted shortcut with congestion
(O

√
gD log D) and block parameter O(

√
g) for any spanning tree T with diameter

D.

2 2-cell embedding is the embedding where every face on Σ is topologically isomorphic
to an open disk.

Near-Optimal Low-Congestion Shortcuts on Bounded Parameter Graphs 171

8.3 Lower Bounds for Genus Bounded Graphs

In this section we state a low-congestion shortcuts lower bound for genus
bounded graphs. However, due to space constraints we will omit the details
because of their similarity to the lower bound for pathwidth bounded graphs
(Sect. 7). The graph family GP (Γ,w, δ) that entails this lower bound is depicted
in Fig. 2.

Corollary 3. Given g ≥ 2,D = Ω(log g) and a sufficiently large n, there exists
a graph with O(n) nodes that has (i) genus O(g), (ii) diameter Θ(D), (iii) there
exists a node partition P such that any (general) shortcut for that partition must
have either dilation Ω(

√
gD) or congestion Ω(

√
gD

log g).

Acknowledgments. We are thankful to the Center for Exploring the Limits of Com-
putation (ELC) and the Japan Society for the Promotion of Science for funding a
three-week collaborative research visit. We also thank Mohsen Ghaffari for discussions
and contributions at the beginning of this project and the DISC reviewers of this paper
for their helpful comments.

References

1. Bodlaender, H.L., Hagerup, T.: Parallel algorithms with optimal speedup for
bounded treewidth. SIAM J. Comput. 27(6), 1725–1746 (1998)

2. Eppstein, D.: Dynamic generators of topologically embedded graphs. In: Proceed-
ings of the ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 599–608
(2003)

3. Ghaffari, M., Haeupler, B.: Distributed algorithms for planar networks I: Planar
embedding. Manuscript (2015)

4. Ghaffari, M., Haeupler, B.: Distributed algorithms for planar networks II: Low-
congestion shortcuts, mst, and min-cut. In: Proceedings of ACM-SIAM Symposium
on Discrete Algorithms (SODA), pp. 202–219. SIAM (2016)

5. Ghaffari, M., Karrenbauer, A., Kuhn, F., Lenzen, C., Patt-Shamir, B.: Near-
optimal distributed maximum flow: Extended abstract. In: The Proceedings of
the Int’l Symposium on Prince of District Company (PODC), pp. 81–90 (2015)

6. Haeupler, B., Izumi, T., Zuzic, G.: Low-congestion shortcuts without embedding.
In: Proceedings of the 2016 ACM Symposium on Principles of Distributed Com-
puting. ACM (2016)

7. Kuhn, F., Moscibroda, T., Wattenhofer, R.: On the locality of bounded growth. In:
The Proceedings of the Int’l Symposium on Prince of District Company (PODC),
pp. 60–68 (2005)

8. Kutten, S., Peleg, D.: Fast distributed construction of k-dominating sets and appli-
cations. In: The Proceedings of the Int’l Symposium on Prince of District Company
(PODC), pp. 238–251 (1995)

9. Lenzen, C., Oswald, Y.A., Wattenhofer, R.: What can be approximated locally?:
case study: dominating sets in planar graphs. In: The Proceedings of the Sympo-
sium on Parallel Algorithms and Architectures, pp. 46–54 (2008)

10. Lenzen, C., Patt-Shamir, B.: Fast partial distance estimation and applications. In:
The Proceedings of the Int’l Symposium on Prince of District Company (PODC),
pp. 153–162 (2015)

172 B. Haeupler et al.

11. Nanongkai, D., Su, H.-H.: Almost-tight distributed minimum cut algorithms. In:
Kuhn, F. (ed.) DISC 2014. LNCS, vol. 8784, pp. 439–453. Springer, Heidelberg
(2014)

12. Peleg, D.: Distributed Computing: A Locality-sensitive Approach. Society for
Industrial and Applied Mathematics, Philadelphia (2000)

13. Sarma, A.D., Holzer, S., Kor, L., Korman, A., Nanongkai, D., Pandurangan, G.,
Peleg, D., Wattenhofer, R.: Distributed verification and hardness of distributed
approximation. SIAM J. Comput. 41(5), 1235–1265 (2012)

Anonymity-Preserving Failure Detectors

Zohir Bouzid and Corentin Travers(B)

LaBRI, U. Bordeaux, Bordeaux, France
{zohir.bouzid,corentin.travers}@labri.fr

Abstract. The paper investigates the consensus problem in anonymous,
failures prone and asynchronous shared memory systems. It introduces a
new class of failure detectors, called anonymity-preserving failure detec-
tors suited to anonymous systems. As its name indicates, a failure detec-
tor in this class cannot be relied upon to break anonymity. For example,
the anonymous perfect detector AP , which gives at each process an esti-
mation of the number of processes that have failed belongs to this class.

The paper then determines the weakest failure detector among this
class for consensus. This failure detector, called C, may be seen as a
loose failures counter: (1) after a failure occurs, the counter is eventually
incremented, and (2) if two or more processes are non-faulty, it eventually
stabilizes.

1 Introduction

Anonymous computing. The vast majority of the literature about distributed
computing assumes that each process is provided with a unique identifier. We
consider in this work anonymous computing in which processes have no identi-
fiers and are programmed identically. Besides intellectual curiosity, anonymous
computing might be of practical interest [23]. For example, for privacy reasons,
a set of distributed processes may be willing to compute some function on their
inputs without revealing their identity. Alternatively, the distributed computa-
tion might be performed on top of an anonymous communication system [14],
and thus using ids is forbidden.

Specifically, we consider the totally anonymous shared memory model of dis-
tributed computing. The shared memory consists only in basic shared objects,
namely read/write registers. We assume that there is no way to uniquely assign
registers to the processes as this would provide a way to differentiate them.
Previous works [5,23] have shown that the lack of unique identifiers limits the
computational power of the shared memory model. Similarly, starting from the
pioneering work of Angluin [1], the computational power of anonymous message
passing system in the failure-free case has been investigated for particular or
general graph topologies, e.g., [6,25].

This work has been carried out with financial support from the French State, man-
aged by the French National Research Agency (ANR) in the frame of the “Invest-
ments for the future” Program IdEx Bordeaux - CPU (ANR-10-IDEX-03-02).

c© Springer-Verlag Berlin Heidelberg 2016
C. Gavoille and D. Ilcinkas (Eds.): DISC 2016, LNCS 9888, pp. 173–186, 2016.
DOI: 10.1007/978-3-662-53426-7 13

174 Z. Bouzid and C. Travers

Consensus, failure and asynchrony. Besides the unavailability of unique iden-
tifiers, a major difficulty is coping with failures and asynchrony. Many simple
distributed tasks cannot be solved in asynchronous and failures-prone distrib-
uted system. A prominent example is consensus, which is a cornerstone task
in fault-tolerant distributed computing. Informally, the processes, each starting
with a private value, are required to agree on one value chosen among their initial
values. Even if processes have unique identifiers, it is well known that asynchro-
nous fault tolerant consensus is impossible as soon as at least one process may
fail by crashing [24]. This impossibility trivially extends to anonymous systems.

Failure detectors. A popular approach to circumvent impossibilities stemming
from asynchrony and failures is to use failure detectors [13]. A failure detec-
tor is a distributed device that provides each processes with perhaps unreliable
information about which other processes have crashed. In systems with identi-
ties, several classes of failure detectors have been defined [18]. In many cases,
their specification involves processes identities. For example, the perfect detector
P provides each process with a list of the identities of some of the processes
that have crashed. The list is eventually complete in the sense that it eventu-
ally includes the identity of each crashed process. The leader failure detector Ω
eventually outputs the same identity at every process, which is the identity of a
non-faulty process.

Given a distributed task T , a natural question is to determine the weakest
failure detector for T , that is a failure detector D which is both sufficient to
solve the task – there is an asynchronous, fault tolerant protocol that uses D to
solve T – and necessary, in the sense that any failure detector D′ that can be
used to solve T can also be used to emulate D. For example, it is well-known that
Ω is the weakest failure detector for consensus [12] in shared memory systems
with identities.

Failure detectors in anonymous systems. The study of failure detectors in anony-
mous message passing systems was initiated in [8]. In particular, identity-free
counterparts of classical failure detectors including Ω and P are identified. AΩ,
an identity-free failure detector equivalent to Ω, outputs a Boolean value at each
process such that eventually true is output only at a unique correct process.
A consensus protocol that uses AΩ was also presented. In the shared mem-
ory model, an anonymous AΩ-based protocol can be found in [15]. Bonnet
and Raynal left open the following question: “Consensus in anonymous distrib-
uted systems: is there a weakest failure detector?” [7]. We answer this question
positively.

Contributions of the paper. Although the definition of the failure detector AΩ
is useful for anonymous systems, as it does not involve processes identities, it
can be used to (eventually) break symmetry, as it eventually singles out one
process. We are interested in failure detectors that preserve anonymity in the
following sense: for any process p and any sequence of failure detector outputs at
process p, the same sequence might be output at every process without violating

Anonymity-Preserving Failure Detectors 175

the specification of the failure detector. An example of such a failure detector
is AP which provides each process with an eventually accurate estimation of
the number of faulty processes. Within this framework, we identify the weakest
failure detector for consensus in the shared memory model. In more details, the
paper makes the following contributions:

1. It first defines (Sect. 3) the class of anonymity-preserving failure detectors and
a new failure detector denoted C. Failure detector C might be seen as a shared
loose failure counter. It guarantees that after a failure occurs the counter is
eventually incremented, and in case two or more processes are non-faulty, the
counter eventually stabilizes. Let us notice that even if several failures occur,
the counter might be incremented only once. C is thus far from providing an
accurate tally of failures.

2. The paper shows that C is strong enough to solve consensus while tolerating
any number of failures (Sect. 4). Striving to not reinvent the wheel, the proto-
col relies on standard shared memory constructs, namely adopt-commit [19]
and safe-agreement [10] objects.

3. It is then shown that C can be emulated using any anonymity-preserving
failure detector powerful enough to solve consensus (Sect. 5). The extraction
protocol reuses in part the techniques developed by Zieliński [26] for prov-
ing a statement of this type in the shared memory model when processes
are not anonymous. Interestingly, the proof does not rely on the specifics of
the impossibility of fault-tolerant consensus but rather on the fact this task
cannot be solved non-anonymously wait-free among two processes.

Due to space constraints, some proofs and additional results have been omitted.
See [11] for a complete report on this work.

2 Computational Model

We consider an asynchronous and crash-prone shared-memory system consisting
in a set Π = {p1, . . . , pn} of n ≥ 2 processes, i is the index of pi. Processes are
anonymous in the sense that they run the same code and are not aware of their
index. They communicate via a shared memory that consists in an unbounded
number of multi-writer/multi-reader atomic registers. For modeling purposes we
assumed the existence of global clock not accessible to the processes and whose
range is the integers.

A failure pattern is a function F : N → 2Π that specifies the set of processes
that have failed at each time τ ∈ N. faulty(F) =

⋃
τ≥0 F(τ) denotes the set of

processes that fail in F . A process p is faulty in F if it belongs to faulty(F)
and correct otherwise, that is p ∈ correct(F) = Π \ faulty(F). We assume the
wait-free environment that contains every failure pattern in which at least one
process is correct. A failure detector D with range R is a distributed device that
provides each process with information about the failure pattern [13]. A failure
detector history is a function H : Π × N → R that maps each pair (process
index, time) to a value in the failure detector range. The value returned by the

176 Z. Bouzid and C. Travers

failure detector at process pi at time τ is H(pi, τ). D associates a non-empty set
of histories D(F) with each failure pattern F .

A protocol consists in n copies of a local algorithm A, one per process. In a
step a process (1) queries the failure detector or (2) reads or (3) writes a shared
register, and then performs some local computation. A run of a protocol A using
failure detector D is a tuple e = (F ,H, I, S, T) where F is a failure pattern,
H ∈ D(F), I and S are respectively an initial configuration and a sequence of
steps of A and T a non-decreasing sequence of times. S is called a schedule and
the ith step S[i] of S takes place at time T [i]. e = (F ,H, I, S, T) represents an
execution of A if and only if (1) S and T are both infinite or |S| = |T |, (2) no
processes take a step after it has crashed, (3) if step S[i] is a failure detector
query by process p that returns d, then d = H(p, T [i]), (4) the steps taken in S
are consistent with A, (5) the timings of read and write steps, together with the
values written or read in these steps are consistent with the atomic semantic of
the shared registers and, (6) if S is infinite, every correct process takes infinitely
many steps in S.

In the consensus task, each process starts with a value taken from some
set V and is required to decide a value subject to the following requirements:
(Validity) any decided value is the initial value of some process, (Agreement)
no two distinct values are decided and (Termination) every non-faulty process
decides.

A failure detector D is said to be as least as weak as a failure detector D′,
denoted D ≤ D′ if there is a protocol TD′→D that emulates D using D′. Failure
detector D is said to be the weakest failure detector for a task T if (1) there is
a protocol that solves T using D in E and (2) for every failure detector D′ that
can be used to solve T , D ≤ D′. In systems with identities, Ω is the weakest
failure detector for consensus [12].

3 Anonymity-Preserving Failure Detectors

The class of anonymity-preserving failure detectors Intuitively, a failure detector
is anonymity preserving if it cannot be relied upon to break symmetry among the
processes. A failure detector history H is anonymity-preserving if for every time
τ and every processes indexes i, j, H(pi, τ) = H(pj , τ). That is, two queries at the
same time by different processes return the same value. Hence, in such history,
the value output by the failure detector only depends on the time at which the
failure detector is queried, and does not depend on the querying process. An
anonymity preserving history is thus a function H : N → R that maps time to
values in the failure detector range.

A failure detector is anonymity preserving if for every failure pattern F , for
every pi ∈ Π and every history H ∈ D(F), the anonymity-preserving history H ′:
∀pj ∈ Π,∀τ,H ′(pj , τ) = H(pi, τ) also belongs to D(F). Intuitively, any sequence
of values output by the failure detector at process pi may have been returned at
every other process. That is, if d = d1, d2, . . . is a legal sequence of output for
process pi for some failure pattern F , then d is also a valid sequence for process
pj �= pi, for the same failure pattern F .

Anonymity-Preserving Failure Detectors 177

For instance, the failure detector AΩ [8] eventually distinguishes a unique
correct process. It provides to each process a single bit whose value eventually
is 0 except for one correct process. AΩ is thus not an anonymity-preserving
failure detector. An example of an anonymity-preserving failure detector is the
identity-free variant of the perfect failure detector, denoted AP in [8]. The range
of AP is N and, for any failure pattern F the history H : Π × N → N belongs
to AP (F) if and only if: (Accuracy) For every time τ and every process pi,
H(pi, τ) ≤ |F(τ)|, and (Completeness) there exists a time τ such that for all
τ ′ ≥ τ , H(pi, τ

′) = |F(τ ′)|. AP is an anonymity-preserving failure detector. If
for failure pattern F the sequence of outputs f1, f2, . . . is valid for process pi, so
is it for any process pj �= pi.

Failure detector C. Failure detector C might be seen as an unreliable variant
of the signaling failure detector FS [22]. The range of failure detector FS is
{green,red}. While no failures occur, the output of FS is green. Once a failure
occurs, and only if it does, the failure detector must eventually output red at
every correct process.

The range of failure detector C is the integers. At each process, the sequence
of integers output by C is non-decreasing, and after each new failure, the out-
put of the failure detector is eventually increased. Moreover, when at least two
processes are correct in the underlying failure pattern, C output eventually stabi-
lizes. That is, after some time, every query to C by process pi returns the same
value, for each process pi. More formally, for every failure pattern F , history
H : Π × N → N belongs to C(F) if and only if:

1. Monotonicity. For every process pi, for every times τ ≤ τ ′, H(pi, τ) ≤
H(pi, τ

′);
2. Signaling. For every times τ, τ ′ : τ < τ ′, for every processes pi, pj , if |F(τ)| <

|F(τ ′)|, there exists a time τ ′′, τ ′ ≤ τ ′′ such that H(pi, τ) < H(pj , τ
′′);

3. Convergence. If |correct(F)| > 1, there exists a time τ : for every process pi,
∀τ ′ : τ ≤ τ ′, H(pi, τ) = H(pi, τ

′).

4 A C-based Consensus Protocol

This section presents a consensus protocol (Protocol 1) based on failure detector
C. To simplify the presentation, we concentrate on binary consensus in which
the set of possible inputs is {0, 1}. Besides registers, it relies on standard shared
memory constructs, namely adopt-commit [19] and safe agreement [9,10] objects,
that we describe next.

Base objects. An adopt-commit object has a single operation denoted propose(v)
where v is a value from some finite set V. Such an operation returns a couple (b, u)
where b is either adopt or commit and u is a value in V, subject to the following
requirements [3,19]: (Validity) If an operation returns (d, v) then v is the input of
a propose() operation; (Agreement) If an operation returns (commit , v) then each
output is either (adopt , v) or (commit , v); (Convergence) If the input of every

178 Z. Bouzid and C. Travers

operation is v, then every output is (commit , v); (Termination) Each operation
by a non-faulty process produces an output.

A shared-memory implementation of an adopt-commit object that tolerates
an arbitrary number of crash-failures can be found in [3]. The implementation
([3], Algorithm 2) uses two multi-writer/multi-reader registers and a conflict-
detector, which in turn can be implemented in a wait-free manner using only
fact−1(|V|) multi-writer/multi-reader registers ([3], Algorithm 3). These algo-
rithms do not use identities, and are thus suitable for the anonymous shared-
memory model.

The safe agreement object, introduced by Borowsky and Gafni in [9] allows
processes to propose values and to agree on a single value. It is at the heart of
the BG-simulations [9] in which it is used by simulators to agree on each step of
the simulated processes. Different specifications of a safe agreement object can
be found in the literature, e.g., [4,10]. Our specification below closely follows [4].

A safe agreement object supports two operations propose(v) where v is a value
in {0, 1}1 and read(). Both operations return either a value u ∈ {0, 1} or ⊥. Each
process can invoke propose() at most once, while read() can be invoked arbitrarily
many times. We say that a propose() operation is successful if it returns a value
�= ⊥. An execution is well-formed if (1) each process calls propose() at most once
and, (2) no processes start a read() or propose() operation before its previous
operation (if any) has returned. It is required that in any well-formed execution,
the following properties are satisfied: (Validity) If an operation returns a value
v �= ⊥, v is the input of a propose() operation; (Agreement) If values v, v′ ∈
{0, 1} are returned by some operation, v = v′; (Termination) Every operation
performed by a non-faulty process terminates; (Consistent reads) Any read()
operation that terminates and starts after a successful propose() operation has
completed returns a non-⊥ value; (Non-triviality) Not every propose() operation
returns ⊥.

Observe that the non-triviality property is satisfied in executions in which
a process fails while performing a propose() operation. In the case in which no
processes fail while performing propose(), it follows from the termination and
non-triviality properties that at least one propose() operation is successful. Nev-
ertheless, it is not guaranteed that every propose() operation is successful. How-
ever, the consistent reads property implies that if, after its propose() operation
has returned, a process keeps reading the object, it eventually gets back a non-⊥
value.

In systems with identities, safe agreement objects can be implemented with
registers, e.g., [9]. In anonymous systems, a safe agreement object implementa-
tion can be obtained by slightly modifying an anonymous binary consensus pro-
tocol by Attiya, Gorbach and Moran [5] designed for the asynchronous shared
memory model with no failures.

1 More generally, v may belong to any finite set. Restricting to binary inputs is suffi-
cient for our purpose, namely using failure detector C to solve binary consensus.

Anonymity-Preserving Failure Detectors 179

Protocol 1. C-based binary consensus.
1: init SA[1, . . .], AC [1, . . .], D ← ⊥ � Arrays of safe agreement, adopt-commit

objects and decision register

2: function propose(v) � v ∈ {0, 1}
3: est ← v; start tasks T1, T2;

4: task T1:
5: for r = 1, 2, . . . do
6: repeat d ← C-query() until d ≥ r end repeat
7: aux ← SA[r].propose(est) � aux ∈ {0, 1, ⊥}
8: if aux = ⊥ then
9: repeat aux ← SA[r].read(); d ← C-query()

10: until (d > r) ∨ (aux �= ⊥)
11: end if
12: (b, u) ← AC [r].propose(aux) � b ∈ {adopt , commit}, u ∈ {0, 1, ⊥}
13: case b = commit ∧ u ∈ {0, 1} then D ← u; return
14: b = adopt ∧ u ∈ {0, 1} then est ← u
15: default then nop � u = ⊥
16: end case
17: end for
18: task T2:
19: repeat u ← D until u �= ⊥ end repeat
20: stop task T1; return u

Description of the protocol. Protocol 1 consists in two tasks denoted T1 and
T2, launched in parallel at each process p (line 3). In task T2, process p keeps
reading a shared register D, whose initial value is ⊥, until it sees some non-⊥
value u. u is then decided by p (line 20).

In task T1, processes proceed in asynchronous rounds aiming at writing a
single non-⊥ value to D. An adopt-commit object and a safe agreement object
denoted respectively AC [r] and SA[r] are associated with each round r. Following
a standard design pattern, e.g., [2,20], the processes that enter round r first try
to reach agreement by accessing the safe agreement object SA[r] (line 7) and
then check whether agreement has been achieved using the adopt-commit object
AC [r] (line 12).

In more details, each process p maintains an estimate est that contains the
value it currently favors. In round r, process p proposes its estimate to SA[r]
(line 7) and, if its operation is unsuccessful (line 8), it enters a loop in which
it repeatedly reads the object (line 9). If no processes that enter round r fail,
at least one of the invocations of propose() on SA[r] is successful (non-triviality
and termination properties of safe agreement) and thus by keeping reading the
object, a process eventually obtains a non-⊥ value (consistent reads property of
safe agreement). Hence, in the case in which no processes entering round r fail,
every process that enters that round eventually obtains a non-⊥ value, either
because its propose() operation is successful, or as a result of a read() operation.
Note that this value is the same for every process (agreement property of safe
agreement).

180 Z. Bouzid and C. Travers

However, some of the processes that enter round r may fail. In this case, each
propose() operation may be unsuccessful, and every read() operation may return
⊥. We rely on failure detector C to ensure progress as follows:

– A process is allowed to enter a round r only if its local failure detector module
output is larger than or equal to r (line 6);

– A process exits the loop in which it is trying to obtain a non-⊥ value by
performing read() operations on SA[r] when its local failure detector output
is strictly larger than dc (line 10).

This simple mechanism prevents processes from getting stuck in any round r in
which a failure occurs. Indeed, a process p failing in round r must have obtained
from C a value dc ≥ r (line 5). Then, following the crash of p, due to the sig-
naling property of C, C eventually outputs at every non-faulty processes values
strictly larger than dC , allowing these processes to exit the loop in which the
safe agreement object SA[r] is read (lines 9–10).

To reconcile processes that have obtained a non-⊥ value form SA[r] and
those to which C has signaled a failure, we use the adopt-commit object AC [r]
(line 12). Each process p keeps in its local variable aux the result of its operations
(at lines 7 and 9) on SA[r], e.g., ⊥ or some value v ∈ {0, 1}. In the second part of
round r, process p proposes the value stored in aux to AC [r] (line 12). If it gets
back (adopt, u), where u �= ⊥ it changes its estimate to u (line 14). A process
that receives (commit, u) can thus safely write u to the decision register D, as
it follows from the agreement of adopt-commit that every propose() operation
returns (commit, u) or (adopt, u). Hence, every process either writes u to D or
changes its estimate to u, thus preventing any value u′ �= u to be written to D in
subsequent rounds. Finally, if a process p receives (∗,⊥), then no process writes
to D in the current round r, and p leaves its estimate unchanged (line 15).

As for termination, a process decides as soon as it reads a non-⊥ value from
D (task T2). Let us observe that this happens if there is a round r in which
(1) enters only one process, and this process is correct or (2) enter only correct
processes, and at each of these processes, the largest output of C is r. Clearly,
if only one process p enters round r, its propose() operation on SA[r] returns
a non-⊥ value u (non-triviality property of safe agreement). u is then the only
value proposed to AC [r]. p thus receives (commit, u) from AC [r] (convergence
property of adopt-commit) and then writes u to D. Condition (1) is satisfied in
executions in which there is only one correct process.

For the second condition, if only correct processes enter round r, at least
one of the propose() operations on SA[r] is successful. Moreover, no process can
exit the reading loop (lines 9-10) without having obtained a non-⊥ value from
SA[r], as C never outputs a value larger than r to those processes. Since all
non-⊥ values returned by operations on SA[r] are the same, only one value
is proposed to AC [r], from which we conclude that only (commit, v), where
v �= ⊥, is returned by each propose() operation performed on AC [r] (convergence
property of AC [r].). Hence a value is written to D in round r. Condition (2) is
met in every execution in which there are at least two correct processes, since
in that case the output of C eventually stabilizes at every correct process, and

Anonymity-Preserving Failure Detectors 181

the stabilization value is larger than every value output at faulty processes. The
proof of correctness can be found in the full version [11].

5 C Is Necessary to Solve Consensus

Let X be an anonymity-preserving failure detector, and assume that there is a
protocol A that solves consensus using X. We present (Protocol 1) a protocol
TX→C that emulates C using X in the wait-free environment.

Overview. As in previous protocols [12,16,21,26] that emulate weakest failure
detectors, in TX→C each process locally simulates many possible runs of proto-
col A. According to the output of these runs, information on the failure pattern
is inferred and the desired weakest failure detector emulated.

Let F denote the failure pattern underlying the execution of TX→C . In order
to simulate valid runs of A, e.g., runs indistinguishable from reals runs of A,
samples from the underlying failure detector X have to be collected. Those
samples are then used in the simulation of each step in which a query to failure
detector X occurs. Hence, each process p must collect samples from its failure
detector module, but also from other processes. Precedence relationships between
samples should also be maintained to order to simulate valid runs of A. For
example, the simulation must avoid using a sample from some faulty process q
if a sample taken after the failure of q has already been used. In systems with
identities, this is usually achieved by maintaining a DAG, where each vertex v
contains a failure detector sample d and a process id, and for any successor v′ of v,
the sample d′ associated with v′ has been taken after d. In the anonymous shared
memory model, the lack of identifiers make tracking precedence relationships
difficult and the standard technique [12] does not apply. However, in the case of
anonymity-preserving failure detectors, the samples taken by each process p from
its local failure detector module are sufficient to simulate runs of A, even with
more than one participating process. This is because the sequence of samples
obtained by p might have been also obtained by every other processes in some
execution with the same failure pattern F .

Each process p simulates executions of A in which at most two processes,
denoted q0 and q1, participate with input 0 and 1 respectively. On the one hand,
for such an execution e by adding clones of q0 and q1 one may construct an
indistinguishable execution e′ in which the number of participating processes
matches the number of correct processes in F . It thus can be shown that, from
the point of view of q0 and q1, execution e is indistinguishable from some real
execution of A with failure pattern F . On the other hand, there must exist
an interleaving of the steps of q0 and q1 such that the corresponding emulated
execution of A does not decide. Otherwise, protocol A together with the sequence
of failure detector samples collected by p can be used to solve binary consensus
wait-free and without failure detector by two non-anonymous processes q0 and
q1, contradicting the impossibility of consensus.

Operationally, process p explores every possible two-processes schedules of A
in a particular, corridor -based order, as in [21,26]. Whenever a decision occurs in

182 Z. Bouzid and C. Travers

Protocol 2. TX→C , where X can be used to solve consensus.
1: init A[1 . . .] ← [⊥, . . .] � Array of registers with initial value ⊥
2: procedure C-emulation
3: x[1 . . .] ← [⊥, . . .] � Array for storing outputs of X
4: c0 ← initial configuration: qi, i ∈ {0, 1} input is i, MEM is initialized as pre-

scribed by A′

5: P0 ← {q0, q1}; λ0 ← ε; out-C ← 0; start tasks T and T’ where task T’ is
explore(λ0, c0, P0);

6: function explore(λ, c, P)
7: let U be the set of processes still undecided in c
8: for each P ′ ⊆ P ∩ U in an order consistent with ⊆ do
9: for each qi ∈ P ′ do

10: let step be the next step of qi in configuration c according to A′ �
simulate next step of qi

11: case step = read() from �th register then read c.MEM [�]
12: step = write(v) to �th register then write v to c.MEM [�]
13: step = X-query() then take x[�] as the output of X, where � is the

value of η in c.si;
14: end case
15: perform local computation; update c.si
16: if qi has decided in c then let m ← min{� : A[�] = ⊥}; A[m] ← �;

C-out ← m
17: end if � update (emulated) failure detector C output
18: λ ← λ · i; explore(λ, c, P ′)
19: end for
20: end for
21: task T: for i = 1, 2, . . . do x[i] ← X-query() end for � f.d. X sampling

the execution simulated by p, a shared counter is incremented, and the output
of C at p is set to the new value of the counter. We prove that (1) following
any (real) process failure, p eventually simulates an execution of A in which a
decision occurs, and due to the order in which schedules are explored, that (2)
eventually p keeps simulating one infinite execution in which no processes decide.
The correctness of the emulation C then follows from (1) and (2).

Protocol A′. Let MEM denote the (not necessarily finite) array of registers used
by A. Recall that in a step of A, a process performs a read() or write() operation
on some register MEM [�] or a query() operation to the underlying failure detector
X. It may then perform some local computation. Instead of simulating runs of
A, we are going to simulate runs of a slightly modified version of A, called A′,
defined as follows. The purpose of the modification is to help tracking causality
relations between steps of the protocols.

In protocol A′, each process has an extra local counter η whose initial value
is 1. Each register MEM [�] is divided in two fields, data and ctr. MEM [�].data
is initialized as specified by A while the initial value of MEM [�].ctr is 0. For
each integer � and value v, each operation MEM [�].write(v) in A is replaced in

Anonymity-Preserving Failure Detectors 183

A′ by MEM [�].write(〈v, η〉), i.e., v and the current value of the local variable η
are written to the data and ctr components, respectively, of MEM [�]. Similarly,
each instruction of the form v ← MEM [�].read() in A is replaced in A′ by
〈v, η′〉 ← MEM [�].read(); η ← max(η, η′ + 1). Finally, after each write(), read()
or query() operation η is incremented (η ← η+1). For each step s of the modified
protocol A′, we define η(s) as the value of η immediately before it is incremented
(e.g., immediately before η ← η+1 is performed). Obviously, these modifications
do not affect the correctness of A′, i.e., A′ solves consensus using X.

Causality. Let r be a run of A′ with two processes q0, q1, where the input of
qi, i ∈ {0, 1} is i. Note that in these particular executions, although the processes
are anonymous, we can assume that the values written are unique, as they can
be tagged with the process input and a sequence number. For any two steps
s, s′ in r, s causally precedes s′, denoted s s′ if and only if (1) s and s′ are
performed by the same process in that order or, (2) in s a value v is written to
some register MEM [�], and in s′ v is read from MEM [�] or, (3) there exists a
step s′′ such that s s′′ and s′′ s′. The following Lemma follows from the
management of the variables η in A′.

Lemma 1. Let r be a run of A′ by two processes q0, q1 with input 0 and 1
respectively. For every steps s, s′ of r, s s′ =⇒ η(s) < η(s′).

Collecting failure detector X samples. As X is anonymity-preserving, for any
failure pattern F and any finite or infinite sequence x = x1, x2, . . . of outputs of
X collected by some process p in a run with failure pattern F , there is a run
with the same failure pattern in which every process see the same sequence x
of outputs of X. Therefore, in order to provide failure detector values for the
simulation of runs of A′, p simply builds an ever growing sequence of failure
detector outputs x[1], x[2], . . . by repeatedly querying its local failure detector
module.

Induced schedules of A′. Each process p simulates runs of A′ in which at most two
processes, denoted q0 and q1, take steps with initial values 0 and 1 respectively.
We next describe how a binary sequence (specifying the order in which q0 and
q1 takes steps) and a sequence of failure detector X outputs induce a schedule
S of A′, that is a sequence of steps of A′.

Let x denote a sequence of failure detector outputs, obtained from X at
increasing times, and let λ denote a binary sequence. Intuitively, λ describes in
which order processes take steps in S and x supplies failure detector outputs for
simulating query(). A difficulty is to choose an output in x for each query() step
of S in such a way that there is a real execution of A′ indistinguishable from S
to both q0 and q1.

Schedule S is defined inductively. Recall that a configuration c, in the context
of a two processes schedule consists in a triplet (s0, s1,MEM) where si, i ∈ {0, 1}
is the local state of qi and the array MEM contains the current value of each
register used by A′. In the initial configuration c0 of S, c0.si, i ∈ {0, 1} reflects
the fact that the initial value of qi is i and c0.MEM is initialized as specified by

184 Z. Bouzid and C. Travers

A′. The ith step of S is taken by process qλ[i] and is deduced from A′ applied
to the local state of qλ[i] in configuration ci−1. If this step is a read() or write()
step, it is simulated by reading or writing a value to/from MEM . If the step is
a query() operation, it is simulated by taking x[ηλ[i]] as its result, where ηλ[i] is
the value of the variable η at process qλ[i] in configuration ci−1. Configuration
ci is then derived from ci−1 in the obvious way.

The choice of output for each simulated query() preserves causality in the
following sense: Let s and s′ be steps of S in which X is queried and assume
that s s′. Let j, j′ the indices in x of the values returned by these queries in
the simulation. Then x[j] is obtained from X before x[j′], i.e., j < j′, as one
would expect. Indeed, let qi and qi′ be respectively the processes that perform
s and s′, and let η(s) and η(s′) be the value of η at process qi and qi′ in the
configurations that immediately precede s and s′, respectively. The results of the
queries in s and s′ are x[η(s)] and x[η(s′)]. By Lemma 1, as s s′, η(s) < η(s′).

Indistinguishability of induced schedules from real runs. Given a binary sequence
λ and a sequence x of outputs of X, the schedule Sλ,x induced by λ and x may not
correspond to a real execution of A′. More precisely, for the simulation of S to be
meaningful, we need that there exists a real run r of A′ that is indistinguishable
from S to q0 and q1. The schedule in r may differ from S, but the successive
states of qi must be the same in S and r, for each i ∈ {0, 1}. Next Lemma
establishes the existence of r.

Lemma 2. Let λ be a binary sequence. Let x denote a (finite or infinite)
sequence of outputs of X and let S denote the schedule induced by λ and x.
Assume that there exists a failure pattern F , a history H ∈ X(F) and an increas-
ing sequence of times τ1 < τ2 < . . . such that for every i, x[i] = H(p, τi) for some
process p. If for every i, |F(τi)| ≤ n−2, there exists a run of A indistinguishable
from S to q0 and q1.

Run r may however not be fair. A infinite run r = (F ,H, I, S, T) is fair if
every process in correct(F) take infinitely many steps in r. Given an infinite
binary sequence λ, let inf(λ) ⊆ {0, 1} be the bits that appear infinitely often
in λ. Next Lemma expresses a sufficient condition for the existence of a fair run
indistinguishable to q0 and q1 from the schedule induced by a binary sequence
and a sequence of failure detector outputs λ, x.

Lemma 3. Let λ, x be infinite sequences of respectively bits and failure detector
X outputs. Suppose that there exists a failure pattern F , a sequence of times
τ1 < τ2 < . . . and a history H ∈ X(F) such that for every i ≥ 1, x[i] = H(p, τ)
for some process p. If |correct(F)| ≥ 2 and inf(λ) = {0, 1} then the schedule Sλ,x

induced by λ, x is indistinguishable from the schedule in a fair run r of A.

In the induced schedule Sλ,x, only two processes take step. However, more
than two processes may be correct in the failure pattern F . We resolve this
difficulty by adding clones of q0 and q1. A clone [17] of process qi is a process
that has the same input and the same code as qi. p is scheduled in lock-step with

Anonymity-Preserving Failure Detectors 185

qi: it reads and writes the same values as p, and each of its queries to X returns
the same output as the queries by p. The latter is made possible by the fact that
X is anonymity-preserving. The outputs of X at qi are also valid outputs at any
other processes.

C emulation. Protocol 2 emulates failure detector C from any anonymity pre-
serving failure detector X that can be used to solve consensus. It closely follows
the emulation technique of Zieliński [26]. At each process p, the emulation con-
sists in two tasks T and T ′ that run in parallel. In task T , p collects outputs of
X by querying its local failure detector module. The outputs are stored in the
array x. In task T ′, p recursively simulates every possible schedule of A′ (lines 8-
18). An infinite array A of registers is used to implement a weak shared counter.
Each register A[i] initial value is ⊥. The counter is incremented by changing to
� the value of the register with the smallest index containing ⊥. The value of the
counter is thus the largest index i of A such that A[i] = �. Each time a process
decides in a simulated schedule, the counter is incremented and the output of C
is set to the counter new value (line 16).

For any arbitrary run of protocol 2 with failure pattern F , we first show
(see [11]) that each correct process p simulates at least one schedule in which
a decision occurs after the time of the last crash. Consequently, the output
of C at p is incremented at least once after the last time a process fails, as
required by the signaling property. We then establish that if |correct(F)| ≥ 2,
the exploration procedure is eventually stuck simulating a non-deciding schedule.
As the output of C is modified each time a simulated schedule decides, the output
of C eventually stabilizes at each process, hence,

Theorem 1. Protocol 2 emulates C.

6 Conclusion

The paper has defined the class of anonymity-preserving failure detectors and
has shown that within this class, at least for consensus a weakest failure C exists
in the anonymous shared-memory model.

In the full version [11], a natural generalization denoted Ck of failure detector
C is introduced and a Ck-based protocol for k-set agreement is presented. Ques-
tions for future work include (dis)proving that Ck is the weakest anonymity
preserving failure detector for k-set agreement and extending weakest failure
detector results in anonymous systems outside the domain of anonymity pre-
serving failure detectors.

References

1. Angluin, D.: Local and global properties in networks of processors (extended
abstract). In: STOC 1980, pp. 82–93. ACM (1980)

2. Aspnes, J.: A modular approach to shared-memory consensus, with applications
to the probabilistic-write model. Distributed Comput. 25(2), 179–188 (2012)

186 Z. Bouzid and C. Travers

3. Aspnes, J., Ellen, F.: Tight bounds for adopt-commit objects. Theor. Comput.
Syst. 55(3), 451–474 (2014)

4. Attiya, H.: Adapting to point contention with long-lived safe agreement. In:
Flocchini, P., Gasieniec, L. (eds.) SIROCCO 2006. LNCS, vol. 4056, pp. 10–23.
Springer, Heidelberg (2006)

5. Attiya, H., Gorbach, A., Moran, S.: Computing in totally anonymous asynchronous
shared memory systems. Inf. Comput. 173(2), 162–183 (2002)

6. Attiya, H., Snir, M.: Better computing on the anonymous ring. J. Algorithms 12(2),
204–238 (1991)

7. Bonnet, F., Raynal, M.: Consensus in anonymous distributed systems: Is there a
weakestfailure detector? In: AINA 2010, pp. 206–213. IEEE (2010)

8. Bonnet, F., Raynal, M.: Anonymous asynchronous systems: the case of failure
detectors. Distributed Comput. 26(3), 141–158 (2013)

9. Borowsky, E., Gafni, E.: Generalized FLP impossibility result for t-resilient asyn-
chronouscomputations. In: PODC 1993, pp. 91–100. ACM (1993)

10. Borowsky, E., Gafni, E., Lynch, N.A., Rajsbaum, S.: The BG distributed simulation
algorithm. Distributed Comput. 14(3), 127–146 (2001)

11. Bouzid, Z., Travers, C.: Anonymity preserving failure detectors. Technical Report,
LaBRI, July 2016. https://hal.archives-ouvertes.fr/hal-01344446

12. Chandra, T.D., Hadzilacos, V., Toueg, S.: The weakest failure detector for solving
consensus. J. ACM 43(4), 685–722 (1996)

13. Chandra, T.D., Toueg, S.: Unreliable failure detectors for reliable distributed sys-
tems. J. ACM 43(2), 225–267 (1996)

14. Danezis, G., Diaz, C.: A survey of anonymous communication channels. Technical
Report, MSR-TR-2008-35, Microsoft Research (2008)

15. Delporte-Gallet, C., Fauconnier, H.: Two consensus algorithms with atomic regis-
ters and failure detector Ω. In: Garg, V., Wattenhofer, R., Kothapalli, K. (eds.)
ICDCN 2009. LNCS, vol. 5408, pp. 251–262. Springer, Heidelberg (2008)

16. Delporte-Gallet, C., Fauconnier, H., Guerraoui, R.: Tight failure detection bounds
on atomic object implementations. J. ACM 57(4), 22:1–22:32 (2010)

17. Fich, F.E., Herlihy, M., Shavit, N.: On the space complexity of randomized syn-
chronization. J. ACM 45(5), 843–862 (1998)

18. Freiling, F.C., Guerraoui, R., Kuznetsov, P.: The failure detector abstraction. ACM
Comput. Surv. 43(2), 9 (2011)

19. Gafni, E.: Round-by-round fault detectors: Unifying synchrony and asynchrony
(extended abstract). In: PODC 1998, pp. 143–152. ACM (1998)

20. Gafni, E.: The extended BG-simulation and the characterization of t-resiliency. In:
STOC 1909, pp. 85–92. ACM (1990)

21. Gafni, E., Kuznetsov, P.: On set consensus numbers. Distributed Comput. 24(3–4),
149–163 (2011)

22. Guerraoui, R., Hadzilacos, V., Kuznetsov, P., Toueg, S.: The weakest failure detec-
tors to solve quittable consensus and nonblocking atomic commit. SIAM J. Com-
put. 41(6), 1343–1379 (2012)

23. Guerraoui, R., Ruppert, E.: Anonymous and fault-tolerant shared-memory com-
puting. Distributed Comput. 20(3), 165–177 (2007)

24. Loui, M., Abu-Amara, H.: Memory requirements for agreement among unreliable
asynchronous processes. Adv. Comput. Res. 4, 163–183 (1987)

25. Yamashita, M., Kameda, T.: Computing on anonymous networks: Part I-
characterizing the solvable cases. Trans. Parallel Distrib. Syst. 7(1), 69–89 (1996)

26. Zieliński, P.: Anti-Ω: the weakest failure detector for set agreement. Distributed
Comput. 22(5–6), 335–348 (2010)

https://hal.archives-ouvertes.fr/hal-01344446

Certified Universal Gathering in R
2

for Oblivious Mobile Robots

Pierre Courtieu1, Lionel Rieg2, Sébastien Tixeuil3, and Xavier Urbain4,5(B)

1 CÉDRIC – Conservatoire national des arts et métiers, 75141 Paris, France
2 Collège de France, 75006 Paris, France

3 UPMC Sorbonne Universités, LIP6-CNRS 7606,
Institut Universitaire de France, Paris, France

4 ENSIIE, 91025 Évry, France
5 LRI, CNRS UMR 8623, Université Paris-Sud,

Université Paris-Saclay, 91405 Orsay, France
xavier.urbain@lri.fr

Abstract. We present a unified formal framework for expressing mobile
robots models, protocols, and proofs, and devise a protocol design/proof
methodology dedicated to mobile robots that takes advantage of this for-
mal framework.

As a case study, we present the first formally certified protocol for
oblivious mobile robots evolving in a two-dimensional Euclidean space.
In more details, we provide a new algorithm for the problem of universal
gathering mobile oblivious robots (that is, starting from any initial con-
figuration that is not bivalent, using any number of robots, the robots
reach in a finite number of steps the same position, not known before-
hand) without relying on a common orientation nor chirality. We give
very strong guaranties on the correctness of our algorithm by proving
formally that it is correct, using the Coq proof assistant.

This result demonstrates both the effectiveness of the approach to
obtain new algorithms that use as few assumptions as necessary, and
its manageability since the amount of developed code remains human
readable.

1 Introduction

Networks of mobile robots captured the attention of the distributed computing
community, as they promise new applications (rescue, exploration. . .) in poten-
tially dangerous (and harmful) environments. Since its initial presentation [20],
this computing model has grown in popularity1 and many refinements have
been proposed (see [15] for a recent state of the art). From a theoretical point

A preliminary version of this work appears as a 3-page-long Brief Announcement in
PODC’16.

1 The 2016 SIROCCO Prize for Innovation in Distributed Computing was awarded to
Masafumi Yamashita for this line of work.

c© Springer-Verlag Berlin Heidelberg 2016
C. Gavoille and D. Ilcinkas (Eds.): DISC 2016, LNCS 9888, pp. 187–200, 2016.
DOI: 10.1007/978-3-662-53426-7 14

188 P. Courtieu et al.

of view, the interest lies in characterising the exact conditions for solving a par-
ticular task.

In the model we consider, robots operate in Look-Compute-Move cycles. In
each cycle a robot “Looks” at its surroundings and obtains (in its own coor-
dinate system) a snapshot containing some information about the locations of
all robots. Based on this visual information, the robot “Computes” a destina-
tion location (still in its own coordinate system) and then “Moves” towards the
computed location. When the robots are oblivious, the computed destination
in each cycle depends only on the snapshot obtained in the current cycle (and
not on the past history of execution). The snapshots obtained by the robots
are not necessarily consistently oriented in any manner. The execution model
significantly impacts the solvability of collaborative tasks. Three different lev-
els of synchronisation have been considered. The strongest model [20] is the
fully synchronised (FSYNC) model where each stage of each cycle is performed
simultaneously by all robots. On the other hand, the asynchronous model [15]
(ASYNC) allows arbitrary delays between Look, Compute and Move stages, and
the movement itself may take an arbitrary amount of time, possibly a different
amount for each robot. We consider in this paper the semi-synchronous (SSYNC)
model [20], lying somewhere between the two extreme models. In the SSYNC
model, time is discretised into rounds and in each round an arbitrary subset of
the robots are active. The active robots in a round perform exactly one atomic
Look-Compute-Move cycle in that round. The scheduler (seen as an adversary)
is assumed to be fair in the sense that it guarantees that in any configuration,
any robot is activated within a finite number of steps.

Designing and proving mobile robot protocols is notoriously difficult. The
diversity of model variants makes it extremely onerous to check whether a par-
ticular property of a robot protocol holds in a particular setting. Even worse,
checking whether a property that holds in a particular setting also holds in
another setting that is not strictly contained in the first one often requires a
completely new proof, even if the proof argument is very similar. The lack of
proof reusability between model variants is a major problem for investigating
the viability of new solutions or implementations of existing protocols (that
are likely to execute in a more concrete execution model). Also, oblivious mobile
robot protocols are mostly based on observing geometric constructions and deriv-
ing invariants from those observations. As the protocols are typically written in
an informal high level language, assessing whether they conform to a partic-
ular model setting is particularly cumbersome, and may lead to hard to find
mismatches. Hence, solely relying on handcrafted protocols, models and proofs
is likely to introduce subtle errors that eventually lead to catastrophic failures
when the system is actually deployed. Formal methods encompass a long-lasting
path of research that is meant to overcome errors of human origin. Not surpris-
ingly, this mechanised approach to protocol correctness was successively used in
the context of mobile robots [2,3,5,8,12,13,18].

Related Work. Model-checking proved useful to find bugs in existing literature [3]
and assess formally published algorithms [3,13], in a simpler setting where robots

Certified Universal Gathering in R
2 189

evolve in a discrete space where the number of possible positions is finite. Auto-
matic program synthesis (for the problem of perpetual exclusive exploration in a
ring-shaped discrete space) is due to Bonnet et al. [5], and can be used to obtain
automatically algorithms that are “correct-by-design”. The approach was refined
by Millet et al. [18] for the problem of gathering in a discrete ring network. As
all aforementioned approaches are designed for a discrete setting where both the
number of positions and the number of robots are known, they cannot be used
in the continuous space where robots positions take values in a set that is not
enumerable, and they cannot permit to establish results that are valid for any
number of robots. The use of a mechanical proof assistants like Coq2 allows
for more genericity as this approach is not limited to particular instances of
algorithms. Castéran et al. [9] use Coq and their libray Loco to prove positive
and negative results about subclasses of LC systems. Developed for the Coq
proof assistant, the Pactole3 framework enabled the use of high-order logic to
certify impossibility results [2] for the problem of convergence: for any positive
ε, robots are required to reach locations that are at most ε apart. Another clas-
sical impossibility result that was certified using the Pactole framework is the
impossibility of gathering starting from a bivalent configuration [12]. While the
proof assistant approach seems a sensible path for establishing certified results
for mobile robots that evolve in a continuous space, until this paper there exists
no positive certified result in this context. Expressing mobile robot protocols in
a formal framework that permits certification poses a double challenge: how to
express the protocol (which can make use of complex geometric abstractions that
must be properly defined within the framework), and how to write the proof?

Other formal models exist, the most famous ones being TLA+ and process
algebras. These are not very suited to our setting because they do not easily take
into account the spatial location of robots, which is critical here. Furthermore,
a dedicated framework allows to hard-wire some necessary properties while still
being flexible enough to encompass most of the models.

Our contribution. Our first contribution is a unified formal framework for
expressing mobile robots models, protocols, and proofs. This framework is moti-
vated by the fact that many of the observed errors in published papers come
from a mismatch between the advertised model and the model that is actually
used for writing the proofs. For example, some dining philosophers protocols
were expressed and proved in a high-level atomicity model, but advertised as
working in a lower-level atomicity model, revealed to be incorrect in the lower-
level atomicity model (see the work of Adamek et al. [1] and references herein).
Sometimes, the mismatch between the proof and the advertised model is more
subtle: a perpetual exclusive exploration protocol the proof of which did not con-
sider all possible behaviours in the advertised model ASYNC was used to exhibit
a counter example in such a setting (See the work of Berard et al. [3] and ref-
erences therein). A unified formalisation whose consistency can be mechanically

2 http://coq.inria.fr.
3 Available at http://pactole.lri.fr.

http://coq.inria.fr
http://pactole.lri.fr

190 P. Courtieu et al.

assessed is a huge asset for designing correct solutions, whose correctness can be
certified. As we used a subset of the same framework for certifying impossibility
results [2,12], consistency between negative and positive results is also guaran-
teed. Our second contribution is a protocol design/proof methodology dedicated
to mobile robots. We advocate the joint development of both the mobile robot
protocol and its correctness proof, by taking advantage of the Coq proof assis-
tant features. The proof assistant is typically able to check whether the proof of
a particular theorem/lemma/corollary is valid. So replacing particular clauses of
those theorems/lemmas/corollaries statements makes the proof assistant check
whether the proof still is acceptable for the new statement. We used this fea-
ture to lift a preliminary version of this paper (uni-dimensional setting [11])
to a Euclidean bi-dimensional space: the proof assistant checked which argu-
ments were still valid in the new setting. This feature also proved useful when
slightly changing parts of the algorithm: the impact of the changes on the proofs
were immediate. Also, it becomes easy to remove or weaken hypotheses from
the protocol, as the proof assistant makes it obvious if they are not used in the
proof arguments. Finally, our methodology includes a formal way to guarantee
whether the “global” view of the system (as seen from the protocol prover point
of view) is effectively realisable given the hypotheses assumed in the model. We
instantiate our framework and methodology to actually design and prove cor-
rect a new protocol for oblivious mobile robot universal gathering problem. The
mobile robot gathering problem is a benchmarking problem in this context and
can be informally defined as follows: robots have to reach in a finite number of
steps the same location, not known beforehand. In more details, we present a
new gathering algorithm for robots operating in a continuous space that (i) can
start from any configuration that is not bivalent (that is, the robots are not
initially equally placed in exactly two locations, since gathering is impossible in
this case), (ii) does not put restriction on the number of robots, (iii) does not
assume that robots share a common chirality (no common notion of “left” and
“right”). To our knowledge, this is the first certified positive (and constructive)
result in the context of oblivious mobile robots. Our bottom-up approach per-
mits to lay sound theoretical foundations for future developments in this domain.
The sources package is available at http://pactole.lri.fr, as well as its online html
documentation.

2 A Formal Model to Prove Robot Protocols

To certify results and to guarantee the soundness of theorems, we use Coq, a
Curry-Howard-based interactive proof assistant enjoying a trustworthy kernel.
The (functional) language of Coq is a very expressive λ-calculus: the Calcu-
lus of Inductive Constructions (CIC) [10]. In this context, datatypes, objects,
algorithms, theorems and proofs can be expressed in a unified way, as terms.

The reader will find in [4] a very comprehensive overview and good practices
with reference to Coq. Developing a proof in a proof assistant may nonetheless
be tedious, or require expertise from the user. To make this task easier, we are

http://pactole.lri.fr
http://pactole.lri.fr/pub/cg2d/html

Certified Universal Gathering in R
2 191

actively developing (under the name Pactole) a formal model, as well as lem-
mas and theorems, to specify and certify results about networks of autonomous
mobile robots. It is designed to be robust and flexible enough to express most of
the variety of assumptions in robots network, for example with reference to the
considered space: discrete or continuous, bounded or unbounded. . . We want to
stress that the framework eases the developer’s task. The notations and defini-
tions we give hereafter should be simply read as typed functional expressions.

The Pactole model has been sketched in [2,12]; we recall here its main char-
acteristics. We use two important features of Coq: a formalism of higher-order
logic to quantify over programs, demons, etc., and the possibility to define induc-
tive and coinductive types [19] to express inductive and coinductive datatypes
and properties. Coinductive types are of invaluable help to express infinite behav-
iours, infinite datatypes and properties on them, as we shall see with demons.
Robots are anonymous, however we need to identify some of them in the proofs.
Thus, we consider given a finite set of identifiers, isomorphic to a segment of N.
We hereafter omit this set G unless it is necessary to characterise the number
of robots. The full model is also able to handle byzantine faults (as done in [2])
but this is not necessary here and will be omitted for simplicity. Robots are dis-
tributed in space, at places called locations. We call a configuration a function
from the set of identifiers to the space of locations. From that definition, there
is information about identifiers contained in configurations, notably, equality
between configurations does not boil down to the equality of the multisets of
inhabited locations. If we are under the assumption that robots are anonymous
and indistinguishable, we have to make sure that those identifiers are not used
by the embedded algorithm.

Spectrum. The computation of any robot’s target location is based on the per-
ception they get from their environment, that is, in an SSYNC execution scheme,
from a configuration. The result of this observation may be more or less accu-
rate, depending on sensors’ capabilities. A robot’s perception of a configuration
is called a spectrum. To allow for different assumptions to be studied, we leave
abstract the type spectrum (Spect.t) and the notion of spectrum of a position.
Robograms, representing protocols, will then output a location when given a
spectrum (instead of a configuration), thus guaranteeing that assumptions over
sensors are fulfilled. For instance, the spectrum for anonymous robots with weak
global multiplicity detection could be the set of inhabited locations, i.e. without
any multiplicity information. In a strong global multiplicity setting, the multiset
of inhabited locations is a suitable spectrum. In the following we will distin-
guish a demon configuration (resp. spectrum), expressed in the global frame of
reference, from a robot configuration (resp. spectrum), expressed in the robot’s
own frame of reference. At each step of the distributed protocol (see definition
of round below) the demon configuration and spectrum are transformed (recen-
tered, rotated and scaled) into the considered robots ones before being given
as parameters to the robogram. Depending on assumptions, zoom and rotation
factors may be constant or chosen by the demon at each step, shared by all
robots or not, etc.

192 P. Courtieu et al.

Demon. Rounds in this SSYNC setting are characterised with set of oblivious
robots receiving their new frame of reference, if activated. We call demonic action
this operation together with the logical properties ensuring, for example, that
new frames of reference make sense. Demons are streams of demonic actions. As
such, they are naturally defined in Coq as a coinductive construct. Synchrony
constraints (e.g. fairness) may be defined as coinductive properties on demons,
as detailed in [2,12].

Robogram. Robograms may be defined in a completely abstract manner, without
any concrete code, in ourCoqmodel. They consist of an actual algorithm pgm that
represents the consideredprotocol, takinga spectrumas input and returninga loca-
tion, anda compatibilitypropertypgm_compat stating that target locations are the
same if equivalent spectra are given (for some equivalence on spectra).

Record robogram := {
pgm :> Spect.t → Location.t;
pgm_compat : Proper (Spect.eq � Location.eq) pgm }.

3 Case Study: A Universal Gathering for Mobile
Oblivious Robots

The gathering problem is one of the benchmarking tasks in mobile robot net-
works, and has received a considerable amount of attention (see [15] and refer-
ences herein). The gathering tasks consists in all robots (considered as dimen-
sionless points in a Euclidean space) reaching a single point, not known before-
hand, in finite time. A foundational result [20] shows that in the SSYNC model,
no oblivious deterministic algorithm can solve gathering for two robots without
additional assumptions [17]. This result can be extended [12] to the bivalent
case, that is when an even number of robots is initially evenly split in exactly
two locations. On the other hand, it is possible to solve gathering if n > 2 robots
start from initially distinct positions, provided robots are endowed with multi-
plicity detection: that is, a robot is able to determine the number of robots that
occupy a given position.

While probabilistic solutions [16,20] can cope with arbitrary initial config-
uration (including bivalent ones), most of the deterministic ones in the litera-
ture [15] assume robots always start from distinct locations (that is, the initial
configuration contains no multiplicity points). Some recent work was devoted
to relaxing this hypothesis in the deterministic case. Dieudonné and Petit [14]
investigated the problem of gathering from any configuration (that is, the ini-
tial configuration can contain arbitrary multiplicity points): assuming that the
number of robots is odd (so, no initial bivalent configuration can exist), they
provide a deterministic algorithm for gathering starting from any configuration.
Bouzid et al. [6] improved the result by also allowing an even number of robots
to start from configurations that contain multiplicity points (albeit the initial
bivalent configuration is still forbidden due to impossibility results in this case).

Certified Universal Gathering in R
2 193

In that sense, the algorithm of Bouzid et al. [6] is universal in the sense that it
works for all gatherable configurations, including those with multiplicity points.
The assumption that robots have a common chirality was removed in a context
where robots may fail-stop in an unexpected manner [7].

A general description on how to characterise a solution to the problem of
gathering has been given in [12]. We specialise it here to take into account that
an initial configuration is not bivalent. This is straightforward: any robogram r
is a solution w.r.t. a demon d if for every configuration cf that is not bivalent
(that is ¬ forbidden), there is a point pt to which all robots will eventually
gather (and stay) in the execution defined by r and d, and starting from cf.

We present a new gathering algorithm for robots operating in a continuous
space that (i) can start from any configuration that is not bivalent, (ii) does not
put restriction on the number of robots, (iii) does not assume that robots share
a common chirality. We give very strong guarantees on the correctness of our
algorithm by proving formally that it is correct, using the Coq proof assistant.

Definition solGathering (r : robogram) (d : demon) :=
∀ cf, ¬ forbidden cf →
∃ pt : R2, WillGather pt (execute r d cf).

3.1 Setting and Protocol

We consider a set of nG anonymous robots that are oblivious and equipped with
global strong multiplicity detection (i.e., they are able to count the number of
robots that occupy any given position). The demon is supposed to be fair, and
the execution model is SSYNC. The space in which robots move (the set of
locations) is the real plane R

2; they do not share any common direction, nor
any chirality. Any initial configuration is accepted as long as it is not bivalent
(including those with multiplicity points).

Protocol. The protocol we propose is presented in Fig. 1. It uses multiplicity to
build the set of towers of maximal height. If there is a unique tower of maximal
height, i.e., a unique location of highest multiplicity, this location is the destina-
tion of each activated robot. Otherwise, the inhabited locations on the smallest
enclosing circle (sec) are taken into account to define a target.

Our robots enjoy strong global multiplicity detection: as noticed in Sect. 2,
the spectrum of a configuration is the multiset of all its robots’ locations. It is
clean if inhabited locations are either on the sec or at target. When it is not
clean (dirty), robots on sec (or at target) stay where they are, the others move
to the target, thus cleaning the spectrum. In a clean spectrum, activated robots
move to the target. A configuration is said to be clean if and only if its spectrum
is clean.

The important operation is thus to define a convenient target. Our target
depends on how many inhabited locations are on the sec. If there is only one,
the whole spectrum is reduced to a single location and all robots are already
gathered. When the number of towers on the sec is not equal to 3, the target is

194 P. Courtieu et al.

the center of the sec. Critical situations occur when towers on the sec define a
triangle. If it is equilateral, we cannot break the symmetry between its vertices
and the target is the center of the sec (which is also the triangle’s barycenter).
On the contrary, in all other cases we can break the symmetry and select a
particular vertex as the target. If the triangle is isosceles and not equilateral,
the target is the vertex opposite to its base. Finally if the triangle is scalene, the
target is the vertex opposite to its longest side. Let us rephrase that description in
informal pseudo-code. See Sect. 2 for its formal version, that is the Coq definition
of our algorithm. For a spectrum s, let support(s) be the set of locations in s,
let max(s) be the set of locations of maximal multiplicity in s, and let sec(s) be
the smallest enclosing circle of s. Let dest be the destination to be computed.
Remember that (0, 0) is always the location of a robot in its own frame of
reference.

Fig. 1. Gathering protocol.

Fig. 2. Reachability graph for the categories of spectra. For clarity’s sake, self loops
are omitted. The boxed area contains the triangle cases, all linked to Maj.

Certified Universal Gathering in R
2 195

Phases of the algorithm. We characterise several cases of the protocol, called
phases, which depend on what is perceived from the configuration, and which
are mutually exclusive in an execution: Gathered robots, the Majority case where
there is a unique tower of maximal height, the three triangle cases (Equilateral,
Isosceles, Scalene), and finally the General case. To ease the proof of termination,
we chose to consider differently an instance of the general case, namely the
Diameter case where support(s) ∩ sec(s) contains exactly two points (in which
case they are a diameter of the sec).

For all cases that need the computation of a target, we moreover distinguish
between clean and dirty situations. Note that from any dirty version of a case, the
only two other reachable cases are its clean version and Majority. This leaves us
with twelve phases: Gathered (the success situation), Majority (Maj), Diameter
clean (Dc) and dirty (Dd), Equilateral, Isosceles, Scalene clean (Ec, Ic, Sc) and
dirty (Ed, Id, Sd), and General clean (Gc) and dirty (Gd). Figure 2 summarises
the reachability relation between cases.

3.2 Formal Description, and Key Points to Prove Correctness

Coq implementation of the algorithm. The type of locations is R
2 (noted R2.t

and defined as R*R from the type R of the Coq library on axiomatic reals). The
robogram as described in Sect. 3.1 is:

Definition gatherR2_pgm (s : Spect.t) : R2.t :=
match Spect.support (Spect.max s) with (* max height towers?*)
| nil ⇒ (0, 0) (* None? only happens when no robot *)
| pt :: nil ⇒ pt (* Unique highest tower? go there *)
| _ :: _ :: _ ⇒ (* Otherwise *)

if is_clean s then target s else (* All on SEC/target ? *)
if (0, 0) ∈ (SECT s) then (0, 0) else target s

end.

Target is defined as follows, in critical situations where exactly three inhab-
ited positions are on the SEC target depends on the shape of the triangle (here
isosceles excludes equilateral):

Function target_triangle (pt1 pt2 pt3 : R2.t) : R2.t :=
match classify_triangle pt1 pt2 pt3 with(* Kind of triangle? *)
| Equilateral ⇒ barycenter_3_pts pt1 pt2 pt3(* To barycenter *)
| Isosceles p ⇒ p
| Scalene ⇒ opposite_of_max_side pt1 pt2 pt3
end.

Function target (s : Spect.t) : R2.t :=
match on_SEC (Spect.support s) with (* inhabited loc. on SEC?*)
| nil ⇒ (0, 0) (* None? *)
| pt :: nil ⇒ pt (* Unique loc. on SEC? ⇒ gathered! *)
| pt1 :: pt2 :: pt3 :: nil ⇒ target_triangle pt1 pt2 pt3
| _ ⇒ center (SEC l) (* Gen. case: center of SEC *)
end.

196 P. Courtieu et al.

Note that this is almost exactly an actual robot code. The instantiated robo-
gram (in the sense of Sect. 2) binding together this code and its compatibility
property is defined under the name gatherR2.

Some properties are fundamental in our proof that the algorithm actually
solves Gathering. Namely, that robots move towards the same location, that
a legal configuration cannot evolve into a forbidden (that is: bivalent) one, and
finally that the configuration is eventually reduced to a single inhabited location.

Expressing the robogram in the global frame of reference. The first step towards
reasoning about a robogram is to leave the robots local frames of reference and
rephrase the robogram in the demon global frame of reference. This step is always
left implicit in pen-and-paper proofs but it is actually not trivial: it relies on the
fact that the protocol uses only geometrical concepts that are invariant under the
allowed changes of frame, here scaling, rotation, and translation. Using a formal
framework ensures that this overlooked proof is indeed done and correct. This
in turn gives a global version of the round function and creates a global view of
the configuration after one round, expressed by Lemma round_simplify.

Robots that move go to the same location. Note that by robots “that move”
we explicitly mean robots that change location during the round, not robots
that are activated (some of which may not move). Robots enjoy global strong
multiplicity detection, hence they all detect the number of highest towers, they
share the same notion of sec, and they all compute the same number of towers
on the sec. Moreover, in both non-equilateral triangle cases, pointing out the
longest side or the base side is not ambiguous as relative distances compare
the same way for all robots. Hence, cleanliness and targets are the same for all
activated robots, which means that computed destinations are the same.

Further note that we actually just showed that all moving robots are in
the same phase of the protocol, and that the resulting destination does not
depend on the frame of reference of the robot. This is formalised by Theorem
same_destination which states that two robots id1 and id2 whose locations
change during the round (moving) compute the same destination location (in the
demon’s frame of reference). The 20 line long formal proof is developed by case
on the robogram phases, and on the code structure; it uses round_simplify.

Theorem same_destination : ∀ da cf id1 id2,
In id1 (moving gatherR2 da cf)
→ In id2 (moving gatherR2 da cf)
→ round gatherR2 da cf id1 = round gatherR2 da cf id2.

Bivalent positions are unreachable. We require that the initial configuration does
not consist of exactly two towers with the same multiplicity. One of the key points
ensuring this algorithm’s correctness is that there is no way to reach a position
that is bivalent from a position that is not bivalent. Consider two configurations
C0 and C1, C1 being bivalent and resulting from C0 by some round. Let us denote
by |x|0 (resp. |x|1) the multiplicity of location x in C0 (resp. in C1). By definition,

Certified Universal Gathering in R
2 197

C1 consists of two locations l1 and l2 such that |l1|1 = |l2|1 = nG
2 . As all moving

robots go to the same location, we can assume without loss of generality that
robots moved to, say, l1, adding to its original multiplicity |l1|0 (which might
have been 0). Since the configuration is now bivalent, this means that l2 was
inhabited in C0 and such that |l2|0 ≥ nG

2 (some robot in l2 might have moved to
l1). There cannot have been only one inhabited location l distinct from l2 before
the round because either |l|0 = |l2|0 = nG

2 but we supposed the configuration was
not bivalent, or |l|0 < nG

2 < |l2|0 but then by phase Majority robots would have
moved to l2 and not l1. Hence C0 consisted of l2 and several inhabited li (i �= 2)
amongst which the robots not located in l2 were distributed, but then none of
the li could have held more than nG

2 − 1 robots, hence phase Majority should
have applied and robots should have moved to l2, a contradiction. Interestingly,
this argument makes no reference to the dimension of the space. Hence we were
able to reuse the Coq script developed earlier for [11] (and thus in our libraries)
to prove this statement. Theorem never_forbidden says that for all demonic
action da and configuration cf, if cf is not bivalent (i.e. not forbidden), then
the configuration after the round is not bivalent.

Theorem never_forbidden:
∀ da cf, ¬forbidden cf → ¬forbidden (round gatherR2 da cf).

Eventually no-one moves. Termination of the algorithm is ensured by exhibiting
a measure that decreases at each round involving a moving robot for a well-
founded ordering. We then conclude using the assumption that the demon is fair.

To define the measure, we associate a weight to each of the protocol’s
phases (see Sect. 3.1) as follows: Maj �→ 0,Dc �→ 1,Dd �→ 2,Ec, Ic, Sc
�→ 3,Ed, Id, Sd �→ 4,Gc �→ 5,Gd �→ 6. Note that these weights decrease along
the arcs of Fig. 2. We may now map any configuration Ci to a (pi,m

pi

i) ∈ N×N

such that pi is the weight of the phase for the moving robots, and:

– m0
i is the number of robots that are not at the unique location of maximal

multiplicity, and

– mpi>0
i is

{
- �robots that arenot at target if Ci is clean, or
- �robots that areneither at target nor on sec ifCi is dirty.

Let >N be the usual ordering on natural numbers, the relevant ordering � is
defined as the lexicographic extension of >N on pairs: (p,m) � (p′,m′) iff either
p >N p′, or p =N p′ and m >N m′. It is well-founded since >N is well-founded.

We show that for any round on a configuration Ck resulting in a different con-
figuration Ck+1 (that is, some robots have moved), (pk,m

pk

k) � (pk+1,m
pk+1
k+1),

hence proving that eventually there is no more change in successive configura-
tions. We name lt_config this ordering relation on configurations, and prove
that it is well-suited:

Theorem round_lt_config: ∀ da conf, ¬ forbidden conf
→ moving gatherR2 da conf �= nil
→ lt_config (round gatherR2 da conf) conf.

198 P. Courtieu et al.

The theorem stating the correctness of our robogram is then simply: for all
demon d that is fair, gatherR2 is a solution with reference to d.

Theorem Gathering_in_R2: ∀ d, Fair d → solGathering gatherR2 d.

The proof is led by well-founded induction on the lt_config relation. If all
robots are gathered, then it is done. If not, by fairness some robots will have
to move, thus a robot will be amongst the first to move. (Formally, this is an
induction using fairness.) We conclude by using the induction hypothesis (of
our well-founded induction) as this round decreases the measure on configura-
tions. This proof of the main theorem is interestingly small as it is only 20 lines
long. The whole file dedicated to specification and certification of our algorithm
(Algorithm.v) consists of 478 lines of definitions, specification and intermediate
lemmas, and 2836 lines of actual proof.

4 Discussion and Perspectives

The Distributed Computing community is known to have fundamental algorithms
tightly coupledwith their proof of correctness.Themobile robot setting is no excep-
tion, as the minimal hypotheses a protocol must make to solve a given problem are
extremely difficult to identify without actually writing the corresponding correct-
ness proofs (that is, an intuitive approach is often detrimental to the correctness of
the result to be established, as recent errors found in the literature proved [1]). In
a formal proof approach to obtain mechanically certified protocols, our framework
and methodology clearly contributes to two main phases in a verified development.
Firstly the specification phase, where all objects, definitions, algorithms, state-
ments and expected properties are expressed without any ambiguity, in a higher
order type theoretic functional environment. The lack of ambiguity is a key fea-
ture to enable the early detection of inconsistencies between the problem specifica-
tion, the algorithmic proposal, and the execution model. Secondly the proof phase,
where properties are proved to hold for the relevant executions. This phase is of
course more demanding on the expertise side, so our goal when constructing the
framework was to provide useful libraries and proof techniques that can be reused
in other contexts, enabling more automation to the protocol designer. Considering
reusability, useful assets brought by the current work are the notions of gather-
ing, SSYNC demons, etc., developments on geometry in R

2 and smallest enclosing
circles, and the proof of never_forbidden [11]. Those will most likely prove use-
ful in future developments. When developing the protocol for our case study, we
decided to modify the protocol code several times, either to fix a newly discovered
bug, or to ease the writeup of the proofs. In such a setting, correcting the algorithm
amounts to modifying the algorithm definition, and replaying the proofs certifica-
tion process after adapting the proof scripts written previously. The mechanised
verification of the proofs makes this process fast and trustworthy, compared to a
purely handcrafted approach.

Perspectives. A next step would be to add more dimensions to the considered
Euclidean space. As the framework is highly parametric, specifying another space

Certified Universal Gathering in R
2 199

in which robots move is not a dramatic change: the type of locations is a para-
meter, it is left abstract throughout the majority of the formalism, in which a
concrete instance is not needed. Another interesting evolution would be to take
into account the more general ASYNC model, that is when Look-Compute-Move
cycles and stages are not atomic anymore. However, describing ASYNC behav-
iours in Coq may nonetheless add to the intricacy of formal proofs because of
abitrary interleaving, and relevant libraries to ease the task of the developer will
have to be provided accordingly.

References

1. Adamek, J., Nesterenko, M., Tixeuil, S.: Evaluating and optimizing stabilizing
dining philosophers. In: 11th European Dependable Computing Conference, EDCC
2015, Paris, France, September 7–11, pp. 233–244. IEEE (2015)

2. Auger, C., Bouzid, Z., Courtieu, P., Tixeuil, S., Urbain, X.: Certified impossibil-
ity results for byzantine-tolerant mobile robots. In: Higashino, T., Katayama, Y.,
Masuzawa, T., Potop-Butucaru, M., Yamashita, M. (eds.) SSS 2013. LNCS, vol.
8255, pp. 178–190. Springer, Heidelberg (2013)

3. Berard, B., Millet, L., Potop-Butucaru, M., Thierry-Mieg, Y., Tixeuil, S.: Formal
verification of Mobile Robot Protocols. Technical report, LIP6, LINCS, IUF, May
2013

4. Bertot, Y., Castéran, P.: Interactive Theorem Proving and Program Development.
Coq’Art: the calculus of inductive constructions. Springer, Heidelberg (2004)

5. Bonnet, F., Défago, X., Petit, F., Potop-Butucaru, M., Tixeuil, S.: Discovering and
assessing fine-grained metrics in robot networks protocols. In: 33rd IEEE Interna-
tional Symposium on Reliable Distributed Systems Workshops, SRDS Workshops
2014, Nara, Japan, October 6–9, 2014, pp. 50–59. IEEE (2014)

6. Bouzid, Z., Das, S., Tixeuil, S.: Gathering of mobile robots tolerating multiple crash
faults. In: ICDCS, pp. 337–346. IEEE Computer Society, Philadelphia, Pennsylva-
nia, USA, July 2013

7. Bramas, Q., Tixeuil, S.: Wait-free gathering without chirality. In: Scheideler, C.
(ed.) Structural Information and Communication Complexity. LNCS, vol. 9439,
pp. 313–327. Springer, Heidelberg (2015). doi:10.1007/978-3-319-25258-2 22

8. Bérard, B., Courtieu, P., Millet, L., Potop-Butucaru, M., Rieg, L., Sznajder, N.,
Tixeuil, S., Urbain, X., Methods, F.: Formal method for mobile robots: current
results and open problems. Int. J. Inf. Soci. 7(3), 101–114 (2015). Invited Paper

9. Castéran, P., Filou, V.: Tasks, types and tactics for local computation systems.
Stud. Inf. Univers. 9(1), 39–86 (2011)

10. Coquand, T., Paulin, C.: Inductively defined types. In: Martin-Löf, P., Mints, G.
(eds.) COLOG-88. LNCS, vol. 417, pp. 50–56. Springer, Heidelberg (1990)

11. Courtieu, P., Rieg, L., Tixeuil, S., Urbain, X.: A Certified Universal Gathering
Algorithm for Oblivious Mobile Robots. CoRR, abs/1506.01603 (2015)

12. Courtieu, P., Rieg, L., Tixeuil, S., Urbain, X.: Impossibility of gathering, a certifi-
cation. Inf. Process. Lett. 115, 447–452 (2015)

13. Devismes, S., Lamani, A., Petit, F., Raymond, P., Tixeuil, S.: Optimal grid explo-
ration by asynchronous oblivious robots. In: Richa, A.W., Scheideler, C. (eds.) SSS
2012. LNCS, vol. 7596, pp. 64–76. Springer, Heidelberg (2012)

14. Dieudonné, Y., Petit, F.: Self-stabilizing gathering with strong multiplicity detec-
tion. Theor. Comput. Sci. 428, 47–57 (2012)

http://dx.doi.org/10.1007/978-3-319-25258-2_22

200 P. Courtieu et al.

15. Flocchini, P., Prencipe, G., Santoro, N.: Distributed Computing by Oblivious
Mobile Robots. Synthesis Lectures on Distributed Computing Theory. Morgan &
Claypool Publishers, San Rafeal (2012)

16. Izumi, T., Izumi, T., Kamei, S., Ooshita, F.: Feasibility of polynomial-time ran-
domized gathering for oblivious mobile robots. IEEE Trans. Parallel Distrib. Syst.
24(4), 716–723 (2013)

17. Izumi, T., Souissi, S., Katayama, Y., Inuzuka, N., Défago, X., Wada, K., Yamashita,
M.: The gathering problem for two oblivious robots with unreliable compasses.
SIAM J. Comput. 41(1), 26–46 (2012)

18. Millet, L., Potop-Butucaru, M., Sznajder, N., Tixeuil, S.: On the synthesis of mobile
robots algorithms: the case of ring gathering. In: Felber, P., Garg, V. (eds.) SSS
2014. LNCS, vol. 8756, pp. 237–251. Springer, Heidelberg (2014)

19. Sangiorgi, D.: Introduction to Bisimulation and Coinduction. Cambridge Univer-
sity Press, Cambridge, UK (2012)

20. Suzuki, I., Yamashita, M.: Distributed anonymous mobile robots: formation of
geometric patterns. SIAM J. Comput. 28(4), 1347–1363 (1999)

Non-local Probes Do Not Help
with Many Graph Problems

Mika Göös1, Juho Hirvonen2, Reut Levi3(B), Moti Medina3,
and Jukka Suomela2

1 Department of Computer Science, University of Toronto, Toronto, Canada
mika.goos@mail.utoronto.ca

2 Helsinki Institute for Information Technology HIIT,
Department of Computer Science, Aalto University, Espoo, Finland

{juho.hirvonen,jukka.suomela}@aalto.fi
3 MPI for Informatics, Saarbrücken, Germany

{rlevi,mmedina}@mpi-inf.mpg.de

Abstract. This work bridges the gap between distributed and cen-
tralised models of computing in the context of sublinear-time graph algo-
rithms. A priori, typical centralised models of computing (e.g., parallel
decision trees or centralised local algorithms) seem to be much more
powerful than distributed message-passing algorithms: centralised algo-
rithms can directly probe any part of the input, while in distributed
algorithms nodes can only communicate with their immediate neigh-
bours. We show that for a large class of graph problems, this extra
freedom does not help centralised algorithms at all: efficient stateless
deterministic centralised local algorithms can be simulated with efficient
distributed message-passing algorithms. In particular, this enables us to
transfer existing lower bound results from distributed algorithms to cen-
tralised local algorithms.

1 Introduction

A lot of recent work on efficient graph algorithms for massive graphs can be
broadly classified in one of the following categories:

1. Probe-query models [1,3,6–8,15,20,25]: Here typical applications are related
to large-scale network analysis: we have a huge storage system in which the
input graph is stored, and a computer that can access the storage system.
The user of the computer can make queries related to the properties of the
graph. Conceptually, we have two separate entities: the input graph and a
computer. Initially, the computer is unaware of the structure of the graph,
but it can probe it to learn more about the structure of the graph. Typically,
the goal is to answer queries after a sublinear number of probes.

The full version of this paper can be found in http://arxiv.org/abs/1512.05411.

c© Springer-Verlag Berlin Heidelberg 2016
C. Gavoille and D. Ilcinkas (Eds.): DISC 2016, LNCS 9888, pp. 201–214, 2016.
DOI: 10.1007/978-3-662-53426-7 15

http://arxiv.org/abs/1512.05411

202 M. Göös et al.

2. Message-passing models [5,12,13,17,18,21,23,26]: In message-passing mod-
els, typical applications are related to controlling large computer networks:
we have a computer network (say, the Internet) that consists of a large num-
ber of network devices, and the devices need to collaborate to solve a graph
problem related to the structure of the network so that each node knows its
own part of the solution when the algorithm stops.

Conceptually, each node of the input graph is a computational entity. Ini-
tially, the nodes are only aware of their own identity and the connections to
their immediate neighbours, but the nodes can exchange messages with their
neighbours in order to learn more about the structure of the graph. Typically,
the goal is to solve graph problems in a sublinear number of communication
rounds.

Example: Vertex Colouring. Using the task of finding a proper vertex colouring
as an example, the external behaviour of the algorithms can be described as
follows:

1. Probe-query models: The user can make queries of the form “what is the
colour of node v?” The answers have to be consistent with some fixed feasible
solution: for example, if we query the same node twice, the answer has to
be the same, and if we query two adjacent nodes, their colours have to be
different.

2. Message-passing models: The local output of node v is the colour of node v.
The local outputs constitute some feasible solution: the local outputs of two
adjacent nodes have to be different.

Message-Passing Models and Locality. From our perspective, the key difference
between probe-query models and message-passing models is that the structure
of the graph constrains the behaviour of message-passing algorithms, but not
probe-query algorithms:

1. Probe-query models: Given any query v, the algorithm is free to probe any
parts of the input graph. In particular, it does not need to probe node v or
its immediate neighbours.

2. Message-passing models: Nodes can only exchange messages with their imme-
diate neighbours. For example, in 1 communication round, a node can only
learn information related to its immediate neighbours. More generally, after
t communication rounds, in any message-passing algorithm, each node can
only be aware of information that was initially available in its radius-t neigh-
bourhood.

In essence, efficient message-passing algorithms have a high locality : if the run-
ning time of a message-passing algorithm is t, then the local output of a node
v can only depend on the information that was available within its radius-t
neighbourhood in the input graph.

Non-local Probes Do Not Help with Many Graph Problems 203

1.1 Trivial: From Message-Passing to Probe-Query

One consequence of locality is that we can fairly easily simulate efficient message-
passing algorithm in probe-query models (at least for deterministic algorithms).

If we have a message-passing algorithm A with a running time of t for, say,
graph colouring, we can turn it easily into a probe-query algorithm A′ for the
same problem: to answer a query v, algorithm A′ simply gathers the radius-t
neighbourhood of node v and simulates the behaviour of A in this neighbourhood.

In particular, if t is a constant, and the maximum degree of the input graph
is bounded by a constant, the probe complexity of A′ is also bounded by a
constant.

1.2 Impossible: From Probe-Query to Message-Passing

At first, it would seem that the converse cannot hold: probe-query algorithms can
freely probe remote parts of the network, and therefore they cannot be simulated
with efficient message-passing algorithms.

Indeed, it is easy to construct artificial graph problems that are trivial to
solve in probe-query models in constant time and that take linear time to solve in
the message-passing models. Consensus-like problems provide a simple example.

In the binary consensus problem, the nodes of the network are labeled with
inputs 0 and 1, all nodes have to produce the same output, and the common out-
put has to be equal to the input of at least one node. In a probe-query algorithm,
we can simply always follow the local input of node number 1: regardless of the
query v, we will probe node 1, check what was its local input, and answer accord-
ingly. It is straightforward to see that any message-passing algorithm requires
linear time (consider three cases: a path with inputs 00 . . . 0, a path with inputs
11 . . . 1, and a path with inputs 00 . . . 011 . . . 1).

1.3 Our Contribution: Remote Probes Are of Little Use

While the consensus problem demonstrates that the possibility to probe remote
parts of the network makes probe-query models strictly stronger than message-
passing models, there seem to be few natural graph problems in which remote
probes would help.

In this work, we formalise this intuition. We show that for a large class of
graph problems, remote probes do not give probe-query algorithms any advan-
tage over message-passing algorithms.

Among others, we will show that for a large family of problems which also
includes the so-called locally checkable problems (LCL) [21], probe-query algo-
rithms in Rubinfeld et al.’s model [25] can be efficiently simulated with message-
passing algorithms in Linial’s model [17].

Corollary: Probe-Query Lower Bounds. While lower-bound results in probe-
query models are scarce, there is a lot of prior work on lower-bound results in
message-passing models. Indeed, the very concept of locality makes it relatively

204 M. Göös et al.

easy to derive lower-bound results for message-passing models: a problem cannot
be solved in time t if there is at least one graph in which the output of some
node necessarily depends on information that is not available in its radius-t
neighbourhood.

Our simulation result makes it now possible to take existing lower bounds
for message-passing models and use them to derive analogous lower bounds for
probe-query models.

1.4 Related Work

While both message-passing models and probe-query models have been stud-
ied extensively, it seems that there is little prior work on their connection.
The closest prior work that we are aware of is the 1990 paper by Fich and
Ramachandran [10]. They show a result similar to our main theorem for one
graph problem—graph colouring in cycles—with problem-specific arguments.
While our techniques are different, our main result can be seen as a general-
isation of their work from a single graph problem to a broad family of graph
problems.

On the side of probe-query algorithms, our main focus is on the CentLOCAL
model [25]. Algorithms in the CentLOCAL model are abundant, and include algo-
rithms for various graph problems such as maximal matching, approximated max-
imum matching1, approximated maximum weighted matching, graph colouring,
maximal independent set, approximated maximum independent set, approximated
minimum dominating set, and spanning graphs [1,3,4,6–9,14–16,19,20,24,25].
However, lower bounds in this model are almost nonexistent. In fact, the only
lower bound shown directly in the centralised local model is for the spanning
graph problem in which the CentLOCAL algorithm computes a “tree-like” sub-
graph of a given bounded degree graph [14,15].

1.5 Overview

We start this work by introducing the models of computing that we study
(Sect. 2). The key models are the LOCAL model, which is a message-passing
model introduced by Linial [17], and the CentLOCAL model (centralised local
model, a.k.a. local computation algorithms), which is a probe-query model intro-
duced by Rubinfeld et al. [25]. We will also use parallel decision trees as an
intermediate model. In Sect. 3 we show our main result, a simulation between
the LOCAL model and parallel decision trees. In Sect. 4 we show that query-
order-oblivious deterministic CentLOCAL algorithms are equivalent to parallel
decision trees. By applying our main result we provide several new lower bounds
in the CentLOCAL model. In Sect. 5 we give an explicit simulation which trans-
fers CentLOCAL algorithms (that are allowed to probe anywhere in the graph)
1 We note that in [16] the algorithm for approximated maximum matching takes the

advantage of remote probes. However, since in this algorithm there is an underly-
ing assumption that the input graph is connected, our simulation result cannot be
applied in order to eliminate the remote probes.

Non-local Probes Do Not Help with Many Graph Problems 205

into CentLOCAL algorithms which, on each query, are allowed to probe the graph
only in a limited local neighborhood.

2 Preliminaries

In this section we describe the various models we discuss in this paper. We focus
on problems over labeled graphs defined as follows. Let P denote a computational
problem over labeled graphs. A solution for problem P over a labeled graph G
is a function of which the domain and range depend on P and G. For example,
in the maximal independent set problem, a solution is an indicator function
I : V → {0, 1} of a maximal independent set in G. Let sol(G,P) denote the set
of solutions of problem P over the labeled graph G.

2.1 LOCAL: Message-Passing Algorithms

We use the standard LOCAL model [17,23] as our starting point. The nodes
communicate in synchronous rounds, exchanging messages with all neighbours
and doing local computation. Since we are comparing the power of non-local
probes, we assume that the size of the graph is known to the nodes, as it usually
is in the probe models.

The LOCAL model can be defined by the fact that in t communication rounds
a node can learn exactly its radius-t neighbourhood. A distributed algorithm
with running time t is then a function from the set of possible local neighbour-
hoods to the set of outputs.

2.2 ParallelDecTree: Parallel Decision Trees

We use parallel decision trees, a simple probe model, to connect the LOCAL
model and the CentLOCAL model.

Fix an n. Our unknown input graph G = (V,E) will have n nodes, labelled with
V = [n] := {1, 2, . . . , n}. We also refer to the labels as identifiers. Let N(v) ⊆ V
denote the set of neighbours of node v. For our purposes, a decision tree T of depth
t is an algorithm that can make at most t probes: for each probe v ∈ V , tree T will
learn N(v). In words, a decision tree can point at any node of G and ask for a list
of its neighbours. After t probes, tree T produces an output; we will write T (G)
for the output of decision tree T when we apply it to graph G.

We study graph problems in which the goal is to find a feasible labelling
f : V → L of the nodes of our input graph G. We say that a graph problem P
can be solved with t(n) probes in parallel if there are decision trees T1, T2, . . . , Tn

of depth t(n) such that f : v �→ Tv(G) is a feasible solution to problem P for
any input graph G. That is, we have n parallel decision trees such that tree Tv

computes the output for node v and each tree makes at most t(n) probes.
The probe complexity of problem P is the smallest t(n) such that P can be

solved with t(n) probes in parallel.

206 M. Göös et al.

2.3 CentLOCAL: Centralised Local Algorithms

We adopt the definition of the centralised local model (CentLOCAL) as formalised
in [25]. In this paper we focus on graph computation problems in which the
algorithm is given a probe access to the input graph G through a graph oracle
OG. A probe to OG is an identifier of a vertex v ∈ V , in turn, OG returns a
list of the identifiers of the neighbors of v. We assume that for a graph of size
|V | = n, the set of identifiers is [n].

A CentLOCAL algorithm A for a computation problem P is a (possibly ran-
domised) algorithm A with the following properties. Algorithm A is given probe
access to the adjacency list oracle OG for the input graph G, tape of random
bits, and local read-write computation memory. When given an input (query)
x, algorithm A returns the answer for x. This answer depends only on x, G,
and the random bits. The answers given by A to all possible queries must be
consistent; namely, all answers constitute some valid solution to P.

The probe complexity is the maximum number of probes that A makes to G
in order to compute an answer for any query. The seed length is the length of
the random tape. The space complexity is the local computation memory used
by A over all queries (not including the seed length). The success probability is
the probability that A consistently answers all queries.

We say that a CentLOCAL algorithm is stateless if its space complexity is
zero. We say that a CentLOCAL algorithm is state-full if it is not stateless. With
this terminology, we can characterise parallel decision trees as follows:

Fact 1. The deterministic stateless CentLOCAL model is identical to the deter-
ministic parallel decision tree model 2.

2.4 NICE Graph Problems

We say that a problem P defined over labeled graphs is NICE if the following
holds:

1. There is a bound on the maximum degree Δ = o(log n).
2. The problem remains invariant under permutation of the labels. Namely, the

set of solutions sol(G,P) is the same for any permutation of the labels of
V (G).

3. For every f ∈ sol(G,P) and every connected component C (maximal con-
nected graph) of G, f restricted to C is in sol(C,P).

We note the family of NICE problems includes the so-called LCL problems
(locally checkable labellings) on bounded-degree graphs [21].

2 One can also consider a randomised ParallelDecTree model in which every tree has
access to an independent source of randomness. We note that the randomised state-
less CentLOCAL model is stronger than this model since the algorithm has access to
the same random seed throughout its entire execution.

Non-local Probes Do Not Help with Many Graph Problems 207

Examples of NICE problems include minimum spanning forest, maximal inde-
pendent sets, minimal dominating sets, minimal vertex covers, and vertex colour-
ing with Δ + 1 colours. With a straightforward generalisation, we can also con-
sider problems in which the goal is to label edges (e.g., maximal matchings and
edge colourings) and problems in which the input graph is labeled (e.g., stable
matchings).

3 Simulating Probes in the LOCAL Model

In this section we prove the following theorem.

Theorem 1 (ParallelDecTree to LOCAL). Any NICE problem that can be solved
in the parallel decision tree model with probe complexity t(n) can be solved in time
t(N) in the LOCAL model, where N = Θ(nlog n), provided that t(n) = o(

√
log n).

Overview of the Proof. Fix an input size n ∈ N. In order to solve the graph problem
on an n-node graph G in the LOCAL model we simulate the decision tree T not on
G directly, but on a much larger graph G ∪ H that is the disjoint union of G and
some virtual graph H. The structure of the virtual graph H is agreed upon ahead of
time by all the nodes participating in the simulation. Before we invoke the decision
tree on G∪H, however, we first reshuffle its identifiers randomly. The key idea is to
show that this reshuffling trick fools the decision tree: if we simulate T on a node v
and T probes some node outside of v’s local neighbourhood, then the probe lands
in H with overwhelming probability. Since all nodes in G know the structure of H,
they can answer such “global” probes consistently. Finally, we argue that there is
some fixed choice of randomness that makes the simulation succeed on all graphs
on n nodes and degree bounded by Δ. This makes the simulation deterministic.

Proof (Proof of Theorem 1.) Let H be any graph on the vertex set [N] � [n] with
degree bounded by Δ. This graph remains fixed and does not depend on the n-node
input graphG. In this sense, all the nodes in the simulation know the structure ofH.
Let π : [N] → [N] be a random permutation. Again, all the nodes in the simulation
are assumed to agree on the same π. (The simulation can be thought of as being
defined with respect to the outcomes of some public random coins.)

During the simulation we will always present the decision tree with a rela-
belled version of the graph G ∪ H where a node v has identifier π(v). That is,
when T probes an identifier w, the simulation interprets this as probing π−1(w)
and when we respond to T with a node v we relabel its identifier as π(v). Note
that each node in G, knowing π, can perform this translation locally.

A node v ∈ V (G) starts its simulation by invoking the decision tree on π(v)
with the hope of answering its t(N) probes based on the t(N)-neighbourhood of
v in G and knowledge of H. During this attempt we maintain a set of discovered
nodes Q that contains all the nodes whose relabelled versions have been sent
back to T in response to a probe. Note that |Q| ≤ k where k � 1+(Δ+1) · t(N)
is an upper bound on the total number of inspections of π performed by the
simulation. Initially Q = {v}, so that only v is discovered. We will ensure that

208 M. Göös et al.

the following invariant holds throughout the simulation: After the s-th step every
member of Q is either in H or at most at distance s from v. Suppose T probes a
relabelled identifier w corresponding to a node u = π−1(w). We have two cases:

Local probe, u ∈ Q. In this case we are always successful: by the invariant,
the neighbours of u are known to v so we can add them to Q and return their
relabelled versions to T .

Global probe, u /∈ Q. Two sub-cases depending on whether u ∈ V (H):

– u ∈ V (H) : Success! The structure of H is known to v so we can add the
neighbours of u to Q and return their relabelled versions to T .

– u /∈ V (H) : Here we simply say that the simulation has failed and we termi-
nate the simulation. (Note that by this convention we may fail even if u is in
the t(N)-neighbourhood of v; however this convention helps us maintain the
invariant.)

When the decision tree returns an output for π(v), we simply return the same
output for v.

Next, we analyse the probability that our simulation fails when invoked on a
particular node and a particular input graph G. Suppose we need to respond to
a global probe sometime in our simulation. That is, the probe is to a node whose
relabelled identifier is w and the node has not been discovered yet, i.e., w /∈ π(Q).
By the principle of deferred decisions,we can think of the nodeu = π−1(w) as being
uniformly distributed among the undiscovered nodes [N] � Q. Hence the failure
probability (conditioned on any outcome of π(Q)) is Pr[u ∈ V (G)] = |V (G)�Q|

|[N]�Q| ≤
n

N−k . Consequently, by the union bound the probability that the simulation fails

at some probe step is at most k · n
N−k , which is at most n2

N for any k ≤ n/2.
Let GΔ denote the set of all n-node graphs with degree bounded by Δ. We

argue next that there is a fixed choice for π that makes the simulation succeed
on all graphs G ∈ GΔ. To this end, we note that on any simulation of T , the
final output of T depends on the query v and on at most t(N) nodes and their
adjacency relations in G ∪ H. Fix H, π and the query v and observe that any
probe in V (H) has a fixed outcome (for all possible input graphs G ∈ GΔ).
On the other hand, if we probe V (G), then the number of possible outcomes
is at most nΔ. Let H denote the set of possible probe-answer transcripts when
simulating T (v). Then, by the above, |H| ≤ nΔ·t(N). Executing our simulation
on each node (n choices), the probability that some simulation fails (each fails
with probability ≤ n2/N) is at most n · nΔ·t(N) · n2/N = n−Ω(log n) = o(1), by
yet another union bound. Thus, we can find a fixed outcome of π for which the
simulation succeeds simultaneously on all G ∈ GΔ.

It remains to point out that the output labelling f produced by the simulation
constitutes a feasible solution to the graph problem under consideration. Here it
suffices to assume that the graph problem satisfies the following property: if f is
a feasible solution for a graph G and C ⊆ G is a connected component of G, then
the restriction of f to V (C) is a feasible solution for C and that this remains so
under any relabelling of the identifiers. In particular, all NICE problems satisfy
this property.

Non-local Probes Do Not Help with Many Graph Problems 209

Remark 1 (Simulation for Approximation Algorithms). We note that for the
correctness we used a weaker property than property (3) of NICE problems. In
fact the correctness applies to any problem P such that for all n there exists
a graph H on n vertices and with maximum degree at most Δ such that for
every f ∈ sol(H ∪ G,P) we have that f restricted to G is in sol(G,P). By
taking H to be the graph with no edges we obtain that Theorem 1 can be
generalised to, for example, (1−ε)-approximated maximum (weighted) matching
and approximation of vertex covers.

4 Centralised Local Model and Parallel Decision Trees

In this section we observe that one can simulate query-order-oblivious
CentLOCAL algorithms by stateless algorithms. Recall that a deterministic state-
less CentLOCAL algorithm is a ParallelDecTree algorithm (Fact 1). Hence, the
simulation result (Theorem 1) applies to the CentLOCAL model w.r.t. query-
order-oblivious deterministic algorithms. We then summarise the obtained lower
bounds and show the optimality of several known algorithms.

4.1 Query-Order-Oblivious vs. Stateless CentLOCAL Algorithms

We say that a CentLOCAL algorithm is query-order-oblivious if the (global) solu-
tion that the algorithm computes does not depend on the input sequence of
queries. Even et al. [6] state that a stateless CentLOCAL algorithm is also query-
order-oblivious. We observe that the converse is also true, as stated next.

Observation 1. For every query-order-oblivious CentLOCAL algorithm C there
is a stateless CentLOCAL algorithm S that simulates C. Moreover, the probe
complexities of C and S are equal.

In order to verify the correctness of Observation 1, consider a stateless algorithm
S which simply invokes C with its initial state and the same random seed for
every input query.

In the full versionof this paperwe showa separationbetween stateless and state-
full CentLOCAL algorithms. Specifically, we prove that there is a linear gap in the
probe complexity between a CentLOCALwith (only) logarithmic state and a state-
less algorithm that computes a leader in a variant of the leader election problem.

4.2 CentLOCAL vs. LOCAL

Parnas and Ron [22] observed that given a deterministic LOCAL algorithm D
that performs r rounds of communication, there is a CentLOCAL algorithm C
that simulates D with probe complexity which is O(Δr). On the other hand,
as indicated in Even et al. [6], if a deterministic CentLOCAL algorithm C probes
in an r-neighborhood of each queried vertex, then there is a deterministic LOCAL
algorithm D that simulates C in r communication rounds. Theorem 1 implies

210 M. Göös et al.

that for some CentLOCAL algorithms there is a LOCAL (implicit) simulation
such that the number of communication rounds is asymptotically equal to the
probe complexity, even though the CentLOCAL algorithm probes outside of the r-
neighborhood of a queried vertex. This argument allows carrying lower bounds to
the CentLOCAL model from the LOCAL model. Specifically, Theorem 1 combined
with Fact 1 and Observation 1 implies the following theorem.

Theorem 2 (CentLocal to LOCAL). For every query-order-oblivious (or state-
less) deterministic CentLOCAL algorithm D that solves a problem P ∈ NICE
with probe complexity t(n) = o(

√
log n), there is LOCAL algorithm that solves

P by simulating D, and for which the number of rounds is at most t(N) where
N = Θ(nlog n).

As mentioned in Remark 1, the simulation also applies to several optimization
problems. In Table 1 we summarise (1) the known CentLOCAL algorithms, their
probe complexities as well as the obtained approximation ratios, and (2) corre-
sponding LOCAL lower bounds. By Theorem 2 all stated lower bounds apply to
deterministic, query-order-oblivious CentLOCAL algorithms.

Table 1. mis denotes maximal independent set, mm denotes maximal matching,
(Δ + 1)-colour denotes Δ + 1 vertex colouring, (1 − ε)-mcm denotes (1 − ε)-
approximated maximum cardinality matching, and (1 − ε)-mwm denotes (1 − ε)-
approximated maximum weighted matching. All the upper bounds presented in this
table are of algorithms which are deterministic and stateless. All the upper bounds are
presented under the assumption that Δ = O(1) and ε = O(1). For weighted graphs,
the ratio between the maximum to minimum edge weight is denoted by Γ .

Problem CentLOCAL upper bounds (deterministic, 0-space) LOCAL lower bounds

probes # rounds

mis O(log∗ n) [6] Ω(log∗ n) [17]

mm O(log∗ n) [6] Ω(log∗ n) [17]

(Δ + 1)-colour O(log∗ n) [6] Ω(log∗ n) [17]

(1− ε)-mcm poly(log∗ n) [6] Ω(log∗ n) [5,13]

(1− ε)-mwm poly(min{Γ, n/ε} · log∗ n) [6] Ω(log∗ n) [5,13]

5 Localizing Stateless CentLocal Algorithms

In this section we give a constructive, polynomial blow-up, randomised
CentLOCAL simulation (see Theorem 3). For many graph problems this sim-
ulation enables us to design a CentLOCAL algorithm that only performs “close”
probes. In the CentLOCAL model an explicit simulation is possible, since, unlike
the LOCAL and ParallelDecTree models, a CentLOCAL algorithm uses the same
random seed for all queries. So while this simulation brings closer the two models
of CentLOCAL and LOCAL, the single source of randomness that a CentLOCAL
algorithm possesses keeps the advantage to the CentLOCAL model.

Non-local Probes Do Not Help with Many Graph Problems 211

Recall that the simulation in Sect. 3 simulates a ParallelDecTree algorithm
via a distributed LOCAL algorithm. In order to prove Theorem 3 we consider
a similar simulation with the difference that now both the simulation and the
simulated algorithm are in CentLOCAL. However, the simulation has the prop-
erty that it is limited to query OG only on Q (as defined in Sect. 3). Since a
CentLOCAL is equipped with a random seed we can use a randomised simula-
tion and consequently the blow-up in the probe-complexity will be significantly
smaller. In particular, in this section we consider N = O(n4), that is, the size
of the augmented graph G ∪ H is polynomial in the size of the input graph G.
Additionally, we show that the additional random seed that is required for the
simulation is small.

This random seed is a costly resource and we try to minimize its length.
Known randomised implementations of greedy algorithms in the CentLOCAL
domain require explicit random ordering constructions [3,24] over the vertices or
edges [3,19,20,24]. In our implementation of the simulation we use a permutation
over the labels, which is a stronger requirement than a random ordering. This
requirement comes from the fact that in the simulation each vertex has a unique
identifier and that the set of identifiers is assumed to be known. In what follows
we build on techniques by [2,11].

Theorem 3 (Explicit CentLOCAL to CentLOCAL). Let A be a query-order-
oblivious CentLOCAL algorithm that solves a NICE problem P with probe-
complexity t(n) = O(n1/4/Δ) and seed length s(n). Then, there is a
query-order-oblivious CentLOCAL algorithm B that solves P by simulating
algorithm A. Algorithm B has a probe-complexity of t(n4) and a seed length
of s(n4) + O(t(n4) · Δ · log n) and the property that it probes within a radius of
t(n4); moreover the subgraph induced on the probes of B is connected. The error
probability of B equals to the error probability of A plus O(1/n).

5.1 Preliminaries

Definition 1 (Statistical Distance). Let D1, D2 be distributions over a finite
setΩ. The statistical distance betweenD1 andD2 is ‖D1−D2‖ = 1

2

∑
ω∈Ω |D1(ω)−

D2(ω)|. Alternatively, ‖D1 − D2‖ = maxA⊆Ω

∣
∣∑

ω∈A D1(ω) − ∑
ω∈A D2(ω)

∣
∣. We

say that D1 and D2 are ε-close if ‖D1 − D2‖ ≤ ε.

Let Sn denote the set of all permutations on [n].

Definition 2. Let n, k ∈ N, and let F ⊆ Sn be a multiset of permutations. Let
ε ≥ 0. The multiset F is k-wise ε-dependent if for every k-tuple of distinct elements
(x1, . . . , xk) ∈ [n]k, the distribution (f(x1), f(x2), . . . , f(xk)), when f ∼u.a.r. F is
ε-close to the uniform distribution over all k-tuples of distinct elements of [n].

As a special case, a multiset of permutations is k-wise independent if it is k-wise
0-dependent.

We shall use the following results from previous work in the proof of The-
orem 3. The following theorem is an immediate corollary of a theorem due to
Alon and Lovett [2, Theorem 1.1].

212 M. Göös et al.

Theorem 4. Let μ be a distribution taking values in Sn which is k-wise
ε-dependent. Then there exists a distribution μ′ over permutations which is k-
wise independent, and such that the statistical distance between μ and μ′ is at
most O(εn4k).

Additionally, we build on the following construction in our CentLOCAL simu-
lation sim. This construction enables accesses to a uniform random permutation
from a k-wise ε-dependent family of permutations by using a seed of length
O(k · log n + log(1/ε)).

Theorem 5 ([11, Theorem 5.9]). There exists F ⊆ Sn, such that F is k-wise
ε-dependent. F has description length O(k ·log n+log(1/ε)), and time complexity
poly(log n, k, log(1/ε)).

5.2 Proof of Theorem 3

Let A be as in Theorem 3 and let sim denote its simulation on G∪H as described
above. Since the size of G ∪ H is N the size of the random seed required by A
is s(N). For a fixed random seed r ∈ {0, 1}s(N), a fixed query q ∈ V (G) and
a fixed permutation π ∈ SN let sim(G, r, π, q) be the indicator variable for the
event that the simulation succeeds in simulating A with random seed r on input
q where π is the permutation which is used to relabel the vertices in G ∪ H.

Let F be a family of k-wise independent permutations over [N] where k �
1 + (Δ + 1) · t(N).

Lemma 1. For every q ∈ V (G) and r ∈ {0, 1}s(N),

Pr
π∼u.a.r.F

(sim(G, r, π, q) = 0) ≤ kn

N − k

Proof. Fix r ∈ {0, 1}s(N), π ∈ SN and q ∈ V (G). As in the proof of Theorem 1
we have that Prπ∼u.a.r.SN

(sim(G, r, π, q) = 0) ≤ kn
N−k . Thus it suffices to show

that Prπ∼u.a.r.F (sim(G, r, π, q) = 0) = Prπ∼u.a.r.SN
(sim(G, r, π, q) = 0). Recall

that the simulation relabels the vertices by accessing both to π and π−1. Now
consider the sequence of inspections the simulation makes to π and π−1 by the
order they occurred.3 The first inspection to π is π(q). Then, according to the
decisions of A and the answers from OG, the simulation continues to inspect
both π and π−1 on at most k − 1 locations.

Let (v, u, b) ∈ N × N × {−1, 1} represent a single inspection and answer as
follows: If b = 1 then the interpretation is that the simulation inspects π at
index v and the answer is u and if b = −1 then the interpretation is that the
simulation inspects π−1 at v and the answer is u.

3 The construction stated in Theorem 5 computes π(v) for some v in time
poly(log n, k, log(1/ε)). This construction does not describe a time efficient way to
access π−1. As time complexity is not the focus of this paper, we implement the
inverse access in a straightforward manner.

Non-local Probes Do Not Help with Many Graph Problems 213

For a fixed G, r, π and q the sequence of (possibly adaptive) inspections and
answers is fixed. Let it be denoted by σ = (v1, u1, b1), . . . , (v�, u�, b�) where
 ≤ k.
We say that a permutation π agrees with the sequence σ iff πbi(vi) = ui for every
i ∈ [
]. Clearly, we can replace π with any permutation π′ which agrees with σ
and the outcome (failure or success) remains unchanged, that is sim(G, r, π, q) =
sim(G, r, π′, q). We say that σ is positive if bi = 1 for every i ∈ [
]. We say that a
pair of sequences σ and σ′ are equal if any permutation that agrees with σ also
agrees with σ′ and vice versa. Observe that from any sequence σ we can obtain an
equal sequence, σ′, which is positive by performing the following replacements:
If there exists j such that bj = −1 (this means that π−1(vj) = uj which is
equivalent to vj = π(uj)) then replace (vj , uj ,−1) with (uj , vj , 1). Therefore we
obtain that SN can be partitioned into equivalence classes where in each class C:
(1) all the permutations agree with some positive sequence Q of length at most
k, and (2) sim(G, r, π, q) is fixed when π is taken from C. Since for every positive
sequence σ we have Prπ∼u.a.r.F [π agrees with σ] = Prπ∼u.a.r.SN

[π agrees with σ],
we obtain the desired result.

Corollary 1. For a fixed graph G and a fixed random seed r ∈ {0, 1}s(N), the
probability that the simulation succeeds when π ∼u.a.r. F is at least 1 − O(1/n).

Let F ′ be a k-wise ε-dependent family of permutations.

Corollary 2. For a fixed graph G and a fixed random seed r ∈ {0, 1}s(N), the
probability that the simulation succeeds when π ∼u.a.r. F ′ is at least 1−O(1/n)−
O(εN4k).

Proof (Proof of Theorem 3). In the simulation we shall use the construction
from Theorem 5 to obtain a random access to a permutation π over [N] where
N = n4, using a random seed of length O(k · log N + log γ) where γ = O(nN4k)
and access time poly(log N, k, log γ). By Corollary 2 the simulation succeeds with
probability at least 1 − O(1/n) as desired.

References

1. Alon, N.: On constant time approximation of parameters of bounded degree graphs.
In: Goldreich, O. (ed.) Property Testing. LNCS, vol. 6390, pp. 234–239. Springer,
Heidelberg (2010)

2. Alon, N., Lovett, S.: Almost k-Wise vs. k-wise independent permutations, and
uniformity for general group actions. Theor. Comput. 9(15), 559–577 (2013)

3. Alon, N., Rubinfeld, R., Vardi, S., Xie, N.: Space-efficient local computation algo-
rithms. In: Proceedings of SODA, pp. 1132–1139. SIAM (2012)

4. Campagna, A., Guo, A., Rubinfeld, R.: Local reconstructors and tolerant testers
for connectivity and diameter. In: Raghavendra, P., Raskhodnikova, S., Jansen,
K., Rolim, J.D.P. (eds.) RANDOM 2013 and APPROX 2013. LNCS, vol. 8096,
pp. 411–424. Springer, Heidelberg (2013)

5. Czygrinow, A., Hańćkowiak, M., Wawrzyniak, W.: Fast distributed approximations
in planar graphs. In: Taubenfeld, G. (ed.) DISC 2008. LNCS, vol. 5218, pp. 78–92.
Springer, Heidelberg (2008)

214 M. Göös et al.

6. Even, G., Medina, M., Ron, D.: Best of Two Local Models: Local Centralized and
Local Distributed Algorithms (2014). arXiv:1402.3796

7. Even, G., Medina, M., Ron, D.: Deterministic stateless centralized local algorithms
for bounded degree graphs. In: Schulz, A.S., Wagner, D. (eds.) ESA 2014. LNCS,
vol. 8737, pp. 394–405. Springer, Heidelberg (2014)

8. Even, G., Medina, M., Ron, D.: Distributed maximum matching in bounded degree
graphs. In: Proceedings of ICDCN, pp. 1–19. ACM (2014)

9. Feige, U., Mansour, Y., Schapire, R.E.: Learning and Inference in the Presence of
Corrupted Inputs. In: Proceedings of the 28th Conference on Learning Theory, vol.
40, pp. 637–657. J. Mach. Learn. Res. (2015)

10. Fich, F.E., Ramachandran, V.: Lower bounds for parallel computation on linked
structures. In: Proceedings of SPAA, pp. 109–116. ACM Press (1990)

11. Kaplan, E., Naor, M., Reingold, O.: Derandomized constructions of k-wise (almost)
independent permutations. Algorithmica 55(1), 113–133 (2009)

12. Kuhn, F., Moscibroda, T., Wattenhofer, R.: What cannot be computed locally! In:
Proceedings of PODC, pp. 300–309. ACM Press (2004)

13. Lenzen, C., Wattenhofer, R.: Leveraging Linial’s locality limit. In: Taubenfeld, G.
(ed.) DISC 2008. LNCS, vol. 5218, pp. 394–407. Springer, Heidelberg (2008)

14. Levi, R., Moshkovitz, G., Ron, D., Rubinfeld, R., Shapira, A.: Constructing near
spanning trees with few local inspections. Random Struct. Algorithms (2016)

15. Levi, R., Ron, D., Rubinfeld, R.: Local algorithms for sparse spanning graphs.
In: Proceedings of APPROX/RANDOM, pp. 826–842. Schloss Dagstuhl-Leibniz-
Zentrum fuer Informatik (2014)

16. Levi, R., Rubinfeld, R., Yodpinyanee, A.: Local computation algorithms for graphs
of non-constant degrees. In: Proceedings of SPAA, pp. 59–61. ACM Press (2015)

17. Linial, N.: Locality in distributed graph algorithms. SIAM J. Comput. 21(1), 193–
201 (1992)

18. Lynch, N.A.: Distributed Algorithms. Morgan Kaufmann Publishers, San Francisco
(1996)

19. Mansour, Y., Rubinstein, A., Vardi, S., Xie, N.: Converting online algorithms to
local computation algorithms. In: Czumaj, A., Mehlhorn, K., Pitts, A., Watten-
hofer, R. (eds.) ICALP 2012, Part I. LNCS, vol. 7391, pp. 653–664. Springer,
Heidelberg (2012)

20. Mansour, Y., Vardi, S.: A local computation approximation scheme to maximum
matching. In: Raghavendra, P., Raskhodnikova, S., Jansen, K., Rolim, J.D.P. (eds.)
RANDOM 2013 and APPROX 2013. LNCS, vol. 8096, pp. 260–273. Springer,
Heidelberg (2013)

21. Naor, M., Stockmeyer, L.: What can be computed locally? SIAM J. Comput. 24(6),
1259–1277 (1995)

22. Parnas, M., Ron, D.: Approximating the minimum vertex cover in sublinear time
and a connection to distributed algorithms. Theor. Comput. Sci. 381(1–3), 183–
196 (2007)

23. Peleg, D.: Distributed Computing: A Locality-sensitive Approach. SIAM Mono-
graphs on Discrete Mathematics and Applications. Society for Industrial and
Applied Mathematics, Philadelphia (2000)

24. Reingold, O., Vardi, S.: New Techniques and Tighter Bounds for Local Computa-
tion Algorithms (2014). arXiv:1404.5398

25. Rubinfeld, R., Tamir, G., Vardi, S., Xie, N.: Fast local computation algorithms.
In: Proceedings of the ICS (2011)

26. Suomela, J.: Survey of local algorithms. ACM Comput. Surv. 45(2), 24:1–24:40
(2013)

http://arxiv.org/abs/1402.3796
http://arxiv.org/abs/1404.5398

Are Byzantine Failures Really Different
from Crash Failures?

Damien Imbs1(B), Michel Raynal2,3, and Julien Stainer4

1 Department of Mathematics, University of Bremen, Bremen, Germany
imbs@uni-bremen.de

2 Institut Universitaire de France, Paris, France
3 IRISA, Université de Rennes, 35042 Rennes, France

4 École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland

Abstract. When considering n-process asynchronous systems, where
up to t processes can fail, and communication is by read/write registers
or reliable message-passing, are (from a computability point of view)
Byzantine failures “different” from crash failures? This is the question
addressed in this paper, which shows that the answer is “no” for systems
where t < n/3.

To this end, the paper presents a new distributed simulation whose
core is an extended BG simulation suited to asynchronous message-
passing systems. More precisely, assuming t < min(n′, n/3), it describes
a signature-free algorithm that simulates a system of n′ processes where
up to t may crash, on top of a basic system of n processes where up to
t may be Byzantine. In addition to extending (in a modular and direct
way) the basic BG simulation to Byzantine message-passing systems this
simulation also allows crash-tolerant algorithms, designed for asynchro-
nous read/write systems, to be executed on top of asynchronous message-
passing systems prone to Byzantine failures.

1 Introduction

Let us assume that we have a distributed algorithm A that solves a problem P on
top of an asynchronous system made up of n processes among which up to t may
crash. Do we have to design a new algorithm from scratch when the problem
P has to be solved in a failure context where up to t processes can commit
Byzantine failures instead of crash failures?

The paper answers this question for the class of problems known under the
name decision tasks. Assuming t < min(n′, n/3), and an algorithm A that solves
such a problem P in an n′-process asynchronous (read/write or message-passing)
distributed system in which up to t processes may crash, the paper presents an
algorithm that allows to simulate A on top of an asynchronous message-passing
system made up of n processes among which up to t can be Byzantine.

To attain this goal, the paper considers an approach based on the BG sim-
ulation [3] (other approaches could be envisaged, e.g. [5]1). The BG simulation
1 Independently from our work, a concurrent work by Dolev and Gafni [5] (based

on a totally different approach) shows a result similar to ours, namely, a system

c© Springer-Verlag Berlin Heidelberg 2016
C. Gavoille and D. Ilcinkas (Eds.): DISC 2016, LNCS 9888, pp. 215–229, 2016.
DOI: 10.1007/978-3-662-53426-7 16

216 D. Imbs et al.

allows (t + 1) processes (simulators) to simulate a large number n′ of asynchro-
nous processes that communicate through read/write registers, and collectively
solve a decision task, in the presence of at most t crashes. Each of the (t + 1)
simulators simulates the n′ processes. These (t+1) simulators cooperate through
underlying objects that allow them to agree on a single output for each of the
non-deterministic statements issued by every simulated process. (These under-
lying objects, called safe agreement objects, can be built of top of read/write
atomic registers.)

On the BG simulation. Let BG(RW,C) denote the basic BG simulation algo-
rithm [3] (RW stands for “read/write communication”, and C stands for “crash
failures”). The simulation BG(RW,C) is “symmetric” in the sense that each of
the n′ processes is simulated by every simulator, and the (t + 1) simulators are
“equal” with respect to each simulated process, namely, (1) every simulator fairly
simulates all the processes, and (2) the crash of a simulator entails the crash of
at most one simulated process. This symmetry allows BG(RW,C) to be suited
to colorless tasks (i.e., distributed computing problems where the value decided
by a process can be decided by any process).

Content of the paper: on the simulation side. The paper extends the BG-
simulation in two directions. The first is the communication model, namely, it
considers that processes cooperate by sending and receiving messages via asyn-
chronous reliable channels. The second direction is related to the type of failures;
more precisely, it considers two types of failures: process crash failures, and the
more severe process Byzantine failures.

Hence, an important contribution of the paper is an algorithm, denoted
BG(MP,B), which simulates the execution of a colorless task running in an asyn-
chronous message-passing system of n′ processes, where up to t may crash, on
top of an asynchronous message-passing system of n processes where up to t may
be Byzantine [9]. This simulation requires t < n/3 (according to the task which
is simulated, additional constraint on t may be needed, see [6]; see also Sect. 5).
While the number of simulated processes n′ can be any integer, for the simula-
tion to be non-trivial we consider that t < n′. This algorithm has two noteworthy
features: it is the first BG simulation algorithm that considers Byzantine failures,
and it allows to run a crash-tolerant algorithm solving a colorless task on top
of an asynchronous system prone to Byzantine failures. Moreover, the algorithm
BG(MP,B) is genuine in the sense that it does not rely on the simulation of an
underlying shared memory.

While the full-information algorithm presented in [10] can be used to decide
when there is a simulation between two models, the present paper is the first

with t < n/3 Byzantine processes can neutralize the Byzantine processes to appear
as a t-resilient system (with respect to crash failures). Hence, both papers show
that “the difficulty of distributed computing is captured solely by crash failures”.
Consequently, according to an implicit suggestion appearing in a referee report, the
title of the current proceedings version has been modified (with respect to the title
of the submitted version [8]) to emphasize this important observation.

Are Byzantine Failures Really Different from Crash Failures? 217

(to our knowledge) that allows the direct execution in the presence of Byzantine
failures of any crash-tolerant algorithm that solves a colorless task. BG(MP,B)
provides an algorithmic approach which complements the topology-based simu-
lation framework of [10], and may also be of practical interest. It has the inter-
esting property that the simulation of a message only requires a polynomial
number of messages in the base system, and the increase in size of these mes-
sages, when compared to the size of the simulated message, is also polynomial.
Additionally, differently from early works on Byzantine failures, it does not use
any cryptography-based mechanism.

Content of the paper: on the safe agreement objects side. The core of the previ-
ous algorithm lies in a new underlying safe agreement object, which allows the
n simulators to agree on the next operation executed by each of the n′ simulated
processes. Such a safe agreement object ensures that all the simulators produce the
very same simulation. At the operational level, a safe agreement object provides
processes with two operations, denoted propose() and decide(), which are invoked
in this order by each correct process. The termination property associated with a
safe agreement object SA is the following: if no simulator commits a failure while
executing SA.propose(), then any invocation of SA.decide() by a non-faulty simu-
lator terminates. Moreover, no two correct processes decide differently.

On the algorithmic side, a novelty of the paper lies in the algorithm imple-
menting this new safe agreement object. Differently from its read/write memory
counterpart, it is not based on underlying atomic snapshot objects. Instead, it
relies heavily on message communication patterns inspired from reliable broad-
cast algorithms. This object is the core of the simulation when one wants to
execute asynchronous read/write crash-tolerant algorithms on top of asynchro-
nous message-passing systems prone to Byzantine failures.

Existing simulations considering Byzantine failures. Simulations of crash fail-
ures in a Byzantine system have been addressed in the context of synchronous
systems (e.g. [2,11,12]. The only articles we are aware of concerning such a sim-
ulation in asynchronous systems are [4,7,10]: [4] considers a restricted class of
round-based deterministic algorithms; [10] considers a full-information asynchro-
nous crash-tolerant algorithm in an asynchronous Byzantine system; [7] considers
an agent/host model and focuses mainly on reliable broadcast.

Due to page limitations, all the proofs and some developments are omit-
ted. They can be found in the companion tech report [8] (along with a simpler
simulation that only considers crash failures).

2 Computation Models and Tasks

The system is made up of a set Π of n sequential processes, denoted p1, p2, ...,
pn. These processes are asynchronous in the sense that each process progresses
at its own speed, which can be arbitrary and always remains unknown to the
other processes. Processes may deviate from their specification; such processes

218 D. Imbs et al.

are said to be faulty. Other processes are correct (or non-faulty). The model
parameter t denotes the maximal number of processes that can be faulty in a
given execution.

Communication happens through a complete network of asynchronous reli-
able channels, which means that each process pi can directly send a message to
any process pj (including itself) without loss, corruption, or creation of messages,
and that there is no upper bound on message transit times.

The macro-operation “broadcast type(m)”, where type is a message type
and m is its content, is a shortcut for the following statement: “send type(m)
to each process (including itself)”.

The crash failure model. In the crash failure model, a process may prematurely
stop its execution. A process executes correctly its algorithm until it possibly
crashes. Once crashed, a process remains crashed forever. It is assumed that at
most t processes may crash. If there is no specific constraint on t, this model is
denoted CAMPn,t[t < n].

The Byzantine failure model. A Byzantine process is a process that behaves
arbitrarily: it may crash, fail to send or receive messages, send arbitrary mes-
sages, start in an arbitrary state, perform arbitrary state transitions, etc. Hence,
a Byzantine process, which should send the same message m to all the processes,
can send a message m1 to some processes, a different message m2 to another
subset of processes, and no message at all to the other processes. Moreover,
while Byzantine processes can collude to “pollute” the computation, they cannot
control the network: when a process receives a message, it can unambiguously
identify its sender. As previously, t denotes the upper bound on the number
of processes that may commit Byzantine failures. When it is assumed that at
most t < n/3 processes may be faulty, the corresponding model is denoted
BAMPn,t[t < n/3].

Decision Tasks. The problems we are interested in are called decision tasks. In
every run, each process proposes a value and the proposed values define an input
vector I, where I[j] is the value proposed by process pj . Let I denote the set of
allowed input vectors. Each process has to decide a value. The decided values
define an output vector O, such that O[j] is the value decided by pj . Let O be
the set of the output vectors.

A decision task is a binary relation Δ from I into O. A task is colorless if,
when a value v is proposed by a process pj (i.e., I[j] = v), then v can be proposed
by any number of processes and, when a value v′ is decided by a process pj (i.e.,
O[j] = v′), then v′ can be decided by any number of processes. Consensus, and
more generally k-set agreement, are colorless tasks. Otherwise the task is colored.
Symmetry breaking and renaming are colored tasks.

3 Structure of the Simulation Algorithms

Aim. Let A be an algorithm that solves a colorless decision task among n′

processes in the system model CAMPn′,t[t < n′]. The aim is to design an algo-
rithm that simulates A in the system model BAMPn,t[t < n/3].

Are Byzantine Failures Really Different from Crash Failures? 219

Notation. A simulated process is denoted pj , where 1 ≤ j ≤ n′. Similarly, a
simulator process (“simulator” in short’) is denoted qi, where 1 ≤ i ≤ n. The set
Π denote the set of the simulator indexes, i.e., Π = {1, ..., n}. The safe agreement
objects, build in the simulation and used by the simulators, are identified with
upper case letters, e.g., SA. The variables local to simulator qj are identified
with lower case letters, and the resulting identifiers are subscripted with j.

Behavior of a simulator qi. Each simulator is given the code of all the simulated
processes p1, ..., pn′ . It manages n′ threads, one associated with each simulated
process, and executes them in a fair way.

The code of a simulated process pj contains local statements, send state-
ments, and receive statements. It is assumed that the behavior of a simulated
process pj is deterministic in the sense it is entirely defined from its local input
(as defined by the task instance), and the order in which pj receives messages.

The simulation has to ensure that (1) all correct simulators simulate the same
behavior of the set of simulated processes, and (2) f faulty simulators entail the
failure of at most f simulated processes.

4 BG in the Byzantine Message-Passing Model

This section presents the algorithm BG(MP,B). As previously indicated, this
algorithm implements the BG simulation in the Byzantine asynchronous
message-passing model BAMPn,t[t < n/3]. To this end, an appropriate safe
agreement object is first built, and then used by the simulation algorithm. A
simpler simulation BG(MP,C), implementing the BG simulation in the crash
failure-prone asynchronous message-passing model CAMPn,t[t < n/2], is pre-
sented in the full version of the paper. It is based on the same general mechanism
as BG(MP,B) and may be used as an introduction to it. Due to page limitations,
it is not presented here.

From Byzantine Behaviors to Crash Failures. The aim is to obtain a simulation
algorithm that copes with Byzantine simulators. To this end, the main issues
that have to be solved are the following.

– The simulators need a mechanism to control the validity of the inputs to the
safe agreement objects. (See below for the notion of a valid value.)

– The simulators must be able to check if a given simulator qi is participating in
more than one operation propose() at the same time (on the same or several
safe agreement objects). If it is the case, qi is faulty and its definitive stop can
block forever several simulated processes. Hence, such a faulty simulator has
to be ignored.

To solve these issues, differently from the original BG simulation, each safe
agreement object may no longer be considered as a separate abstraction: each
new instance depends on the previous ones. This is captured in the following
specification customized to the Byzantine model, and, at the operational level, in
the predicate valid() used in the algorithm implementing the operation propose().

220 D. Imbs et al.

4.1 Safe Agreement in BAMPn,t[t < n/3]: Definition

To cope with the previous observations, the fact that a faulty process may decide
an arbitrary value, and the fact that the safe agreement objects are used to
solve specific problems (a simulation in our case), the specification of the safe
agreement object is reshaped as follows.

A value proposed by a process to a safe agreement object must be valid.
At each correct simulator qi, the validity of a value is captured by a predicate
denoted validi(j, v) where v is the value and qj the simulator that proposed it.
This predicate is made up of two parts (defined in Sects. 4.2 and 4.3, respec-
tively). If qj is correct, the predicate validi(j, v) eventually returns true at pi.
If qj is faulty, validi(j, v) returns true at pi only if (a) the value v could have
been proposed by a correct simulator and (b) to qi’s knowledge, qj does not
participate concurrently in several invocations of propose().

– Validity. If a correct simulator qi decides the value v, there is a correct simu-
lator qj such that validj(−, v). (v was validated by a correct simulator.)

– Agreement. No two correct simulators decide distinct values.
– Propose-Termination. Any invocation of propose() by a correct simulator ter-

minates.
– Decide-Termination. The invocations by all the correct simulators of decide()

on all the safe agreement objects terminate, except for at most t of them.

4.2 Safe Agreement in BAMPn,t[t < n/3]: Algorithm

An algorithm implementing a safe agreement object in BAMPn,t[t < n/3] is
described in Figs. 1 and 2.

Local data structures. Each simulator qi, 1 ≤ i ≤ n, manages four local data
structures, namely, the arrays valuesi[1..n], my viewi[1..n], all viewsi[1..n], all
initialized to [⊥, ...,⊥], where ⊥ denotes a default value that cannot be proposed
to the safe agreement object by the simulators, and answersi[1..n][1..n][1..n], all
entries of which are initialized to a default value “?” that cannot be the content
of a message.

– The aim of valuesi[x] is to contain, as currently known by qi, the value pro-
posed to the safe agreement object by the simulator qx.

– The aim of my viewi[x] is to contain, as known by qi, the value proposed to
the safe agreement object by the simulator qx, as witnessed by strictly more
than n

2 distinct simulators (i.e., at least a correct process).
– The aim of all viewsi[x] is to contain what qi knows about the view of qx.
– The meaning of “answersi[k][j][x] = v” (where v is a proposed value or ⊥) is

the following: to the knowledge of qi, the simulator qk answered value v when
it received the message read(j, x) sent by qj . (A simulator qj broadcasts such
a message when it needs to know the value proposed by the simulator qx; ⊥
means that qk does not know this value yet.) This means that, from qi’s point
of view, the value proposed by qx, as known by qk when it received the request
by qj , is v.

Are Byzantine Failures Really Different from Crash Failures? 221

Fig. 1. Safe agreement object in BAMPn,t[t < n/3]: client side of simulator qi

Lemma 1. Any two sets of simulators Q1 and Q2 of more than n+t
2 elements

have at least one correct simulator in their intersection.

The fact that, despite Byzantine processes, the intersection of any two simu-
lator sets of size greater than n+t

2 have at least one correct simulator in common,
is used in many places in the algorithm. This property is used in the proof to
show that the local views of the correct processes are mutually consistent.

The operation propose(). The client side of the algorithm implementing the oper-
ation propose() is described in Fig. 1; its server side is described in Fig. 2. This
algorithm is made up of three parts.

First part: messages value, value’valid, value’witness and value’ack

When a simulator qi invokes the operation propose(vi), it first broadcasts
the message value (i, vi), and waits for n+t

2 acknowledgments (messages
value’ack(i, vi), lines B01-B02). Then, it builds its local view of the values
proposed to the safe agreement object (lines B03-B11). Finally, it sends its local
view to all other simulators (lines B12-B13).

On its server side, when a simulator qi receives a message value (j, v), it first
checks if this message is valid (line B20). If the message is valid, qi broadcasts
(echoes) the message value’valid (j, v) to inform the other simulators that it
agrees to take into account the pair (j, v) (line B20).

222 D. Imbs et al.

Fig. 2. Safe agreement object in BAMPn,t[t < n/3]: server side of simulator qi

When the simulator pi has received the message value’valid (j, v) from
more than n+t

2 simulators, it broadcasts the message value’witness (j, v) to
inform the other processes that at least n+t

2 − t = n−t
2 ≥ t+1 correct simulators,

have validated the pair (j, v).

Are Byzantine Failures Really Different from Crash Failures? 223

When qi has received the message value’witness (j, v) from (t + 1) sim-
ulators (i.e., from at least one correct simulator) it broadcasts this message, if
not yet done (lines B24-B26). This is to prevent invocations of propose() from
blocking forever (while waiting value’ack (j, v) messages at line B02, B06, B29
or B42), because not enough value’witness (j, v) messages have been broad-
cast. Then, if qi has received the message value’witness (j, v) from more than
n+t
2 simulators, it takes v into account (writes it into valuesi[j]) and sends an

acknowledgment to qj (lines B27-B28). The corresponding message value’ack

(j, v) broadcast by qi will also inform the other simulators that qi took into
account the value v proposed by qj . Hence, this message will help qj progress at
line B02, and all correct simulators progress at line B06.

First part of the predicate validi(j, v) As already indicated, the aim of this pred-
icate is to help a simulator qi detect if the value v proposed by the simulator qj
is valid. It is always satisfied when qj is correct, and it can return true or f alse
when qj is faulty. It is made up of two sub-predicates P1 and P2.

– The first sub-predicate P1 checks if, for the messages value (j,−) (from qj)
and value’valid (j,−) (from more than t+1 different simulators) that qi has
received for other safe agreement objects, qi has also received the associated
messages view’witness (j,−) from at least (n − t) different simulators. This
allows qi to check if the simulator qj is not simultaneously participating in
other invocations of propose() on other safe agreement objects.

– The aim of the second sub-predicate P2 (defined in Sect. 4.3 and used in the
simulation) is to allow the simulators to check that the simulation is consistent.
As the present section considers safe agreement objects independently from
its use in the simulation, we consider, for now, that P2 is always satisfied.

If the full predicate validi(j, v) is never satisfied, qi will, collectively with the
other correct simulators, prevent the faulty simulator qj from progressing with
respect to the corresponding safe agreement object.

Second part: messages read, read’answer and read’answer’witness After
the value vi it proposes to the safe agreement object has been taken into account
by n+t

2 simulators, qi builds a local view of all the values proposed (array
my viewi [1..n]). To this end, for each simulator qx, qi broadcasts the message
read (i, x) (line B03). It then waits until either |{k : answersi[k][i][x] =
⊥}| > n+t

2 is satisfied (line B05) or there is a value w such that it has received
value’ack (x,w) from more than n+t

2 processes (line B06). The predicate
|{k : answersi[k][i][x] = ⊥}| > n+t

2 states that more than n+t
2 simulators

answered ⊥ to the request message read (i, x) broadcast by qi, i.e., they did
not know the value proposed by qx when they received the read request.

When qi receives the message read (j, x) from the simulator qj , it first
waits until it knows that the value proposed by qj is known by more than n+t

2
simulators (line B29). This is to check that qj broadcast its proposed value
before reading the other simulator values used to build its own view. When

224 D. Imbs et al.

this occurs, qi answers the message read (j, x) by broadcasting the message
read’answer (j, x, valuesi[x]) to inform all the simulators on what it currently
knows on the value proposed by qx (line B31).

When it receives read’answer (j, x, v) from a simulator qk, if not yet
done, qi broadcasts read’answer’witness (k, j, x, v). The lines B32-B36 imple-
ment a reliable broadcast, i.e., the message read’answer’witness (k, j, x, v) is
received by all correct processes or none of them, and is always received if the
sender is correct. The reliable reception of this message entails the assignment
of answeri[k, j, x] to v (line B38).

Third part: messages view, view’witness and view’ack Finally, the simulator
qi broadcasts its local view of proposed values to all simulators, waits until more
than n+t

2 of them sent back an acknowledgment, and returns from the invocation
of propose() (lines B12-B14).

When qi receives for the first time the message view (j, view), it realizes an
enriched reliable broadcast whose aim is to assign view to all viewi[j]. Let us
first observe that if view[j] = ⊥, then qj is Byzantine. If it has not yet broadcast
the message view’witness (j, view) and if view[j] �= ⊥ (line B39), qi first
checks if all the values in view[1..n] are consistent. From its point of view, this
means that, for each simulator qx, (a) if view[x] = v, it must receive messages
value’ack (x, v) from more than n+t

2 simulators, and (b) if view[x] = ⊥, the
same predicate as in line B05 must become satisfied. This consistency check is
realized by the lines B40-B43.

Finally, when qi receives a message view’witness (j, view), it does the fol-
lowing. First, if it has received this message from at least one correct simulator,
and has not yet broadcast it, qi does it (lines B45-B47). This part of the reliable
broadcast is to prevent the correct simulators from blocking forever. Then, if
it has received view’witness (j, view) from more than n+t

2 simulators and has
not yet assigned a value to all viewi[j], qi does it and sends the acknowledgment
view’ack (j, view) to qj to inform it that it knows its view (lines B48-B49).

Algorithm: the operation decide() The algorithm implementing the operation
decide() is described at lines B15-B19. It consists in a “closure” computation.
A simulator qi waits until it knows a non-empty set of simulators σ such that
(a) it knows their views, and (b) this set is closed under the relation “has in
its published view the value of” which means that the processes whose values
appear in a view of a process of σ are also in σ (lines B15-B16).

Let us observe that it is possible that, locally, several sets satisfy this prop-
erty. If it is the case, qi selects the smallest of them. Let min σi be this set of
simulators (lines B17). The value that is returned by qi is then the smallest value
among the the values proposed by the simulators in min σi (lines B18-B19).

Theorem 1. The algorithms described in Figs. 1 and 2 implement a safe-
agreement object in BAMPn,t[t < n/3].

Are Byzantine Failures Really Different from Crash Failures? 225

4.3 Simulation Algorithm in BAMPn,t[t < n/3]

The algorithm takes as input a distributed algorithm A solving a (colorless) task
in the system model CAMPn′,t[t < n′], and simulates it in BAMPn,t[t < n/3].
Each simulator qi, 1 ≤ i ≤ n, is given a copy of the n′ processes of A, and a
private input vector inputi[1..n′], with one input per simulated processes pj .

The simulation consists in a fair simulation by each of the correct simulators
qi of the n′ simulated processes pj . To that end, each simulator manages n′

threads (each simulating a process pj), and the n threads associated with the
simulation of a process pj cooperate through safe agreement objects.

Objects shared by the simulators. To produce a consistent simulation, for each
simulated process pj , the correct simulators have to agree on the same sequence
of the messages received by pj . To that end, they use an array of safe agreement
objects, denoted SA[1..n′,−], such that SA[j, sn] allows them to agree on the
sn-th message received by the n′ threads simulating pj at each simulator qi.

Objects managed by each simulator qi. Each simulator manages the following
data structures, with respect to each simulated process pj .

– inputi[j] contains the input of the simulated process pj , proposed by the sim-
ulator qi. (Simulators are allowed to propose different input vectors for the
simulated processes).

– sni[j] is the sequence number (from the simulation point of view) of the next
message received by the simulated process pj .

– senti[j] is a sequence containing messages sent by the simulated processes to
the simulated process pj . It is assumed that the n′ threads of qi access senti[j]
in mutual exclusion (when they add messages to or withdraw messages from
this sequence). The symbol ⊕ is used to add messages at the end of a sequence.
Sometimes senti[j] is used as a set.

– receivedi[j] is a set containing the messages received by pj (init. ∅).
– statei[j] contains the current local state of pj . inputi[j] is a part of statei[j].

It is assumed that the behavior of each simulated process pj is described
by a deterministic transition function δj(), such that δj(statei[j],msg) (a)
simulates pj until its next message reception, and (b) returns a pair. This pair
is made up of the new local state of pj plus an array msgs[1..n′] where msgs[x]
contains messages sent by pj to the simulated process px.

In addition to the previous local data, each simulator qi uses a starvation-
free mutual exclusion lock, whose operations are denoted mutex ini() and
mutex outi(). This lock is used to ensure that, at any time, at most one of
the n′ threads of qi access a safe agreement object. Because correct simulators
never invoke two propose() operations concurrently, a Byzantine simulator can
be prevented from blocking forever more than one safe agreement object, by
forcing it to simulate a correct behavior and to finish its participation in such an
object before it can participate in another one (sub-predicate P1 of validi(j, v)).

226 D. Imbs et al.

Fig. 3. Thread of the simulator qi, 1 ≤ i ≤ n, simulating the process pj , 1 ≤ j ≤ n′

The simulation algorithm. The algorithm describing the simulation of a process
pj by the associated thread of the correct simulator qi is presented in Fig. 3.

The simulators first have to agree on the same input for process pj .
To this end, they use the safe agreement object SA[j, 0] (lines 01-02).
Moreover, when considering all the simulated processes, it follows from the
mutual exclusion lock that, whatever the number of simulated processes, a cor-
rect simulator qi is engaged in at most one invocation of propose() at a time.
Then, according to the decided input of pj , qi locally simulates pj until it invokes
a message emission (lines 03-04).

After this initialization, each correct simulator qi enters a loop whose aim is
to locally simulate pj . To this end, qi first determines the message that pj will
receive; this message is saved in rec msg and added to receivedi[j] (lines 07-12).
When this message has been determined, qi simulates the behavior of pj until its
next message reception (lines 13-14). Finally, if statei[j] allows pj to decide a value
with respect to the simulated decision task, this value is decided (lines 15-17).

Sub-predicate P2. As far as P2 is concerned we have the following. Let us con-
sider the simulator qi that invokes validi(j, v), with respect to the simulation of a
process px. In the simulation algorithm, the parameter v is the message msg that
qj proposes to a safe agreement object from which will be decided the next mes-
sage to be received by the simulated process px (lines 08-09 of Fig. 3). P2 checks,
from qi’s local point of view, that the message v has been sent in the simulation
and that it has not yet been consumed, i.e., (v ∈ senti[x]) ∧ (v /∈ receivedi[x]).

Theorem 2. Let A be an algorithm solving a decision task in CAMPn′,t[t < n′].
The algorithm described in Fig. 3, in which Byzantine-tolerant safe agreement
objects are used, is a correct simulation of A in BAMPn,t[t < n/3].

Are Byzantine Failures Really Different from Crash Failures? 227

The reader can easily check that simulating a message only requires a polynomial
number of messages in the base system, and the increase in size of these messages,
when compared to the size of the simulated message, is also polynomial.

5 Implications of the Simulation

From Byzantine-failures to crash failures in message-passing systems. The sig-
nature-free simulation presented here allows the execution of a t-resilient crash-
tolerant algorithm in an asynchronous message-passing system where up to
t processes may be Byzantine. A feature that is sometimes required from a
Byzantine-tolerant algorithm solving a task (not usually considered in the crash
failure case) is that the value decided by any correct process should be based
only on inputs of correct processes. This prevents Byzantine processes from “pol-
luting” the computation with their inputs. A way to guarantee that an input
has been proposed by a correct process is to check that it has been proposed by
at least (t + 1) different processes. Assuming that in any execution at most m
values are proposed, this constraint translates as n − t > mt [6,10].

In the case of the simulation presented in Sect. 4, this requirement can easily
be satisfied by adding a first step of computation before the start of the simu-
lation. Simulators first broadcast their input. They then echo every value that
they receive from more than t+1 different simulators, and consider these values
(and only these values) as valid inputs. An input considered valid by a correct
simulator is then eventually considered valid by all correct simulators, and the
only inputs allowed in the simulation are inputs of correct simulators. Because
we consider colorless tasks, the choice of output is done in the same way as in
the original BG-simulation: a simulator can adopt the output of any simulated
process that has decided a value.

The possible Byzantine behaviors are restrained by the underlying Byzantine-
tolerant safe agreement objects used in the simulation. Surprisingly, this shows
that, from the point of view of the computability of colorless tasks and assuming
n > (m+1)t (this requirement always implies n > 3t when at least two different
values can be proposed), Byzantine failures are equivalent to crash-failures. This
provides us with a new understanding of Byzantine failures and shows that their
impact can be restricted to the much simpler crash-failure case.

From wait-free shared memory to message-passing. The proposed simulation can
be combined with previous works to further extend the scope of the result.

Consider an algorithm A0 that solves a colorless task, where m > 1, in a
wait-free read/write memory system of t + 1 processes, denoted CARWt+1,t[∅].

228 D. Imbs et al.

Using the basic BG-simulation [3], this algorithm can be transformed into
an algorithm A1 that works in the t-resilient read/write memory system of
(m + 1)t + 1 processes, in which at most t can crash. This model is denoted
CARW(m+1)t+1,t[∅]. Using an implementation of a read/write memory in a
crash-prone message-passing system in which a majority of processes are cor-
rect [1], we obtain an algorithm A2 which work in CAMP(m+1)t+1,t[∅] (message-
passing system of (m+1)t+1 processes, in which at most t can crash; notice that
m > 0 ⇒ (m+1)t+1 > 2t). Finally, using the simulation presented in this paper,
we obtain a Byzantine-tolerant algorithm A3 which works in BAMP(m+1)t+1,t[∅]
(message-passing system of (m + 1)t + 1 processes, of which at most t can be
Byzantine; notice that m > 1 ⇒ (m + 1)t + 1 > 3t).

These transformations show that, as far as the computability of colorless
tasks that admit up to m > 1 different input values is concerned, an n-
process Byzantine-prone message-passing system, in which up to t < n/(m + 1)
processes can be Byzantine, is equivalent to a wait-free shared memory system
of t+1 processes, which at most commit crash failures. Differently from the full-
information algorithm presented in [10], the simulation presented in the present
paper (along with [3] and [1]) allows a direct transformation of any wait-free
shared-memory algorithm that solves a colorless task into a message-passing
Byzantine-tolerant algorithm.

References

1. Attiya, H., Bar-Noy, A., Dolev, D.: Sharing memory robustly in message passing
systems. J. ACM 42(1), 121–132 (1995)

2. Bazzi, R., Neiger, G.: Optimally simulating crash failures in a byzantine environ-
ment. In: Toueg, S., Spirakis, P.G., Kirousis, L. (eds.) Distributed Algorithms.
LNCS, vol. 579, pp. 108–128. Springer, Heidelberg (1991)

3. Borowsky, E., Gafni, E.: Generalized FLP impossibility results for t-resilient asyn-
chronous computations. In: Proceedings 25th ACM STOC, pp. 91–100. ACM Press
(1993)

4. Coan, B.A.: A compiler that increases the fault-tolerance of asynchronous proto-
cols. IEEE Trans. Comput. 37(12), 1541–1553 (1988)

5. Dolev, D., Gafni, E.: Some garbage in - some garbage out,: asynchronous t-
Byzantine as asynchronous benign t-resilient system with fixed t-Trojan horse
inputs. Tech Report, arXiv, 14 p., July 2016. arXiv:1607.01210

6. Herlihy, M.P., Kozlov, D., Rajsbaum, S.: Distributed Computing through Combi-
natorial Topology, p. 336. Morgan Kaufmann/Elsevier, New York (2014). (ISBN
9780124045781)

7. Ho, C., Dolev, D., van Renesse, R.: Making distributed applications robust. In:
Tovar, E., Tsigas, P., Fouchal, H. (eds.) OPODIS 2007. LNCS, vol. 4878, pp. 232–
246. Springer, Heidelberg (2007)

8. Imbs, D., Raynal, M., Stainer, J., Byzantine, F.: Failures to crash failures in
message-passing systems: a BG simulation-based approach. Technical Report,
arXiv, 27 p., October 2015. arXiv:1510.09119

9. Lamport, L., Shostack, R., Pease, M.: The Byzantine generals problem. ACM
Trans. Program. Lang. Syst. 4(3), 382–401 (1982)

http://arxiv.org/abs/1607.01210
http://arxiv.org/abs/1510.09119

Are Byzantine Failures Really Different from Crash Failures? 229

10. Mendes, H., Tasson Ch., Herlihy, M.: Distributed computability in Byzantine asyn-
chronous systems. In: Proceedings 46th STOC, pp. 704–713. ACM Press (2014)

11. Neiger, G., Toueg, S.: Automatically increasing the fault-tolerance of distributed
algorithms. J. Algorithms 11(3), 374–419 (1990)

12. Srikanth, T.K., Toueg, S.: Simulating authenticated broadcasts to derive simple
fault-tolerant algorithms. Distributed Comput. 2(2), 80–94 (1987)

Sublinear-Space Distance Labeling Using Hubs

Pawe�l Gawrychowski1, Adrian Kosowski2, and Przemys�law Uznański3(B)

1 Institute of Informatics, University of Warsaw, Warsaw, Poland
2 Inria Paris and IRIF, Université Paris Diderot, Paris, France

3 Department of Computer Science, ETH Zürich, Zürich, Switzerland
przemyslaw.uznanski@inf.ethz.ch

Abstract. A distance labeling scheme is an assignment of bit-labels to
the vertices of an undirected, unweighted graph such that the distance
between any pair of vertices can be decoded solely from their labels. We
propose a series of new labeling schemes within the framework of so-
called hub labeling (HL, also known as landmark labeling or 2-hop-cover
labeling), in which each node u stores its distance to all nodes from an
appropriately chosen set of hubs S(u) ⊆ V . For a queried pair of nodes
(u, v), the length of a shortest u−v-path passing through a hub node from
S(u) ∩ S(v) is then used as an upper bound on the distance between u
and v.

We present a hub labeling which allows us to decode exact distances
in sparse graphs using labels of size sublinear in the number of nodes.
For graphs with at most n nodes and average degree Δ, the tradeoff
between label bit size L and query decoding time T for our approach is
given by L = O(n log logΔ T/ logΔ T), for any T ≤ n. Our simple app-
roach is thus the first sublinear-space distance labeling for sparse graphs
that simultaneously admits small decoding time (for constant Δ, we can
achieve any T = ω(1) while maintaining L = o(n)), and it also provides
an improvement in terms of label size with respect to previous slower
approaches.

By using similar techniques, we then present a 2-additive label-
ing scheme for general graphs, i.e., one in which the decoder pro-
vides a 2-additive-approximation of the distance between any pair
of nodes. We achieve almost the same label size-time tradeoff L =
O(n log2 log T/ log T), for any T ≤ n. To our knowledge, this is the first
additive scheme with constant absolute error to use labels of sublinear
size. The corresponding decoding time is then small (any T = ω(1) is
sufficient).

We believe all of our techniques are of independent value and provide
a desirable simplification of previous approaches.

1 Introduction

Distance labeling schemes, popularized by Gavoille et al. [16], are among the
most fundamental distributed data structures for graph data. The design prob-
lem combines two major challenges. First of all, distance labelings serve the role
of a distance oracle, i.e., a data structure which for a given undirected graph
c© Springer-Verlag Berlin Heidelberg 2016
C. Gavoille and D. Ilcinkas (Eds.): DISC 2016, LNCS 9888, pp. 230–242, 2016.
DOI: 10.1007/978-3-662-53426-7 17

Sublinear-Space Distance Labeling Using Hubs 231

G = (V,E) can answer queries of the form: “what is the distance between the
nodes s, t ∈ V ?”. Throughout most of this paper, we will assume that G is
an unweighted graph with n nodes and m edges. The efficiency of a distance
oracle is measured by the interplay between the space requirement of the data
structure representation, the encoding time required to set up the oracle for a
given graph, and perhaps more importantly, its decoding time, that is, the time
of processing a s − t distance query. Moreover, a distance labeling scheme is
defined more restrictively than a distance oracle, as an assignment of a binary
string (label) label(u) to each node u ∈ V , so that the graph distance between
u and v is uniquely determined by the pair of labels: label(u) and label(v). The
size of a distance labeling scheme is now the maximum length of a node label
in the graph. In this way, distance labelings add an extra layer of complexity to
the graph distance decoding problem, by imposing a distributed representation
of information in the labels (label(u) : u ∈ V). Whereas the concatenation of
all n labels in a distance labeling forms a centralized distance oracle, distance
labelings can also be applied in a distributed setting, in which the label of each
node is stored at a distinct location in the network. This is the case, for instance,
in applications in compact routing protocols, where the goal is to find a shortest
path from a source node to a target node with a known label [12].

An interesting characteristic of the problem of distance oracle design for
sparse graph is its inherent link to an underlying set intersection task. On
the side of lower bounds, this is most clearly observed, following Pătraşcu and
Roditty [21], when we consider a pair of vertices belonging to the same partition
of a bipartite graph. The distance between them is 2 if and only if the sets of their
neighbors intersect, and at least 4 otherwise. Consequently, assuming a plausible
conjecture on the space required to decide intersection of a set of small sets, it
follows that any oracle for graphs with Õ(1) maximum degree, which admits
constant decoding time, requires Ω̃(n2) space. (Here, the Õ and Ω̃ notation
disregards polylogarithmic factors in n.) By contrast, many efficient algorithms
for answering distance queries in real-world scenarios rely on the premise that
the distance between a pair of nodes can be computed using an intersection-
type query on a pair of small sets. In the basic framework of hub labelings, see
[1], (introduced in [13] under the name of 2-hop covers, and also referred to as
landmark labelings [3]), each node u ∈ U stores the set of its distances to some
subset S(u) ⊆ V of other nodes of the graph. Then, the computed distance value
δ′(u, v) for a queried pair of nodes u, v ∈ V is returned as:

δ′(u, v) := min
w∈S(u)∩S(v)

δ(u,w) + δ(w, v), (1)

where δ denotes the shortest path distance function between a pair of nodes. The
computed distance between all pairs of nodes u and v is exact if set S(u) ∩ S(v)
contains at least one node on some shortest u−v path. This property of the family
of sets (S(u) : u ∈ V) is known as shortest path cover. The hub-based method
of distance computation is in practice effective for two reasons. First of all, for
transportation-type networks it is possible to show bounds on the sizes of sets S,
which follow from the network structure. Notably, Abraham et al. [2] introduce

232 P. Gawrychowski et al.

the notion of highway dimension h of a network, which is presumed to be a
small constant e.g. for road networks, and show that an appropriate cover of all
shortest paths in the graph can be achieved using sets S of size Õ(h). Moreover,
the order in which elements of sets S(u) and S(v) is browsed when performing
the minimum operation is relevant, and in some schemes, the operation can be
interrupted once it is certain that the minimum has been found, before probing
all elements of the set. This is the principle of numerous heuristics for the exact
shortest-path problem, such as contraction hierarchies and algorithms with arc
flags [9,18].

In this work, we make use of the hub set techniques to obtain better (distrib-
uted) distance labelings. Whereas Ω(n) is a lower bound of the size of a hub set
for general graphs, we provide hub-based schemes using smaller sets for specific
case, leading to labels which can be encoded on o(n) bits. Our scheme provides a
shortest-path cover in the class of sparse graphs (with average degree Δ = 2m/n
subpolynomial in n). This construction is overviewed in more detail in Sect. 1.2.

The implications of our result can be seen as twofold. First of all, our app-
roach directly leads to labeling of smaller size (and smaller decoding time)
for exact distance queries in sparse graphs than all previous distance label-
ing approaches. Additionally, an corollary of our result concerns the case of k-
additive approximate distance labeling, in which the distance decoder is required
to return an upper bound on the shortest path length which is within an additive
factor of at most k from the optimum. So far, no way to construct k-additive
distance labels using labels of sublinear size in n was known for any constant
k > 0. (This question was considered previously in, e.g., [7]). We provide a way
to construct a 2-additive distance labeling in general graphs using distance labels
of size o(n). (This result is essentially the best possible, since a 1-additive dis-
tance labeling requires distance labels of size at least n/4 already on the class
of bipartite graphs.)

In our approaches, the size of the obtained distance labels for the considered
cases is improved with respect to the state-of-the-art by up to a logarithmic
multiplicative factor. Rather than seeing this as “gaining” a logarithm, we rather
see this as “not losing” a logarithm. Indeed, the basic ingredient of the hub sets
in previous approaches was a subset of nodes, sampled independently at random
from V [6,10]. The constructions then relied on the probabilistic method to
guarantee that the hubs would have the shortest-path cover properties, based on
the premise that for each pair of nodes the constructed hubs provide a shortest
path cover with sufficiently high probability. The derandomization of this process
resulted in a loss of a logarithmic factor in the analysis of the size of labels. Our
approach shows how to avoid this issue: when constructing labelings for sparse
graphs, we do away with randomization altogether, relying on simple structural
results to replace the random subset of nodes.

1.1 Related Work

Distance Labelings. The distance labeling problem in undirected graphs was
first investigated by Graham and Pollak [17], who provided the first labeling

Sublinear-Space Distance Labeling Using Hubs 233

scheme with labels of size O(n). The decoding time for labels of size O(n) was
subsequently improved to O(log log n) by Gavoille et al. [16] and to O(log∗ n) by
Weimann and Peleg [25]. Finally, Alstrup et al. [7] present a scheme for general
graphs with decoding in O(1) time using labels of size log 3

2 n + o(n) bits.1 This
matches up to low order terms the space of the currently best known distance
oracle with O(1) time and log 3

2 n2 + o(n2) total space in a centralized memory
model, due to Nitto and Venturini [19].

The notion of D-preserving distance labeling, first introduced by Bollobás
et al. [10], describes a labeling scheme correctly encoding every distance that is
at least D. [10] presents such a D-preserving scheme of size O(n

D log2 n). This
was recently improved by Alstrup et al. [6] to a D-preserving scheme of size
O(n

D log2 D). Together with an observation that all distances smaller than D

can be stored directly, this results in a labeling scheme of size O(n
R log2 R),

where R = log n

log m+n
n

. For sparse graphs, this is o(n).

For specific classes of graphs, Gavoille et al. [16] described a O(
√

n log n)
distance labeling for planar graphs, together with Ω(n1/3) lower bound for the
same class of graphs. Additionally, O(log2 n) upper bound for trees and Ω(

√
n)

lower bound for sparse graphs were given.

Distance Labeling with Hub Sets. For a given graph G, the computational task
of minimizing the sizes of hub sets (S(u) : u ∈ V) for exact distance decoding is
relatively well understood. A O(log n)-approximation algorithm for minimizing
the average size of a hub set having the sought shortest path cover property was
presented in Cohen et al. [13], whereas a O(log n)-approximation for minimizing
the largest hub set at a node was given more recently in Babenko et al. [8].
Rather surprisingly, the structural question of obtaining bounds on the size of
such hub sets for specific graph classes is wide open. For example, for the class
of graphs of constant maximum degree, there is a large gap between the hub sets
in our construction (of size O(n/ log n)) and the generic lower bound of Ω̃(

√
n).

Distance Oracles. A centralized version of distance labeling problem is distance
oracle problem, where one asks for a centralized data structure allowing for
querying a distance between pair of vertices. There usually one asks for what
type of tradeoffs are possible between size of the structure, time of the query
and allowed error (multiplicative stretch). Sommer et al. [23] proved that any
constant time, constant stretch oracle must be superlinear in n. Thorup and
Zwick [24] proved that distance oracles of stretch 2 require Ω(n2) space, and
of stretch 3 require Ω(n3/2) space. Pătraşcu and Roditty [21] strengthened the
lower bound for stretch 2, proving a lower bound of Ω(n

√
m) on the size of oracles

with constant query time. For general weighted graphs, Thorup and Zwick [24]
designed a distance oracle of size O(kn1+1/k), stretch-(2k − 1) and O(k) time.
The query time has been improved to O(log k) time by Wulff-Nilsen [26], and to
constant time in Chechik [11]. The size of the distance oracle from [24] is optimal
assuming girth-conjecture. For sparse graphs, [21] design distance oracle of size
1 For the sake of sanity of the notation, we define log x = max(1, log2(x)).

234 P. Gawrychowski et al.

O(n4/3m1/3) and stretch 2 in constant time. Also in [21], a conditional lower
bound of Ω̃(n2) bits for a constant time distance oracle is provided. Cohen and
Porat [14] extended this result to sparse graphs. An up-to-date survey of results
on approximate distance oracles is provided in [22].

1.2 Our Results and Organization of the Paper

We start by introducing the necessary conventions in Sect. 2. We also describe
the basic building block for encoding distance labels, namely, an efficient method
of storing the hub set of a node, together with corresponding distances, in its
distance label.

In Sect. 3, we show how to construct an exact distance labeling scheme for
graphs of bounded maximum degree. This relies on hub sets which consist, for
a vertex u of the union of all nodes from a small ball around vertex u, and all
nodes from a selection of equally-spaced levels of the breadth-first-search tree of
u. We then apply a trick, known from the previous work of [4], to reduce the
problem of constructing a labeling scheme for a graph with bounded average
degree to that of constructing a labeling scheme for a bounded-degree graph
on twice as many nodes. For graphs with at most n nodes and average degree
Δ, the tradeoff between label bit size L and query decoding time T for our
approach is given by L = O(n log logΔ T/ logΔ T), for any T ≤ n. In particular,
setting T = n, we obtain labels of size O(n

R log R), which improves previously
best result [6] by a factor of log R, keeping the Õ(n) decoding time. On the
other end, setting T = log n we obtain first sublinear size distance labeling that
achieves almost-constant decoding time.

In Sect. 4, we adapt our approach to general graphs, using a variant of the
proposed labeling scheme for sparse graphs to achieve 2-additive approximation
of distances. As before, we achieve a tradeoff between label size L and time T
of the form L = O(n log2 log T/ log T), for any T ≤ n. This 2-additive distance
labeling scheme can be easily transformed into an exact one, by encoding the
difference between the estimation and the true distances. Since this difference
is always from {0, 1, 2}, we achieve labels of size log 3

2 n + o(n) (with any ω(1)
decoding time), or of size (log 3

2 + ε)n (with O(1) decoding time), for any ε >
0. Our approach almost matches the size of the best known distance labeling
schemes [7], which make use of labels of size log 3

2 n+o(n) to achieve O(1) decoding
time. Arguably, our approach may be considered simpler.

We remark that all our results apply to unweighted graphs, in which each edge
has unit length. For sparse graphs, in which each edge has an integer weight from
some interval [1,W], we can use the same hub sets with an appropriately modified
encoding to achieve a time-label tradeoff of L = O(n log logΔ T log W/ logΔ T).
For the additive scheme, by subdividing each edge of length w ∈ [1,W] into a
chain of unweighted edges (of length 1), we achieve a conversion of the 2-additive
distance labeling scheme into a (2W)-additive-distance scheme for weighted
graphs.

Sublinear-Space Distance Labeling Using Hubs 235

2 Preliminaries

Notation and Conventions. Even though we are mainly interested in unweighted
graphs, for technical reasons in Sects. 3 and 4 we will work in a more general
setting where every edge of a graph has a fixed cost from the set {0, 1}. δ(u, v)
denotes the cost of a cheapest path connecting a pair of nodes u and v, and
�(u, v) denotes the smallest number of edges on such a path. We will require
the constructed distance labeling to return the value of δ(u, v). The degree of a
node v is denoted by deg(v). When analyzing the complexity of the decoding, we
assume standard word RAM with logarithmic word size, where we are allowed
to access log n consecutive bits of the stored binary string in constant time.

From now on, we assume that the graph is connected. This is enough because
we can always include the identifier of its connected component in the label of
every node, and return ∞ if u and v belong to different connected components;
this only induces additive log n overhead to the label size.

Encoding Distances and Identifiers. The basic procedure for encoding a hub set
in a label exploits some ideas from [7]; we provide a self-contained exposition
for completeness. We fix an arbitrary spanning tree of the graph and assign
preorder numbers in the tree to the nodes, i.e., node numbered 1 corresponds
to the root and so on. The preorder number of a node u is denoted by name(u).
Such a numbering has the following useful property.

Lemma 1. Let v1, v2, . . . , vn be the preorder sequence of all nodes. Then, for
any node u,

∑n
i=2 |δ(u, vi−1) − δ(u, vi)| ≤ 2n.

Proof. Consider an Euler tour corresponding a traversal of the chosen spanning
tree. Every node is visited at least once there, and the total length of the tour is
at most 2n. Consequently, we can cut the tour into paths connecting node vi−1

with node vi, for every i = 2, 3, . . . , n. The total length of all these paths is at
most 2n and the claim follows. �	

The following lemma is used for encoding a hub set S using O(|S| log(n/|S|))
bits.

Lemma 2. For a fixed v and set S such that |S| ≤ n
x , set S and all of the

distances δ(v, u) for u ∈ S can be stored in O(n
x log x) bits. For any constant

t > 0, the representation can be augmented with O(n
logt n

) additional bits so that
all elements of S can be extracted one-by-one in O(|S|) total time and given any
u we can check if u ∈ S (and if so, extract δ(u, v)) in O(1) time.

Proof. Let S = (v1, . . . , v|S|), where name(v1) < name(v2) < . . . <
name(v|S|). We store name(v1) and then the differences name(v2) −
name(v1), . . . , name(v|S|) − name(v|S|−1). Every difference is encoded using the
Elias γ code (see Elias [15]), and the encodings are concatenated to form one
binary string. We are storing up to n

x integers whose absolute values sum up to
at most n, so by Jensen’s inequality this takes O(n

x log x) bits in total. Simi-
larly, we store δ(u, v1) and then the differences δ(u, v2)−δ(u, v1), . . . , δ(u, v|S|)−

236 P. Gawrychowski et al.

δ(u, v|S|−1). By Lemma 1 we are again storing up to n
x numbers whose absolute

values sum up to at most 2n, which takes O(n
x log x) bits.

All vi can be extracted one-by-one in O(1) time each with standard bitwise
operations. To facilitate checking if x ∈ S in O(1) time, we observe that it is
enough to store a bit-vector B[1..n], where the name(vi)-th bit is set to 1, for
every i = 1, 2, . . . , |S|. Then checking if x ∈ S reduces to two rank1 queries. A
rank1 query counts 1s in the specified prefix of the bit-vector and a select1 query
returns the position of the k-th 1 in the bit-vector. By the result of Pǎtraşcu [20],
for any constant t > 0, a bit-vector of length n containing n

x 1s can be stored
using

log
(

n
n
x

)
+ O(

n

logt n
) = O(

n

x
log x) + O(

n

logt n
)

bits so that any rank or select query can be answered in O(t) time. This allows
us to check if u ∈ S and calculate i such that u = vi in O(t) time. To retrieve
δ(u, vi), we store two additional bit-vectors B+ and B−. Each of them contains
exactly n

x 1s and up to 2n 0s. The bit-vectors are defined as follows. For each
i = 2, 3, . . . , n we consider the difference η = δ(u, vi) − δ(u, vi−1). If η ≥ 0, we
append 0η1 to B+ and 1 to B−. Otherwise, we append 1 to B+ and 0−η1 to B−.
By Lemma 1, each of these two bit-vectors contains at most 2n 0s, so they can
be stored using O(n

x log x + n
logt n

) bits so that any rank or select query can be
answered in O(t) time. To recover δ(u, vi), we need to sum up all the differences.
This reduces to summing up all positive and all negative differences separately,
which can be done using the corresponding bit-vector with one rank1 and one
select0 query in O(t) total time. �	

We remark that the above encoding and decoding scheme is efficient for sets
of size |S| = Õ(n). For smaller sets, we will simply use an explicit encoding of
all distances in S, requiring O(|S| log n) bits.

3 Exact Distance Labeling in Sparse Graphs

3.1 Graphs of Bounded Maximum Degree

In this subsection, we assume that deg(u) ≤ Δ for every node u. We consider
distance labeling schemes characterized by a time parameter T . Intuitively, in
the construction, R = log T

log Δ will be a threshold parameter, distinguishing small
distances from large distances in the graph — a node will be able to afford to
explicitly store the distances and identifiers of all nodes up to some distance O(R)
from itself in its distance label. Although this case is of independent interest,
we are considering it as a building block for construction of labeling in graphs
of bounded average degree. Thus graphs considered here are weighted with edge
weights from {0, 1}, for the reason explained in Sect. 3.2.

The rest of this subsection is devoted to the proof of the following Theorem.

Theorem 1. Fix any value Δ ≤ T ≤ n and let R = logΔ T . In bounded-degree
graphs, there is a labeling scheme of size O(n

R log R) and decoding time O(T).

Sublinear-Space Distance Labeling Using Hubs 237

Fig. 1. Shortest path from u to v goes through w which belongs to both Bv(R′) and
Lu(offset(u)).

Let us denote R′ = �R�. Since R′ ≥ 1, we can bound R ≥ R′ ≥ 1
2R. Consider

a node u. The ball of radius r centered at u, denoted Bu(r), is the set of nodes
which can be reached from u by following at most r edges. Because the degrees
of all nodes are bounded by Δ, |Bu(r)| = O(Δr). The k-th layer centered at u,
denoted Lu(k), consists of all nodes v such that �(u, v) = k (mod R)′. Because
the layers are disjoint, there exists an offset(u) ∈ {0, 1, . . . , R′ − 1} such that
|Lu(offset(u))| ≤ n

R′ .

Definition of the Labeling. We define the hub set of node u, to which it stores all
its distances, as S(u) := Bu(R′) ∪ Lu(offset(u)), see Fig. 1. Formally, the label
of u consists of the following:

1. n and name(u),
2. name(v) and δ(u, v) for every v ∈ Bu(R′),
3. name(v) and δ(u, v) for every v ∈ Lu(offset(u)).

Computing δ(u, v). For reasons of efficiency, we will not perform the distance
decoding following Eq. (1) directly, but we will treat the two components of the
hub set of each node separately. Given name(u) and name(v), we can determine
δ(u, v) as follows. First we check if v ∈ Bu(R′) and if so return the stored
δ(u, v). Otherwise, we iterate through all nodes w ∈ Bu(R′) and check if w ∈
Lv(offset(v)). If so, we know δ(u,w)+ δ(w, v). We return the smallest such sum.

For the proof of correctness of the distance decoder, it is clear that δ(u,w)+
δ(w, v) ≥ δ(u, v) for any w, so it remains to argue that either v ∈ Bu(R′) or there
exists w ∈ Bu(R′) such that w ∈ Lv(offset(v)) and δ(u,w) + δ(w, v) = δ(u, v).
Consider a shortest path (p0, p1, p2, . . . p�) where v = p0 and u = p� such that
� = �(u, v). If � ≤ R′, v ∈ Bu(R′) and there is nothing to prove, so we can assume
that � > R′. Observe that for any i = 0, 1, . . . , �, �(v, pi) = i, so in particular

238 P. Gawrychowski et al.

pα·R′+offset(v) ∈ Lv(offset(v)) for any integer α ≥ 0. We choose α =
⌊

�−offset(v)
R′

⌋

and w = pα·R′+offset(v). Then w ∈ Lv(offset(v)), w ∈ Bu(R′) by the choice of α,
and δ(u,w) + δ(w, v) = δ(u, v) because w lies on a shortest path connecting u
and v, so indeed we are able to correctly determine δ(u, v).

Encoding and Size of the Scheme. Encoding n and name(u) takes O(log n)
bits. The set Bu(R′) with corresponding distances is stored explicitly, while set
Lu(offset(u)) together with the corresponding distances is stored using Lemma2,
using O(ΔR′

log n) = O(T log n) and O(n
R′ log R′) bits, respectively. Hence the

total size of the scheme is

O(log n + T log n +
n

R′ log R′) = O(
n

R
log R),

where we have used the fact that for any T = poly(n) the claimed label size is
the same, thus we can assume T = o(n/polylog(n)).

Complexity of the Decoding. Checking if v ∈ Bu(R′) and retrieving the encoded
δ(u, v) takes O(T) time. Similarly, iterating through all w ∈ Bu(R′), checking
if w ∈ Lv(offset(v)) and if so retrieving the encoded δ(v, w) takes, by Lemma 2,
O(1) time per single w, thus O(|Bu(R′)|) = O(T) total time. All in all, we can
compute δ(u, v) in O(T) total time. �	

Smaller values of T . For the sake of completeness, we consider the special case
of T < Δ. Consider labeling where the label of a node u consists of n, name(u),
and all values δ(u, v) for v ∈ V stored using Lemma 2. This takes O(n) bits,
with O(1) decoding time, and matches claimed bounds from Theorem 1.

We also observe that our result applies not only to distance labels, but also as
a size upper bound of hub sets for sparse graphs. Indeed, by fixing T = n, and
observing that |Bu(R′)| + |Lu(offset(u))| ≤ n

R′ , we have the following:

Corollary 1. In bounded-degree graphs, there is a hub set construction of size
O(n

logΔ n) vertices per node.

3.2 Graphs of Bounded Average Degree

We now allow for bounded average degree by reduction to the approach from
Subsect. 3.1. Given a graph G, let Δ = m+n

n . We will create a new graph by
splitting nodes of high degree. Following the formulation from [4, Lemma 4.2]
(cf. Fig. 2), we can obtain a graph G′ on at most 2n nodes and at most m + n
edges, such that the degree of every node is bounded by

⌈
m
n

⌉
+2 ≤ Δ+2 and the

distance between two nodes in the original graph G is exactly the same as the
distance between their corresponding nodes in the new graph G′. We can now
directly apply the scheme from Theorem 1 to graph G′, and exactly the same

Sublinear-Space Distance Labeling Using Hubs 239

Fig. 2. Example of subdividing of a large degree node (on the left) into a family of
nodes of small degree, connected by edges of weight 0 (dashed edges).

distance labels will work for the corresponding nodes of graph G. In this way,
we obtain a scheme of size:

O(
n

R
log R +

m

n
) = O(

n

R
log R), where R = O(

log T

log Δ
).

which returns δ(u, v) in O(T) time given the labels of u and v. The correctness
of the this reduction is guaranteed by the fact that Theorem1 allows for edge
weights from {0, 1}.

Theorem 2. Fix any T ≤ n and Δ, and let R = log T
log Δ . There exists an exact

distance labeling for graphs with average degree Δ using labels of size O(n
R log R)

and a corresponding decoding scheme requiring time O(T). �	
It is easy to see that this reduction preserves bounds on the size of hub sets,

so we have the following:

Corollary 2. In graphs with average degree Δ, there is a hub set construction
of size O(n

logΔ n) vertices per node.

4 2-Additive Distance Labeling in General Graphs

We will apply a similar distance labeling scheme as for sparse graphs, obtaining
a 2-additive approximation of the distance between any pair of with label sizes of
o(n) per node. In this approximate scheme, the hub sets will have the following
property. The label of each node u ∈ V will provide an encoding of the node
identifiers of a subset S(u) ⊆ V and of the distances from u to all elements of
S(u). The sets S(u) will be defined so that for any pair u, v, there exists a node
w ∈ S(u) ∩ S(v), such that either w or a neighbor of w lies on the shortest
path from u to v in G. We will decode the approximate distance as before, using
Eq. (1); clearly, δ′(u, v) ∈ δ(u, v) + {0, 1, 2}.

The construction of sets S(u) is performed as follows. Let τ < 1
2 log n be an

threshold value of vertex degree, to be chosen later. Let V ′ = {v ∈ V : deg(v) >
τ}, and let S′ ⊆ V be a minimal dominating set for V ′, i.e., a subset of V
with the property: ∀w∈V ′Bw(1) ∩ S′ �= ∅. By a straightforward application of
the probabilistic method (cf. [5, proof of Theorem 1.2.2]), we have that there
is S′ such that |S′| ≤ 1+ln(τ+1)

τ+1 n < 2 ln τ
τ n, and it can be easily constructed

240 P. Gawrychowski et al.

in polynomial time (a deterministic construction by a folklore greedy algorithm
gives set of size O(ln τ

τ n)). For every u ∈ V , we define B′
u(r) as the set of nodes

of the ball of radius r around u in the subgraph G[V \V ′]. Finally, we define
R = τ

log τ and let Lu, R′, and offset(u) be defined as in Sect. 3.1, and let S′
u be

a minimal subset of S′ such that for every w ∈ V ′ adjacent the boundary of
B′

u(R′), i.e. Bw(1)∩B′
u(R′) �= ∅, we have Bw(1)∩S′

u �= ∅. Such S′
u can be easily

constructed in polynomial time, and moreover, since there are at most τR′+1

vertices adjacent to the boundary, we have |S′
u| = 2O(τ).

The approximate distance label of u now consists of the following elements:

1. n and name(u),
2. name(v) and δ(u, v) for every v ∈ B′

u(R′),
3. name(v) and δ(u, v) for every v ∈ Lu(offset(u)).
4. name(v) and δ(u, v) for every v ∈ S′

u,
5. name(v) and δ(u, v) for every v ∈ S′\S′

u.

The separation of S′ into S′
u and S′\S′

u in the label is done to allow efficient
decoding.

Computing δ(u, v). To show the correctness of this approximate labeling scheme,
fix a pair of vertices u, v ∈ V . If there exists a vertex w ∈ B′

u(R′) lying on a
fixed shortest path P between u and v such that w = v or w ∈ Lv(offset(v)),
then the labeling scheme finds the shortest path distance between u and v as
in Sect. 3.1. Otherwise, let y be the nearest vertex to u lying in P\B′

u(R′); it
follows from the construction that y ∈ V ′. Then, there exists w ∈ By(1) such
that w ∈ S′

u ⊆ S′. In this case, the distance δ(u,w) + δ(v, w) is a 2-additive
approximation of δ(u, v).

Size of the Scheme. The size of the label of a node u in the scheme can be
bounded as follows: |B′

u(R′)| ≤ τR′ ≤ 2τ , |Lu(offset(u))| ≤ n
R , S′ < 2 ln τ

τ n.
Overall, the total size is |B′

u(R′) ∪ Lu(offset(u)) ∪ S′| = O(log τ
τ n), thus using

Lemma 2 to store the sets and the corresponding distances we obtain labels of
size O(n log2 τ

τ).

Complexity of the Decoding. To perform the distance decoding, for a given pair
u, v ∈ V , it suffices to minimize δ(u,w)+δ(v, w) over all w belonging to B′

u(R′)∪
S′

u which are also encoded in the label of v. Hence, distance decoding is possible
in time 2O(τ). Overall, setting T := 2O(τ), we obtain the following main result
of the section.

Theorem 3. There is a 2-additive distance labeling scheme for general graphs,
which achieves decoding time T using labels of size O(n log2 log T

log T), for any T ≤ n.�	
Finally, we remark on some implications of our result. By a standard argu-

ment, converting a 2-additive approximate distance labeling into an exact one
requires an additional label of size log2 3

2 n bits per node (and an additional
O(n

log n) overhead in the space, which is negligible), with each node u encoding

Sublinear-Space Distance Labeling Using Hubs 241

the difference between the approximate and real distance value, δ′(u, v)−δ(u, v),
for all v ∈ {(u + 1) mod n, . . . , (u + �n

2 �) mod n}. The time overhead of the cor-
responding decoding is O(1). In an analogous manner, converting a 2-additive
approximate distance labeling into an 1-additive approximate one requires an
additional label of size 1

2n bits per node. Thus we convert our scheme into an
exact distance labeling scheme or 1-additive scheme achieving T decoding time
using labels of size respectively log2 3

2 n+O(n log2 log T
log T) or 1

2n+O(n log2 log T
log T), for

any T ≤ n.
Thus, setting τ as an arbitrarily small increasing function of n, for any desired

decoding time T = ω(1) we can make use of labels of size o(n), 1
2n + o(n)

and log2 3
2 n + o(n) respectively for 2-additive, 1-additive and exact distances.

Moreover, using this scheme, O(1) decoding time can be achieved for labels of
size εn, (12 + ε) · n and (log2 3

2 + ε) · n, for any absolute constant ε > 0.
While a slightly stronger in terms of decoding time schemes were presented in

Alstrup et al. [7] (achieving O(1) decoding time and labels of size log2 3
2 n + o(n)

and 1
2n+o(n) for exact and 1-additive distances), we believe that presented here

schemes are of independent value due to the simplification of the construction.

Acknowledgments. Most of the work was done while PU was affiliated to Aalto Uni-
versity, Finland. Research partially supported by the National Science Centre, Poland
- grant number 2015/17/B/ST6/01897.

References

1. Abraham, I., Delling, D., Goldberg, A.V., Werneck, R.F.: Hierarchical hub label-
ings for shortest paths. In: Epstein, L., Ferragina, P. (eds.) ESA 2012. LNCS, vol.
7501, pp. 24–35. Springer, Heidelberg (2012)

2. Abraham, I., Fiat, A., Goldberg, A.V., Werneck, R.F.: Highway dimension, short-
est paths, and provably efficient algorithms. In: Proceedings of the Twenty-First
Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2010, Austin,
Texas, USA, January 17-19, pp. 782–793 (2010). http://dx.doi.org/10.1137/1.
9781611973075.64

3. Abraham, I., Gavoille, C.: On approximate distance labels and routing schemes
with affine stretch. In: Peleg, D. (ed.) Distributed Computing. LNCS, vol. 6950,
pp. 404–415. Springer, Heidelberg (2011)

4. Agarwal, R., Godfrey, P.B.: Distance oracles for stretch less than 2. In: Khanna,
S., (ed.) Proceedings of the Twenty-Fourth Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA 2013), New Orleans, Louisiana, USA, 6–8 January
2013, pp. 526–538. SIAM (2013)

5. Alon, N., Spencer, J.H.: The Probabilistic Method, 2nd edn. Wiley, New York
(2000)

6. Alstrup, S., Dahlgaard, S., Knudsen, M.B.T., Porat, E.: Sublinear distance labeling
for sparse graphs. CoRR, abs/1507.02618 (2015)

7. Alstrup, S., Gavoille, C., Halvorsen, E.B., Petersen, H.: Simpler, faster and shorter
labels for distances in graphs. In: Krauthgamer, R., (ed) Proceedings of the Twenty-
Seventh Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2016),
Arlington, VA, USA, 10–12 January 2016, pp. 338–350. SIAM (2016)

http://dx.doi.org/10.1137/1.9781611973075.64
http://dx.doi.org/10.1137/1.9781611973075.64

242 P. Gawrychowski et al.

8. Babenko, M., Goldberg, A.V., Gupta, A., Nagarajan, V.: Algorithms for hub label
optimization. In: Fomin, F.V., Freivalds, R., Kwiatkowska, M., Peleg, D. (eds.)
ICALP 2013, Part I. LNCS, vol. 7965, pp. 69–80. Springer, Heidelberg (2013)

9. Bauer, R., Delling, D.: SHARC: fast and robust unidirectional routing. J. Exp.
Algorithmics 14, 4: 2.4-4–4: 2.29 (2010)

10. Bollobás, B., Coppersmith, D., Elkin, M.: Sparse distance preservers and additive
spanners. SIAM J. Discrete Math. 19(4), 1029–1055 (2005)

11. Chechik, S.: Approximate distance oracles with constant query time. In: Proceed-
ings of the 46th Annual ACM Symposium on Theory of Computing (STOC 2014),
pp. 654–663, New York, NY, USA. ACM (2014)

12. Chepoi, V., Dragan, F.F., Estellon, B., Habib, M., Vaxès, Y., Xiang, Y.: Addi-
tive spanners and distance and routing labeling schemes for hyperbolic graphs.
Algorithmica 62(3–4), 713–732 (2012)

13. Cohen, E., Halperin, E., Kaplan, H., Zwick, U.: Reachability and distance queries
via 2-hop labels. SIAM J. Comput. 32(5), 1338–1355 (2003)

14. Cohen, H., Porat, E.: On the hardness of distance oracle for sparse graph. CoRR,
abs/1006.1117 (2010)

15. Elias, P.: Universal codeword sets and representations of the integers. IEEE Trans.
Inf. Theory 21(2), 194–203 (1975)

16. Gavoille, C., Peleg, D., Pérennes, S., Raz, R.: Distance labeling in graphs. J. Algo-
rithms 53(1), 85–112 (2004)

17. Graham, R., Pollak, H.: On embedding graphs in squashed cubes. In: Alavi, Y.,
Lick, D., White, A. (eds.) Graph Theory and Applications. Lecture Notes in Math-
ematics, vol. 303, pp. 99–110. Springer, Berlin Heidelberg (1972)

18. Köhler, E., Möhring, R.H., Schilling, H.: Fast point-to-point shortest path compu-
tations with arc-flags. In: 9th DIMACS Implementation Challenge (2006)

19. Nitto, I., Venturini, R.: On compact representations of all-pairs-shortest-path-
distance matrices. In: Ferragina, P., Landau, G.M. (eds.) CPM 2008. LNCS, vol.
5029, pp. 166–177. Springer, Heidelberg (2008)

20. Pătraşcu, M.: Succincter. In: 49th Annual IEEE Symposium on Foundations of
Computer Science (FOCS), 25–28 October 2008, Philadelphia, PA, USA, pp. 305–
313. IEEE Computer Society (2008)

21. Pătraşcu, M., Roditty, L.: Distance oracles beyond the Thorup-Zwick bound. SIAM
J. Comput. 43(1), 300–311 (2014)

22. Roditty, L.: Distance oracles for sparse graphs. In: Kao, M.-Y. (ed.) Encyclopedia
of Algorithms, pp. 1–3. Springer, New York (2014)

23. Sommer, C., Verbin, E., Yu, W.: Distance oracles for sparse graphs. In: 50th IEEE
Symposium on Foundations of Computer Science (FOCS), pp. 703–712. IEEE
(2009)

24. Thorup, M., Zwick, U.: Compact routing schemes. In: Proceedings of the Thir-
teenth Annual ACM Symposium on Parallel Algorithms and Architectures (SPAA
2001), pp. 1–10, New York, NY, USA. ACM (2001)

25. Weimann, O., Peleg, D.: A note on exact distance labeling. Inf. Process. Lett.
111(14), 671–673 (2011)

26. Wulff-Nilsen, C.: Approximate distance oracles with improved query time. In: Pro-
ceedings of the Twenty-Fourth Annual ACM-SIAM Symposium on Discrete Algo-
rithms, pp. 539–549 (2013)

Online Balanced Repartitioning

Chen Avin1, Andreas Loukas2, Maciej Pacut3, and Stefan Schmid2,4(B)

1 Ben Gurion University of the Negev, Beersheba, Israel
2 TU Berlin, Berlin, Germany

3 University of Wroclaw, Wroclaw, Poland
4 Aalborg University, Aalborg, Denmark

schmiste@gmail.com, schmiste@cs.aau.dk

Abstract. Distributed cloud applications, including batch processing,
streaming, and scale-out databases, generate a significant amount of net-
work traffic and a considerable fraction of their runtime is due to network
activity. This paper initiates the study of deterministic algorithms for
collocating frequently communicating nodes in a distributed networked
systems in an online fashion. In particular, we introduce the Balanced
RePartitioning (BRP) problem: Given an arbitrary sequence of pairwise
communication requests between n nodes, with patterns that may change
over time, the objective is to dynamically partition the nodes into � clus-
ters, each of size k, at a minimum cost. Every communication request
needs to be served: if the communicating nodes are located in the same
cluster, the request is served locally, at cost 0; if the nodes are located
in different clusters, the request is served remotely using inter-cluster
communication, at cost 1. The partitioning can be updated dynamically
(i.e., repartitioned), by migrating nodes between clusters at cost α per
node migration. The goal is to devise online algorithms which find a good
trade-off between the communication and the migration cost, i.e., “rent”
or “buy”, while maintaining partitions which minimize the number of
inter-cluster communications. BRP features interesting connections to
other well-known online problems. In particular, we show that scenarios
with � = 2 generalize online paging, and scenarios with k = 2 constitute
a novel online version of maximum matching. We consider settings both
with and without cluster-size augmentation. Somewhat surprisingly (and
unlike online paging), we prove that any deterministic online algorithm
has a competitive ratio of at least k, even with augmentation. Our main
technical contribution is an O(k log k)-competitive deterministic algo-
rithm for the setting with (constant) augmentation. This is attractive
as, in contrast to �, k is likely to be small in practice. For the case of
matching (k = 2), we present a constant competitive algorithm that does
not rely on augmentation.

Keywords: Dynamic graphs · Clustering · Graph partitioning ·
Algorithms · Competitive analysis · Cloud computing

Research supported by the German-Israeli Foundation for Scientific Research (GIF)
Grant I-1245-407.6/2014 and by the Polish National Science Centre grant DEC-
2013/09/B/ST6/01538. We thank Marcin Bienkowski for many inputs and feedback
on this paper.

c© Springer-Verlag Berlin Heidelberg 2016
C. Gavoille and D. Ilcinkas (Eds.): DISC 2016, LNCS 9888, pp. 243–256, 2016.
DOI: 10.1007/978-3-662-53426-7 18

244 C. Avin et al.

1 Introduction

Graph partitioning problems, like minimum graph bisection and maximum
matching, are among the most fundamental problems in Theoretical Computer
Science. Due to their numerous practical applications (e. g., communication net-
works, data mining, social networks, etc. [4,15,27]), partitioning problems are
also among the most intensively studied problems. Interestingly however, not
much is known today about how to dynamically partition nodes which interact
or communicate in a time-varying fashion.

This paper initiates the study of a natural model for online graph partition-
ing. We are given a set of n nodes with time-varying pairwise communication
patterns, which we have to partition into � clusters of equal size k. Intuitively, we
would like to minimize inter-cluster links by mapping frequently communicat-
ing nodes to the same cluster. Since communication patterns change over time,
partitions should be dynamically readjusted, that is, the nodes should be reparti-
tioned, in an online manner, by migrating them between clusters. The objective
is to jointly minimize inter-cluster communication and reconfiguration costs,
defined respectively as the number of communication requests served remotely
and the number of times nodes are migrated from one cluster to another.

One practical motivation for our problem arises in the context of server virtu-
alization in datacenters. Distributed cloud applications, including batch process-
ing applications such as MapReduce, streaming applications such as Apache
Flink or Apache Spark, and scale-out databases and key-value stores such as
Cassandra, generate a significant amount of network traffic and a considerable
fraction of their runtime is due to network activity [25]. For example, traces of
jobs from a Facebook cluster reveal that network transfers on average account
for 33 % of the execution time [14]. In such applications, it is desirable that
frequently communicating virtual machines are collocated, i.e., mapped to the
same physical server, since communication across the network (i.e., inter-server
communication) induces network load and latency. However, migrating virtual
machines between servers also comes at a price: the state transfer is bandwidth
intensive, and may even lead to short service interruptions. Therefore the goal is
to design online algorithms which find a good trade-off between the inter-server
communication cost and the migration cost, similar in spirit to classical ski rental
and rent-or-buy problems.

Formally we define the Balanced RePartitioning (BRP) problem as follows.
The inputs to BRP are:

1. A set V of n = |V | nodes (e.g., the virtual machines), initially distributed
arbitrarily across � clusters C = {C1, . . . , C�} (e.g., the physical servers, inter-
connected by a top-of-the-rack switch [2]), each of size k (e.g., the number of
cores or slots for virtual machines).

2. An arbitrary and possibly infinite sequence σ of |σ| communication
requests, σ = {u1, v1}, {u2, v2}, {u3, v3}, . . . , {u|σ|, v|σ|}. For any t, σt =
{ut, vt} denotes a communication request: at time t, nodes ut, vt ∈ V exchange
(a fixed amount of) data. Intuitively, every request σt can be thought of as an

Online Balanced Repartitioning 245

edge of the communication graph which appears at time t and then disappears
at t + 1.

At any time t, each node v ∈ V is assigned to a cluster, which we will refer
to by Ct(v) ∈ C. If the time t is clear from the context or irrelevant, we sim-
ply write C(v). We call two nodes u, v ∈ V collocated if they are in the same
cluster: C(u) = C(v). We consider two settings:

1. Without augmentation: The nodes fit perfectly into the clusters, i.e., n = k ·�.
2. With augmentation: The online algorithm has access to additional space in

each cluster. We say that an algorithm is δ-augmented if the size of each
cluster is k′ = δ · k, whereas the total number of nodes remains n = k · � <
k′ · �. As usual, in the competitive analysis, the augmented online algorithm
is compared to the optimal offline algorithm without augmentation.

At each time t, the online algorithm needs to serve the communication
request {ut, vt}, but can also repartition the nodes into new clusters before serv-
ing the request. We assume that a communication request between two nodes
located in different clusters costs 1, a communication request between two nodes
collocated in the same cluster costs 0, and migrating a node from one cluster to
another costs α ≥ 1. Note that in a setting without augmentation, due to cluster
size constraints, a node can never be migrated alone, but it must be swapped
with another node at a cost of (at least) 2α.

As it turns out, BRP features some interesting connections to other well-
known graph and online problems: (i) The static version (without migration) is
the minimum balanced graph partitioning problem (where � is the number of
components). (ii) For � = 2, BRP can be shown to be a generalization of online
paging, where the first cluster simulates the cache (the small but fast memory)
and the second the slow but large memory. (iii) For k = 2, BRP is a novel online
version of maximum matching. In the static case, maximum matching is a special
case of minimum balanced graph partitioning with n/2 components.

The cost of an algorithm ALG for a given sequence of communication
requests σ is

ALG(σ) =
|σ|∑

t=1

mig(σt;ALG) + com(σt;ALG), (1)

where mig(σt;ALG) is the migration cost at time t (α or 0) and com(σt;ALG)
is the communication cost of σt (1 or 0). Let On(σ) and Off(σ) be the cost
induced by σ on an online algorithm On and an optimal offline algorithm Off,
respectively. In contrast to On, which learns the requests one-by-one as it serves
them, Off has a complete knowledge of the entire request sequence σ ahead
of time. We are in the realm of online algorithms and competitive analysis:
We want to design online repartitioning algorithms which provide conservative
(worst-case) guarantees, and minimize the (strict) competitive ratio:

ρ(On) = max
σ

On(σ)
Off(σ)

. (2)

246 C. Avin et al.

To be competitive, an online repartitioning algorithm has to define a strategy
for each of the following questions:

(A) Serve remotely or migrate (“rent or buy”)? If a communication pattern is
short-lived, it may not be worthwhile to collocate the nodes: the migration
cost cannot be amortized.

(B) Where to migrate, and what? If nodes should be collocated, the question
becomes where. Should ut be migrated to C(vt), vt to C(ut), or should
both nodes be migrated to a new cluster? Moreover, an algorithm may be
required to pro-actively migrate (resp. swap) additional nodes.

(C) Which nodes to evict? There may not exist sufficient space in the desired
destination cluster. In this case, the algorithm needs to decide which nodes
to evict, to free up space.

Our Contributions. This paper introduces the online balanced repartitioning
problem. We consider deterministic algorithms and make the following technical
contributions:

1. Online Rematching: For the special case of online rematching (k = 2, but
arbitrary �), Theorem 1 presents a greedy online algorithm which is almost
optimal: it is 7-competitive and we prove a lower bound of 3.

2. Lower Bounds: While in a setting without augmentation, a k−1 lower bound
for the competitive ratio of any online algorithm follows from a simulation of
online paging, in Theorem2, we show a lower bound which is strictly larger
than k, for any α > 0. Intriguingly, we show that the online repartitioning
problem remains hard even with augmentation. In particular, in Theorem3
we prove that no augmented online algorithm can achieve a competitive ratio
below k, as long as it cannot solve the problem trivially by placing all nodes
into a single cluster. In contrast, online paging is known to become constant
competitive with constant augmentation [29].

3. Online Balanced Repartitioning: Our main technical contribution stated in
Theorem 4 is a non-trivial O(k log k)-competitive algorithm for the setting
with 4-augmentation.

Observe that none of our bounds depends on �. This is interesting, as for
example, in our motivating virtual machine collocation problem, k is likely to be
small: a server typically hosts a small number of virtual machines (e.g., related
to the constant number of cores on the server).

Paper Organization. The remainder of this paper is organized as follows.
After reviewing related work in Sect. 2, we start by discussing the special case
of matchings (k = 2) in Sect. 3. We consider lower bounds for the general set-
ting with and without augmentation in Sect. 4. Section 5 is then devoted to the
presentation and analysis of CREP, an augmented deterministic algorithm. We
conclude in Sect. 6. Due to space constraints, some technical details and proofs
only appear in our technical report [6].

Online Balanced Repartitioning 247

2 Related Work

Our work assumes a new perspective on several classic algorithmic problems.
The static version of our problem (without migration) is the minimum balanced
graph partitioning problem (where � is the number of components). This problem
is known to be NP-complete, and cannot even be approximated within any finite
factor [4]. The static variant where k = 2 corresponds to a maximum matching
problem, which is polynomial-time solvable. The static variant where � = 2 corre-
sponds to the minimum bisection problem [17] and can be approximated within
a factor of O(log1.5 n) from the minimum cost [20]. The concept of cluster-size
augmentation is inspired by offline bicriteria approximations to graph partition-
ing, in particular the (�, δ)-balanced graph partitioning problem [4], where the
graph has to be partitioned in � components of size less than δ · n

� , as well as by
the concept of c-balanced cuts used by Arora, Rao, and Vazirani [5], where both
partitioned components should be of size at least c · n.

In terms of online algorithms, the subproblem of finding a good trade-off
between serving requests remotely (at a low but repeated communication cost)
or migrating nodes together (entailing a potentially high one-time cost α), is
essentially a ski rental or rent-or-buy problem [21,22]. A similar tradeoff also
arises in the context of online page and server migration problems [9,10], where
requests appear in a metric space [11] or graph [7] over time, and need to be
served by one [10] or multiple [19] servers. However, in BRP, the number of
possible node-cluster configurations is large, rendering it difficult to cast the
problem into an online metrical task system. Moreover, in contrast to most
online migration problems, which typically optimize the placement of a page
or server with respect to the request locations, in our model, both end-points
of a communication request are subject to optimization. A second difference to
the usual models studied in the literature (where requests appear at specific
locations in the metric space) is that in our problem a request only reveals
partial and binary information about the optimal location (resp. configuration)
to serve it: the request can be served at cost zero whenever the communicating
are collocated.

Our model can be seen as a generalization of online paging [18,23,24,30],
sometimes also referred to as online caching, where requests for data items arrive
over time and need to be served from a cache of finite capacity, and where the
number of cache misses must be minimized. The online caching and paging prob-
lem was first analyzed in the framework of the competitive analysis by Sleator
and Tarjan [29], who presented a kALG/(kALG−kOPT +1)-competitive algo-
rithm, where kALG is the cache size of the online and kOPT the cache size of
the offline algorithm. The authors also proved that no deterministic online algo-
rithm can beat this ratio. In the classic caching model and its variants [12,13,24],
items need to be put into the cache upon each request, and the problem usually
boils down to finding a smart eviction strategy, such as Least Recently Used
(LRU) or Flush-When-Full (FWF). In contrast, in our setting, requests can be
served remotely. In this light, our model is reminiscent of caching models with
bypassing [1,16]. In fact, it is easy to see that in a scenario with � = 2 clusters,

248 C. Avin et al.

online paging can be simulated: in this simulation, one cluster can be used as the
cache and the other cluster as the slow memory; by the corresponding problem
reduction we also obtain a k − 1 lower bound for our problem without augmen-
tation. However, in general, in our model, the “cache” is distributed : requests
occur between nodes and not to nodes, and costs can be saved by collocation.

BRP also has connections to online packing problems, where items of different
sizes arriving over time need to be packed into a minimal number of bins [26,28].
In contrast to these problems, however, in our case the objective is not to minimize
the number of bins but rather the number of “links” between bins, given a fixed
number of bins.

Finally, our model also connects to recent work on online clique and corre-
lation clustering [3,8,15,27]. In this prior work, nodes and/or links can appear
over time, but the underlying communication graph remains invariant.

3 Online Rematching

Let us first consider the special case where clusters are of size two (k = 2,
arbitrary �). This is essentially an online maximal (re)matching problem: clusters
of size two host (resp. “match”) exactly one pair of nodes, and maximizing pair-
wise communication within each cluster is equivalent to minimizing inter-cluster
communication. In a k = 2 scenario, the question of which node to evict is
trivial: there is simply no choice. The problem can also be seen from a ski-
rental perspective: one has to identify a good tradeoff between serving requests
remotely (“renting”) and migrating the communicating nodes together (“buy”).

A natural greedy online algorithm Greedy to solve this problem proceeds
as follows: For each cluster Ci, hosting nodes ui, vi, we count the total number
of inter-cluster requests over time for its nodes. After 3α requests occur between
nodes inside any cluster C1 to nodes outside the cluster, we identify the cluster C2

with which C1 communicated most frequently in this time period. We then
collocate u1 with the single node in C2 (v2 or u2) with which it communicated
the most—ties broken arbitrarily and without involving any other clusters in
the repartitioning. Afterwards, we reset all pairwise communication counters
involving nodes from (old) clusters C1 and C2 (i.e., u1, u2, v1, v2).

Theorem 1. Greedy is 7-competitive. No deterministic online algorithm
achieves a competitive ratio below 3 when |σ| → ∞.

4 Lower Bounds for Online Balanced Repartitioning

Our problem is generally hard to approximate online. While it is easy to see
that a lower bound of k − 1 follows by simulating online paging (using only two
servers), in the following we prove a strictly larger lower bound (cf. Theorem2).
In fact, we observe that, even with augmentation, our problem is hard to approx-
imate online: as long as the augmentation is less than what would be required
to solve the partitioning problem trivially, by putting all nodes into the same

Online Balanced Repartitioning 249

cluster (i. e., δ < �), no deterministic online algorithm can achieve a competitive
ratio better than k (cf. Theorem 3). This highlights an intriguing difference from
online paging, where the competitive ratio becomes constant under augmenta-
tion [29]. Our lower bounds are independent of the initial configuration: both
Off and On start off having the nodes placed identically in clusters.

Theorem 2. No deterministic online algorithm can achieve a competitive ratio
smaller than k + k−2

2α , independently of �.

Interestingly, an adversary can outwit any online algorithm, even in the set-
ting with augmentation. In the following, we consider online algorithms which,
compared to Off, have δ-times more space in each cluster.

Theorem 3. No δ-augmented deterministic online algorithm can achieve a
competitive ratio smaller than k, as long as δ < �.

5 CREP Algorithm: An O(k log k) Upper Bound

The main technical contribution of this paper is an online Component-based
REPartitioning algorithm (CREP) which achieves an almost tight upper bound
matching the k lower bound of Theorem3 with augmentation at least 4. Intu-
itively, it helps to think of a 4-augmented algorithm as one that can use twice
as many clusters, each having twice as much space (though this is a special case
of the definition of augmentation). Formally, we claim:

Theorem 4. With augmentation at least 4, CREP is O(k log k)-competitive.

CREP is summarized in Algorithm 1. The algorithm is non-trivial and relies
on the following basic ideas:

1. Communication components. CREP groups nodes which have recently com-
municated into components. Once the cumulative communication cost of a
group of nodes distributed across two or more components exceeds a cer-
tain threshold, CREP merges them into a single component, by collocat-
ing them in the same cluster. That is, we maintain a logical, time-varying
weighted component graph Gt = (Φt, Et, wt), where Φt is the set of com-
ponents immediately after request t has been issued, the edges Et connect
components which communicated at least once during this epoch, and wt

is the number of communication requests between the corresponding two
nodes in this epoch. In other words, an edge (i, j) ∈ E between two compo-
nents φi, φj ∈ Φt indicates that the two components (resp. the corresponding
nodes in φi and those in φj) were involved in wij > 0 requests. Although the
graph Gt changes over time (when components are merged or split according
to CREP), when the time is clear from the context, we drop the time-index
and simply write G = (Φ,E,w). Edges disappear (and their weights are reset)
when the components are merged. For a component set X = {φi, φj , . . . } ⊆ Φ,
let |X| denote the number of components in X. We call vol(X) =

∑
φ∈X |c|

the volume of the set and com(X) =
∑

φi,φj∈X wij the communication cost
among the members of X.

250 C. Avin et al.

2. Component epochs. We analyze CREP in terms of component-wise epochs.
A component epoch starts with the first request between two individual
nodes (singleton components), and ends when: (i) the size of the component
(the number of nodes in the component) exceeds k and (ii) the accumulated
communication between the components exceeds a certain threshold. CREP
maintains the invariant that components are never split during an epoch,
that is, once two nodes of the same component epoch are placed together
in a cluster, they will remain in the same cluster in the remainder of the
epoch (but they may possibly be migrated together to a new cluster). As
such, when a component set X is merged into a new component (Line 7),
CREP tries to migrate all the components to the cluster of the largest com-
ponent (ties broken arbitrarily). If there is not enough reserved space in the
cluster, then all components are migrated to a new cluster. If on the other
hand vol(X) exceeds k, the component-epoch ends, and all φ ∈ X are reset to
singleton components (Line 19). More specifically, according to Algorithm 1,
two termination criteria have to be fulfilled for a component set Y to end
an epoch: vol(Y) > k and com(Y) ≥ vol(Y) · α. This non-trivial criterion
is critical, to keep the migration cost competitive. An epoch that ends as a
result of a set Y is referred to as a Y -epoch.

3. Space reservations. In order to keep the number of migrations low, CREP per-
forms space reservations in clusters. Whenever CREP migrates a component
φ into a cluster, it reserves additional space reserve(φ) = min{k − |φ|, |φ|}.
As we will prove, these proactive space reservations can ensure that a com-
ponent has to be migrated again only after its size doubles. For a clus-
ter s, let reserved(s), occupied(s) and spare(s) denote the reserved, occupied
and spare (unreserved) space in s, where always reserved(s) + occupied(s) +
spare(s) = 2k. Similarly, for a component φ let reserved(φ) denote the amount
of its reserved space that is still available in its current cluster.

The remainder of this section is devoted to the proof of Theorem 4. The
proof unfolds in a number of observations and lemmas. We first observe, in
Property 1, that indeed, it is always possible to find a cluster where the to-be-
merged components fit. We then derive an upper bound on CREP’s cost per
component epoch and a lower bound on the optimal offline cost per component
epoch. Finally, we show that the competitive ratio is also bounded with respect
to incomplete epochs.

We start by observing that there always exists a cluster which can host the
entire merged component, including the required reserved space without any
evacuation, i.e., its spare space is at least k.

Property 1. At any point in time, a cluster exists having at least k spare space.

So indeed, CREP can always place a merged component greedily into
clusters—no global component rearrangement is necessary. On the other hand,
augmenting the cluster size allows CREP to reserve additional space for
migrated components. As we show in the following, this ensures that each node

Online Balanced Repartitioning 251

Algorithm 1. CREP with 4 Augmentation
1: Construct graph G = (Ψ, E, w) with singleton components: one component per

node. Set wij = 0 for all {vi, vj} ∈ (
V
2

)
. For each component φi, reserve

space reserve(φi) = 1.

2: for each new request {ut, vt} do
� Keep track of communication cost.

3: Let φi = Φ(ut) and φj = Φ(vt) be the two components that communicated.
4: if φi �= φj then
5: wij ← wij + 1
6: end if

� Merge components.
7: Let X be the largest cardinality set with vol(X) ≤ k and com(X) ≥ (|X|−1) ·α

8: if |X| > 1 then
9: Let φ0 =

⋃
φi∈X φi and for all φj ∈ Φ\X set w0j =

∑
φi∈X wij .

10: Let φ ∈ X be the component having the largest reserved space.
11: if reserved(φ) ≥ vol(X) − |φ| then
12: Migrate φ0 to the cluster hosting φ
13: Update reserved(φ0) = reserved(φ) − (vol(X) − |φ|)
14: else
15: Migrate φ0 to a cluster s with spare(s) ≥ min(k, 2|φ0|)
16: Set reserved(φ0) = min(k − |φ0|, |φ0|)
17: end if
18: end if

� End of a Y -epoch.
19: Let Y be the smallest components set with vol(Y) > k and , Y ≥ vol(Y) · α
20: if Y �= ∅ then
21: Split every φi ∈ Y into φi singleton components and reset the weights of

all edges involving at least one newly created component. Reserve one additional
space for each newly created component. If necessary, migrate at most vol(Y)/2+1
singletons to clusters with spare space.

22: end if
23: end for

is migrated at most log k times (rather than k) during the formation of a com-
ponent.

Upper bound on CREP’s costs. The online algorithm’s cost during each
epoch consists of the communication cost, which amounts to the number of
communication requests that were served remotely, and the migration cost, which
is equal to the number of node migrations. The following properties provide
upper bounds for both kinds of costs for a single component:

Property 2. At any point in time, consider a component c induced by the com-
munication pattern in this epoch, then:

252 C. Avin et al.

1. The communication cost between nodes in φ is, in this epoch, at most
(|φ| − 1) · α.

2. The migration cost of nodes in φ is, in this epoch, at most (|φ| log |φ|) · α.

Proof (Proof of Property 2). The two properties are proved in turn.

Property 2.1. We prove this property by induction on the merging sequence,
i. e., the sequence of merges that includes all the nodes in φ from the time when
they were singletons, ordered by time. To establish the base case, consider the
first merge of nodes in φ, where X was a set of singletons (Line 7) and |X|
singleton components were combined into a new component φ0 = ∪φi∈Xφi. By
CREP’s merging condition, the cost up to this point is equal to (|X| − 1) · α =
(|φ0| − 1) · α. For the inductive step, consider again that X ′ is merged into φ0

and suppose that the communication cost paid for each component φ′ ∈ X ′

is (|φ′| − 1) · α. After the merge, CREP’s total communication cost is equal to
(|X ′| − 1) · α +

∑
φi∈X′(|φi| − 1) · α =

(∑
φi∈X′ |φi|

)
· α − α = (|φ0| − 1) · α and

the induction holds.

Property 2.2. First observe that any node u which belongs to φ is migrated at
most log |φ| times during an epoch. To see this, suppose that u was just migrated
into a cluster and that the size of u’s current component is |φ′|. From Property 1,
we know that u will not be migrated as a consequence of a merge that does not
involve u’s component (i.e., it will never be evicted). Furthermore, due to the
existence of reserved space, u will stay in the same cluster as long as the size of
its current component φ′ remains smaller or equal to 2|φ′|. Since the size of u’s
component between any consecutive migrations doubles, the total migrations
can be at most log |φ|. This implies the total number of migrations pertaining
to all nodes in φ is at most |φ| log |φ|.

Using Property 2, we can bound the migration and communication cost of
a Y -epoch:

Lemma 1. Consider the end of a Y -epoch (Line 19). CREP migrates at
most

∑
φi∈Y |φi| log |φi| ≤ vol(Y) · log k nodes and serves at most 2 vol(Y) · α

remote requests during this epoch for nodes in Y .

The proof of Lemma 1 follows directly from Property 2 and is omitted.
Lower bound on Off’s cost. Having derived an upper bound on CREP’s
cost, we next compute a lower bound of Off’s cost.

Lemma 2. By the end of a Y -epoch, Off pays at least vol(Y)/k · α communi-
cation cost (during this epoch) for nodes in Y .

To establish the above lower bound, we will need two useful properties.

Property 3. Consider any component φ in the current epoch and any partition
of φ into two non-empty disjoint sets B and W , with B ∪ W = φ. During
the creation of φ (by merging), there were at least α communication requests
between nodes in B and W .

Online Balanced Repartitioning 253

Proof (Proof of Property 3). Consider the tree T which describes how compo-
nent φ merged from singletons into φ during the current epoch. The leafs of
the tree are the nodes in φ and each internal node corresponds to a component
set X that was found in Line 7 of the algorithm, and entails a merge to a new
component φ0. Now color the leafs of the tree according to W and B. Since
both sets are non-empty there must exist an internal node τ in T , whose descen-
dant leafs in the subtree are not colored identically. Let B′ = {b1, b2, . . . , bp}
be the child components of τ which are in B, and let W ′ = {w1, w2, . . . , wq}
be the components which are children of τ and which are in W . Let X be the
set corresponding to the descendant leafs of τ and note that X = B′ ∪ W ′

and |X| = p + q. Since neither B′ nor W ′ were merged earlier, the total
communication cost among B′ (resp. W ′) is at most (p − 1)α (resp. (q − 1)α),
which sums up to at most (p + q − 2)α. But since X is witnessing a communi-
cation cost of at least (|X| − 1)α = (p + q − 1)α, there must have occurred at
least (p + q − 1)α − (p + q − 2)α = α communication cost between the nodes
in B and the nodes in W during the current epoch.

Property 4. Consider any two non-empty disjoint subsets of components U, V ⊂
Y s.t. U ∪ V = Y and vol(U) < k (i.e., U ’s components fit in one cluster). The
inter-communication cost between U and V is at least α during the Y -epoch.

Proof (Proof of Property 4). The proof follows from the minimality of Y and
because no merge involving components happened in Y . From the Y -epoch ter-
mination condition, we have com(Y) = com(U)+com(V)+inter(U, V) ≥ vol(Y)·
α, where inter(U, V) is the inter-communication cost between U and V . Assume
for the sake of contradiction that inter(U, V) < α. Recall that vol(U) ≤ k and,
since the components in U have not been merged yet, com(U) ≤ (|U | − 1) · α ≤
(vol(U) − 1) · α (the equality holds when |U | = 1). We therefore have

com(V) = com(Y) − com(U) − inter(U, V)
> vol(Y) · α − (vol(U) − 1) · α − α = vol(V) · α.

We obtain the desired contradiction by distinguishing between two cases: (i)
If vol(V) > k, then V ⊂ Y meets both termination conditions of a compo-
nent epoch (Line 19), and thus the minimality of set Y is contradicted. (ii)
Next, consider that vol(V) ≤ k and notice that it must hold that |V | > 1
(otherwise com(V) = 0). Since the components in V have not been merged
yet, com(V) ≤ (|V | − 1) · α ≤ (vol(V) − 1) · α ≤ vol(V) · α, which is again a
contradiction.

Proof (Proof of Lemma 2). We now use Properties 3 and 4 to lower bound Off’s
cost. First, it follows from Property 3 that Off cannot gain by splitting any
component φ ∈ Y between different clusters (which would only increase its
cost). The question is then, how much can Off reduce the inter-communication
cost by arranging φ ∈ Y more efficiently? Let Rintra be the number of inter-
communication requests (of CREP) Off did not pay by placing the components
in an optimal way. Furthermore, denote by s the number of clusters Off used

254 C. Avin et al.

and by bj ≤ k the number of nodes Off placed in each cluster j = 1, . . . , s.
Consider any cluster j. In the best case for Off, each of the bj nodes in the
cluster is a singleton component which CREP placed in a different cluster. It
follows that Off’s saved cost cannot be greater than (bj −1)α: otherwise CREP
would have merged the bj components into a single component. Observe also
that, although Off aims to put the components in as few possible clusters, by a
simple pigeonhole argument, s must be at least vol(Y)/k. Combining the above,
the number of requests Rinter Off serves remotely (assuming that no node was
migrated during the Y -epoch) is

Rinter = vol(Y) · α − Rintra ≥ vol(Y) · α −
s∑

j=1

(bj − 1) · α

=

(

vol(Y) −
s∑

j=1

bj +
s∑

j=1

1

)

· α ≥
vol(Y)/k∑

j=1

1 =
vol(Y)

k
· α,

where the last step follows from the fact that
∑s

j=1 bj = vol(Y).
It remains to show that Off cannot decrease Rinter any further by swapping

nodes during the Y -epoch. From Property 4, the nodes in each cluster j commu-
nicated at least α times with clusters i
= j. Since any swap that Off performs
between two clusters costs at least 2α, a swap between the involved clusters
can only be beneficial to On. Considering that there are at least s ≥ vol(Y)/k
clusters, even with migrations, Off’s cost will be at least vol(Y)/k · α.

Incomplete Component Epoch. So far, we have quantified the cost that
CREP and Off pay at the end of each epoch. It remains to account for the
costs that CREP accumulates in incomplete epochs.

First, let us observe that the edge weights w of incomplete epochs in the
component graph are naturally bounded: at some point, the edge will cause a
merge, or end the epoch. By dividing the edges of the component graph G into
light edges and heavy edges, we can claim the following:

Property 5. For every edge (φi, φj) in the component graph, at any given time:

1. If |φi| + |φj | ≤ k (we call this a light edge), the edge has cost at most α.
2. If |φi| + |φj | > k (we call this a heavy edge), the edge cost is at most (|φi| +

|φj |)α ≤ (2k)α

The claim is implied by the definition of CREP. In the first case, if
the (φi, φj) edge cost was larger than α, CREP would have merged φi and φj

into a new component. Similarly, in the second case, if the edge (φi, φj) cost was
larger than (|φi| + |φj |)α, CREP would have ended the epoch.

Let us consider the request sequence σ at some time t. Recall that at the end
of an epoch, we reset all involved edge weights, and charge Off for them. So
at time t, we have not taken into account yet the communication requests that
were not reset. For any two nodes u and v, we consider all their communication

Online Balanced Repartitioning 255

requests since the last time they belonged to the same Y , at the end of a Y -
epoch. All these requests belong to what we call the last epoch. Note that σ
may not contain any complete epochs at all. But every request {u, v} ∈ σ must
belong to some Y -epoch or to the last epoch. Using Property 5 we obtain:

Lemma 3. The competitive ratio of CREP for communication requests which
belong to the last epoch, is bounded by O(k log k).

The competitive ratio of CREP follows from Lemmas 1, 2, and 3.

6 Conclusion

This paper initiated the study of a natural dynamic partitioning problem which
finds applications, e.g., in the context of virtualized distributed systems sub-
ject to changing communication patterns. We derived different upper and lower
bounds, both for the general case as well as for a special case describing a match-
ing problem. While the derived competitive ratios are sometimes linear or even
super-linear in k, they do not depend on �: We believe that this is attractive in
practice: for example, while the number of servers in a datacenter (i.e., �) can
be large, the number of virtual machines hosted per server (e.g., the number of
cores) is usually small. The main open question raised by our work regards the
optimality of our upper bound: currently, the upper and lower bounds are off
by a logarithmic factor. Moreover, it will be interesting to explore randomized
settings: While we have some early positive results on the potential of randomiza-
tion for special problem instances, the feasibility of o(k)-competitive randomized
algorithms remains an open problem.

References

1. Adamaszek, A., Czumaj, A., Englert, M., Räcke, H.: An O(log k)-competitive
algorithm for generalized caching. In: Proceedings of 23rd SODA, pp. 1681–1689
(2012)

2. Al-Fares, M., Loukissas, A., Vahdat, A.: A scalable, commodity data center network
architecture. ACM SIGCOMM CCR 38(4), 63–74 (2008)

3. Andreev, K., Räcke, H.: Balanced graph partitioning. In: Proceedings of 16th
Annual ACM Symposium on Parallelism in Algorithms and Architectures (SPAA)
(2004)

4. Andreev, K., Räcke, H.: Balanced graph partitioning. Theory Comput. Syst. 39(6),
929–939 (2006)

5. Arora, S., Rao, S., Vazirani, U.: Expander flows, geometric embeddings and graph
partitioning. J. ACM (JACM) 56(2), 5 (2009)

6. Avin, C., Loukas, A., Pacut, M., Schmid, S.: Online balanced repartitioning. arXiv
https://arxiv.org/abs/1511.02074 (2016)

7. Awerbuch, B., Bartal, Y., Fiat, A.: Competitive distributed file allocation. Inf.
Comput. 185(1), 1–40 (2003)

8. Bansal, N., Blum, A., Chawla, S.: Correlation clustering. Mach. Learn. 56(1–3),
89–113 (2004)

https://arxiv.org/abs/1511.02074

256 C. Avin et al.

9. Bartal, Y., Charikar, M., Indyk, P.: On page migration and other relaxed task
systems. Theor. Comput. Sci. 268(1), 43–66 (2001). Also appeared in Proceedings
of the 8th SODA, pp. 43–52 (1997)

10. Bienkowski, M., Feldmann, A., Grassler, J., Schaffrath, G., Schmid, S.: The
wide-area virtual service migration problem: a competitive analysis approach.
IEEE/ACM Trans. Netw. 22(1), 165–178 (2014)

11. Borodin, A., Linial, N., Saks, M.E.: An optimal on-line algorithm for metrical task
system. J. ACM 39(4), 745–763 (1992). Also appeared in Proceedings of the 19th
STOC, pp. 373–382 (1987)

12. Brehob, M., Enbody, R.J., Torng, E., Wagner, S.: On-line restricted caching. J.
Sched. 6(2), 149–166 (2003)

13. Buchbinder, N., Chen, S., Naor, J.S.: Competitive algorithms for restricted caching
and matroid caching. In: Schulz, A.S., Wagner, D. (eds.) ESA 2014. LNCS, vol.
8737, pp. 209–221. Springer, Heidelberg (2014)

14. Chowdhury, M., Zaharia, M., Ma, J., Jordan, M.I., Stoica, I.: Managing data trans-
fers in computer clusters with orchestra. SIGCOMM CCR 41(4), 98–109 (2011)

15. Ding, C.H.Q., He, X., Zha, H., Gu, M., Simon, H.D.: A min-max cut algorithm
for graph partitioning and data clustering. In: Proceedings of IEEE International
Conference on Data Mining (ICDM), pp. 107–114 (2001)

16. Epstein, L., Imreh, C., Levin, A., Nagy-György, J.: Online file caching with rejec-
tion penalties. Algorithmica 71(2), 279–306 (2015)

17. Feige, U., Krauthgamer, R.: A polylogarithmic approximation of the minimum
bisection. SIAM J. Comput. 31(4), 1090–1118 (2002)

18. Fiat, A., Karp, R.M., Luby, M., McGeoch, L.A., Sleator, D.D., Young, N.E.: Com-
petitive paging algorithms. J. Algorithms 12(4), 685–699 (1991)

19. Fiat, A., Rabani, Y., Ravid, Y.: Competitive k-server algorithms. J. Comput. Syst.
Sci. 48(3), 410–428 (1994)

20. Krauthgamer, R., Feige, U.: A polylogarithmic approximation of the minimum
bisection. SIAM Rev. 48(1), 99–130 (2006)

21. Kumar, A., Gupta, A., Roughgarden, T.: A constant-factor approximation algo-
rithm for the multicommodity rent-or-buy problem. In Proceedings of 43rd Sym-
posium on Foundations of Computer Science (FOCS) (2002)

22. Lotker, Z., Patt-Shamir, B., Rawitz, D.: Rent, lease or buy: randomized algorithms
for multislope ski rental. In: Proceedings of the 25th Symposium on Theoretical
Aspects of Computer Science (STACS), pp. 503–514 (2008)

23. McGeoch, L.A., Sleator, D.D.: A strongly competitive randomized paging algo-
rithm. Algorithmica 6(6), 816–825 (1991)

24. Mendel, M., Seiden, S.S.: Online companion caching. Theor. Comput. Sci. 324(2–
3), 183–200 (2004)

25. Mogul, J.C., Popa, L.: What we talk about when we talk about cloud network
performance. ACM SIGCOMM CCR 42, 44–48 (2012)

26. Ramanan, P.V., Brown, D.J., Lee, C.C., Lee, D.T.: On-line bin packing in linear
time. J. Algorithms 10(3), 305–326 (1989)

27. Schaeffer, S.E.: Graph clustering. Comput. Sci. Rev. 1(1), 27–64 (2007)
28. Seiden, S.S.: On the online bin packing problem. J. ACM 49(5), 640–671 (2002)
29. Sleator, D.D., Tarjan, R.E.: Amortized efficiency of list update and paging rules.

Commun. ACM 28(2), 202–208 (1985)
30. Young, N.E.: On-line caching as cache size varies. In: Proceedings of the 2nd ACM-

SIAM Symposium on Discrete Algorithms (SODA), pp. 241–250 (1991)

Lower Bound on the Step Complexity
of Anonymous Binary Consensus

Hagit Attiya1(B), Ohad Ben-Baruch2(B), and Danny Hendler2(B)

1 Department of Computer Science, Technion, Haifa, Israel
hagit@cs.technion.ac.il

2 Department of Computer-Science,
Ben-Gurion University of the Negev, Beer-Sheva, Israel

bbohad@gmail.com, hendlerd@cs.bgu.ac.il

Abstract. Obstruction-free consensus, ensuring that a process running
solo will eventually terminate, is at the core of practical ways to solve con-
sensus, e.g., by using randomization or failure detectors. An obstruction-
free consensus algorithm may not terminate in many executions, but it
must terminate whenever a process runs solo. Such an algorithm can be
evaluated by its solo step complexity, which bounds the worst case num-
ber of steps taken by a process running alone, from any configuration,
until it decides.

This paper presents a lower bound of Ω(logn) on the solo step
complexity of obstruction-free binary anonymous consensus. The proof
constructs a sequence of executions in which more and more distinct
variables are about to be written to, and then uses the backtracking cov-
ering technique to obtain a single execution in which many variables are
accessed.

1 Introduction

Consensus is an essential coordination mechanism for distributed systems:
processes start with inputs from some domain and have to decide on the same
output value, which is the input of some process. In asynchronous distributed
systems, a consensus algorithm cannot ensure termination regardless of the way
processes’ steps are interleaved. It is possible, however, to solve obstruction-free
consensus, ensuring that a process running solo will eventually terminate. This
progress property is at the core of practical ways to solve consensus, e.g., by
using randomization or failure detectors.

The feasibility and usefulness of obstruction-free consensus raise the impor-
tant question of the resources, especially in terms of space and time, needed
for solving it. An obstruction-free consensus algorithm may not terminate in
many executions, and therefore, its worst-case time complexity—measured over

This work is supported by the Israel Science Foundation (grant 1749/14). The second
and third authors are also supported by the Lynne and William Frankel Center for
Computing Science at Ben-Gurion University.

c© Springer-Verlag Berlin Heidelberg 2016
C. Gavoille and D. Ilcinkas (Eds.): DISC 2016, LNCS 9888, pp. 257–268, 2016.
DOI: 10.1007/978-3-662-53426-7 19

258 H. Attiya et al.

all executions—is unbounded. However, since an obstruction-free consensus algo-
rithm terminates whenever a process runs solo, i.e., without interleaving of steps
by other processes, it makes sense to evaluate its time complexity by counting
the worst case number of steps taken by a process running alone, from any con-
figuration, until it decides. This measure, called the solo step complexity [3], is
formally defined in Sect. 2.

Our Contribution: Our main result is a lower bound of Ω(log n) on the solo step
complexity of obstruction-free binary anonymous consensus, where the domain of
input values is {0, 1}. The first part of the proof is a construction of a sequence of
executions in which more and more distinct variables are about to be written to.1

Each of these variables must be read in some execution in the sequence, but not
necessarily all in the same execution. To obtain a single solo execution in which
many variables are accessed, we employ the backtracking covering technique [1,3,
6] to get an Ω(log n) lower bound for the solo step complexity of obstruction-free
anonymous binary consensus.

This is the first lower bound on the step complexity of a one-shot prob-
lem with inputs from a domain of constant size. As we show, the lower bound
also holds for solo-fast algorithms [3,10], in which a process only reads and
writes when it runs solo, but may resort to any other primitives, including com-
pare & swap or even general read-modify-write operations, when it encounters
contention.

Related Work: Attiya et al. [3] define solo step complexity and solo-fast algo-
rithms and prove an Ω(log n) lower bound for the space and solo step complexity
of solo-fast implementations of perturbable objects. These proofs also employ the
backtracking covering technique. However, the proofs hold for long-lived objects,
while our lower bound is for the one-shot consensus problem. On the other hand,
they do not assume that the implementation is anonymous.

Adopt-Commit objects capture an inherent part of obstruction-free and ran-
domized consensus. Aspnes and Ellen [2] prove an Ω(min{n, logm

log logm}) lower
bound on the space and solo step complexity of anonymous Adopt-Commit
objects, with input domain of size m. Since a consensus algorithm implies an
implementation of an Adopt-Commit object, the same lower bounds hold for
anonymous m-valued consensus. However, the bounds degenerate for binary con-
sensus, leaving open the question of the step complexity for binary consensus,
with or without an anonymity assumption. Our paper gives the first answer to
this question.

Aspnes and Ellen [2] also present an anonymous Adopt-Commit algorithm
whose solo step complexity is in O(min{n, log logm

logm }), matching their lower
bound. This implies an O(1) upper bound for the solo step complexity of binary
Adopt-Commit.

1 A by-product of this part is a very simple proof of an Ω(
√

n) lower bound for
the space complexity of obstruction-free anonymous binary consensus [7,11] (now
obsolete, due to [12]).

Lower Bound on the Step Complexity of Anonymous Binary Consensus 259

Table 1. Lower and upper bounds for the solo step complexity of adopt-commit
and consensus.

Problem Lower bound Upper bound

m-valued adopt-commit Ω(min{
√
logn

log logn
, logm
log logm

}) [2] O(n)

Anonymous m-valued
adopt-commit

Ω(min{√
n, logm

log logm
}) [2,5] O(min{√

n, logm
log logm

}) [2,5]

Anonymous obstruction-free

m-valued consensus

Follows from above O(n) [3]

Obstruction-free anonymous
binary consensus

Ω(logn) (this paper) Follows from above

Recent work by Capdevielle et al. [5] improves these results to bound
the solo write complexity of binary anonymous consensus, i.e., the number
of writes executed when a process runs solo. They show a lower bound of
Ω(min{√n, log logm

logm }) on the solo write complexity of anonymous m-valued con-
sensus. They present algorithms with a matching solo write complexity.

An obstruction-free consensus algorithm with O(n) solo step complexity
is implied by the results of [3]. A solo-fast consensus algorithm is presented
in [10]. The Janus algorithm [4] solves obstruction-free anonymous consensus
with O(

√
n) writes and O(n) accesses to shared variables on the solo path,

regardless of the number of possible values, m.
Table 1 compares our results and known results.

Organization: The model we use and required definitions are provided in Sect. 2.
Our lower bound proofs appear in Sect. 3, and we conclude with a short discus-
sion in Sect. 4.

2 Model of Computation

We use a standard model of an anonymous asynchronous shared memory sys-
tem. A set P of n > 1 processes p0, . . . , pn−1 communicate by applying primitive
operations (primitives), e.g., reads, writes and read-modify-write, to shared vari-
ables. No bound is assumed on the size of a shared variable (i.e., the number of
distinct values it can take).

An algorithm is a collection of deterministic state machines, one for each
process. The algorithm also assigns initial values to the shared variables.
Processes are anonymous, that is, they do not have access to process-identifiers
and consequently, the steps they perform when executing their algorithms
depend only on their initial inputs and on the responses they receive from the
operations they apply.

A configuration specifies the value of each shared variable and the state of
each process. In an initial configuration, all shared variables have their initial
values and all processes are in their initial states. Each step of process pi consists
of some local computation and one shared memory event, which is a primitive

260 H. Attiya et al.

applied to a shared variable and the corresponding response. A block write is a
contiguous sequence of write events, each by a different process.

An execution fragment is a (possibly infinite) sequence of events, that results
from interleaving the steps taken by processes, according to their state machines.
For any finite execution fragment α and any execution fragment α′, the execution
fragment αα′ is the concatenation of α and α′; in this case α′ is called an
extension of α.

An execution is an execution fragment that starts from an initial configura-
tion; the configuration at the end of the execution is reached by applying the
events of the execution one by one starting from the initial configuration. If C
is the configuration at the end of an execution α, we say that α leads to C. If
another execution α′ starts from C, we sometimes write that α′ starts from α
instead of writing that it starts from C. We denote the configuration reached
after executing α starting from C by Cα. Two executions are indistinguishable
to a process p, if p issues the same sequence of events and gets the same responses
from these events in both executions. We denote by α|p the sequence of events
issued by p in α.

Let α be an execution and let pi, pj be two processes. We say that pi, pj are
clones in α (or simply clones if α is understood from the context) if they start
with the same input and if α|pi = α|pj .

An execution fragment α is Q-solo, for a non-empty set of processes Q ⊂ P, if
only processes in Q have events in α. If Q = {q}, we say that α is q-solo instead
of {q}-solo. Unless stated otherwise, a q-solo extension from an execution α (for
some process q) refers to the q-solo extension of α in which q completes its
operation.

A consensus object supports a single decide operation that receives an input
value from some domain D. In this work, we consider binary consensus objects,
for which D = {0, 1}. Decide operations by different processes must return the
same output value, which must be one of the inputs.

A process p participates in an execution fragment α if p has an event in α.
We say that α is step-contention free for p if the events of α|p are contiguous
in α. Also, α is step-contention free if α is step-contention free for all processes.
A process p is eventually step-contention free in α, if either p returns in α or if
some suffix of α is p-solo.

An algorithm is obstruction-free if every process that is eventually step-
contention free eventually returns [9]. This requirement is equivalent to solo
termination [7].

Assume that p is eventually step-contention free in an execution α of an
obstruction-free algorithm. Then p’s solo step complexity in α is the number of
steps p performs in the p-solo suffix of α until it returns. Since the algorithm
is obstruction-free, this number is well-defined. The solo step complexity of the
algorithm is the supremum of this number over all processes and executions.

An algorithm is solo-fast if processes only apply reads and writes in
step-contention free executions but can apply additional primitives in other
executions.

Lower Bound on the Step Complexity of Anonymous Binary Consensus 261

Fig. 1. An (α, γ)-modifying event e.

3 Lower Bound Proof

The lower bound on the solo step complexity of obstruction-free consensus is
proved by constructing a sequence of executions. In these executions, events
applied by an operation of one process influence the response of an operation
of another process. Roughly speaking, since the latter process needs to return a
different value, it must be able to distinguish between the different executions,
implying that it must read an increasing number of variables.

Throughout the proof, p denotes a process with input 0 that has yet to
run; such a process exists as long as not all of the processes participate in the
execution. In addition, for any execution α, we can extend α by letting a clone
of p run in order to obtain β, and then we can let another clone of p run starting
from β. Although in both cases we use a clone of p, we run different processes,
one starting from α with input 0, and one starting from β with input 0, where in
both cases, these are processes that did not participate in the execution before.

Our proofs generalize the notion of a modifying event, introduced in [8]. Let α
be an execution and q be a process participating in α. We define q’s solo-valency
after α to be the response returned by q in a q-solo execution that extends α and
ends when q completes its decide operation. We let S(α, p) denote this response.

Definition 1. Let γ be a set of write events about to be applied by a set of
processes R after an execution α. Let r, q /∈ R be two processes participating in
α and let e denote the event that q is about to apply after α. We say that e is an
(α, γ)-modifying event for r if S(αγ, p) �= S(αeγ, p). We say that e is an (α, γ)-
visible event for r if the sequences of events performed in the r-solo executions
from αγ and from αeγ differ.

We say that e is a γ-modifying event for r (a γ-visible event for p) when α
can be understood from the context.

Figure 1 illustrates the effect of a modifying event e. Informally, an event is
an (α, γ)-modifying event for p if, when executed after α, it changes the response
of a p-solo execution that follows the block write γ. An event is an (α, γ)-visible
event for p if, when executed after α, p reads a different value from some variable
in a solo execution that follows γ, but p’s response may or may not change.

Observation 1. An (α, γ)-visible event for p is a write event applied to a vari-
able other than those to which the events of γ are applied, which is read in a
p-solo extension of αeγ.

262 H. Attiya et al.

Proof. Let e be an (α, γ)-visible event. If e is not as specified by the observation,
then p cannot distinguish between αγ and αeγ in a solo execution, which implies
that the p-solo executions after αγ and after αeγ are identical. This contradicts
Definition 1. ��
Observation 2. A modifying event is a visible event.

Proof. If e is not a visible event then, from Definition 1, the sequences of events
performed in the p-solo extensions of αγ and of αeγ are identical. In partic-
ular, p returns the same responses in these two executions. This contradicts
Definition 1. ��

We now define the notion of a visible sequence of executions {αiγi}Li=1, which
is central to our proof. The i’th execution ends with a block write γi, to i distinct
variables. The key requirement is that, for all i and u ∈ {0, 1}, there is an
extension of αi in which a process qui �= p returns u while γi is still pending.
Letting v denote p’s solo-valency after αiγi, this allows us to construct the next
sequence execution by deploying qvi until it is about to perform a γi-visible event
for p.

Definition 2. A visible sequence of length L is a sequence of executions
{αiγi}Li=1 such that the following requirements hold:

1. At most 1
2 i(i + 1) processes participate in αi.

2. γi is a block write by i different processes to i different variables.
3. For v ∈ {0, 1}, there exists a process qvi �= p and a block write γv

i ⊆ γi, such
that S(αiγ

v
i , qvi) = v.

Moreover, the (i + 1)’th visible execution is constructed from the i’th visible
execution as follows: Let S(αiγi, p) = v and let qi and γ ⊆ γi be such that
S(αiγ, qi) = v. Let β denote the qi-solo extension from αiγ (in which qi returns
v) and let β = β′eiβ′′, where ei is the first γi-visible event for p in β. Then
αi+1 = αiγβ′ and γi+1 = eiγi, where the events of γ are re-issued in γi+1 by
new clone processes.

Figure 2 illustrates the manner in which execution αi+1γi+1 is constructed
from αiγi.

We now prove that any anonymous consensus algorithm has a visible sequence
of length approximately

√
n. This sequence will be used in order to obtain the

step complexity lower bound, using the backtracking covering technique.

Lemma 1. Let A be an obstruction-free anonymous binary consensus algo-
rithm, then A has a visible sequence of length Ω(

√
n).

Proof. The construction of the visible sequence is inductive. In the i’th step of
the induction, we construct execution αiγi. Throughout the proof, we fix process
p to be some process with input 0. We assume that at least 	n/2
 of the processes
have input 0 and at least 	n/2
 of them have input 1.

Lower Bound on the Step Complexity of Anonymous Binary Consensus 263

Let C0 be an initial configuration. For the base case, let q11 be a process with
input 1. Let α denote a q11-solo execution starting from C0. Clearly, q11 must write
in the course of α to a variable that is read by a p-solo execution from C0. Let α1

denote the prefix ofα up until q11 ’s first such write event, denoted e. Let γ1 = e, then
γ1 is a block write of size 1. Let q01 �= p be a process with input 0. Process q01 is a clone
of p in C0. By setting γ0

1 to be the empty sequence of events, a q01-solo extension
from α1γ

0
1 returns 0 (as would a p-solo execution), whereas by setting γ1

1 = {e},
a q11-solo extension from α1γ

1
1 returns 1, implying that Requirements 2 and 3 of

Definition 2 hold. In addition, exactly one process participates in α1, implying that
Requirement 1 also holds for the base case.

For the induction step, consider an execution αiγi that satisfies Requirements
1–3 of Definition 2. Let Ci = C0αi and let S(αiγi, p) = v. From Requirement 3
of the induction hypothesis, there exist qvi (which will play the role of qi in the
construction of Definition 2) and γv

i ⊆ γi (which will play the role of γ) such that
S(αiγ

v
i , qvi) = v. Let β denote the qvi -solo extension of αiγ

v
i . Since the algorithm

is anonymous, we can use clones after αi for processes in γv
i so that the block

write γi can be performed after the γv
i block write. Process p returns v in a p-solo

extension of αiγ
v
i γi (which is indistinguishable to p from αiγi) but returns v in

a p-solo extension of αiγ
v
i βγi, hence, qvi must perform a γi-modifying event e′

for p in β. Consequently, from Observation 2, qvi performs a γi-visible event for
p in β. Thus, the γi-visible event ei specified by Definition 2 exists. As specified
by Definition 2, let β = β′eiβ′′, αi+1 = αiγ

v
i β′ and γi+1 = eiγi. Since ei is a

γi-visible event, from Observation 1, it is a write event to a variable not covered
by γi. Hence, γi+1 is a block write by i + 1 different processes to i + 1 different
variables. Therefore, Requirement 2 holds.

A qvi -solo extension of αi+1ei returns v (as this is a continuation of αiγ
v
i β′ei),

thus by taking qvi+1 = qvi and γv
i+1 = {ei}, we get that qvi+1 returns v when

running solo after αi+1γ
v
i+1. Let qvi+1 �= p be a process with input 0 that does not

participate in αi+1γi+1. qvi+1 is a clone of p in αi. Hence, a qvi+1-solo extension of

Fig. 2. The inductive execution construction of Definition 2. Process qi is desig-
nated as qvi+1 with corresponding γv

i+1 = {ei}; a clone of p is designated as qvi+1

with corresponding γv
i+1 = γi (see the proof of Lemma 1).

264 H. Attiya et al.

αi+1γi returns v (as would a p-solo execution). Thus, by taking γv
i+1 = γi we get

that qvi+1 returns v when running solo after αi+1γ
v
i+1. Therefore, Requirement 3

holds.
Since |γv

i | ≤ i, we employ at most i + 1 new clones in order to extend αi and
obtain αi+1. By the induction hypothesis, at most 1

2 i(i+1) processes participate
in αi, and hence, at most 1

2 (i+1)(i+2) processes participate in αi+1. Even if all
the processes that participate in αi have the same input, as long as i <

√	n/2

there is a sufficient number of processes to construct αi+1γi+1. It follows that
our construction may proceed for at least

√
n/2 iterations. ��

Since every obstruction-free anonymous binary consensus algorithm has a
visible sequence of length Ω(

√
n), Requirement 2 of Definition 2 implies:

Corollary 1. Let A be an obstruction-free read/write anonymous binary con-
sensus algorithm, then A uses Ω(

√
n) distinct shared variables.

To conclude the lower bound proof, we now show that any algorithm with
a visible sequence of length L has an execution that reaches a configuration C,
such that a solo run by process p starting at C reads at least log2 L different
variables. Let A be an algorithm that has a visible sequence {αiγi}Li=1. Let ei
denote the event used in Definition 2 to construct the (i+1)’th visible execution,
that is, γi+1 = eiγi. Also, let φi denote the p-solo extension from αiγi. Our goal
is to prove that in one of the solo extensions φi, p reads a large set of variables.

Let πi denote the sequence of distinct variables read by p in φi, in the order
of their first read in φi. If all the variables read in φi are always read also in
φi+1, then, since we know that ei writes to a variable not covered by γi that
is read in the course of φi+1, the size of πi is always at least i, so that πL is
of size at least L. However, this is not necessarily the case, as it may happen
that reading the value written by ei causes p to “backtrack” and avoid reading
some of the variables of πi, thus making πi+1 shorter than πi. The backtracking
covering technique [1,3,6] is used to derive a step complexity lower bound even
when the latter scenario occurs for some i.

The technique associates with each sequence πi a binary number Ψi. The
most significant bit of Ψi is 1 if the first variable read by p in φi is covered by
γi and 0 otherwise. The second most significant bit is 1 if the second variable
read by p in φi (if it exists) is covered and 0 otherwise, and so on. If we assume
(towards a contradiction) that all sequences φi are of length smaller than L,
then every sequence πi, i ∈ {1, . . . , L}, may be represented by a Ψi that is a
log2 L-digit number.

The basic idea underlying the proof is that a variable v read in πi may be
absent from πi+1 (that is, p “backtracks” from the read of v) only if the write
in ei is to a variable that precedes v in πi. The simple intuition is that p avoids
reading v in φi+1 although it reads it in φi, only if it reads from some variable
v′ that precedes v in φi different values in φi and φi+1.

Lower Bound on the Step Complexity of Anonymous Binary Consensus 265

In terms of the values of Ψ , this implies that a less significant bit of Ψ may
be flipped from 1 to 0 only if a more significant bit of Ψ is flipped from 0 to 1.2 If
no digits are flipped, then all the variables read in φi are read also in φi+1 (that
is, there is no backtracking) but a variable not covered by γi is covered be ei,
hence the value of Ψ grows as well. It follows that function Ψ is monotonically
increasing. Since it increases L times, it cannot be that all sequences πi are
represented by numbers with fewer than log2 L binary bits, hence, at least one
of the executions φi reads at least log2 L variables. We formalize these arguments
in the proof of the following lemma.

Lemma 2. Let A be an algorithm that has a visible sequence of executions of
length L. Then A has an execution in which some process accesses at least log2 L
different variables in the course of a solo execution.

Proof. We prove that one of the p-solo execution fragments φi accesses at
least log2 L different variables. For simplicity, and without loss of generality,
we assume that L is an integral power of 2 and let s = log2 L − 1.

We define a monotone increasing progress function Ψi as follows: Ψi is a
(log2 L)-bit number, where the j’th bit is 1 if and only if φi accesses at least j
variables and the j’th variable (in the order of first variable-accesses) is covered
by γi. Thus, the j’th bit of Ψi is 0 if either φi accesses fewer than j variables or,
otherwise, if the j’th variable accessed in φi is not covered by γi.

If there exists an i such that |πi| > s then we are done. Otherwise |πi| ≤ s
for all i, hence, for all i ∈ {1, . . . , L}, every variable of πi has a corresponding
bit of Ψi. Recall the construction of αi+1 from αi by Lemma 1. The construction
was done by extending αi with write steps to some of the variables covered by
γi (while keeping these variables covered by clone processes). The construction
then proceeded by a qi-solo execution until qi was about to perform a write step
ei to an uncovered variable. In terms of the value of Ψ , event ei may flip some
of the bits of Ψi from 1 to 0, if the corresponding variables are not accessed in
φi+1. However, this may happen only if ei covers an earlier variable, that is, if
ei covers a variable that corresponds to a more significant bit of Ψ , and thus
Ψi+1 > Ψi.

To proceed with the corresponding formal argument, let Ψi[j] denote the j’th
(in left to right order) bit of Ψi:

Ψi =
s∑

j=0

2s−j · Ψi[j].

We now show that Ψi+1 > Ψi for all i ∈ {1, . . . , L − 1}. To see this, recall
that the i + 1 sequence execution is constructed by extending αi with execution
fragment γβ′ei, where β′ei is a qi-solo execution such that ei is its first γi-visible
event for p. From Definition 1, ei is the first write step by qi to a variable u not
2 Note that once a variable becomes covered in the executions we construct for our
proofs, it remains covered, so a bit of Ψ may be flipped from 1 to 0 only if the
corresponding variable was read in φi and is no longer read in φi+1.

266 H. Attiya et al.

covered by γi that is accessed in the course of a solo execution by p after αiγi.
Hence, u appears in πi. Let k be the index of u in πi. Variable u was not covered
before by γi, therefore Ψi[k] = 0. For every j < k, Ψi[j] = Ψi+1[j] because ei is
the first write by qi to a variable not covered by γi, and therefore, ei does not
change any of the bits corresponding to the variables that precede u in πi: if any
such variable was covered by γi, then it is also covered by γi+1. Moreover, ei
causes bit k of Ψi to flip from 0 to 1, since it covers the k’th variable accessed in
φi (which is also the k’th variable accessed in φi+1). We get:

Ψi+1 =
s∑

j=0

2s−j · Ψi+1[j]

=
k−1∑

j=0

2s−j · Ψi+1[j] + 2s−k +
s∑

j=k+1

2s−j · Ψi+1[j]

≥
k−1∑

j=0

2s−j · Ψi+1[j] + 2s−k

>

k−1∑

j=0

2s−j · Ψi+1[j] +
s∑

j=k+1

2s−j

≥ Ψi

Using the last inequality and the fact that Ψ1 > 0 (as γ1 covers a variable
accessed in φ1) we conclude that ΨL ≥ L. However, Ψ is a (log L)-bit number
and therefore cannot exceed L − 1. This is a contradiction. Thus, there must be
an i such that |πi| > s, as required. ��
Theorem 1. The solo step complexity of any read/write obstruction-free anony-
mous consensus algorithm is Ω(log n).

Proof. From Lemma 1, any read/write obstruction-free anonymous algorithm
for binary consensus has a visible sequence of executions of length Ω(

√
n). The

theorem now follows from Lemma 2. ��
Unlike read/write algorithms, solo-fast algorithms are allowed to perform

stronger synchronization operations (such as compare-and-swap or fetch-and-
add) in the face of step contention. We now strengthen Theorem 1 by showing
that it holds also for solo-fast implementations. This would have been immediate
if the executions we construct to prove Theorem 1 were step-contention free, but
this is not the case. To see this, consider the construction of αi+1 in Definition 2.
A new process qi runs solo after αiγ until about to perform its first γi-visible
event ei, which is used to extend the block write. If and when ei is eventually
executed (as part of a block write γ associated with some later process qj , j > i),
the execution may have already been extended by steps of processes other than
qi, making qi’s execution non step-contention free.

Lower Bound on the Step Complexity of Anonymous Binary Consensus 267

Though not step-contention free, it is easy to show that all the events of the
executions in a visible sequence are issued by processes that are unaware of step
contention. It follows that these executions may be constructed also for solo-fast
implementations. A formal proof follows.

Let α′ be a step-contention free execution for some process p and let α be
an execution that is indistinguishable to p from α′. Let e be the event that p is
about to perform after α, then we say that e is issued while p is unaware of step
contention. This notion was defined in [3].

Lemma 3. Let α = αiγi be an execution of a visible sequence, then all the
events of α are issued by processes that are unaware of step contention.

Proof (Sketch). We consider the events performed by processes that participate
in α. The proof proceeds by case analysis on the sets of participating processes.

1. Processes deployed by the inductive construction. Let q be a process that is
deployed in the i’th step of the inductive construction as qi (see Definition 2).
When q first joins the execution (either as process q11 in the base case or as a
clone of process p named qvi+1, see the proof of Lemma 1), it runs solo until
about to perform a γi-visible event, ei. If ei is not a modifying event, then q
is designated as qvi+1 and ei is designated as γv

i+1 (see the proof of Lemma 1).
Process q is then deployed also in the next inductive construction step, after
its step ei is executed (as part of γi+1, see Definition 2). Eventually, either the
construction terminates or there is a step j > i of the inductive construction
when q (now called qj in Definition 2) is about to execute a visible event,
ej , which is also a modifying event. This is the last event executed by q in
the construction. Apart from clone processes that run in lockstep with q, no
events by other processes are interleaved within its steps. Thus, all the events
of this set of processes are issued when they are unaware of step contention.

2. Clones for processes that execute an event in γv
i (see the proof of Lemma 1), for

1 ≤ i < L. Each clone runs in lockstep with its respective “original process”
(and possibly also with the steps of additional clones) and performs exactly the
same steps, until the original process executes an event ei which is part of γv

i , for
some 1 ≤ i < L and v ∈ {0, 1}. Then, the clone’s last event (which is identical
to ei) becomes part of γi+1. Hence, also the events of these processes are issued
when they are unaware of step contention.

It follows from the above case analysis that all participating processes run
solo or in lockstep with their clones until they are about to perform their last
event, hence they all issue their events when they are unaware of step contention.

��
Corollary 2. Let A be a solo-fast obstruction-free anonymous binary consensus
algorithm. Then the solo step complexity of A is Ω(log n).

Proof. A visible sequence of executions of A can be constructed as prescribed
by Lemma 1 as long as all processes may only perform reads and writes. From

268 H. Attiya et al.

Lemma 3, all the events in these executions are by processes that are unaware of
step contention, hence they may only perform reads and writes. Process p itself
runs solo as it executes φi after visible execution i (see the proof of Lemma 1),
for i ∈ {1, . . . , L}, hence it encounters no step contention. ��

4 Discussion

This paper presents the first lower bound, of Ω(log n), for the solo step complex-
ity of obstruction-free anonymous binary consensus. Previously, there were no
nontrivial lower bounds on the time complexity of obstruction-free binary con-
sensus. This improves our understanding of the time complexity of obstruction-
free consensus, which has been lagging behind our understanding of its space
complexity. Recently, the question of the space complexity of binary obstruction-
free consensus (with solo termination) has been largely settled, showing that
Ω(n) shared variables are necessary [12].

An obvious open question is to remove the anonymity assumption, possibly
exploiting ideas from the recent lower bound on the space complexity of consen-
sus [12]. Another direction is to improve the lower bound, with or without the
anonymity assumption, or to find a matching upper bound.

References

1. Aspnes, J., Attiya, H., Censor-Hillel, K., Hendler, D.: Lower bounds for restricted-
use objects. In: SPAA, pp. 172–181 (2012)

2. Aspnes, J., Ellen, F.: Tight bounds for adopt-commit objects. Theor. Comput.
Syst. 55(3), 451–474 (2013)

3. Attiya, H., Guerraoui, R., Hendler, D., Kuznetsov, P.: The complexity of
obstruction-free implementations. J. ACM 56(4), 444–468 (2009)

4. Bouzid, Z., Sutra, P., Travers, C.: Anonymous agreement: the janus algorithm. In:
Fernàndez Anta, A., Lipari, G., Roy, M. (eds.) OPODIS 2011. LNCS, vol. 7109,
pp. 175–190. Springer, Heidelberg (2011)

5. Capdevielle, C., Johnen, C., Kuznetsov, P., Milani, A.: Brief announcement: on
the uncontended complexity of anonymous consensus. In: Moses, Y. (ed.) DISC
2015. LNCS, vol. 9363, pp. 667–668. Springer, Heidelberg (2015)

6. Ellen, F., Hendler, D., Shavit, N.: On the inherent sequentiality of concurrent
objects. SIAM J. Comput. 41(3), 519–536 (2012)

7. Fich, F., Herlihy, M., Shavit, N.: On the space complexity of randomized synchro-
nization. J. ACM 45(5), 843–862 (1998)

8. Hendler, D., Shavit, N.: Solo-valency and the cost of coordination. Distrib. Comput.
21(1), 43–54 (2008)

9. Herlihy, M., Luchangco, V., Moir, M.: Obstruction-free synchronization: double-
ended queues as an example. In: ICDCS, pp. 522–529 (2003)

10. Luchangco, V., Moir, M., Shavit, N.N.: On the uncontended complexity of con-
sensus. In: Fich, F.E. (ed.) DISC 2003. LNCS, vol. 2848, pp. 45–59. Springer,
Heidelberg (2003)

11. Zhu, L.: Brief announcement: tight space bounds for memoryless anonymous con-
sensus. In: Moses, Y. (ed.) DISC 2015. LNCS, vol. 9363, pp. 665–666. Springer,
Heidelberg (2015)

12. Zhu, L.: A tight space bound for consensus. In: STOC (2016, to appear)

Opacity vs TMS2: Expectations and Reality

Sandeep Hans(B), Ahmed Hassan, Roberto Palmieri,
Sebastiano Peluso, and Binoy Ravindran

Virginia Tech, Blacksburg, USA
sandeep.hans@vt.edu

Abstract. Most of the popular Transactional Memory (TM) algorithms
are known to be safe because they satisfy opacity, the well-known cor-
rectness criterion for TM algorithms. Recently, it has been shown that
they are even more conservative, and that they satisfy TMS2, a strictly
stronger property than opacity. This paper investigates the theoretical
and practical implications of relaxing those algorithms in order to allow
histories that are not TMS2. In particular, we present four impossibil-
ity results on TM implementations that are not TMS2 and are either
opaque or strictly serializable, and one practical TM implementation
that extends TL2, a high-performance state-of-the-art TM algorithm, to
allow non-TMS2 histories. By matching our theoretical findings with the
results of our performance evaluation, we conclude that designing and
implementing TM algorithms that are not TMS2, but safe, has inherent
costs that limit any possible performance gain.

1 Introduction

Transactional Memory (TM) [14] is a programming abstraction that ease the
development of concurrent applications. Most of the popular TM algorithms
(e.g., TL2 [4], NOrec [3], and LSA [19]) are proved to be correct because they do
not violate opacity [11], the well-known criterion that requires each transaction
(even a non-committed one) to (i) read only committed values, and (ii) behave
as atomically executed at a single point between its beginning and its completion.
However Doherty et al. [6] showed that most of the TM implementations that
aim at satisfying opacity actually guarantee a strictly stronger correctness crite-
rion, known as TMS2. In practice, TMS2 implementations reject executions that
would not violate opacity while seeking for a tradeoff between the performance
and complexity of the concurrency control implementation.

In this paper, we evaluate the costs and implications of having TM imple-
mentations that guarantee weaker conditions than TMS2, such as opacity. In
particular, we focus on the simple execution pattern used in [6] to distinguish
between TMS2 and opaque TM implementations. We name this execution pat-
tern as reverse-commit anti-dependency (RC-anti-dependency in short). Intu-
itively, we say that a TM implementation allows RC-anti-dependency if it accepts
the execution in Fig. 1, where there is an anti-dependency between two commit-
ted update transactions T1 and T2 (i.e., T2 overwrites T1’s previous read) and
c© Springer-Verlag Berlin Heidelberg 2016
C. Gavoille and D. Ilcinkas (Eds.): DISC 2016, LNCS 9888, pp. 269–283, 2016.
DOI: 10.1007/978-3-662-53426-7 20

270 S. Hans et al.

Fig. 1. An execution with RC-anti-dependency: r(x, 0) denotes the read operation on
x, w(x, 1) denotes the write operation on x; C denotes a successful commit operation.

their commit order is reversed with respect to the anti-dependency (i.e., T2 starts
its commit phase and completes it before T1 does).

Designing a TM implementation that includes RC-anti-dependency looks
appealing because, on the one hand, the execution pattern looks simple to accept,
and on the other hand, performance is likely to improve thanks to the pos-
sibility of committing transactions that otherwise would abort due to a read
invalidation. That is why embracing this pattern was one of the goals of previ-
ous attempts to increase the number of accepted executions, such as permissive
TMs [9,16], and TWM [5]. However, none of those attempts isolated the advan-
tages and limitations of allowing RC-anti-dependency in a TM implementation.
Specifically, permissive TMs aims at allowing all the possible schedules of exe-
cution within a certain correctness guarantee; and the latter relies on a class
of input-acceptance [8] that mixes anti-dependency with multi-versioning and
non-blocking read-only transactions. This paper is the first one that isolates
RC-anti-dependency in order to assess the need of designing TM implementa-
tions that are not TMS2. Specifically, we provide a set of impossibility results
on allowing RC-anti-dependency, and one possibility result, which is a concrete
TM implementation, built on top of TL2, that allows RC-anti-dependency and
confirms our theoretical claims.

We prove that in any strictly serializable [18] minimally progressive [11] TM
implementation that allows RC-anti-dependency: (i) read operations of update
transactions must be visible; (ii) either read-only transactions or the read-only
prefix (i.e., all read operations before the first write) of update transactions
must be visible. We also prove that if a strictly serializable TM that allows
RC-anti-dependency has obstruction-free [13] read-only transactions, they must
be visible. Finally, we prove that if we consider opacity rather than strict seri-
alizability, the visibility of read operations must be immediate and cannot be
deferred to the commit phases of transactions. Table 1 summarizes our results.
Due to space constraints, we defer the formal proofs to [12].

As a possibility result, we present the design and implementation of a TM,
named TL2-RCAD, which allows executions that are not TMS2, including the
one in Fig. 1, and limits the overhead of making visible reads by deploying specific
algorithmic optimization. Evaluating TL2-RCAD we found that, contrary to
expectations, the overall percentage of potential RC-anti-dependency executions
is small. Thus the performance gain (if any) of allowing them is very limited in

Opacity vs TMS2: Expectations and Reality 271

Table 1. Summary of the impossibility results presented in the paper.

Consistency Progress Impossibility

Theorem 1 Strict Serializability Minimal
Progressiveness

Invisible Read
Operations (update
transactions)

Theorem 2 Strict Serializability Minimal
Progressiveness

Invisible Read-only
Transactions Invisible
Read Executions

Theorem 3 Strict Serializability Obstruction-freedom
(read-only
transactions)

Invisible Read-only
Transactions

Theorem 4 Opacity Minimal
Progressiveness

Invisible Read
Executions

all the tested scenarios that include STAMP [17], the standard benchmark suite
for TM, and even customized micro-benchmarks.

The paper is organized as follows. In Sect. 2, we introduce our basic model
definitions. In Sect. 3, we present our impossibility results. TL2-RCAD’s design is
presented in Sect. 4, and its performance results are analyzed in Sect. 5. Section 6
overviews the related work, and Sect. 7 concludes the paper.

2 Preliminaries

System and Transaction Execution Model. We consider an asynchronous
shared memory system composed of N processes p1, . . . , pN that communicate
by executing transactions on shared objects, which we call transactional objects,
and may be faulty by crashing (i.e., slow down or block indefinitely). We use
the term transactional objects, or equivalently objects, to distinguish them from
base objects, which are used to encapsulate any information (data and metadata)
associated with transactional objects.

Each transaction is a sequence of accesses, reading from and writing to the
set of objects. In particular a transaction Tj accesses objects with operations
opij ∈ {read,write, begin, tryAbort, tryCommit}, each being a matching pair of
invocation Invopij and response Resopij actions. For a more compact representa-
tion of both the invocation and the response of an operation, we also use the
notation Tj.opij → val, where val is the value returned by its response action.

The specification of all possible operations of a transaction Tj is the following:
Tj.read(x) → val is a read operation by Tj of an object x, which returns either
a value in some domain V or a special value aborted /∈ V ; Tj.write(x, v) → val
is a write operation by Tj on an object x with a value v ∈ V , which returns
either ok or aborted; Tj.begin() → val is the begin operation by Tj , which
returns either ok or aborted; Tj.tryAbort() → val is the request of an abort
by Tj , which returns aborted; Tj .tryCommit() → val is the request of a com-
mit by Tj , which returns either committed /∈ V ∪ {aborted} or aborted. We

272 S. Hans et al.

also use the following notation: Tj.read(x), to indicate Tj.read(x) → val, with
val �= aborted; Tj.write(x, v), to indicate Tj.write(x, v) → ok; Tj .begin(), to indi-
cate Tj .begin() → ok; Tj .abort(), to indicate Tj .tryAbort() → aborted; and
Tj .commit(), to indicate Tj .tryCommit() → committed.

Histories and implementations. A history H of a TM implementation is a
(possibly infinite) sequence of invocation and response actions of operations. Let
tx(H) denote the set of transactions in H. A history H is well-formed if for all
T ∈ tx(H): (i) T begins with an invocation of begin(); (ii) every invocation in
T is followed by a matching response; (iii) T has no actions after a response
has returned either aborted or committed; and (iv) T cannot invoke more than
one begin operation. For simplicity, we assume that all histories are well-formed.
Two histories H and H′ are equivalent if tx(H) = tx(H′), and for every process
p, H|p = H′|p, where H|p denote the projection of actions of process p in H.

The read-set of a transaction T in history H, denoted as rset(T), is the set of
objects that T reads in H; the write-set of T in history H, denoted as wset(T), is
the set of objects that T writes to in H. T is an update transaction if wset(T) �= ∅;
otherwise, T is a read-only transaction.

A TM implementation (TM for short), denoted by T , provides processes
with algorithms for implementing read, write, begin, tryCommit and tryAbort of a
transaction. T is defined as a set of well-formed histories, which are the histories
that are produced by T . We denote by H1 · H2, the concatenation of histories
H1 and H2, T1 ·T2, the concatenation of transactions T1 and T2, and opij ·opzk,
the concatenation of operations opij and opzk.

Complete histories and real-time precedence. A transaction T ∈ tx(H)
is complete if T ends with abort or committed in H. A transaction T is pending
in H if the last action of T is the invocation of tryCommit. A transaction T is
committed (resp., aborted) in H if the return value of the last operation of T is
committed (resp., aborted). A transaction T is live in H if it is neither pending nor
completed. The history H is complete if all transactions in tx(H) are complete.

Given two transactions Tj and Tk, and two operations opij and opzk in H by
Tj and Tk, respectively, we say that opij precedes opzk in the real-time order of
H, denoted opij ≺H opzk, if the response action Resopij

precedes the invocation
action Invopzk

in H. Otherwise, if neither opij ≺H opzk nor opzk ≺H opij ,
then opij and opzk are concurrent in H. We overload the notation and say, for
transactions Tj ,Tk ∈ tx(H), that Tj precedes Tk in the real-time order of H,
denoted Tj ≺H Tk, if Tj is complete in H and the last action of Tj precedes
the first action of Tk in H. If neither Tj ≺H Tk nor Tk ≺H Tj , then Tj and
Tk are concurrent in H. A history H is sequential if there are no concurrent
transactions in H.

For simplicity, we assume that each history H begins with a complete trans-
action T0 that writes initial values to all objects and commits before any other
transaction begins in H. A read operation T.read(x) in a complete and sequen-
tial history H is legal if it returns the latest value written by T, if T writes on
x before T.read(x), otherwise it returns the latest value written by a committed

Opacity vs TMS2: Expectations and Reality 273

transaction. A complete and sequential history H is legal if every read operation
in H, which does not return aborted, is legal.

Configuration, Step, and Execution. A configuration is a tuple characteriz-
ing the status of each process, and of the base objects at some point in time. On
the other hand, a step φτ performed by a process encompasses a local computa-
tion, the application of a primitive operation (e.g., CAS) to a base object, and a
possible change to the status of the process. Any step φτ is executed atomically,
and it is generated by an operation opij of a transaction Tj , hence also denoting
the step as φ

opij
τ . In general, an operation opij of a transaction can generate one

or more steps φ
opij
τ , such that, for each opij , τ , one of the following conditions

is true: φ
opij
τ is the invocation Invopij

; φ
opij
τ is the response Resopij

; φ
opij
τ is

executed after Invopij
and before Resopij

.
An execution interval is a sequence Ψτ · φτ · Ψτ+1 · φτ+1 · . . . that alternates

configurations Ψτ and steps φτ , where Ψτ · φτ generates the configuration Ψτ+1.
A step φτ by process pk is legal if its primitive operation applied to a base object
follows the object’s sequential specification [15]. Moreover, a configuration Ψτ is
quiescent if, for any transaction Ti, Ψτ is not after the first operation of Ti and
before its completion.

We define an execution E as an execution interval starting from an initial
configuration Ψ0. We also say that two executions are indistinguishable to a
process pk if (i) pk performs the same sequence of steps in both the executions,
and (ii) the steps by pk are legal.

Since an execution E is actually a low-level history of configurations and
steps that are generated by operations of transactions in a history H, we may
also want to derive a history H from one of the possible executions, say E. In
particular, given an execution E, we define E|H as the history derived from E,
where ∀i, j, k, we remove all the configurations and the steps φ

opij

k such that
φ

opij

k �= Invopij
∧ φ

opij

k �= Resopij
.

Invisible Transactions. Given an execution E and a set S of steps in E, we
use the notation E\S to indicate the execution derived from E by removing only
the steps in S and all the configurations generated by those steps. Also, given
an execution E, and an operation opij by transaction Tj , we define S

opij

E as the
set {φ

opij
τ |φopij

τ ∈ E}. Given an execution E and a process pk that executes a
transaction Tj in E, we say that a set of operations Q of Tj is invisible in E if the
executions E and E\(

⋃
opij∈Q S

opij

E) are indistinguishable to every process ph�=k

that takes steps in E. Therefore, we define a read-only transaction Tj as invisible
if, for any possible execution E, the set of all the operations of Tj are invisible
in E. Analogously, we say that a transaction has invisible read operations if, for
any possible execution E, the set of the read operations of Tj are invisible in E.
Moreover, we say that a transaction has an invisible read execution if it is a live
transaction, and it has invisible read operations.

Consistency. Serializability [18] requires that for a history H to be serializable,
there must exist a complete and sequential legal history S that is equivalent to all

274 S. Hans et al.

the committed transactions in H, and strict-serializability requires S to preserve
the real-time order in H. Opacity [10,11], informally, requires that for a his-
tory H to be opaque, there must exist a complete and sequential legal history S
which is equivalent to a completion of H, and preserves the real-time order in H.
Transactional Memory Specification 2 (TMS2) [6] is a stronger condition than
opacity, and requires S to preserve the order of non-concurrent commit oper-
ations of committed update transactions. Transactional Memory Specification
1 (TMS1) [1,6] is weaker than opacity, and requires H to be strictly serializ-
able, and for each operation in H, there must exist an equivalent legal history,
and restricts this history to include all the committed transaction preceding the
transaction of the operation in real-time order.

Progress guarantees. We say that a process pi runs with no step contention
in an execution interval α if α contains steps by pi, and there are no other
processes different from pi that take steps in α. We also say that a transaction Tk

(resp. opik) that is executed by a process pi in an execution E does not encounter
step contention in E if pi runs with no step contention in the minimal execution
interval α that contains all the steps of Tk (resp. opij) in E. A TM guarantees
obstruction-freedom [13] if, for every execution E that is generated by the TM,
a transaction Ti is forcefully aborted in E only if Ti encounters step contention
in E. On the other hand, a TM guarantees minimal progressiveness [11] if, for
every execution E that is generated by the TM, a transaction Ti is forcefully
aborted in E only if Ti either encounters step contention in E or it does not start
from a quiescent configuration. We assume that operations are obstruction-free.

3 The Cost of Reverse-Commit Anti-Dependency

We say that a TM implementation T allows RC-anti-dependency if the history
shown in Fig. 1 is a history of T . More formally:

Definition 1. Let Hrcad = Hα ·Hβ ·Hα′ , where Hα = Ti.begin() ·Ti.read(x) →
v0, Hβ = Tj .begin() · Tj .read(x) → v0 · Tj .write(x, vj) · Tj .commit(), and
Hα′ = Ti.write(y, vi) · Ti.commit(), with i �= j and x �= y. We say that a TM
implementation T allows RC-anti-dependency iff Hrcad ∈ T .

We use Hrcad to prove our impossibility results. Note that Hrcad is accepted
by all known non-TMS2 implementations, e.g., TWM, as well as our TL2-RCAD
algorithm. Intuitively, any TM implementation that accepts Hrcad is expected
to include more histories that are not TMS2.

Our first result shows that allowing RC-anti-dependency in strictly serializ-
able TMs implies an impossibility on having invisible read operations of update
transactions.

Theorem 1. A TM T that allows RC-anti-dependency cannot guarantee both
strict serializability and minimal progressiveness if update transactions have
invisible read operations.

Opacity vs TMS2: Expectations and Reality 275

Fig. 2. For the transaction T1, since read only transactions are invisible, this execution
is indistinguishable to p1 and p2 from the execution in Fig. 1.

Fig. 3. For the transactions T1 and T2, since read operations are invisible, this execu-
tion is indistinguishable to p1 and p2 from the execution in Fig. 1.

The intuition of the proof can be inferred from Fig. 1. In order to allow
RC-anti-dependency in Fig. 1 and to guarantee that the history is strictly serial-
izable, T2 cannot read any object written by T1. However, if read operations are
invisible, it is impossible for T1 to know whether such a read exists or not. We
show that such a result holds even with a weak progress guarantee, like minimal
progressiveness.

This result justifies the design of TM implementations like TWM [5], as
well as our TL2-RCAD algorithm, which both allow RC-anti-dependency by
making read operations of each update transaction visible at a certain point
of the transaction execution. Indeed, in both implementations read operations
of update transactions remain invisible until the execution of the transactions’
commit phase, and then read operations are forced to be visible during the
commit phase. This means, based on our definitions, that both implementations
have invisible read executions.

Having invisible read executions is weaker than having invisible read opera-
tions, because the former does not prevent a transaction from making its read
operations visible after the invocation of either tryCommit or tryAbort. However,
this relaxation for update transactions requires having visible read-only trans-
actions, which is implied by our second impossibility result (Theorem 2).

Theorem 2. A TM T that allows RC-anti-dependency cannot guarantee both
strict serializability and minimal progressiveness if (i) update transactions have
invisible read executions, and (ii) read-only transactions are invisible.

The proof intuition is based on the indistinguishability of the two histories
in Figs. 1 and 2, due to the invisibility of the read-only transaction T3. Specifi-
cally, if T3 is invisible, T1 has to behave in Fig. 2 as in Fig. 1. Also, the invisible
read execution of T1 gives both T2 and T3 the illusion of executing without

276 S. Hans et al.

concurrency, which means that they must commit due to minimal progressive-
ness. Therefore, the history in Fig. 2, which is not strictly serializable, has to be
accepted by T .

Theorems 1 and 2 give two impossibility results mainly on update transac-
tions. Therefore, a natural question would be: can we free the TM from any
constraint on the invisibility of read operations of update transactions, and
have non-TMS2 implementations that guarantee strict serializability? Theorem 3
shows that the answer is still “no”, in case read-only transactions are invisible
and obstruction-free.

Theorem 3. A TM T that allows RC-anti-dependency cannot guarantee both
strict serializability and minimal progressiveness if read-only transactions are
invisible and obstruction-free.

The intuition of the proof is also based on the indistinguishability of the two
histories in Figs. 1 and 2, due to the invisibility of the read-only transaction T3.
Specifically, if T3 is invisible, both T1 and T2 must behave in Fig. 2 as they do
in Fig. 1. In this case, although the read-only transaction T3 does not have the
illusion of running without concurrency, it has to commit because we assume
that read-only transactions are obstruction-free, and T3 runs without any step
contention. Therefore, the history in Fig. 2 has to be accepted by T .

All the previous theorems assume strictly serializable TM implementations.
Theorem 4, on the other hand, shows how the impossibility results will change if
we rather aim for opacity than strict serializability. Specifically, we show that in
order to have TM implementations that guarantee opacity and allow RC-anti-
dependency, any read operation of any transaction (whether it is read-only or
not) must be visible at the time the operation is executed. Our investigation
on the relation between guaranteeing opacity and allowing RC-anti-dependency
is motivated by some TM implementations that allow RC-anti-dependency and
violate opacity, such as TWM and TL2-RCAD.

Theorem 4. A TM T that allows RC-anti-dependency cannot guarantee both
opacity and minimal progressiveness if transactions have invisible read execu-
tions.

The intuition of the proof is based on the indistinguishability of the two his-
tories in Figs. 1 and 3, due to the invisibility of the read executions. Specifically,
based on the definition of invisible read executions, T3 is invisible since it is
live and it did not execute any write operation yet. Thus, both T1 and T2 must
behave in Fig. 3 as they do in Fig. 1. Furthermore, the invisible read execution
of T1 gives both T2 and T3 the illusion of executing without concurrency, which
means that they cannot abort due to minimal progressiveness. As a result, the
history in Fig. 3 has to be accepted by T , which violates opacity. Note that
T3 can abort later, in order to preserve strict serializability after T1 commits.
However, aborting T3 does not make the history opaque.

Opacity vs TMS2: Expectations and Reality 277

4 TL2-RCAD: a TM implementation that allows
RC-anti-dependency

In the previous section, we showed a set of impossibility results on allowing RC-
anti-dependency in a TM implementation. In this section, we show a possibility
result: a modified version of TL2 [4], named TL2-RCAD, that allows RC-anti-
dependency and therefore deploys visible read operations. Algorithm 1 shows
the main procedures of TL2-RCAD. The entire pseudo code is included in [12].

TL2 uses a shared timestamp, which is atomically incremented anytime an
update transaction commits and locally copied into the start timestamp at the
beginning of a transaction execution. This timestamp is used by read operations
to decide if the version available of a shared object is compliant with the transac-
tion’s history. At commit time, update transactions undergo a two-phase locking
on written locations, and modifications are applied to the shared state only if all
versions of read locations are still valid. Versions of locations are stored along
with locks in a shared ownership record (orec) table.

One of the main issues in TL2 is that the live validation (i.e., the one made
before returning from a read operation) is conservative: a transaction Ti aborts
if the version of the orec to be read is greater than Ti’s start timestamp. Using
such a scheme to build TL2-RCAD would reduce the chance for allowing RC-anti-
dependency because only few transactions with a potential RC-anti-dependency
would reach the commit phase. Therefore we use a variant of TL2 that extends
Ti’s starting timestamp by using the technique presented in [19] (lines 17–21).

To the best of our knowledge, all TM algorithms that allow RC-anti-
dependency are multi-versioning. Multi-versioning has its own practical limi-
tations (e.g., expensive memory management) that makes it not a candidate
in some real applications. TL2-RCAD is the first practical single-version TM
algorithm that allows RC-anti-dependency. In Sect. 6, we discuss the differences
between TL2-RCAD and TWM [5], a multi-versioning algorithm that allows
RC-anti-dependency.

TL2-RCAD Metadata. Based on our impossibility results, a mandatory step
to allows RC-anti-dependency and guarantee at least strict serializability is to
expose more metadata to make read-only transactions and the read operations of
update transactions visible. TL2-RCAD exposes per-orec metadata for update
transactions and a global flag for read-only transactions.

More in details, each orec is enriched with a read version, named orec.rv,
that is modified at the commit time of only update transactions (hereafter we
name TL2’s original orec versions as write version, or orec.wv). As we will show
later, adding the read version is enough to detect simple scenarios where there is
no read-only transactions and there is only one transaction that allows RC-anti-
dependency at a time, like the example in Fig. 1. We also define three shared
global metadata: anti dep lock, last ro, and last anti dep. Those metadata are
used to detect the more complicated scenarios, like the one in Fig. 2, where
at least two concurrent transactions attempt to commit and they both allow
RC-anti-dependency, or one of them allows RC-anti-dependency and the other

278 S. Hans et al.

Algorithm 1. TL2-RCAD

1: procedure Start()

2: tx.start = global timestamp
3: end procedure
4: procedure Read(addr)

5: val = tx.write-set.find(addr)
6: if val != NULL then
7: return val
8: orec = getOrec(addr)
9: while true do
10: val = *addr
11: o = orec
12: if o.lock then
13: continue
14: if o.wv ≤ tx.start then
15: tx.readset.append(orec)
16: return val
17: new start = global timestamp
18: for each (orec) in tx.readset do
19: if orec.wv > tx.start then
20: Abort()

21: tx.start = new start
22: end procedure

23: procedure Write(addr, value)

24: tx.writeset.add(addr, value)
25: end procedure

26: procedure CommitRW()

27: LockAbortIfLockedNotByMe(tx.writeset)
28: for each (r orec) in tx.readset do
29: if LockedNotByMe(r orec) then
30: Abort()

31: for each (r orec) in tx.readset do
32: if r orec.wv > tx.start then
33: CheckAntiDep()
34: break
35: WriteBack(tx.writeset)
36: tx.end = AtomicInc(global timestamp)
37: UpdateVersions()
38: Unlock(tx.writeset)
39: end procedure

40: procedure CommitRO

41: AntiDepHandle()
42: end procedure

is read-only. Note that last ro, and last anti dep, and the read versions of the
orecs should be monotonically increasing, which is not guaranteed if transactions
overwrite their values without checking the old values. Hereafter we use the term
monotonic update to refer to the correct action that considers this requirement.
The detailed pseudo code of this monotonic update is in [12].

TL2-RCAD Commit Procedure. Now we show how we modify the commit
procedure of TL2 to allow RC-anti-dependency. We structured the pseudocode
in Algorithm 1 so that the difference between TL2 and TL2-RCAD, in addition
to the new metadata, lies only in the three functions at lines 33, 37, and 41. For
each function, we show how TL2 implements it, and how TL2-RCAD extends
that. The detailed pseudocode for both TL2 and TL2-RCAD is in [12].

The first function is CheckAntiDep. TL2-RCAD allows RC-anti-dependency
at commit time by enriching TL2’s validation procedure. In TL2 each transaction
Ti iterates over all the orecs of its read-set and checks if the write version of each
orec is higher than the start timestamp of Ti, which is the condition for RC-
anti-dependency. At this point, TL2 conservatively aborts Ti, while TL2-RCAD
tries to commit Ti if allowing RC-anti-dependency does not result in executions
that violate strict serializability. To do so, the CheckAntiDep function in TL2-
RCAD is implemented as follows: it first acquires the anti dep lock to guarantee
that no other transaction will concurrently allow RC-anti-dependency. Then, it
checks if Ti’s start timestamp is less than: (i) last ro, (ii) last anti dep, and
(iii) both the read versions and the write versions of all Ti’s write-set entries.
Interestingly, all those steps use only information saved in Ti’s read-set and do
not require any accurate knowledge about dependencies of other transactions.

The second function is UpdateVersions. In this function, TL2 only modi-
fies the write version of the write-set entries. In addition to that, TL2-RCAD

Opacity vs TMS2: Expectations and Reality 279

modifies the read version of the read-set entries. Also, if committing the trans-
action generates RC-anti-dependency (i.e., it calls CheckAntiDep), last anti dep
is monotonically updated to be the new value of the shared timestamp (after
being atomically incremented in line 36), then anti dep lock is released. The
third function is AntiDepHandle, which is an empty function in TL2. In TL2-
RCAD a read-only transaction Tr monotonically updates last ro to be the cur-
rent value of the shared timestamp. Then, it checks if anti dep lock is acquired
or last anti dep is greater than or equal to Tr’s start timestamp, which indicates
a concurrent transaction that allowed or is trying to allow RC-anti-dependency.
In that case, Tr conservatively aborts.

Considering Theorem 4, TL2-RCAD violates opacity because it makes read
operations visible only during the commit phase. However, as we prove in The-
orem 5 (proof is in [12]), TL2-RCAD guarantees strict serializability, and this
does not contradict the other impossibility results presented in Sect. 3, because
read operations and read-only transactions are visible in TL2-RCAD. In fact,
Theorem 5 proves that TL2-RCAD guarantees TMS1 [6], which is stronger than
strict serializability. Interestingly, to the best of our knowledge, TL2-RCAD is
the first TM implementation that has TMS1 guarantee.

Theorem 5. TL2-RCAD guarantees TMS1.

5 Evaluation

In this section, we evaluate TL2-RCAD, mainly to understand how allowing
RC-anti-dependency and weakening TMS2 affects performance. To do so, we
compare three variants of the TL2 algorithm: the TL2 implementation (TL2),
the TL2 implementation with the extension of the transaction start timestamp
(TL2-Extend), and TL2-RCAD. We evaluated the algorithms using the STAMP
benchmark suite [17]. The testbed consists of an AMD server equipped with 64
CPU-cores. Each datapoint is the average of 5 runs. We use two metrics during
the evaluation: throughput (in Fig. 4) and the commit/abort ratio normalized
to the total number of executions of TL2 (in Fig. 5). Due to space constraints,
we show the most significant plots here and we refer to [12] for the others.

Our main observation is that aborts occur because of two main reasons other
than for RC-anti-dependency: finding an inconsistent state by a live transaction,
and failing in acquiring locks at commit time. That is why, the results in Fig. 4
show only a marginal performance improvement in one application (kmeans), and
a performance similar to or worse than the other versions of TL2 in all other
applications. Roughly, the results split STAMP benchmarks into four categories
based on the level of contention and the size of transactions read-sets. This is
because contention level is an indicator of the potential gain of allowing RC-
anti-dependency; and the size of the read-set indicates the overhead of allowing
RC-anti-dependency in TL2-RCAD given the need of updating the read versions.

The first category includes ssca2 and labyrinth. In ssca2, transactions
are non-conflicting and have small read-sets, while in labyrinth transactions

280 S. Hans et al.

Fig. 4. Performance using STAMP. X-axis: number of threads; Y-axis: Time (s).

Fig. 5. Commit/abort ratios in STAMP. (i) TL2; (ii) TL2-Extended; (iii) TL2-RCAD.

have dominating non-transactional work. That is why in both scenarios allow-
ing RC-anti-dependency causes neither a degradation nor an improvement in
performance. Figure 4(a) confirms that by showing similar performance for all
competitors. The second category (vacation and genome) represents workloads
with non-conflicting transactions and large read-sets. In this case, the overhead
of allowing RC-anti-dependency increases due to large read-sets, but it does
not provide any benefit because most of the transactions already commit even
using the original TL2. That is why the performance of TL2-RCAD is constantly
worse than other competitors, as shown in Fig. 4(b), which reflects the overhead
of allowing RC-anti-dependency. The third category is represented by intruder,
which is the worst case for TL2-RCAD. Performance degradation is higher than
all the other benchmarks, as shown in Fig. 4(c). This is mainly because trans-
actions have large read-sets, which adds a significant overhead that increases
the overall commit time. Kmeans (Fig. 4(d)) represents the forth category, where
transactions have small read-sets but they are more conflicting than the previous
applications. Due to the small read-sets, TL2-RCAD does not generally perform
worse than its competitors. However, we also observe no gain from allowing
RC-anti-dependency, as detailed below.

Figure 5 shows, for each version of TL2, the percentage of committed
read-only and update transactions that never called CheckAntiDep (NonAD-
Commits); committed update transactions that called CheckAntiDep (AD-
Commits); aborted transactions that called either CheckAntiDep or AntiDe-
pHandle (AD-Aborts); aborted live transactions (Live-Aborts); and aborted

Opacity vs TMS2: Expectations and Reality 281

update transactions due to failing in locking an orec at commit (NonAD-Aborts).
The sum of AD-Commits and AD-Aborts represents all the potential executions
for RC-anti-dependency, while Live-Aborts and NonAD-Aborts represent the
two reasons for aborting transactions other than observing RC-anti-dependency.
Unfortunately, although we can save some Live-Aborts by spinning until the
location is unlocked, which is the case of both TL2-Extend and TL2-RCAD
(line 13), spinning at commit time in order to save some NonAD-Aborts can
result in deadlock.

Figure 5 assesses that the overall percentage of potential RC-anti-dependency
is small, which clarifies the reason of limited performance improvement (or degra-
dation). More in details, Figs. 5(a) and (b) confirm our analysis in ssca2 and
vacation by showing that NonAD-Commits is dominating. Labyrinth can-
not be interpreted due to its dominating non-transactional work. In intruder
(Fig. 5(c)), NonAD-Aborts of TL2-RCAD are higher than TL2-Extend. This is
a direct implication of holding locks for a longer time at commit time, due to
the longer validation process and the time spent in writing the read versions.
Finally, in kmeans (Fig. 5(d)) the number of RC-anti-dependency observed is
very limited, which results in a slight performance improvement only for the
cases of 48/64 threads. Note that, although both TL2-Extend and TL2-RCAD
save most of live aborts in both kmeans and intruder, the impact of that in per-
formance is not reflected. This is mainly because preventing aborts in those cases
come with an additional cost of incrementally validating the whole read-set.

We also ran micro-benchmarks (shown in [12]) seeking for a favorable con-
figuration that allows RC-anti-dependency. Results confirmed a limited perfor-
mance improvement. As a summary, although we cannot claim that more favor-
able workloads do not exist, our evaluation study assesses that, even with a
hand-tuned micro-benchmark, it is hard to find workloads where allowing RC-
anti-dependency in a single-version TM enhances performance noticeably.

6 Related Work

We classify the previous works that allow RC-anti-dependency into two cat-
egories: permissive algorithms, and multi-versioning algorithms. Interestingly,
both of them confirm our impossibility results by adopting techniques that make
both read-only transactions and the reads of update transactions visible.

Permissive algorithms need to track all dependencies in the system [9,16],
and/or acquire locks for read operations [2], and both these techniques are known
to have a significant negative impact on performance. That is why, unlike TL2-
RCAD, all those solutions in this regard aimed at proving theoretical possibility
results rather than assessing practical implications.

Multi-versioning algorithms have a major benefit: allowing read-only transac-
tions to progress (usually non-blocking), and, generally, read operations to com-
plete without aborting the enclosing transaction. That is easy to achieve because,
thanks to the multi-versioned memory, transactions can always find a consistent
version to read. That is why even multi-versioning algorithms that do not allow

282 S. Hans et al.

RC-anti-dependency, such as LSA [19] or JVSTM [7], have this positive effect.
We believe that the advantages of allowing RC-anti-dependency have a limited
gain compared to the potential gain of having non-blocking read-only transac-
tions. We justify this claim by briefly analyzing TWM [5], an algorithm that uses
multi-versioning and allows RC-anti-dependency. In the evaluation of TWM, all
the workloads that show a significant improvement have long and mostly read-
only transactions. Here TWM mainly benefits from the strong progress of read
operations. Those scenarios are not favorable for TL2-RCAD because, without
multi-versioning, it is hard to improve the progress of read operations, and also
those workloads add significant overhead due to their long read-sets.

Theoretically, our results are inspired by a research trend that aims at iden-
tifying the cost of accepting more histories in TM. For example, both online per-
missiveness [16] and input-acceptance [8] introduce similar impossibility results
on the visibility of read and write operations when the TM accepts some sets of
histories. Our results, however, are stronger since they are based on the assump-
tion that TM accepts only one history. Also, we selected that history as it is the
one used for identifying TMS2, which allows, for the first time, understanding
the cost and limitations of relaxing TMS2 while still being safe.

7 Conclusion

In this paper we investigated the inherent costs and limitations of allowing RC-
anti-dependency in TM implementations. The major outcome of our findings is
that, the mandatory costs of allowing RC-anti-dependency (e.g., having visible
read operations) is not reflected in noticeable performance improvement.

Acknowledgements. This work is partially supported by Air Force Office of Scientific
Research (AFOSR) under grant FA9550-14-1-0187.

References

1. Attiya, H., Gotsman, A., Hans, S., Rinetzky, N.: Safety of live transactions in
transactional memory: TMS is necessary and sufficient. In: Kuhn, F. (ed.) DISC
2014. LNCS, vol. 8784, pp. 376–390. Springer, Heidelberg (2014)

2. Attiya, H., Hillel, E.: A single-version STM that is multi-versioned permissive.
Theory Comput. Syst. 51(4), 425–446 (2012)

3. Dalessandro, L., Spear, M.F., Scott, M.L.: NOrec: streamlining STM by abolishing
ownership records. In: PPOPP, pp. 67–78 (2010)

4. Dice, D., Shalev, O., Shavit, N.N.: Transactional locking II. In: Dolev, S. (ed.)
DISC 2006. LNCS, vol. 4167, pp. 194–208. Springer, Heidelberg (2006)

5. Diegues, N., Romano, P.: Time-warp: lightweight abort minimization in transac-
tional memory. In: PPoPP, pp. 167–178 (2014)

6. Doherty, S., Groves, L., Luchangco, V., Moir, M.: Towards formally specifying and
verifying transactional memory. Formal Aspects Comput. 25(5), 769–799 (2013)

7. Fernandes, S.M., Cachopo, J.P.: Lock-free and scalable multi-version software
transactional memory. In: PPOPP, pp. 179–188 (2011)

Opacity vs TMS2: Expectations and Reality 283

8. Gramoli, V., Harmanci, D., Felber, P.: On the input acceptance of transactional
memory. Parallel Process. Lett. 20(1), 31–50 (2010)

9. Guerraoui, R., Henzinger, T.A., Singh, V.: Permissiveness in transactional memo-
ries. In: Taubenfeld, G. (ed.) DISC 2008. LNCS, vol. 5218, pp. 305–319. Springer,
Heidelberg (2008)

10. Guerraoui, R., Kapalka, M.: On the correctness of transactional memory. In:
PPOPP, pp. 175–184 (2008)

11. Guerraoui, R., Kapalka, M.: Principles of Transactional Memory. Synthesis Lec-
tures on Distributed Computing Theory. Morgan and Claypool, Williston (2011)

12. Hans, S., Hassan, A., Palmieri, R., Peluso, S., Ravindran, B.: Opacity vs TMS2:
expectations and reality. Technical report, Virginia Tech (2016). http://www.ssrg.
ece.vt.edu/papers/disc16-TR.pdf

13. Herlihy, M., Luchangco, V., Moir, M., Scherer III, W.N.: Software transactional
memory for dynamic-sized data structures. In: PODC, pp. 92–101 (2003)

14. Herlihy, M., Moss, J.E.B.: Transactional memory: architectural support for lock-
free data structures. In: ISCA, pp. 289–300 (1993)

15. Herlihy, M., Wing, J.M.: Linearizability: a correctness condition for concurrent
objects. ACM Trans. Program. Lang. Syst. 12(3), 463–492 (1990)

16. Keidar, I., Perelman, D.: On avoiding spare aborts in transactional memory. In:
SPAA, pp. 59–68 (2009)

17. Minh, C.C., Chung, J., Kozyrakis, C., Olukotun, K.: STAMP: stanford transac-
tional applications for multi-processing. In: IISWC, pp. 35–46 (2008)

18. Papadimitriou, C.H.: The serializability of concurrent database updates. J. ACM
26, 631–653 (1979)

19. Riegel, T., Felber, P., Fetzer, C.: A lazy snapshot algorithm with eager validation.
In: Dolev, S. (ed.) DISC 2006. LNCS, vol. 4167, pp. 284–298. Springer, Heidelberg
(2006)

http://www.ssrg.ece.vt.edu/papers/disc16-TR.pdf
http://www.ssrg.ece.vt.edu/papers/disc16-TR.pdf

On Composition and Implementation
of Sequential Consistency

Matthieu Perrin(B), Matoula Petrolia, Achour Mostéfaoui, and Claude Jard

LINA – University of Nantes, Nantes, France
{matthieu.perrin,stamatina.petrolia,

achour.mostefaoui,claude.jard}@univ-nantes.fr

Abstract. To implement a linearizable shared memory in synchronous
message-passing systems it is necessary to wait for a time linear to the
uncertainty in the latency of the network for both read and write opera-
tions. Waiting only for one of them suffices for sequential consistency.
This paper extends this result to crash-prone asynchronous systems,
proposing a distributed algorithm that builds a sequentially consistent
shared snapshot memory on top of an asynchronous message-passing
system where less than half of the processes may crash. We prove that
waiting is needed only when a process invokes a read/snapshot right after
a write.

We also show that sequential consistency is composable in some cases
commonly encountered: (1) objects that would be linearizable if they
were implemented on top of a linearizable memory become sequen-
tially consistent when implemented on top of a sequential memory while
remaining composable and (2) in round-based algorithms, where each
object is only accessed within one round.

Keywords: Asynchronous message-passing system · Crash-failures ·
Sequential consistency · Composability · Shared memory · Snapshot

1 Introduction

A distributed system is abstracted as a set of entities (nodes, processes, agents,
etc.) that communicate through a communication medium. The two most used
communication media are communication channels (message-passing system)
and shared memory (read/write operations). Programming with shared objects
is generally more convenient as it offers a higher level of abstraction to the pro-
grammer, therefore facilitates the work of designing distributed applications. A
natural question is the level of consistency ensured by shared objects. An intu-
itive property is that shared objects should behave as if all processes accessed the
same physical copy of the object. Sequential consistency [1] ensures that all the
operations in a distributed history appear as if they were executed sequentially,
in an order that respects the sequential order of each process (process order).

Unfortunately, sequential consistency is not composable: if a program uses
two or more objects, despite each object being sequentially consistent individu-
ally, the set of all objects may not be sequentially consistent. Linearizability [2]
c© Springer-Verlag Berlin Heidelberg 2016
C. Gavoille and D. Ilcinkas (Eds.): DISC 2016, LNCS 9888, pp. 284–297, 2016.
DOI: 10.1007/978-3-662-53426-7 21

On Composition and Implementation of Sequential Consistency 285

overcomes this limitation by adding constraints on real time: each operation
appears at a single point in time, between its start event and its end event. As
a consequence, linearizability enjoys the locality property [2] that ensures its
composability. Because of this composability, much more effort has been focused
on linearizability than on sequential consistency so far. However, one of our
contributions implies that in asynchronous systems where no global clock can
be implemented to measure real time, a process cannot distinguish between a
linearizable and a sequentially consistent execution, thus the connection to real
time seems to be a worthless—though costly—guarantee.

In this paper we focus on message-passing distributed systems. In such sys-
tems a shared memory is not a physical object; it has to be built using the
underlying message-passing communication network. Several bounds have been
found on the cost of sequential consistency and linearizability in synchronous dis-
tributed systems, where the transit time for any message is in a range [d − u, d],
where d and u are called respectively the latency and the uncertainty of the net-
work. Let us consider an implementation of a shared memory, and let r (resp.
w) be the worst case latency of any read (resp. write) operation. Lipton and
Sandberg proved in [3] that, if the algorithm implements a sequentially consis-
tent memory, the inequality r + w ≥ d must hold. Attiya and Welch refined
this result in [4], proving that each kind of operations could have a 0-latency
implementation for sequential consistency (though not both in the same imple-
mentation) but that the time duration of both kinds of operations has to be at
least linear in u in order to ensure linearizability.

Therefore the following questions arise. Are there applications for which the
lack of composability of sequential consistency is not a problem? For these appli-
cations, can we expect the same benefits in weaker message-passing models, such
as asynchronous failure-prone systems, from using sequentially consistent objects
rather than linearizable objects?

To illustrate the contributions of the paper, we also address a higher level
operation: a snapshot operation [5] that allows to read in a single operation a
whole set of registers. A sequentially consistent snapshot is such that the set of
values it returns may be returned by a sequential execution. This operation is
very useful as it has been proved [5] that linearizable snapshots can be wait-
free implemented from single-writer/multi-reader registers. Indeed, assuming a
snapshot operation does not bring any additional power with respect to shared
registers. Of course this induces an additional cost: the best known simulation
needs O(n log n) basic read/write operations to implement each of the snapshot
operations and the associated update operation [6]. Such an operation brings a
programming comfort as it reduces the “noise” introduced by asynchrony and
failures [7] and is particularly used in round-based computations [8] we consider
for the study of the composability of sequential consistency.

Contributions. We present three major contributions. (1) We identify two con-
texts that can benefit from the use of sequential consistency: round-based algo-
rithms using a different shared object for each round, and asynchronous shared-
memory systems, where programs can not distinguish a sequentially consistent

286 M. Perrin et al.

memory from a linearizable one. (2) We propose an implementation of a sequen-
tially consistent memory where waiting is only required when a write is imme-
diately followed by a read. This extends the result presented in [4] about syn-
chronous failure-free systems, to failure-prone asynchronous systems. (3) The
proposed algorithm also implements a sequentially consistent snapshot opera-
tion the cost of which compares very favorably with the best existing lineariz-
able implementation to our knowledge (the stacking of the snapshot algorithm
of Attiya and Rachman [6] over the ABD simulation of linearizable registers)

Outline. The remainder of this article is organized as follows. In Sect. 2, we define
more formally sequential consistency, and we present special contexts in which
it becomes composable. In Sect. 3, we present our implementation of shared
memory and study its complexity. Finally, Sect. 4 concludes the paper.

2 Sequential Consistency and Composability

2.1 Definitions

In this section we recall the definitions of the most important notions we discuss
in this paper: two consistency criteria, sequential consistency (SC, Definition 2,
[1]) and linearizability (L, Definition 3, [2]), as well as composability (Defin-
ition 4). A consistency criterion associates a set of admitted histories to the
sequential specification of each given object. A history is a representation of an
execution. It contains a set of operations, that are partially ordered according
to the sequential order of each process, called process order. A sequential spec-
ification is a language, i.e. a set of sequential (finite and infinite) words. For a
consistency criterion C and a sequential specification T , we say that an algo-
rithm implements a C(T)-consistent object if all its executions can be modelled
by a history that belongs to C(T), that contains all returned operations and
only invoked operations. Note that this implies that if a process crashes during
an operation, then the operation will appear in the history as if it was complete
or as if it never took place at all.

Definition 1 (Linear extension). Let H be a history and T be a sequential
specification. A linear extension ≤ is a total order on all the operations of H,
that contains the process order, and such that each event e has a finite past
{e′ : e′ ≤ e} according to the total order.

Definition 2 (Sequential Consistency). Let H be a history and T be a
sequential specification. The history H is sequentially consistent regarding T ,
denoted H ∈ SC(T), if there exists a linear extension ≤ such that the word
composed of all the operations of H ordered by ≤ belongs to T .

Definition 3 (Linearizability). Let H be a history and T be a sequential spec-
ification. The history H is linearizable regarding T , denoted H ∈ L(T), if there
exists a linear extension ≤ such that (1) for two operations a and b, if operation
a returns before operation b begins, then a ≤ b and (2) the word formed of all
the operations of H ordered by ≤ belongs to T .

On Composition and Implementation of Sequential Consistency 287

Let T1 and T2 be two sequential specifications. We define the composition of T1

and T2, denoted by T1 × T2, as the set of all the interleaved sequences of a word
from T1 and a word from T2. An interleaved sequence of two words l1 and l2 is
a word composed of the disjoint union of all the letters of l1 and l2, that appear
in the same order as they appear in l1 and l2. For example, the words ab and cd
have six interleaved sequences: abcd, acbd, acdb, cabd, cadb and cdab.

A consistency criterion C is composable (Def. 4) if the composition of a
C(T1)-consistent object and a C(T2)-consistent object is a C(T1×T2)-consistent
object. Linearizability is composable, and sequential consistency is not.

Definition 4 (Composability). For a history H and a sequential specification
T , let HT be the sub-history of H containing only the operations belonging to T .

A consistency criterion C is composable if, for all sequential specifications
T1 and T2 and all histories H containing only events on T1 and T2, (HT1 ∈
C(T1) and HT2 ∈ C(T2)) imply H ∈ C(T1 × T2).

2.2 From Linearizability to Sequential Consistency

Software developers usually abstract the complexity of their system gradually,
which results in a layered software architecture: at the top level, an application
is built on top of several objects specific to the application, themselves built on
top of lower levels. Such an architecture is represented in Fig. 1a. The lowest
layer usually consists of one or several objects provided by the system itself,
typically a shared memory. The system can ensure sequential consistency glob-
ally on all the provided objects, therefore composability is not required for this
level. Proposition 1 expresses the fact that, in asynchronous systems, replacing
a linearizable object by a sequentially consistent one does not affect the cor-
rectness of the programs running on it circumventing the non composability of
sequential consistency. This result may have an impact on parallel architectures,
such as modern multi-core processors and, to a higher extent, high performance
supercomputers, for which the communication with a linearizable central shared
memory is very costly, and weak memory models such as cache consistency [9]
make the writing of programs tough. The idea of the proof is that in any sequen-
tially consistent execution (Fig. 1b), it is possible to associate a local clock to
each process such that, if these clocks followed real time, the execution would
be linearizable (Fig. 1c). In an asynchronous system, it is impossible for the
processes to distinguish between these clocks and real time, so the operations
of the objects of the upper layers are not affected by the change of clock. The
complete proof of this proposition can be found in [10].

Proposition 1. Let A be an algorithm that implements an SC(Y)-consistent
object when it is executed on an asynchronous system providing an L(X)-
consistent object. Then A also implements an SC(Y)-consistent object when it
is executed in an asynchronous system providing an SC(X)-consistent object.

An interesting point about Proposition 1 is that it allows sequentially
consistent—but not linearizable—objects to be composable. Let AY and AZ

288 M. Perrin et al.

Application

Y × Z

Y Z

X (memory)

(a) Layer
based archi-
tecture.

p1

p0

YSC .op01

YSC .op00 YSC .op10

XSC .op01 XSC .op11 XSC .op21

XSC .op00 XSC .op10 XSC .op20

(b) The implementation of upper layer objects call operations on ob-
jects from lower layers.

p1

p0

YSC .op01

YSC .op00 YSC .op10

XSC .op01 XSC .op11 XSC .op21

XSC .op00 XSC .op10 XSC .op20

(c) An asynchronous process cannot differentiate this history from
the one on Figure 1b.

Fig. 1. In layer based program architecture running on asynchronous systems, local
clocks of different processes can be distorted such that it is impossible to differentiate
a sequentially consistent execution from a linearizable execution.

be two algorithms that implement L(Y)-consistent and L(Z)-consistent objects
when they are executed on an asynchronous system providing an L(X)-consistent
object, like on Fig. 1a. As linearizability is stronger than sequential consis-
tency, according to Proposition 1, executing AY and AZ on an asynchronous
system providing an SC(X)-consistent object would implement sequentially
consistent—yet not linearizable—objects. However, in a system providing the
linearizable object X, by composability of linearizability, the composition of AY

and AZ implements an L(Y × Z)-consistent object. Therefore, by Proposition 1
again, in a system providing the sequentially consistent object X, the compo-
sition also implements an SC(Y × Z)-consistent object. In this example, the
sequentially consistent versions of Y and Z derive their composability from an
anchor to a common time, given by the sequentially consistent memory, that can
differ from real time, required by linearizability.

2.3 Round-Based Computations

Even at a single layer, a program can use several objects that are not compos-
able, but that are used in a fashion so that the non-composability is invisible
to the program. Let us illustrate this with round-based algorithms. The syn-
chronous distributed computing model has been extensively studied and well-
understood leading the researchers to try to offer the same comfort when dealing
with asynchronous systems, hence the introduction of synchronizers [11]. A syn-
chronizer slices a computation into phases during which each process executes
three steps: send/write, receive/read and then local computation. This model has
been extended to failure prone systems in the round-by-round computing model
[8] and to the Heard-Of model [12] among others. Such a model is particularly
interesting when the termination of a given program is only eventual. Indeed,
some problems are undecidable in failure prone purely asynchronous systems. In

On Composition and Implementation of Sequential Consistency 289

Application

Y Z

X1 →X2 →X3 →· · ·

(a) Round-based
program archi-
tecture

round 1 round 2 round 3

p2

p1

p0

l1

l2

l3

�

→�

•X1.op1

•X1.op2

•
X1.op3

•X1.op4
•X1.op5 •X2.op1 •X2.op2

•
X2.op3•

X2.op4
•

X2.op5
•

X2.op6
•

X2.op7

•X3.op1

•
X3.op2

•
X3.op3

(b) As the ordering between different objects follows the process
order, that is contained into the serialization order of each object,
no loop can appear.

Fig. 2. The composition of sequentially consistent objects used in different rounds is
sequentially consistent.

order to circumvent this impossibility, eventually or partially synchronous sys-
tems have been introduced [13]. In such systems the termination may hold only
after some finite but unbounded time, and the algorithms are implemented by
the means of a series of asynchronous rounds each using its own shared objects.

In the round-based computing model the execution is sliced into a sequence of
asynchronous rounds. During each round, a new data structure (usually a single-
writer/multi-reader register per process) is created and it is the only shared
object used to communicate during the round. At the end of the round, each
process destroys its local accessor to the object, so that it can no more access it.
Note that the rounds are asynchronous: the processes do not necessarily start
and finish their rounds at the same time. Moreover, a process may not terminate
a round and keep accessing the same shared object forever or may crash during
this round and stop executing. A round-based execution is illustrated in Fig. 2b.

In Proposition 2, we prove that sequentially consistent objects of different
rounds behave well together: as the ordering added between the operations of
two different objects always follows the round numbering, that is consistent with
the program order already contained in the linear extension of each object, the
composition of all these objects cannot create loops (Fig. 2b). The complete proof
of this proposition can be found in [10]. Putting together this result and Proposi-
tion 1, all the algorithms that use a round-based computation model can benefit
of any improvement on the implementation of an array of single-writer/multi-
reader register that sacrifices linearizability for sequential consistency. Note that
this remains true whatever is the data structure used during each round. The
only constraint is that a sequentially consistent shared data structure can be
accessed during a unique round. If each object is sequentially consistent then
the whole execution is consistent.

Proposition 2. Let (Tr)r∈N be a family of sequential specifications and (Xr)r∈N

be a family of shared objects such that, for all r, Xr is SC(Tr)-consistent. Let H
be a history that does not contain two operations Xr.a and Xr′ .b with r > r′ such
that Xr.a precedes Xr′ .b in the process order. Then H is sequentially consistent
with respect to the composition of all the Tr.

290 M. Perrin et al.

3 Implementation of a Sequentially Consistent Memory

3.1 Computation Model

The computation system consists of a set Π of n sequential processes, denoted
p0, p1, . . . , pn−1. The processes are asynchronous, in the sense that they all pro-
ceed at their own speed, not upper bounded and unknown to all other processes.

Among these n processes, up to t may crash (halt prematurely) but otherwise
execute correctly the algorithm until the moment of their crash. We call a process
faulty if it crashes, otherwise it is called correct or non-faulty. In the rest of the
paper we will consider the above model restricted to the case t < n

2 .
The processes communicate with each other by sending and receiving mes-

sages through a complete network of bidirectional channels. A process can
directly communicate with any other process, including itself (pi receives its own
messages instantaneously), and can identify the sender of the message received.
Each process is equipped with two operations: send and receive.

The communication channels are reliable (no losses, no creation, no dupli-
cation, no alteration of messages) and asynchronous (finite time needed for a
message to be transmitted but there is no upper bound). We also assume the
channels are FIFO: if pi sends two messages to pj , pj will receive them in the
order they were sent. As stated in [14], FIFO channels can always be implemented
on top of non-FIFO channels. Therefore, this assumption does not bring addi-
tional computational power to the model, but it allows us to simplify the writing
of the algorithm. Process pi can also use the macro-operation FIFO broadcast,
that can be seen as a multi-send that sends a message to all processes, including
itself. Hence, if a faulty process crashes during the broadcast operation some
processes may receive the message while others may not, otherwise all correct
processes will eventually receive the message.

3.2 Single-Writer/Multi-Reader Registers and Snapshot Memory

The shared memory considered in this paper, called a snapshot memory, con-
sists of an array of shared registers denoted REG[1..n]. Each entry REG[i] rep-
resents a single-writer/multi-reader (SWMR) register. When process pi invokes
REG.update(v), the value v is written into the SWMR register REG[i] associated
with process pi. Differently, any process pi can read the whole array REG by
invoking a single operation namely REG.snapshot(). According to the sequential
specification of the snapshot memory, REG.snapshot() returns an array contain-
ing the most recent value written by each process or the initial default value if
no value is written on some register. Concurrency is possible between snapshot
and writing operations, as soon as the considered consistency criterion, namely
linearizability or sequential consistency, is respected. Informally in a sequentially
consistent snapshot memory, each snapshot operation must return the last value
written by the process that initiated it, and for any pair of snapshot operations,
one must return values at least as recent as the other for all registers.

On Composition and Implementation of Sequential Consistency 291

Compared to read and write operations, the snapshot operation is a higher
level abstraction introduced in [5] that eases program design without bringing
additional power with respect to shared registers. Of course this induces an
additional cost: the best known simulation, above SWMR registers proposed
in [6], needs O(n log n) basic read/write operations to implement each of the
snapshot and the associated update operations.

Since the seminal paper [15] that proposed the so-called ABD simulation
that emulates a linearizable shared memory over a message-passing distributed
system, most of the effort has been put on the shared memory model given that
a simple stacking allows to translate any shared memory-based result to the
message-passing system model. Several implementations of linearizable snap-
shot have been proposed in the literature some works consider variants of snap-
shot (e.g. immediate snapshot [16], weak-snapshot [17], one scanner [18]) oth-
ers consider that special constructions such as test-and-set (T&S) [19] or load-
link/store-conditional (LL/SC) [20] are available, the goal being to enhance time
and space efficiency. In this paper, we propose the first message-passing sequen-
tially consistent (not linearizable) snapshot memory implementation directly
over a message-passing system (and consequently the first sequentially consis-
tent array of SWMR registers), as traditional read and write operations can be
immediately deduced from snapshot and update with no additional cost.

3.3 The Proposed Algorithm

Algorithm 1 proposes an implementation of the sequentially consistent snapshot
memory data structure presented in Sect. 3.2. The complete proof of correctness
of this algorithm can be found in the technical report [10]. Process pi can write
a value v in its own register REG[i] by calling the operation REG.update(v)
(lines 6–9). It can also call the operation REG.snapshot() (lines 10–11). Roughly
speaking, the principle of this algorithm is to maintain, on each process, a local
view of the object that reflects a set of validated update operations. To do so,
when a value is written, all processes label it with their own timestamp. The
order in which processes timestamp two different update operations define a
dependency relation between these operations. For two operations a and b, if b
depends on a, then pi cannot validate b before a.

More precisely, each process pi maintains five local variables:

– Xi ∈ Nn is the array of most recent validated values written on each register.
– ValClocki ∈ Nn represents the timestamps associated with the values stored

in Xi, labelled by the process that initiated them.
– SendClocki ∈ N is an integer clock used by pi to timestamp all the update

operations. SendClocki is incremented each time a message is sent,
which ensures all timestamps from the same process are different.

– Gi ⊂ N
3+n encodes the dependencies between update operations that have

not been validated yet, as known by pi. An element g ∈ Gi, of the form
(g.v, g.k, g.t, g.cl), represents the update operation of value g.v by process
pg.k labelled by process pg.k with timestamp g.t. For all 0 ≤ j < n, g.cl[j]

292 M. Perrin et al.

contains the timestamp given by pj if it is known by pi, and ∞ otherwise.
All updates of a history can be uniquely represented by a pair of integers

(k, t), where pk is the process that invoked it, and t is the timestamp associ-
ated to this update by pk. Considering a history and a process pi, we define
the dependency relation →i on pairs of integers (k, t), by (k, t) →i (k′, t′) if
for all g, g′ ever inserted in Gi with (g.k, g.t) = (k, t), (g′.k, g′.t) = (k′, t′),
we have |{j : g′.cl[j] < g.cl[j]}| ≤ n

2 (i.e. the dependency does not exist if
pi knows that a majority of processes have seen the first update before the
second). Let →�

i denote the transitive closure of →i.
– Vi ∈ N ∪ {⊥} is a buffer register used to store a value written while the

previous one is not yet validated. This is necessary for validation (see below).

The key of the algorithm is to ensure the inclusion between sets of validated
updates on any two processes at any time. Remark that it is not always neces-
sary to order all pairs of update operations to implement a sequentially consis-
tent snapshot memory: for example, two update operations on different registers
commute. Therefore, instead of validating both operations on all processes in
the exact same order (which requires Consensus), we can validate them at the
same time to prevent a snapshot to occur between them. Thus, it is sufficient to
ensure that, for all pairs of update operations, there is a dependency agreed by
all processes (possibly in both directions). This is expressed by Lemma 1.

lemma 1. Let pi, pj be two processes and ti, tj be two time instants, and let us
denote by ValClockti

i (resp. ValClocktj
j) the value of ValClocki (resp. ValClockj)

at time ti (resp. tj). We have either, for all k, ValClockti
i [k] ≤ ValClock

tj
j [k] or

for all k, ValClocktj
j [k] ≤ ValClockti

i [k].

This is done by the mean of messages of the form message(v, k, t, cl) contain-
ing four integers: v the value written, k the identifier of the process that initi-
ated the update, t the timestamp given by pk and cl the timestamp given by the
process that sent this message. Timestamps of successive messages sent by pi are
unique and totally ordered, thanks to variable SendClocki, that is incremented
each time a message is sent by pi. When process pi wants to submit a value v for
validation, it FIFO-broadcasts a message message(v, i,SendClocki,SendClocki)
(lines 8 and 28). When pi receives a message message(v, k, t, cl), three cases are
possible. If pi has already validated the corresponding update (t > ValClocki[k]),
the message is simply ignored. Otherwise, if it is the first time pi receives a
message concerning this update (Gi does not contain any piece of information
concerning it), it FIFO-broadcasts a message with its own timestamp and adds a
new entry g ∈ Gi. Whether it is its first message or not, pi records the timestamp
cl, given by pj , in g.cl[j] (lines 14 or 19). Note that we cannot update g.cl[k]
at this point, as the broadcast is not causal: if pi did so, it could miss depen-
dencies imposed by the order in which pk saw concurrent updates. Then, pi tries
to validate update operations: pi can validate an operation a if it has received
messages from a majority of processes, and there is no operation b →�

i a that
cannot be validated. For that, it creates the set G′ that initially contains all

On Composition and Implementation of Sequential Consistency 293

Algorithm 1. Implementation of a sequentially consistent memory (for pi)
/* Local variable initialization */

1 Xi ← [0, . . . , 0]; // Xi[j] ∈ N: last validated value written by pj

2 ValClocki ← [0, . . . , 0]; // ValClocki[j] ∈ N: stamp given by pj to Xi[j]
3 SendClocki ← 0; // used to stamp all the updates
4 Gi ← ∅; // contains a g = (g.v, g.k, g.t, g.cl) per non-val. update
5 Vi ← ⊥; // Vi ∈ N ∪ {⊥}: stores postponed updates

operation update(v) /* v ∈ N: written value; no return value */
6 if ∀g ∈ Gi : g.k
= i then // no non-validated update by pi

7 SendClocki++;
8 FIFO broadcast message(v, i, SendClocki, SendClocki);

9 else Vi ← v; // postpone the update

operation snapshot() /* return type: N
n */

10 wait until Vi = ⊥ ∧ ∀g ∈ Gi : g.k
= i ; // make sure pi’s updates are validated
11 return Xi;

when a message message(v, k, t, cl) is received from pj

// v ∈ N: written value, k ∈ N: writer id, t ∈ N: stamp by pk, cl ∈ N: stamp by pj

12 if t > ValClocki[k] then // update not validated yet
13 if ∃g ∈ Gi : g.k = k ∧ g.t = t then // update already known
14 g.cl[j] ← cl;
15 else // first message for this update
16 if k
= i then
17 SendClocki++ ; // forward with own stamp
18 FIFO broadcast message(v, k, t, SendClocki);

19 var g ← (g.v = v, g.k = k, g.t = t, g.cl = [∞, . . . , ∞]); g.cl[j] ← cl;
20 Gi ← Gi ∪ {g}; // create an entry in Gi for the update

21 var G′ = {g ∈ Gi : |{l : g′.cl[l] < ∞}| > n
2 }; // G′ contains validable updates

22 while ∃g ∈ Gi \ G′, g′ ∈ G′ : |{l : g′.cl[l] < g.cl[l]}|
= n
2 do G′ ← G′ \ {g′};

23 Gi ← Gi \ G′; // validate updates of G′

24 for g ∈ G′ do
25 if ValClocki[g.k] < g.t then ValClocki[g.k] = g.t; Xi[g.k] = g.V;

26 if Vi
= ⊥ ∧ ∀g ∈ Gi : g.k
= i then // start validation process for
27 SendClocki++ ; // postponed update if any
28 FIFO broadcast message(Vi, i, SendClocki, SendClocki);
29 Vi ← ⊥;

the operations that have received enough messages, and removes all operations
with unvalidatable dependencies from it (lines 21–22), and then updates Xi and
ValClocki with the most recent validated values (lines 23–25).

This mechanism is illustrated in Fig. 3a. Processes p0 and p4 initially call
operation REG.update(1). Messages that have an impact in the algorithm are
depicted by arrows and messages that do not appear are received later. The
simplest case is process p3 that received three messages concerning a (from p4,
p3 and p2, with 3 > n

2) before its first message concerning b, allowing it to
validate a. The case of p4 is similar: even if it knows that process p1 saw b before
a, it received messages concerning a from three other processes, which allows it
to ignore the message from p1. The situation of p0 and p1 may look similar to this
of p4, but the message they received concerning a and one of the messages they
received concerning b are from the same process p2, forcing them to respect the
dependency a →0 b. The same situation occurs for p2 so even if a was validated
before b by other processes, p2 must respect the dependency b →2 a.

294 M. Perrin et al.

Sequential consistency requires the total order to contain the process order.
Therefore, a snapshot of process pi must return values at least as recent as its
last updated value, i.e. it is not allowed to return from a snapshot between an
update and the time of its validation (grey zones in Fig. 3a). This can be done
in two ways: either by waiting at the end of each update until it is validated,
in which case all snapshot operations are done for free, or by waiting at the
beginning of all snapshots that immediately follow an update. This extends the
remark of [4] to crash-prone asynchronous systems: to implement a sequentially
consistent memory it is necessary and sufficient to wait during either read or
write operations. In Algorithm 1, we chose to wait during read/snapshot oper-
ations (line 10). This is more efficient for two reasons: first, it is not needed to
wait between two consecutive updates, which cannot be avoided in the other
case, and second the time between the end of an update and the beginning of a
snapshot counts in the validation process, but it can be used for local compu-
tations. Note that when two snapshot operations are invoked successively, the
second one also returns immediately, which improves the result of [4] according
to which waiting is necessary for all the operations of one kind.

Fig. 3. Two executions of Algorithm 1

In order to obtain termination of the snapshot operations (and progress in
general), we must ensure that all update operations are eventually validated
by all processes. This is expressed by Lemma 2. Figure 3b shows such a case.
Process p2 receives a message concerning a and a message concerning c before a
message concerning b, while p1 receives a message concerning b before messages
concerning a and c. This may create dependencies a →i b →i c →i b →i a on
a process pi thus forcing pi to validate a and c at the same time, even if they
are ordered by the process order. Fig. 3b shows that it can result in an infinite
chain of dependencies, blocking validation of any update operation. To break this
chain, we force process p3 to wait until a is validated locally before it proposes
c to validation by storing the value written by c in a local variable Vi until a
is validated (lines 6 and 9). When a is validated, we start the same validation
process for c (lines 26–29). Note that, if several updates (say c and e) happen

On Composition and Implementation of Sequential Consistency 295

before a is validated, the update of c can be dropped as it will eventually be
overwritten by e. In this case, c will happen just before e in the final linearization
required for sequential consistency.

lemma 2. If a message message(v, i, t, t) is sent by a correct process pi, then
beyond some time t′, for each correct process pj, ValClockt′

j [i] ≥ t.

We can now prove that all histories admitted by Algorithm 1 are sequentially
consistent with respect to the snapshot memory object. The idea is to order
snapshot operations according to the order given by Lemma 1 on the value
of ValClocki when they were made and to insert the update operations at the
position where ValClocki changes because they are validated. This order can be
completed into a linear extension, by Lemma 2, and to show that the execution
of all the operations in that order respects the sequential specification of the
snapshot memory data structure. The complete proof can be found in [10].

3.4 Complexity

In this section, we analyze the complexity of Algorithm 1 in terms of num-
ber of messages and latency for each operation. We compare the complexity of
our algorithm with the standard implementation of linearizable registers in [15]
with unbounded messages. Note that [15] also proposes an implementation with
bounded messages but at a much higher cost in terms of latency, which is the
parameter we are really interested in improving in this paper. As our algorithm
also implements the snapshot operation, we compare it to the implementation
of a snapshot object [6] on top of registers. Fig. 4 sums up these complexities.

We measure the complexity as the length of the longest chain of causally
related messages to expect before an operation can complete, e.g. if a process
sends a message and then waits for some answers, the complexity will be 2.

Each update generates at most n2 messages and has latency 0, as update
operations return immediately. No message is sent for snapshot operations. In
terms of latency, in the worst case a snapshot is called directly after two update
operations a and b: the process must wait for acknowledgements for its message
for a, and then for acknowledgements for its message for b, which gives a com-
plexity of 4. However, if enough time has elapsed between a snapshot and the
last update, the snapshot returns immediately.

In comparison, the ABD simulation uses solely a linear number of messages
per operation (reads as well as writes), but waiting is necessary for both kinds
of operations. Even in the case of the read operation, our worst case corresponds
to the latency of the ABD simulation. Moreover, our solution directly imple-
ments the snapshot operation. Implementing a snapshot operation on top of a
linearizable shared memory is in fact more costly than just reading each register
once. The AR implementation [6], that is (to our knowledge) the implementation
of the snapshot that uses the least amount of operations on the registers, uses
O(n log n) operations on registers to complete both a snapshot and an update
operation. As each operation on memory requires O(n) messages and has a
latency of O(1), our approach leads to a better performance in all cases.

296 M. Perrin et al.

Fig. 4. Complexity of several algorithms to implement a shared memory

Algorithm 1, like [15], uses unbounded integer values to timestamp messages.
Therefore, the complexity of an operation depends on the number m of opera-
tions executed before it, in the linear extension. All messages sent by Algorithm 1
have a size of O (log(nm)). The same complexity is necessary to implement n
instances of a register with ABD.

In terms of local memory, due to asynchrony, in some cases Gi may contain
an entry g for each value previously written. In that case, the space occupied
by Gi may grow up to O(mn log m). Remark though that, by Lemma 1, an
entry g is eventually removed from Gi (in a synchronous system, after 2 time
units if g.k = i or 1 time unit if g.k
= i). Thus, this maximal bound is unlikely
to happen. Also, if all processes stop writing (e.g. in the round based model we
discussed in Sect. 2.3), eventually Gi = ∅ and the space occupied by the algorithm
drops down to O(n log m), which is comparable to ABD. In comparison, the AR
implementation keeps a tree containing past values from all registers, in each
register which leads to a much higher size of messages and local memory.

4 Conclusion

In this paper, we investigated the advantages of focusing on sequential consis-
tency. We show that in many applications, the lack of composability is not a
problem. The first case concerns applications built on a layered architecture and
the second example concerns round-based algorithms where processes access to
one different sequentially consistent object in each round.

Using sequentially consistent objects instead of their linearizable counterpart
can be very profitable in terms of execution time of operations. Whereas waiting
is necessary for all operations when implementing linearizable memory, we pre-
sented an algorithm in which waiting is only required for read operations when
they follow directly a write operation. This extends the result of Attiya and
Welch to asynchronous systems with crashes. Moreover, the proposed algorithm
implements a sequentially consistent snapshot memory for the same cost.

Exhibiting such an algorithm is not an easy task for two reasons. First, as
write operations are wait-free, a process may write before its previous write has
been acknowledged by other processes, which leads to “concurrent” write oper-
ations by the same process. Second, proving that an implementation is sequen-
tially consistent is more difficult than proving it is linearizable since the condition
on real time that must be respected by linearizability highly reduces the number
of linear extensions that need to be considered.

On Composition and Implementation of Sequential Consistency 297

Acknowledgments. This work has been partially supported by the Franco-German
ANR project DISCMAT under grant agreement ANR-14-CE35-0010-01.

References

1. Lamport, L.: How to make a multiprocessor computer that correctly executes mul-
tiprocess programs. IEEE Trans. Comput. 100(9), 690–691 (1979)

2. Herlihy, M.P., Wing, J.M.: Linearizability: a correctness condition for concurrent
objects. ACM Trans. Program. Lang. Syst. (TOPLAS) 12(3), 463–492 (1990)

3. Lipton, R.J., Sandberg, J.S.: PRAM: a scalable shared memory. Princeton Univer-
sity, Department of Computer Science (1988)

4. Attiya, H., Welch, J.L.: Sequential consistency versus linearizability. ACM Trans.
Comput. Syst. (TOCS) 12(2), 91–122 (1994)

5. Afek, Y., Attiya, H., Dolev, D., Gafni, E., Merritt, M., Shavit, N.: Atomic snapshots
of shared memory. J. ACM 40(4), 873–890 (1993)

6. Attiya, H., Rachman, O.: Atomic snapshots in o(n log n) operations. SIAM J.
Comput. 27(2), 319–340 (1998)

7. Gafni, E.: Distributed Computing: a Glimmer of a Theory. In: Handbook of Com-
puter Science. CRC Press (1998)

8. Gafni, E.: Round-by-round fault detectors: Unifying synchrony and asynchrony
(extended abstract). In: Proceedings of the 17th ACM Symposium on Principles
of Distributed Computing, PODC 1998, pp. 143–152, Puerto Vallarta (1998)

9. Goodman, J.R.: Cache consistency and sequential consistency. University of
Wisconsin-Madison, Computer Sciences Department (1991)

10. Perrin, M., Petrolia, M., Mostefaoui, A., Jard, C.: On Composition and imple-
mentation of sequential consistency (extended version). Research report, LINA-
University of Nantes, July 2016

11. Awerbuch, B.: Complexity of network synchronization. J. ACM 32(4), 804–823
(1985)

12. Charron-Bost, B., Schiper, A.: The heard-of model: computing in distributed sys-
tems with benign faults. Distrib. Comput. 22(1), 49–71 (2009)

13. Dwork, C., Lynch, N., Stockmeyer, L.: Consensus in the presence of partial syn-
chrony. J. ACM 35(2), 288–323 (1988)

14. Birman, K.P., Joseph, T.A.: Reliable communication in the presence of failures.
ACM Trans. Comput. Syst. (TOCS) 5(1), 47–76 (1987)

15. Attiya, H., Bar-Noy, A., Dolev, D.: Sharing memory robustly in message-passing
systems. J. ACM (JACM) 42(1), 124–142 (1995)

16. Borowsky, E., Gafni, E.: Immediate atomic snapshots and fast renaming (extended
abstract). In: Proceedings of the Twelth Annual ACM Symposium on Principles
of Distributed Computing, pp. 41–51, Ithaca (1993)

17. Dwork, C., Herlihy, M., Plotkin, S.A., Waarts, O.: Time-lapse snapshots. In: Dolev,
D., Galil, Z., Rodeh, M. (eds.) ISTCS 1992. LNCS, vol. 601, pp. 154–170. Springer,
Heidelberg (1992)

18. Kirousis, L.M., Spirakis, P.G., Tsigas, P.: Reading many variables in one atomic
operation: solutions with linear or sublinear complexity. IEEE Trans. Parallel Dis-
trib. Syst. 5(7), 688–696 (1994)

19. Attiya, H., Herlihy, M., Rachman, O.: Atomic snapshots using lattice agreement.
Distrib. Comput. 8(3), 121–132 (1995)

20. Riany, Y., Shavit, N., Touitou, D.: Towards a practical snapshot algorithm. Theor.
Comput. Sci. 269(1–2), 163–201 (2001)

k-Abortable Objects:
Progress Under High Contention

Naama Ben-David1, David Yu Cheng Chan2(B), Vassos Hadzilacos2,
and Sam Toueg2

1 Carnegie Mellon University, Pittsburgh, PA 15213, USA
naama@cmu.edu

2 University of Toronto, Toronto, ON M5S1A1, Canada
{davidchan,vassos,sam}@cs.toronto.edu

Abstract. In this paper, we define k-abortable objects, the first kind
of abortable objects [2,7] that guarantee some degree of progress even
under high contention. The definition is simple and natural: intuitively,
an operation on a k-abortable object can abort only if k operations
from distinct processes succeed during the execution of the aborted
operation. We first show that k-abortable objects can easily imple-
ment k-lock-free objects, i.e., objects where at least k processes make
progress [5], but in contrast to k-lock-free objects, k-abortable objects
always return control. We then give an efficient universal construction
for wait-free k-abortable objects shared by n processes that takes only
O(k) steps per operation. We also give a Ω(log k)-steps lower bound
for universal constructions of k-abortable objects shared by n ≥ k
processes. Since every wait-free k-abortable object can implement its
k-lock-free counterpart, our universal construction also provides a uni-
versal construction for k-lock-free objects.

Keywords: Shared memory · Lock-freedom · Wait-freedom · Distrib-
uted algorithms · Abortable objects · Liveness conditions · Asynchronous
system

1 Introduction

Motivation and Related Work. We consider asynchronous distributed sys-
tems where processes apply operations to linearizable shared objects [10].
A liveness property specifies the conditions under which processes make progress,
i.e., the conditions under which the operations that they apply to the shared
objects return a response. A strong liveness property is wait-freedom [8], which
guarantees that all correct processes make progress. This is an attractive prop-
erty, but wait-free objects are often difficult and inefficient to implement, and so
several weaker liveness properties have been suggested.

N. Ben-David—Part of this work was done while the author was at the University
of Toronto.

c© Springer-Verlag Berlin Heidelberg 2016
C. Gavoille and D. Ilcinkas (Eds.): DISC 2016, LNCS 9888, pp. 298–312, 2016.
DOI: 10.1007/978-3-662-53426-7 22

k-Abortable Objects: Progress Under High Contention 299

One such property is lock-freedom, which guarantees that at least one correct
process makes progress (this property is also called non-blocking). Many concur-
rent data structures are implemented in a lock-free manner [4,13]. Bushkov and
Guerraoui recently defined k-lock-freedom [5], which, roughly speaking, guar-
antees that at least k correct processes make progress. This generalization of
lock-freedom is appealing because when k ranges from 1 to n, k-lock-freedom
goes from lock-freedom all the way to wait-freedom. Prior to the present paper,
for k > 1, there was no implementation of any k-lock-free object that was not
also wait free.

Another weak liveness property is obstruction-freedom [9]: if a process
applies an operation to an obstruction-free object, and it eventually runs alone
for sufficiently many steps, then this operation terminates. One advantage of
obstruction-freedom is that any obstruction-free data structure can be imple-
mented purely from registers, so there is no need for stronger, more expensive
primitives. But if there are two (or more) processes that take steps concurrently,
all of them can be stuck forever “inside” an object. To strengthen obstruction-
freedom, Taubenfeld [14] defines k-obstruction freedom: if processes apply oper-
ations to a k-obstruction-free object, and a group of up to k of them eventually
run alone for sufficiently many steps, then the operations of this group terminate.

Note that with k-lock-freedom and k-obstruction freedom, a correct process
may get “stuck”, i.e., it may apply an operation that never returns.1 This moti-
vates the idea of always returning from an operation at the cost of sometimes
returning with an exception. Early work in this direction focused on objects
that can be implemented from registers alone: [3] allows concurrent operations
to return “pause” (in which case, they must be resumed), and [2] allows con-
current operations to return “abort”, in which case they may or may not have
taken effect. More recent work [7] introduced a stronger type of abortable objects,
called deterministic abortable objects, where it is guaranteed that aborted oper-
ations do not take effect. With such objects, a process that applies an operation
that aborts is free to do some other work before safely retrying this operation
(because it knows that the previous attempt did not have any effect), or to
attempt other alternatives if possible.2

The abortable objects defined in [2,7], however, have a serious drawback:
when processes are concurrently active no progress is guaranteed. This is because
an operation op may abort even if it is concurrent with only one other opera-
tion op′, and, symmetrically, op′ may also abort. A similar problem also affects
pausable objects [3].

Contributions of this Paper. In this paper, we introduce k-abortable objects,
the first kind of abortable objects that guarantee some degree of progress even

1 This is akin to entering a bakery and getting stuck inside forever, because other
customers keep cutting in line.

2 This is akin to entering a bakery and being notified that it is currently too busy;
the customer is now free to do other errands and come back later, when the bakery
may be less busy, or to go to another bakery.

300 N. Ben-David et al.

under high contention. This progress guarantee is achieved by strengthening the
conditions under which concurrent operations can abort, as follows:

1. An operation op can abort only if it is concurrent with at least k other oper-
ations; moreover, these k operations must be executed by distinct processes.3

This requirement ensures that if at most k processes are active, no operation
aborts, and so all the processes make progress. But if more than k processes
are active, this property alone does not guarantee any progress because all
operations can abort. Thus we also require the following property.

2. The k operations that “cause” an operation op to abort must themselves
succeed; moreover, they must take effect during op’s execution interval.4 This
requirement ensures that if more than k processes are active, at least k of them
make progress.

Together, the above two requirements can be stated in a more precise and suc-
cinct way as follows: an operation op may abort only if at least k operations by
distinct processes do not abort and are linearized within op’s execution interval.
As in [7], k-abortable objects also have the property that aborted operations are
guaranteed not to take effect.

After defining k-abortable objects, we compare them to k-lock-free objects
and show that every k-abortable object can implement a k-lock-free object of the
same type (so every 1-abortable object can implement its lock-free counterpart).

We then investigate whether, in general, k-abortable objects can be imple-
mented more efficiently than their wait-free counterparts. To do so, we give an
efficient universal construction for k-abortable objects shared by n processes that
takes only O(k) steps per operation and uses only LL/VL/SC base objects.5 In
contrast, Jayanti has shown a lower bound of Ω(log n) steps for universal con-
structions of wait-free objects shared by n processes [11], and this lower bound
holds for shared-memory that supports LL/VL/SC, move and swap operations.
Therefore, in such systems, k-abortable objects can be implemented more effi-
ciently than their wait-free counterparts when k = o(log n). Furthermore, all
the known universal constructions of wait-free objects require Ω(n) steps per
operation in the worst case, except for those that make impractical assumptions
on the size of registers (such as registers that can hold n operations) [6,11]. Our
universal construction of k-abortable objects does not make such assumptions;
the effect of these assumptions is further discussed in Sect. 6.

Finally, we show an Ω(log k)-steps lower bound for universal constructions
of k-abortable objects shared by n ≥ k processes in systems with LL/VL/SC
objects (we do so by using Jayanti’s lower bound for wait-free universal con-
structions). This leaves an interesting open problem, namely closing the gap
between the Ω(log k) lower bound and the O(k) upper bound given by our uni-
versal construction. This mirrors another open problem [11], namely closing the

3 So op cannot abort just because it is concurrent with k operations of a fast process.
4 So they cannot cause operations that start after op to abort.
5 In general, k-abortable objects require strong primitives because they can implement

their lock-free counterparts.

k-Abortable Objects: Progress Under High Contention 301

gap between the Ω(log n) lower bound and the O(n) upper bound for universal
constructions of wait-free objects that “do not make impractical assumptions on
the size of registers” [11].

An important remark about adaptive implementations [1] and their relation
to k-abortable implementations is now in order. Afek et al. presented an adap-
tive wait-free universal construction called “Individual Update” [1] that takes
only O(�) steps per operation, where � is the number of processes that access
the object concurrently. When contention is high, � can increase all the way
up to n, and in this case adaptive implementations are just as expensive as
conventional wait-free implementations. In contrast, our universal construction
for k-abortable objects never takes more than O(k) steps per operation, at the
cost of allowing some operations to abort. Note that the concepts of adaptivity
and abortability are not mutually exclusive: a k-abortable object could have an
adaptive implementation that runs in O(min(�, k)) time, where � is the number
of processes that access the object concurrently. Adaptivity and k-abortability
are also compared in Sects. 4 and 6.

In summary, our main contributions are:

1. We define k-abortable objects, the first kind of abortable objects that guar-
antee some degree of progress even under high contention. The definition is
simple and natural: intuitively, an operation on a k-abortable object can abort
only if k operations from distinct processes succeed during the execution of
the aborted operation.

2. We show that every k-lock-free object can be implemented by a single instance
of a k-abortable object of the same type. Recall that, in contrast to k-lock-
free objects where some processes may get “stuck”, k-abortable objects always
return control.

3. We give a universal construction for wait-free k-abortable objects shared
by n processes that takes only O(k) steps per operation: for k = o(log n), this
beats the well-known lower bound of Ω(log n) steps per operation for uni-
versal constructions of wait-free objects [11]. This is also significantly better
than the O(n) steps per operation required by known “practical” universal
constructions of wait-free objects.

4. Since every k-abortable object can implement its k-lock-free counterpart, our
universal construction also provides a universal construction for k-lock-free
objects. Prior to our work, for k > 1, there was no implementation of any
k-lock-free object, except for ones that are also wait free (and therefore incur
the cost of achieving wait freedom).

5. Finally, we show that Jayanti’s Ω(log n)-steps lower bound for wait-free uni-
versal constructions implies an analogous Ω(log k)-steps lower bound for uni-
versal constructions of k-abortable objects shared by n ≥ k processes.

2 Model Sketch

We adopt a standard model for systems with asynchronous processes and shared
objects, with a minor extension to describe abortable objects (this model is
similar to the one in [7]).

302 N. Ben-David et al.

Steps and Histories. Each process p executes steps, which are of two kinds:
the invocation by p of an operation op on an object O, denoted (inv, p, op, O);
and the receipt by p of a response res from an object O, denoted (res, p, res, O).
A history H of an object is a sequence of invocation and response steps, such
that: for each process p, the subsequence of H involving only the steps of p
consists of zero or more pairs of invocation and response steps (the two steps
of each pair are called matching), possibly followed by an invocation step. An
operation execution opx in a history H of an object is either a pair consisting
of an invocation and its matching response in H, in which case we say that opx
is complete in H; or an invocation in H that has no matching response in H,
in which case we say that opx is incomplete or pending in H. A history H is
complete if all operation executions in H are complete. A completion of H is a
history H ′ formed by removing invocations or adding responses to every pending
operation execution in H, such that H ′ is complete.

Object Types and Linearizability. Each object has a type that specifies how
the object behaves when it is accessed sequentially. Formally, an object type T
is specified by a tuple (OP,RES, Q, δ), where OP is a set of operations, RES is
a set of responses, Q is a set of states, and δ ⊆ Q × OP × Q × RES is a state
transition relation. A tuple (s, op, s′, res) in δ means that if type T is in state s
when operation op ∈ OP is invoked, then T can change its state to s′ and return
the response res.

For each type T = (OP,RES, Q, δ), we define the abortable counterpart T⊥
of T .6 Intuitively, type T⊥ is the same as T , except that every operation is
allowed to abort, making no change to the state and terminating with a special
response ⊥. More precisely, T⊥ = (OP,RESa, Q, δa) where RESa = RES ∪ {⊥}
for some ⊥ /∈ RES, and, for every tuple (s, op, s′, res) in the state transition
relation δ of T , the state transition relation δa of T⊥ contains both (s, op, s′, res)
and (s, op, s,⊥): the first tuple corresponds to op completing normally as it does
in T , and the second corresponds to op aborting without changing the state.

When an object O of type T is accessed concurrently, its behaviour should
be linearizable with respect to T : every operation on O must appear to take
effect instantaneously, at some point during the operation’s execution interval,
according to type T [10]. More precisely, a linearization L of a complete history H
of an object is an assignment of a distinct linearization point L(opx) to every
operation execution opx in H such that L(opx) is within the execution interval
of opx in H. A linearization L of a complete history H of an object conforms to
type T , if the operation responses in H could be those received when applying
these operations sequentially, in the order dictated by L, on an object of type T .
A history H of an object is linearizable with respect to a type T if H has a
completion H ′ and a linearization L′ of H ′ that conforms to type T . An object O
is linearizable with respect to a type T if every history H of O is linearizable with
respect to type T .

6 This was originally called the deterministic abortable counterpart of a type T in [7].

k-Abortable Objects: Progress Under High Contention 303

k-Abortable Objects. Intuitively, O is a k-abortable object of type T if: (1) O
behaves like an object of type T except that operations may also abort (aborted
operations have no effect), and (2) for each operation opx that aborts, there are k
operations from distinct processes that do not abort and take effect within opx’s
interval. More precisely, an object O is a k-abortable object of type T if, for
every history H of O, there is a completion H ′ and a linearization L′ of H ′ such
that: (1) the linearization L′ of H ′ conforms to the abortable counterpart T⊥
of T , and (2) for each operation execution opx that aborts in H ′, there are k
operations from distinct processes that do not abort in H ′ and whose lineariza-
tion point L′(opx) is within the execution interval of opx in H ′. Note that in
a system with n processes, an n-abortable object of type T is just an object
of type T . An (implementation of a) k-abortable object of type T is wait-free
if a process cannot invoke an operation on O and then take infinitely many
steps without receiving a response from O. Henceforth, we consider only wait-
free (implementations of) k-abortable objects, and by “k-abortable O” we mean
“wait-free k-abortable O”. Thus, n-abortable objects are wait-free objects.

3 Relation to k-Lock Freedom

Algorithm 1. Implementing a k-
lock-free object O of type T

Shared Object:
O⊥: k-abortable object of type T

1: procedure invoke(op)
2: repeat
3: res ← O⊥.invoke(op)
4: until res �= ⊥
5: return res

In this section, we relate k-abortability
to k-lock-freedom [5] (recall that when k
ranges from 1 to n, k-lock-freedom
ranges from lock-freedom to wait-
freedom). Intuitively, an object O is k-
lock-free if it ensures the following: (1) if
at most k processes access O, then they
all make progress, and (2) if more than k
processes access O, then at least k of
them make progress. This is equivalent to the following requirement: a process
can get “stuck” while accessing O only if at least k other processes make progress
forever. More precisely:

Definition 1. An object O is k-lock-free if it guarantees the following property:
if a process invokes an operation on O and then takes an infinite number of steps
without receiving a response from O, then at least k processes complete infinitely
many operations on O.

Algorithm 1 relates k-abortability to k-lock-freedom: for every type T , this
algorithm implements O, a k-lock-free object of type T using O⊥, a k-abortable
object of type T . The algorithm is trivial: to invoke an operation op on O, a
process invokes op on O⊥ until it doesn’t abort; it then returns the value that
was returned by O⊥. So we have the following theorem, whose proof we defer to
the full version of this paper.

Theorem 2. In an n-process system, for all 1 ≤ k ≤ n and all type T : a k-
abortable object of type T can implement a k-lock-free object of type T .

304 N. Ben-David et al.

4 k-Abortable Universal Construction

In this section, we present a k-abortable universal construction that takes O(k)
steps per operation. As with many wait-free universal constructions, our con-
struction assumes that the shared state of the implemented object can be stored
in a single LL/VL/SC register, and therefore it takes constant time to copy.
This assumption is reasonable for ‘small’ objects; we discuss how to remove it
for large objects in Sect. 6.

At a high level, our construction is reminiscent of “Individual Update”,
the adaptive universal construction presented in [1]. To initiate an operation,
a process records the operation in a Records Array, which has one entry reserved
for each process. It then tries to find an available slot in a separate Announce-
ments Array, which determines the order in which operations will be helped.
Finally, operations are executed through the use of a shared Core, in which all
processes agree on the state of the object and the next operation to execute.

However, our announcing procedure is significantly more involved than that
of “Individual Update” [1]. The difference in the procedures stems from the
difference in requirements. An operation on a k-abortable object must make
sure that k operations by distinct processes succeed within its interval before it
can abort. Adaptive implementations do not confront such a requirement.

In our construction, the Announcements Array has only k slots. If a process
succeeds in announcing its operation by securing a slot in the Announcements
Array, that operation will not abort; it will get linearized as a successful opera-
tion, even if its initiating process is slow or has crashed. On the other hand, if a
process fails to find an empty slot, its operation will eventually abort. However,
before it does so, it needs to help the announced operations, to ensure that at
least k of them get linearized during its interval.

There are three main stages in the execution of an operation by a process:

1. The Recording Stage: The process records its intent to execute the opera-
tion in its slot in the Records Array. If this operation eventually gets helped
by another process in the system, its response will be recorded in this slot as
well.

2. The Announcement Stage: The process tries to announce its operation
by securing a slot in the Announcements Array. This is done by sequentially
checking whether each slot in the array is available.

3. The Helping Stage: Regardless of whether the process succeeded in
announcing its operation, it attempts to help other operations. Only the oper-
ations in the Announcements Array are helped. There are two ways in which
a process helps operations: (1) it executes the operation by calculating the
outcome of applying it to the current state and then updating the object
accordingly, and (2) it cleans up operations that have already been executed
by relaying their response to their initiating process (by writing it in the
appropriate slot in the Records Array).

k-Abortable Objects: Progress Under High Contention 305

4.1 Details of the Algorithm

The detailed pseudocode is given in Algorithm 2. In the code, variables starting
with g are global, and variables starting with l are local copies of global variables.
Generally, processes that update global variables first get a local copy of the
data they intend to change, make the changes locally, and then try to update
the global variable accordingly.

Each process keeps track of the number of operations it has executed, and
assigns a unique ID (oid in the algorithm) for every operation it executes (line 2).
The oid is an auxiliary variable; it is useful for referring to specific operations
when discussing the algorithm’s execution and the proof, but all appearances
of oid in Algorithm 2 can be safely removed without affecting the correctness of
the universal construction.

The Records Array g rec contains n slots, one reserved for each process.
Each slot contains 3 fields, all initially set to null. To initiate an operation, a
process p fills its slot (g rec[p]) with information about the operation: its oid,
its operation type opType, and a special value ⊥ in the field res (line 17). If the
operation is eventually applied, ⊥ is replaced by the response value from the
object. Otherwise, ⊥ will remain in that slot for the duration of the operation’s
interval. When this operation terminates, it will return the value written in res
at that time (line 50).

After recording its intended operation, a process tries to announce it in the
Announcements Array g ann which has only k slots. Each slot of g ann con-
tains two fields, both initially null. Announcing is critical for the success of the
operation: it will abort if and only if it doesn’t get announced. The announcing
stage involves iterating through g ann to try to find an available slot (lines 19
to 24). If an available slot is found, the process tries to store its pid and its
operation’s oid in it, and thereby claim the slot for its operation.

A slot in g ann is considered available if one of two conditions hold (line 22):
either (1) its pid value is null, i.e. no process has claimed it, or (2) the process
which claimed it has already finished its operation. This second condition is
checked by reading the res field of the operation record in g rec. If res is not ⊥,
then the operation has already been executed, and no longer needs to occupy
the announcement slot. Note that a process will never hold on to a slot in g ann
and use it for subsequent operations: once its current operation is successfully
applied, if no other process claims the slot (line 45), the process will unannounce
its own operation by resetting the fields of the slot back to null (line 46).

When trying to announce, a process p checks each slot in g ann twice before
it moves on to the next (line 20). Intuitively, this is done to ensure that if p does
not manage to announce in slot i, then that slot is truly occupied by another
operation that needs help. The problem with a single check is that p might fail its
SC because of an unannouncing process, which means that the slot could actually
be available throughout the entire execution interval of p’s operation. Checking
each slot twice eliminates this possibility, and this is crucial for correctness of
the algorithm. Specifically, it is necessary for proving that within the execution
interval of each operation that aborts, k operations by distinct processes succeed.

306 N. Ben-David et al.

Algorithm 2. k-Abortable Universal Construction for Objects of Type T
Shared Objects:

g rec[1..n]: Records Array. LL/SCs containing {oid: int, opType: operation type, res: a response};
all set to null.
g ann[1..k]: Announcements Array. LL/VL/SCs containing {oid: int, pid: int}; all set to null.
g core: LL/VL/SC containing {state: a state, aid: int, oid: int, pid: int, res: a response}; set to
{s0, 1, null, null, null}.

Code performed by process p:

1: procedure universal(my opType)
2: my Oid ← my Oid + 1 � Auxiliary persistent variable denoting the operation’s ID
3: record(my opType) � To start operation, record it in the Records Array
4: my Aid ← announce() � Try to announce the operation
5: if my Aid �= null then � Successfully announced; will not abort
6: repeat
7: my res ← g rec[p].LL().res � Check if my operation is done
8: help()
9: until my res �= ⊥
10: unannounce(my Aid) � Clear my slot in the Announcements Array
11: else � Failed to announce. Will abort after helping
12: loop k + 2 times
13: help() � Help linearize at least k operations

14: return unrecord() � Clear record of operation before terminating

15: procedure record(my opType) � Record your intention to execute the operation.
16: g rec[p].LL()
17: g rec[p].SC((my Oid,my opType, ⊥)) � This SC always succeeds.

18: function announce()
19: for j : 1 . . . k do � Go over array sequentially, trying to announce in each slot in turn
20: loop 2 times � Trying each slot twice ensures that failure is justified
21: temp Pid ← g ann[j].LL().pid
22: if temp Pid = null or g rec[temp Pid].LL().res �= ⊥ then � If slot is free
23: if g ann[j].SC((my Oid, p)) then � Try to announce there
24: return j � If successful, return the index of the slot

25: return null � If the entire array was occupied, return with failure

26: procedure help()
27: l core ← g core.LL() � Create a local copy of the Core
28: if l core.pid �= null then � Clean up the previous operation (if it has not yet been

cleaned).
29: l rec ← g rec[l core.pid].LL() � Check if the response should be relayed to the Record
30: if ¬g core.VL() then return � Ensure that the local Core is still up to date

31: if l rec.res = ⊥ then � The response entry is blank, so the operation needs help
32: l rec.res ← l core.res � Copy the response from the Core to the process’s record
33: g rec[l core.pid].SC(l rec) � This is the helped operation’s linearization point

34: l core.aid ← (l core.aid mod k) + 1 � Determine which announcement to help next
35: (l core.oid, l core.pid) ← (null, null)
36: l ann ← g ann[l core.aid].LL() � Find the operation to help
37: if l ann.pid �= null then
38: l rec ← g rec[l ann.pid].LL() � Check whether the operation needs help
39: if l rec.res = ⊥ then
40: if g ann[l core.aid].VL() then � Ensure that operation is still announced.
41: (l core.oid, l core.pid) ← (l ann.oid, l ann.pid)
42: (l core.state, l core.res) ← applyT (l core.state, l rec.opType) � Execute locally

43: g core.SC(l core) � Attempt to replace the Core by its local copy.

44: procedure unannounce(my Aid) � Remove yourself from the Announcements Array.
45: if g ann[my Aid].LL().pid = p then
46: g ann[my Aid].SC((null, null))

47: function unrecord() � Read the response and clear your Record.
48: my res ← g rec[p].LL().res
49: g rec[p].SC((null, null, null)) � This SC always succeeds.
50: return my res

k-Abortable Objects: Progress Under High Contention 307

Whether a process succeeds or fails to announce its operation, it proceeds
to help some announced operations using the help procedure. The execution of
help begins by performing an LL on g core to get a local copy l core (line 27).
The Core holds the current state of the object (state), and may also hold infor-
mation about the operation that was most recently executed. In that case, oid
and pid describe the operation and its process, aid is the index at which this
operation was announced in g ann, and res is the response returned by the object
when the operation was applied to it. We say that the operation described by
the fields in g core is the scheduled operation. The help procedure proceeds in
two stages. First, if there is a scheduled operation op (line 28), the process helps
to copy the response in l core to op’s record if it still has ⊥ in res (line 31).
Second, l core.aid is moved to the next slot of g ann, and if the slot is not avail-
able, the process helps the announced operation become scheduled. To do so, the
helping process applies the operation to l core.state to determine the next state
and response (line 42). Note that applyT corresponds to the state transition
relation δ of type T . At the end of the help procedure, the process attempts to
finalize all of the changes it has performed on its local copy l core by copying
its contents into g core via an SC (line 43).

A process that successfully announces its operation repeats the help proce-
dure until it finds its response in its slot of the Records Array; this will occur
after at most k + 3 executions of help. A process that fails to announce its
operation executes the help procedure k + 2 times.

Once a process p receives the response for its operation op, p does some
cleanup before op terminates. Specifically, it executes the help procedure one
more time (line 8), and calls unannounce (line 10) and unrecord (line 14).
This ensures that this operation will not interfere with its subsequent ones.

4.2 Correctness Proof Sketch

Theorem 3. Algorithm 2 implements a k-abortable object of type T .

To show this, we need to prove the following. For every history H of O, there
is a completion H ′ and a linearization L′ of H ′ such that: (1) the linearization
L′ of H ′ conforms to T⊥ (2) for each operation op that aborts in H ′, there
are k operations from distinct processes that do not abort in H ′ and whose
linearization points in L′ is within the execution interval of op in H ′.

Intuitively, each operation whose record gets a response is linearized at that
time (line 33), while aborting operations are linearized when they terminate. We
leave the construction of H ′ and L′ to the full version of the paper.

Lemma 4. The linearization L′ of history H ′ conforms to type T⊥.

In order to show that L′ conforms to T⊥, we first need to show that aborted
operations don’t change the state of the object. Roughly speaking, this is because
an operation that aborts does so because it was never announced, and therefore
no process applies it. Thus, it does not have any effect on the object. The actual

308 N. Ben-David et al.

proof is more intricate, since we need to ensure that the help procedure indeed
only helps operations that are announced, and doesn’t accidentally follow out-
dated pointers to find and help operations that should not be helped. Since T⊥
is the abortable counterpart of type T , we also need to show that, aside from
aborts, the object behaves as if it is of type T . Intuitively, g core holds the state
of O, and is only modified when an operation is stored in the Core. Whenever
that happens, line 42 applies the operation according to the state transition
relation of type T .

Lemma 5. For each operation op that aborts in H ′, there are k operations from
distinct processes that do not abort in H ′ and whose linearization points in L′

are within the execution interval of op in H ′.

To show Lemma 5, we begin with the following claim, whose proof we defer
to the full version of the paper. We say that an operation is open at time t if it
has been invoked but not linearized by time t.

Claim 6. An attempt by an operation op to announce at slot i of the Announce-
ments Array only fails if at some time t during the attempt, there is an open
operation in slot i.

Claim 7. Let tops denote the starting time of an operation op. If op fails to
announce in slot i at time ti then at some time t in [tops , ti], there are i other
open operations, each announced in some slot 1 . . . i before time ti.

Proof. The proof is by induction on i. If op fails to announce in slot 1 at time t1,
Claim 6 asserts that at some time t during op’s attempt to announce in slot 1,
there is an open operation in slot 1.

Assume that the claim holds for slot i−1. Suppose that op fails to announce
in slot i at time ti. Then by Claim 6, there is an open operation op′ announced
at slot i at time t′i < ti. Since operations have to go through the announce array
sequentially and try each slot, both op and op′ must have tried and failed to
announce in slot i − 1 at time ti−1 < ti and t′i−1 < t′i < ti, respectively, before
attempting to announce in slot i. So, by the induction hypothesis (because op
and op′ failed to announce in slot i − 1), there are times t ∈ [tops , ti−1] and
t′ ∈ [tops , t′i−1] and sets St and St′ of i− 1 operations each that are open at times
t and t′, and are announced in some slot 1 . . . i − 1 before time ti−1 and t′i−1.

Let tmax = max{t, t′} and Stmax
be the corresponding set of i − 1 open oper-

ations. Since neither op nor op′ were announced in any slot 1 . . . i − 1, neither
of them belong to Stmax

. Furthermore, both op and op′ are open at tmax. Since
t ∈ [tops , ti−1] and t′ ∈ [tops , t′i−1] and ti−1 < ti and t′i−1 < ti, we have tops < t < ti
and top

′
s < t′ < ti; thus tops < tmax < ti. So Stmax

∪ {op′} is a set of i operations,
all of which are open at time tops < tmax < ti, and which were all announced in
some slot 1 . . . i before time ti. Therefore, the claim holds for slot i. �

Suppose an operation op of a process p aborts. Clearly op failed to announce
its operation. By Claim 7 (with i = k), there is a time within its execution
interval during which there are k other open operations. Since each process can

k-Abortable Objects: Progress Under High Contention 309

only execute one operation at a time, these must be operations by k differ-
ent processes. In addition, we know that all of these operations get announced
before op fails to announce. To complete the proof of Lemma 5, it remains to
show that these k operations are linearized before op terminates. To see this,
first note that a process that fails to announce its operation executes the help

procedure k + 2 times. The following claim (whose proof we defer to the full
version of the paper) immediately implies Lemma 5:

Claim 8. All operations announced before p starts executing the help procedure
are linearized by the time p finishes executing the help procedure k + 2 times.

4.3 Running Time

Theorem 9. Each operation terminates within O(k) steps.

Proof. The record, unrecord, help and unannounce procedures take con-
stant time. The announce procedure contains one loop, which gets executed at
most 2k times. Among these procedures, help is the only procedure that is called
more than once per operation. If a process p fails to announce its operation, it
only executes the help procedure k + 2 times. Otherwise, it executes the help

procedure until its record has been given a response. Recall that an announced
operation is linearized when it receives a response. Claim 8 asserts that after p
executes the help procedure k + 2 times, its operation must be linearized, so p
will find its response in the Records Array during the next execution. �

5 Lower Bound

In this section, we show a Ω(log k)-steps lower bound on wait-free universal
constructions of k-abortable objects shared by n processes. This result is a con-
sequence of Jayanti’s lower bound in [11].

Theorem 10. Consider a shared-memory system S that supports only LL, SC,
VL (i.e., validate), move, and swap operations. Given any wait-free implementa-
tion of a k-abortable fetch&increment shared by n ≥ k processes, some operation
requires Ω(log k) steps.

Proof [Sketch]. Suppose, for contradiction, that there is a wait-free implemen-
tation I of a k-abortable fetch&increment shared by n ≥ k processes such that
all operations take o(log k) steps in system S. Observe that when at most k
processes access the object implemented by I, no operation can abort, so I
implements an ordinary, non-abortable fetch&increment. Thus, I is also a wait-
free implementation of a fetch&increment shared by k processes such that all
operations take o(log k) steps in system S. By Theorem 6.2 in [11], however, for
every wait-free implementation of a fetch&increment shared by k processes in
system S, some operation requires Ω(log k) steps — a contradiction. �

Corollary 11. For every wait-free universal construction of k-abortable objects
shared by n processes in system S, some operation requires Ω(log k) steps.

310 N. Ben-David et al.

6 Concluding Remarks

In Sect. 4, we gave a universal construction of k-abortable objects in which every
operation takes at most O(k)-steps. As we mentioned before, our construction
has similarities with an adaptive wait-free universal construction called “Indi-
vidual Update” given by Afek et al. in [1]: this construction takes O(�) steps
per operation, where � is the number of processes that access the object concur-
rently. Under high contention, however, operations may take O(n) steps with the
adaptive construction, whereas operations never take more than O(k) steps with
our construction, at the cost of sometimes aborting. Another difference between
our construction and the adaptive one is how slow or crashed processes affect the
performance of other processes. With the adaptive construction, a slow process
can in turn slow down other processes: � counts all processes accessing the object.
For example, if most of the n processes slow down or crash in the middle of an
operation, all subsequent operations of the remaining processes may take O(n)
steps.7 In contrast, a process p that slows down or crashes while accessing a k-
abortable object does not degrade the performance of other processes; as long
as p remains in the object, p (together with k − 1 other processes) can “cause”
each process to abort at most once. Note that this property is not a special
feature of our universal construction: it is a property inherent in the definition
of k-abortability; the k operations that “cause” an operation op to abort are lin-
earized during op’s execution, so they cannot cause operations that start after op
to abort. Adaptivity and k-abortability are orthogonal concepts: it may be pos-
sible to combine their benefits into adaptive k-abortable objects, but doing so
remains an open problem.

As with many wait-free universal constructions, including the well-known one
given by Herlihy in [8], our construction assumes that the shared state of the
implemented object can be stored in a single base object. While this assump-
tion may be reasonable for “small” objects, it is not tenable for objects with
unbounded state, such as queues and stacks. One method to support such data
structures using base objects of small size, called “Agree on Changes”, was pro-
posed by Afek et al. in [1]. We can apply the same method to our universal
construction so that: (a) it uses LL/VL/SC objects of bounded size, and (b)
every operation on a k-abortable object O takes O(kf(s))-steps, where f(s)
is the sequential complexity of O, i.e., f(s) is the maximum number of steps
required by a sequential algorithm to apply any operation on O when O has
size s. For queues and stacks, f(s) = 1, and therefore we can implement
k-abortable queues or stacks that take O(k) steps per operation, while using
only bounded-size LL/VL/SC objects. In contrast, the best wait-free imple-
mentation of a queue that we are aware of takes Θ(n) steps per operation [12].

For some popular data structures, there may be k-abortable implementations
that are simpler and more efficient than those given by our universal construction

7 This is not obvious, but it is possible to construct such runs of the adaptive algorithm
in [1].

k-Abortable Objects: Progress Under High Contention 311

of k-abortable objects. For small values of k, such implementations may prove
to be attractive alternatives to lock-free data structures [4,13].

Our Ω(log k) lower bound for k-abortable universal constructions was derived
from Jayanti’s Ω(log n) lower bound for wait-free universal constructions [11] in
shared-memory systems that support only LL, VL, SC, move, and swap opera-
tions. Under the impractical assumption that a LL/VL/SC object can store n
operations, Jayanti observed that his lower bound is tight: there is a wait-free
universal construction that takes O(log n) steps per operation. In fact, Fatourou
and Kallimanis [6] proved that, with LL/VL/SC and Fetch&Add objects of size
Θ(n), one can beat the Ω(log n) lower bound: they present a wait-free universal
construction that uses such objects and takes only O(1) steps per operation.
They note, however, that this construction “is not practical since it employs a
large Fetch&Add object”, and give a practical version of it that uses only objects
of reasonable size but takes Ω(n) steps per operation. The time complexity of
universal constructions for both wait-free and k-abortable objects using only
objects of reasonable size is an open question.

References

1. Afek, Y., Dauber, D., Touitou, D.: Wait-free made fast. In: Proceedings of the
Twenty-Seventh Annual ACM Symposium on Theory of Computing, pp. 538–547.
ACM (1995)

2. Aguilera, M.K., Frolund, S., Hadzilacos, V., Horn, S.L., Toueg, S.: Abortable and
query-abortable objects and their efficient implementation. In: Proceedings of the
Twenty-Sixth Annual ACM Symposium on Principles of Distributed Computing,
pp. 23–32. ACM (2007)

3. Attiya, H., Guerraoui, R., Kouznetsov, P.: Computing with reads and writes in the
absence of step contention. In: Fraigniaud, P. (ed.) DISC 2005. LNCS, vol. 3724,
pp. 122–136. Springer, Heidelberg (2005)

4. Brown, T., Ellen, F., Ruppert, E.: A general technique for non-blocking trees. In:
Proceedings of the 19th ACM SIGPLAN Symposium on Principles and Practice
of Parallel Programming, pp. 329–342. ACM (2014)

5. Bushkov, V., Guerraoui, R.: Safety-liveness exclusion in distributed computing.
In: Proceedings of the Twenty Fourth Annual ACM Symposium on Principles of
Distributed Computing. ACM (2015)

6. Fatourou, P., Kallimanis, N.D.: Highly-efficient wait-free synchronization. Theor.
Comput. Syst. 55(3), 475–520 (2014)

7. Hadzilacos, V., Toueg, S.: On deterministic abortable objects. In: Proceedings of
the 2013 ACM Symposium on Principles of Distributed Computing, pp. 4–12. ACM
(2013)

8. Herlihy, M.: Wait-free synchronization. ACM Trans. Program. Lang. Syst.
(TOPLAS) 13(1), 124–149 (1991)

9. Herlihy, M., Luchangco, V., Moir, M.: Obstruction-free synchronization: Double-
ended queues as an example. In: 23rd International Conference on Distributed
Computing Systems, Proceedings, pp. 522–529. IEEE (2003)

10. Herlihy, M.P., Wing, J.M.: Linearizability: a correctness condition for concurrent
objects. ACM Trans. Program. Lang. Syst. (TOPLAS) 12(13), 463–492 (1990)

312 N. Ben-David et al.

11. Jayanti, P.: A time complexity lower bound for randomized implementations of
some shared objects. In: Proceedings of the Seventeenth Annual ACM Symposium
on Principles of Distributed Computing, pp. 201–210. ACM (1998)

12. Kogan, A., Petrank, E.: Wait-free queues with multiple enqueuers and dequeuers.
ACM SIGPLAN Not. 46, 223–234 (2011). ACM

13. Michael, M.M., Scott, M.L.: Simple, fast, and practical non-blocking and block-
ing concurrent queue algorithms. In: Proceedings of the Fifteenth Annual ACM
Symposium on Principles of Distributed Computing, pp. 267–275. ACM (1996)

14. Taubenfeld, G.: Contention-sensitive data structures and algorithms. In: Keidar,
I. (ed.) DISC 2009. LNCS, vol. 5805, pp. 157–171. Springer, Heidelberg (2009)

Linearizability of Persistent Memory Objects
Under a Full-System-Crash Failure Model

Joseph Izraelevitz(B), Hammurabi Mendes, and Michael L. Scott

University of Rochester, Rochester, NY 14627-0226, USA
{jhi1,hmendes,scott}@cs.rochester.edu

Abstract. This paper provides a theoretical and practical framework
for crash-resilient data structures on a machine with persistent (non-
volatile) memory but transient registers and cache. In contrast to cer-
tain prior work, but in keeping with “real world” systems, we assume a
full-system failure model, in which all transient state (of all processes)
is lost on a crash. We introduce the notion of durable linearizability to
govern the safety of concurrent objects under this failure model and a
corresponding relaxed, buffered variant which ensures that the persistent
state in the event of a crash is consistent but not necessarily up to date.

At the implementation level, we present a new “memory persistency
model,” explicit epoch persistency, that builds upon and generalizes prior
work. Our model captures both hardware buffering and fully relaxed con-
sistency, and subsumes both existing and proposed instruction set archi-
tectures. Using the persistency model, we present an automated trans-
form to convert any linearizable, nonblocking concurrent object into one
that is also durably linearizable. We also present a design pattern, analo-
gous to linearization points, for the construction of other, more optimized
objects. Finally, we discuss generic optimizations that may improve per-
formance while preserving both safety and liveness.

1 Introduction

Current industry projections indicate that nonvolatile, byte-addressable memory
(NVM) will become commonplace over the next few years. While the availability
of NVM suggests the possibility of keeping persistent data in main memory (not
just in the file system), the fact that recent updates to registers and cache may be
lost during a power failure means that the data in main memory, if not carefully
managed, may not be consistent at recovery time.

Maintaining a consistent state in NVM requires special care to order main
memory updates. Several groups have designed libraries to support such order-
ing using failure atomic updates, via either a transactional memory inter-
face [6,7,20,26] or one inferred from mutex synchronization [5,17]. Others

This work was supported in part by NSF grants CCF-0963759, CCF-1116055, CNS-
1319417, CCF-1422649, and CCF-1337224, and by support from the IBM Canada
Centres for Advanced Study.

c© Springer-Verlag Berlin Heidelberg 2016
C. Gavoille and D. Ilcinkas (Eds.): DISC 2016, LNCS 9888, pp. 313–327, 2016.
DOI: 10.1007/978-3-662-53426-7 23

314 J. Izraelevitz et al.

Fig. 1. Linearization bounds for interrupted operations under thread reuse failure
model. Displayed is a concurrent abstract (operation-level) history of two threads (T1

and T2) on two objects (O1 and O2); linearization points are shown as circles. These
correctness conditions differ in the deadline for linearization for a pending operation
interrupted by a crash (T1’s first operation). Strict linearizability [1] requires that the
pending operation linearizes or aborts by the crash. Persistent atomicity [10] requires
that the operation linearizes or aborts before any subsequent invocation by the pend-
ing thread on any object. Recoverable linearizability [2] requires that the operation
linearizes or aborts before any subsequent linearization by the pending thread on that
same object; under this condition a thread may have more than one operation pending
at a time. O2 demonstrates the non-locality of persistent atomicity; T2 demonstrates a
program order inversion under recoverable linearizability.

have designed data structures that tolerate power failures (e.g. [25,27]), but
the semantics of these structures are typically specified informally; the criteria
according to which they are correct remain unclear. Guerraoui and Levy have
proposed persistent atomicity [10] as a safety condition for persistent concurrent
objects. This condition ensures that the state of an object will be consistent in
the wake of a crash, but it does not provide locality : correct histories of sepa-
rate objects, when merged, will not necessarily yield a correct composite history.
Berryhill et al. have proposed an alternative, recoverable linearizability [2], which
achieves locality but may sacrifice program order after a crash. Earlier work by
Aguilera and Frølund proposed strict linearizability [1], which preserves both
locality and program order but provably precludes the implementation of some
wait-free objects for certain (limited) machine models. These safety conditions
are illustrated in Fig. 1.

Interestingly, both the lack of locality in persistent atomicity and the loss
of program order in recoverable linearizability stem from the assumption that
an individual abstract thread may crash, recover, and then continue execution.
While well defined, this failure model is more general than is normally assumed
in real-world systems. More commonly, processes are assumed to fail together,
as part of a “full system” crash. A data structure that survives such a crash may
safely assume that subsequent accesses will be performed by different threads.
We observe that if we consider only full-system crashes (an assumption mod-
eled as a well-formedness constraint on histories), then persistent atomicity and
recoverable linearizability are indistinguishable (and thus local). They are also
satisfied by existing persistent structures. We use the term durable linearizability
to refer to this merged safety condition under the restricted failure model.

Linearizability of Persistent Memory Objects 315

Independent of failure model, existing theoretical work typically requires that
operations become persistent before they return to their caller. In practice, this
requirement is likely to impose unacceptable overhead, since persistent memory,
while dramatically faster than disk or flash storage, still incurs latencies of hun-
dreds of cycles. To address the latency problem, we introduce buffered durable
linearizability, which requires only that an operation be “persistently ordered”
before it returns. State in the wake of a crash is still required to be consistent,
but it need not necessarily be fully up-to-date. Data structures designed with
buffering in mind will typically provide an explicit sync method that guarantees,
upon its return, that all previously ordered operations have reached persistent
memory; an application thread might invoke this method before performing I/O.
Unlike its unbuffered variant, buffered durable linearizability is not local: a his-
tory may fail to be buffered durably linearizable even if all of its object sub-
histories are. If the buffering mechanism is shared across all objects, however,
an implementation can ensure that all realizable histories—those that actually
emerge from the implementation—will indeed be buffered durably linearizable:
the post-crash states of all objects will be mutually consistent.

At the implementation level, prior work has explored the memory persistency
model (analogous to a traditional consistency model) that governs instructions
used to push the contents of cache to NVM. Existing persistency models assume
that hardware will track dependencies and automatically write dirty cache lines
back to NVM as necessary [8,19,23]. Unfortunately, real-world ISAs require the
programmer to request writes-back explicitly. Furthermore, existing persistency
models have been explored only for sequentially consistent (SC) [23] or total-store
order (TSO) machines [8,19]. At the same time, recent persistency models [19,23]
envision functionality not yet supported by commercial ISAs—namely, hardware
buffering in an ordered queue of writes-back to persistent memory, allowing
persistence fence (pfence) ordering instructions to complete without waiting for
confirmation from the physical memory device. To accommodate anticipated
hardware, we introduce a memory persistency model, explicit epoch persistency,
that is both buffered and fully relaxed (release consistent).

Just as traditional concurrent objects require not only safety but liveness, so
too should persistent objects. We define two optional liveness conditions: First,
an object designed for buffered durable linearizability may provide nonblocking
sync, ensuring that calls to sync complete without blocking. Second, a nonblock-
ing object may provide bounded completion, limiting the amount of work done
after a crash prior to the completion (if any) of operations interrupted by the
crash. As a liveness constraint, bounded completion contrasts with prior art
which imposes safety constraints [1,2,10] on completion (see Fig. 1).

We also present a simple transform that takes a data-race-free program
designed for release consistency and generates an equivalent program in which
the state persisted at a crash is guaranteed to represent a consistent cut across
the happens-before order of the original program. When the original program
comprises the implementation of a linearizable nonblocking concurrent object,
extensions to this transform result in a buffered durably or durably linearizable

316 J. Izraelevitz et al.

object. (If the original program is blocking, additional machinery—e.g., undo
logging—may be required. While we do not consider such machinery here, we
note that it still requires consistency as a foundation.)

To enable reasoning about our correctness conditions, we extend the notion
of linearization points into persistent memory objects, and demonstrate how
such persist points can be used to argue a given implementation is correct. We
also consider optimizations (e.g. elimination) that may safely be excluded from
persistence in order to improve performance. Proofs for our lemmas and theorems
can be found in an associated technical report [18].

2 Abstract Models

An abstract history is a sequence of events, which can be: (i) invocations of
an object method, (ii) responses associated with invocations, and (iii) system-
wide crashes. We use O.inv〈m〉t(params) to denote the invocation of opera-
tion m on object O, performed by thread t with parameters params. Similarly,
O.res〈m〉t(retvals) denotes the response of m on O, again performed by t, return-
ing retvals. A crash is denoted by C.

Given a history H, we use H[t] to denote the subhistory of H containing all
and only the events performed by thread t. Similarly, H[O] denotes the subhis-
tory containing all and only the events performed on object O, plus crash events.
We use Ci to denote the i-th crash event, and ops(H) to denote the subhistory
containing all events other than crashes. The crash events partition a history as
H = E0 C1 E1 C2 . . . Ec−1 Cc Ec, where c is the number of crash events in H. Note
that ops(Ei) = Ei for all 0 ≤ i ≤ c. We call the subhistory Ei the i-th era of H.

Given a history H = H1 AH2 B H3, where A and B are events, we say that
A precedes B (resp. B succeeds A). For any invocation I = O.inv〈m〉t(params)
in H, the first R = O.res〈m〉t(retvals) (if any) that succeeds I in H is called
a matching response. A history S is sequential if S = I0 R0 . . . Ix Rx or S =
I0 R0 . . . Ix Rx Ix+1, for x ≥ 0, and ∀ 0 ≤ i ≤ x,Ri is a matching response for Ii.

Definition 1 (Abstract Well-Formedness). An abstract history H is said
to be well formed if and only if H[t] is sequential for every thread t.

Note that sequential histories contain no crash events, so the events of a given
thread are confined to a single era. (In practice, thread IDs may be re-used as
soon as operations of the previous era have completed. In particular, an object
with bounded completion [Sect. 3.3, Definition 10] can rapidly reuse IDs.)

We consider only well-formed abstract histories. A completed operation in H
is any pair (I,R) of invocation I and matching response R. A pending operation
in H is any pair (I,⊥) where I has no matching response in H. In this case, I
is called a pending invocation in H, and any response R such that (I,R) is a
completed operation in HR is called a completing response for H.

Definition 2 (Abstract Happens-Before). In any (well-formed) abstract
history H containing events E1 and E2, we say that E1 happens before E2

Linearizability of Persistent Memory Objects 317

(denoted E1 ≺ E2) if E1 precedes E2 in H and (1) E1 is a crash, (2) E2 is a
crash, (3) E1 is a response and E2 is an invocation, or (4) there exists an event
Ê such that E1 ≺ Ê ≺ E2. We extend the order to operations: (I1, R1) ≺ (I2, x)
if and only if R1 ≺ I2.

Two histories H and H′ are said to be equivalent if H[t] = H′[t] for every
thread t. We use compl(H) to denote the set of histories that can be generated
from H by appending completing responses, and trunc(H) to denote the set of
histories that can be generated from H by removing pending invocations. As is
standard, a history H is linearizable if it is well formed, it has no crash events,
and there exists some history H′ ∈ trunc(compl(H)) and some legal sequential
history S equivalent to H′ such that ∀E1, E2 ∈ H′ [E1 ≺H′ E2 ⇒ E1 ≺S E2].

Definition 3 (Durable Linearizability). An abstract history H is said to be
durably linearizable if it is well formed and ops(H) is linearizable.

Durable linearizability captures the idea that operations become persistent
before they return; that is, if a crash happens, all previously completed oper-
ations remain completed, with their effects visible. Operations that have not
completed as of a crash may or may not be completed in some subsequent
era. Intuitively, their effects may be visible simply because they “executed far
enough” prior to the crash (despite the lack of a response), or because threads in
subsequent eras finished their execution for them (for instance, by scanning an
“announcement array” in the style of universal constructions [15]). While this
approach is simple, it preserves important properties from linearizability, namely
locality (composability) and nonblocking progress [18].

Given a history H and any transitive order < on events of H, a <-consistent
cut of H is a subhistory P of H where if E ∈ P and E′ < E in H, then E′ ∈ P
and E′ < E in P. In abstract histories, we are often interested in cuts consistent
with ≺, the happens-before order on events.

Definition 4 (Buffered Durable Linearizability). A history H with c crash
events is said to be buffered durably linearizable if it is well formed and there
exist subhistories P0, . . . ,Pc−1 such that for all 0 ≤ i ≤ c, Pi is a ≺-consistent
cut of Ei, and P = P0 . . .Pi−1 Ei is linearizable.

The intent here is that events in the portion of Ei after Pi were buffered but failed
to persist before the crash. Note that since Pi = Ei is a valid ≺-consistent cut for
all 0 ≤ i < c, we can have P = ops(H), and therefore any durably linearizable
history is buffered durably linearizable. Note also that buffered durable lineariz-
ability is not in general local: if an operation does not persist before it returns,
we will not in general be able to ensure that it persists before any operation that
follows it in happens-before order unless we arrange for the implementations of
separate objects to cooperate.

3 Concrete Models

Concurrent objects are typically implemented by code in some computer lan-
guage. We want to know if this code is correct. Following standard practice, we

318 J. Izraelevitz et al.

model implementation behavior as a set of concrete histories, generated under
some language and machine model assumed to be specified elsewhere. Each con-
crete history consists of a sequence of events, including not only operation invo-
cations, responses, and crash events, but also load, store, and read-modify-write
(RMW—e.g., compare-and-swap [CAS]) events, which access the representation
of the object. Let x.ldt(v) denote a load of variable x by thread t, returning the
value v. Let x.stt(v) denote a store of v to x by t.

Given a concrete history H, the abstract history of H, denoted abstract(H),
is obtained by eliding all events other than invocations, responses, and crashes.
As in abstract histories, we use H[t] and H[O] to denote the thread and object
subhistories of H. The concept of era from Sect. 2 applies verbatim. We say that
an event E lies between events A and B in a concrete or abstract history H if A
precedes E and E precedes B in H.

Definition 5 (Concrete Well-Formedness). A concrete history H is well-
formed if and only if

1. abstract(H) is well-formed.
2. In each thread subhistory of H, each memory event either (a) lies between

some invocation and its matching response; (b) lies between a pending invo-
cation I and the first crash that succeeds I in H (if such a crash exists); (c)
succeeds a pending invocation I if no crash succeeds I in H.

3. The values returned by the loads and RMWs respect the reads-see-writes rela-
tion (Definition 7, below).

3.1 Basic Memory Model

For the sake of generality, we build our reads-see-writes relation on the highly
relaxed release consistency memory model [9]. We allow certain loads to be
labeled as load-acquire (ld acq) events and certain stores to be labeled as store-
release (st rel) events. We treat RMW events as atomic 〈ld acq, st rel〉 pairs.

Definition 6 (Concrete Happens-Before). Given events E1 and E2 of con-
crete history H, we say that E1 is sequenced-before E2 if E1 precedes E2 in H[t]
for some thread t and (a) E1 is a ld acq, (b) E2 is a st rel, or (c) E1 and E2 access
the same location. We say that E1 synchronizes-with E2 if E2 = x.ld acqt′(v)
and E1 is the closest preceding x.st relt(v) in history order. The happens-before
partial order on events in H is the transitive closure of sequenced-before order
with synchronizes-with order. As in abstract histories, we write E1 ≺ E2.

Note that the definitions of happens-before are different for concrete and abstract
histories; which one is meant in a given case should be clear from context.

The release-consistent model corresponds closely to that of the ARM v8
instruction set and can be considered a generalization of Intel’s x86 instruction
set. Given concrete happens-before, we can define the reads-see-writes relation:

Linearizability of Persistent Memory Objects 319

Definition 7 (Reads-See-Writes). A concrete history H respects the reads-
see-writes relation if for each load R ∈ {x.ldt(v), x.ld acqt(v)}, there exists a
store W ∈ {x.stu(v), x.st relu(v)} such that either (1) W ≺ R and there exists
no store W ′ of x such that W ≺ W ′ ≺ R or (2) W is unordered with respect to
R under happens-before.

For simplicity of exposition, we consider the initial value of each variable to
have been specified by a store that happens before all other instructions in the
history. We consider only well-formed concrete histories in this paper. If case (2)
in Definition 7 never occurs in a history H, we say that H is data-race-free.

3.2 Extensions for Persistence

The semantics of instructions controlling the ordering and timing under which
cached values are pushed to persistent memory comprise a memory persis-
tency model [23]. Since any machine with bounded caches must sometimes evict
and write back a line without program intervention, the principal challenge for
designers of persistent objects is to ensure that a newer write does not persist
before an older write (to some other location) when correctness after a crash
requires the locations to be mutually consistent.

Under the epoch persistency model of Condit et al. [8] and Pelley et al. [23],
writes-back to persistent memory (persist operations) are implicit—they do not
appear in the program’s instruction stream. When ordering is required, a pro-
gram can issue a special instruction (which we call a pfence) to force all of its
earlier writes to persist before any subsequent writes. Periods between pfences in
a given thread are known as epochs. As noted by Pelley et al. [23], it is possible
for writes-back to be buffered. When necessary, a separate instruction (which we
call psync) can be used to wait until the buffer has drained.

Unfortunately, implicit write-back of persistent memory is difficult to imple-
ment in real hardware [8,19,23]. Instead, manufacturers have introduced explicit
persistent write-back (pwb) instructions. These are typically implemented in an
eager fashion: a pwb starts the write-back process; a psync waits for the comple-
tion of all prior pwbs (under some appropriate definition of “prior”).

We generalize proposed implicit persistency models [8,19,23] and real world
(explicit) persistency ISAs to define our own, new model, which we call explicit
epoch persistency. Like real-world explicit ISAs, our persistency model requires
programmers to use a pwb to force back data into persistence. Like other buffered
models, we provide pfence, which ensures that all previous pwbs are ordered
with respect to any subsequent pwbs, and psync, which waits until all previous
pwbs have actually reached persistent memory. We assume that persists to a
given location respect coherence: the programmer need never worry that a newly
persisted value will later be overwritten by the write-back of some earlier value.
Unlike prior art, which assumes sequential consistency [23] or total store order [8,
19,20], we integrate our instructions into a relaxed (release consistent) model.

Returning to concrete histories, we use x.pwbt to denote a pwb of variable
x by thread t, pfencet to denote a pfence by thread t, and psynct to denote a

320 J. Izraelevitz et al.

psync by thread t. We amend our definition of concrete histories to include these
persistence events. We refer to any non-crash event of a concrete history as an
instruction.

Definition 8 (Persist Ordering). Given events E1 and E2 of concrete his-
tory H, with E1 preceding E2 in the same thread subhistory, we say that E1 is
persist-ordered before E2, denoted E1 � E2, if

(a) E1 = pwb and E2 ∈ {pfence, psync};
(b) E1 ∈ {pfence, psync} and E2 ∈ {pwb, st, st rel};
(c) E1, E2 ∈ {st, st rel, pwb}, and E1 and E2 access the same location;
(d) E1 ∈ {ld, ld acq}, E2 = pwb, and E1 and E2 access the same location; or
(e) E1 = ld acq and E2 ∈ {pfence, psync}.
Finally, across threads, E1 � E2 if

(f) E1 = st rel, E2 = ld acq, and E1 synchronizes with E2.

To identify the values available after a crash, we extend the syntax of concrete
histories to allow store events to be labeled as “persisted,” meaning that they
will be available in subsequent eras if not overwritten. Persisted store labels
introduce additional well-formedness constraints:

Definition 9 (Concrete Well-Formedness [augments Definition 5]). A con-
crete history H is well-formed if and only if it satisfies the properties of Defini-
tion 5 and

4. For each variable x, at most one store of x is labeled as persisted in any given
era. We say the (x, 0)-persisted store is the labeled store of x in E0, if there
is one; otherwise it is the initialization store of x. For i > 0, we say the
(x, i)-persisted store is the labeled store of x in Ei, if there is one; otherwise
it is the (x, i − 1)-persisted store.

5. For any (x, i)-persisted store W , there is no store W ′ of x and psync event P
such that W � W ′

� P .
6. For any (x, i)-persisted store W , there is no store W ′ of x and (y, i)-persisted

store S such that W � W ′
� S.

These rules ensure that persisted stores compose a �-consistent cut of H. To
allow loads to see persisted values in the wake of a crash, we augment the defin-
ition of happens-before to declare that the (x, i)-persisted store happens before
all events of era Ei+1. Definition 7 then stands as originally written.

3.3 Liveness

With strict linearizability, no operation is left pending in the wake of a crash:
either it has completed when execution resumes, or it never will. With persistent
atomicity and recoverable linearizability, the time it may take to complete a
pending operation m in thread t can be expressed in terms of execution steps
in t’s reincarnation (see Fig. 1). With durable linearizability, which admits no
reincarnated threads, any bound on the time it may take to complete m must
depend on other threads.

Linearizability of Persistent Memory Objects 321

Definition 10 (Bounded Completion). An object O has bounded comple-
tion if, for each concrete history H of O that ends in a crash with an operation
m on O still pending, there exists a positive integer k such that for all realizable
extensions H′ of H in which some era of H′

� H contains at least k instructions
issued by an arbitrary thread, either (1) for all realizable extensions H′′ of H′,
H′′

� inv〈m〉 is buffered durably linearizable or (2) for all realizable extensions
H′′ of H′, if there exists a completed operation n with inv〈n〉 ∈ H′′

� H′, then
there exists a sequential history S equivalent to H′′ with m ≺S n.

Briefly: by k post-crash instructions by any thread, m completes, if it ever will.
It is also desirable to discuss progress towards persistence. Under durable lin-

earizability, every operation persists before it responds, so any liveness property
(e.g. lock freedom) that holds for method invocations also holds for persistence.
Under buffered durable linearizability, the liveness of persist ordering is sub-
sumed in method invocations.

As noted in Sect. 1, data structures for buffered persistence will typically need
to provide a sync method that guarantees, upon its return, that all previously
ordered operations have reached persistent memory. If sync is not rolled into
operations, then buffering (and sync) need to be coordinated across all mutually
consistent objects, for the same reason that buffered durable linearizability is
not a local property (Sect. 2). The existence of sync impacts the definition of
buffered durable linearizability. In Definition 4, all abstract events that precede
a sync instruction in their era must appear in P, the sequence of consistent cuts.
For a set of nonblocking objects, it is desirable that the shared sync method be
wait-free or at least obstruction free—a property we call nonblocking sync. (As
sync is shared, lock freedom doesn’t seem applicable.)

4 Implementations

Given our prior model definitions and correctness conditions, we present an auto-
mated transform that takes as input a concurrent multi-object program written
for release consistency and transient memory, and turns it into an equivalent
program for explicit epoch persistency. Rules (T1) through (T5) of our trans-
form (below) preserve the happens-before ordering of the original concurrent
program: in the event of a crash, the values present in persistent memory are
guaranteed to represent a ≺-consistent cut of the pre-crash history. Additional
rules (T6) through (T8) serve to preserve real-time ordering not captured by
happens-before but required for durable linearizability. The intuition behind our
transform is that, for nonblocking concurrent objects, a cut across the happens-
before ordering represents a valid static state of the object [22]. For blocking
objects, additional recovery mechanisms (not discussed here) may be needed to
move the cut if it interrupts a failure-atomic or critical section [5,7,17,26].

The following rules serve to preserve happens-before ordering into persist-
before ordering. Their key observation is that a thread t which issues a x.st relt(v)
cannot atomically ensure the value’s persistence. Thus, the subsequent thread u
which synchronizes-with x.ld acqu(v) shares responsibility for x’s persistence.

322 J. Izraelevitz et al.

(T1) Immediately after x.stt(v), write back the value by issuing x.pwbt.
(T2) Immediately before x.st relt(v), issue a pfence; immediately afterward,

write back the value by issuing x.pwbt.
(T3) Immediately after x.ld acqt(v), write back the loaded value by issuing

x.pwbt, then issue a pfence.
(T4) Handle CAS instructions as atomic 〈x.ld acqt(v), x.st relt(v′)〉 pairs: imme-

diately before the pair, issue a pfence; immediately afterward, write back
the (potentially modified) value by issuing x.pwbt, then issue a pfence.
(Extensions for other RMW instructions are straightforward.)

(T5) Take no persistence action on loads.

In the wake of a crash, the values present in persistent memory will reflect,
by Definition 9, a consistent cut across the (partial) persist ordering (�) of the
preceding era. We wish to show that in any program created by our transform,
it will also reflect a consistent cut across that era’s happens-before ordering
(≺). Mirroring condition 6 of concrete well-formedness (Definition 9), but with
≺ instead of �, we can prove [18]:

Lemma 1. Consider a concrete history H emerging from our transform. For
any location x and (x, i)-persisted store A ∈ H, there exists no store A′ of x,
location y, and (y, i)-persisted store B ∈ H such that A ≺ A′ ≺ B.

Unfortunately, preservation of happens-before is not enough to give us
durable linearizability: we also need to preserve the “real-time” order of non-
overlapping operations (Definition 2, clause 3) in different threads. (As in con-
ventional linearizability, “real time” serves as a stand-in for forms of causality—
e.g., loads and stores of variables outside of operations—that are not captured
in our histories.)

For objects that are (non-buffered) durably linearizable, we simply need to
ensure that each operation persists before it returns:

(T6) Immediately before O.res〈m〉t, issue a psync.

For buffered durably linearizable objects, we leave out the psync and instead
introduce a shared global variable G:

(T7) Immediately before O.res〈m〉t, issue a pfence, then issue G.st relt(g), for
some arbitrary fixed value g.

(T8) Immediately after O.inv〈m〉t, issue G.ld acqt(g), for the same fixed value
g, then issue a pfence.

To facilitate our proof of correctness [18], we introduce the notion of an
effective history for H. This history leaves out both the crashes of H and, in
each era, the suffix of each thread’s execution that fails to reach persistence
before the crash. We can then prove (Lemma 2) that any effective history of a
program emerging from our transform is itself a valid history of that program
(and could have happened in the absence of crashes), and (Lemma3) that the
(crash-free) abstract history corresponding to the effective history is identical to

Linearizability of Persistent Memory Objects 323

some concatenation of ≺-consistent cuts of the eras of the (crash-laden) abstract
history corresponding to H. These two lemmas then support our main result
(Theorem 1).

Definition 11. Consider a concrete history H = E0 C1 E1 . . . Ec−1 Cc Ec. For
any thread t and era 0 ≤ i < c, let Et

i be the last store in Ei[t] that either is a
persisted store or happens before some persisted store in Ei. Let Bt

i be the last
non-store instruction that succeeds Et

i in Ei[t], with no stores by t in-between
(or, if there is no such instruction, Et

i itself). Finally, for 0 ≤ j < c, let Pj be
the subhistory of Ej obtained by removing all persistence events and, for each t,
all events that follow Bt

j in Ej [t]. The effective concrete history of H at era i,
denoted effectivei(H), is the history P0 . . .Pi−1Ei.

Lemma 2. Consider a nonblocking, data-race-free program P, and the trans-
formed program P

′. For any realizable concrete history H of P
′, and any

0 ≤ i ≤ c, effectivei(H) is a realizable concrete history of P.

Lemma 3. Consider a nonblocking, data-race-free program P, and the trans-
formed program P

′. For any realizable concrete history H of P
′, and any

0 ≤ i ≤ c, the history abstract(effectivei(H)) is precisely Pa
0 . . .Pa

i−1 Ea
i , where

Ea
i is the i-th era of abstract(H), and Pa

i is a ≺-consistent cut of Ea
i .

Theorem 1 (Buffered Durable Linearizability). If a nonblocking, data-
race-free program P is linearizable, the transformed program P

′ is buffered durably
linearizable.

In addition to the correctness properties of our automated transform, we can
characterize other properties of the code it generates. For example, the trans-
formed implementation of a nonblocking concurrent object requires no change
to persistent state before relaunching threads—that is, it has a null recovery
procedure. Moreover, any set of transformed objects will share a wait-free sync
method (a single call to psync).

In each operation on a transient linearizable concurrent object, we can iden-
tify some instruction within as the operation’s announce point : once execution
reaches the announce point, the operation may linearize without its thread tak-
ing additional steps. Wait-free linearizable objects sometimes have announce
points that are not atomic with their linearization points. In most nonblock-
ing objects, however, the announce point is the linearization point, a property
we call unannounced. This property results in stronger correctness properties
in the persistent version when the object is transformed. The result of trans-
form when applied to an object whose operations are unannounced is strictly
linearizable. Perhaps surprisingly, our transform does not guarantee bounded
completion, even on wait-free objects. Pending announced operations may be
ignored for an arbitrary interval before eventually being helped to completion [4]
[14, Sect. 4.2.5].

324 J. Izraelevitz et al.

4.1 Persist Points

Linearizability proofs for transient objects are commonly based on the notion
of a linearization point—an instruction between an operation’s invocation and
response at which the operation appears to “take effect instantaneously” [16]. In
simple objects, linearization points may be statically known. In more complicated
cases, one may need to reason retrospectively over a history in order to identify
the linearization points, and the linearization point of an operation need not
necessarily be an instruction issued by the invoking thread.

The problem for persistent objects is that an operation cannot generally lin-
earize and persist at the same instant. Clearly, it will need to linearize first;
otherwise it will not know what values to persist. Unfortunately, as soon as an
operation (call it m) linearizes, other operations can see its state, and might,
naively, linearize and persist before m had a chance to persist. The key to avoid-
ing this problem is for every operation n to ensure that any predecessor on
which it depends has persisted (in the unbuffered case) or persist-ordered (with
global buffering) before n itself linearizes. To preserve real-time order, n must
also persist (or persist-order) before it returns.

Theorem 2 (Persist Points). Suppose that for each operation m of object O
it is possible to identify not only a linearization point lm between inv〈m〉 and
res〈m〉 but also a persist point instruction pm between lm and res〈m〉 such that
(1) “all stores needed to capture m” are written back to persistent memory,
and a pfence issued, before pm; and (2) whenever operations m and n overlap,
linearization points can be chosen such that either pm � ln or ln precedes lm.
Then O is (buffered) durably linearizable.

The notion of “all stores needed to capture m” will depend on the details of
O. In simple cases (e.g., those emerging from our automated transform), those
stores might be all of m’s updates to shared memory. In more optimized cases,
they might be a proper subset (as discussed below). Generally, a nonblocking
persistent object will embody helping: if an operation has linearized but not yet
persisted, its successor operation must be prepared to push it to persistence.

4.2 Practical Applications

A variety of standard concurrent data structure techniques can be adapted to
work with both durable and strict linearizability and their buffered variants.
While our automated transform can be used to create correct persistent objects,
judicious use of transient memory can often reduce the overhead of persistence
without compromising correctness. For instance, announcement arrays [13] are
a common idiom for wait-free helping mechanisms. Implementing a transient
announcement array [2] while using our transform on the remainder of the object
state will generally provide a (buffered) strictly linearizable persistent object.

Other data structure components may also be moved into transient memory.
Elimination arrays [12] might be used on top of a durably or strictly lineariz-
able data structure without compromising its correctness. The flat combining

Linearizability of Persistent Memory Objects 325

technique [11] is also amenable to persistence. Combined operations can be built
together and ordered to persistence with a single pfence, then linked into the
main data structure with another, reducing pfence instructions per operation. A
transient combining array will generally result in a strictly linearizable object;
leaving it persistent memory results in a durably linearizable object.

Several library and run-time systems have already been designed to take
advantage of NVM; many of these can be categorized by the presented cor-
rectness conditions. Strictly linearizable examples include trees [25,27], file sys-
tems [8], and hash maps [24]. Buffered strictly linearizable data structures
also exist [21], and some libraries explicitly enable their construction [3,5].
Durably (but not strictly) linearizable data structures are a comparatively recent
innovation [17].

5 Conclusion

This paper has presented a framework for reasoning about the correctness of
persistent data structures, based on two key assumptions: full-system crashes at
the level of abstract histories and explicit write-back and buffering at the level
of concrete histories. For the former, we capture safety as (buffered) durable
linearizability ; for the latter, we capture anticipated real-world hardware with
explicit epoch consistency, and observe that both buffering and persistence intro-
duce new issues of liveness. Finally, we have presented both an automatic mech-
anism to transform a transient concurrent object into a correct equivalent object
for explicit epoch persistency and a notion of persist points to facilitate reasoning
for other, more optimized, persistent objects.

References

1. Aguilera, M.K., Frølund, S.: Strict linearizability and the power of aborting. Tech-
nical report. HPL-2003-241, HP Labs (2003)

2. Berryhill, R., Golab, W., Tripunitara, M.: Robust shared objects for non-volatile
main memory. In: International Conference on Principles of Distributed Systems,
Rennes, France (2015)

3. Boehm, H.J., Chakrabarti, D.: Persistence programming models for non-volatile
memory. Technical report. HP-2015-59, HP Laboratories (2015)

4. Censor-Hillel, K., Petrank, E., Timnat, S.: Help! In: ACM Symposium on Principles
of Distributed Computing, Donostia-San Sebastián, Spain (2015)

5. Chakrabarti, D.R., Boehm, H.J., Bhandari, K.: Atlas: leveraging locks for non-
volatile memory consistency. In: 2014 ACM International Conference on Object
Oriented Programming Systems Languages & Applications, Portland, OR (2014)

6. Chatzistergiou, A., Cintra, M., Viglas, S.D.: Rewind: recovery write-ahead system
for in-memory non-volatile data-structures. Proc. VLDB Endow. 8(5), 497–508
(2015)

7. Coburn, J., Caulfield, A.M., Akel, A., Grupp, L.M., Gupta, R.K., Jhala, R., Swan-
son, S.: NV-Heaps: making persistent objects fast and safe with next-generation,
non-volatile memories. In: 16th International Conference on Architectural Support
for Programming Languages and Operating Systems, Newport Beach, CA (2011)

326 J. Izraelevitz et al.

8. Condit, J., Nightingale, E.B., Frost, C., Ipek, E., Lee, B., Burger, D., Coetzee, D.:
Better I/O through byte-addressable, persistent memory. In: 22nd ACM Sympo-
sium on Operating Systems Principles, Big Sky, MT (2009)

9. Gharachorloo, K., Lenoski, D., Laudon, J., Gibbons, P., Gupta, A., Hennessy, J.:
Memory consistency and event ordering in scalable shared-memory multiproces-
sors. In: 17th International Symposium on Computer Architecture, Seattle, WA
(1990)

10. Guerraoui, R., Levy, R.: Robust emulations of shared memory in a crash-recovery
model. In: 24th International Conference on Distributed Computing Systems,
Santa Fe, NM (2004)

11. Hendler, D., Incze, I., Shavit, N., Tzafrir, M.: Flat combining and the
synchronization-parallelism tradeoff. In: 22nd ACM Symposium on Parallelism in
Algorithms and Architectures, Santorini, Greece (2010)

12. Hendler, D., Shavit, N., Yerushalmi, L.: A scalable lock-free stack algorithm. In:
16th ACM Symposium on Parallelism in Algorithms and Architectures, Barcelona,
Spain (2004)

13. Herlihy, M.: A methodology for implementing highly concurrent data objects. ACM
Trans. Program. Lang. Syst. 15(5), 745–70 (1993)

14. Herlihy, M., Shavit, N.: The Art of Multiprocessor Programming. Morgan Kauf-
mann, San Francisco (2008)

15. Herlihy, M.P.: Wait-free synchronization. ACM Trans. Program. Lang. Syst. 13(1),
124–49 (1991)

16. Herlihy, M.P., Wing, J.M.: Linearizability: a correctness condition for concurrent
objects. ACM Trans. Program. Lang. Syst. 12(3), 463–92 (1990)

17. Izraelevitz, J., Kelly, T., Kolli, A.: Failure-atomic persistent memory updates via
JUSTDO logging. In: 21st International Conference on Architectural Support for
Programming Languages and Operating Systems, Atlanta, GA (2016)

18. Izraelevitz, J., Mendes, H., Scott, M.L.: Linearizability of persistent memory
objects under a full-system-crash failure model. Technical report. 999, Dept. of
Computer Science, Univ. of Rochester (2016)

19. Joshi, A., Nagarajan, V., Cintra, M., Viglas, S.: Efficient persist barriers for multi-
cores. In: 48th International Symposium on Microarchitecture, Waikiki, HI (2015)

20. Kolli, A., Pelley, S., Saidi, A., Chen, P.M., Wenisch, T.F.: High-performance trans-
actions for persistent memories. In: 21st International Conference on Architectural
Support for Programming Languages and Operating Systems, Atlanta, GA (2016)

21. Moraru, I., Andersen, D.G., Kaminsky, M., Tolia, N., Binkert, N., Ranganathan,
P.: Consistent, durable, and safe memory management for byte-addressable non
volatile main memory. In: ACM Conference on Timely Results in Operating Sys-
tems, Farmington, PA (2013)

22. Nawab, F., Chakrabarti, D.R., Kelly, T., Morrey III., C.B.: Procrastination beats
prevention: timely sufficient persistence for efficient crash resilience. In: 18th Inter-
national Conference on Extending Database Technology, Brussels, Belgium (2015)

23. Pelley, S., Chen, P.M., Wenisch, T.F.: Memory persistency. In: 41st International
Symposium on Computer Architecture, Minneapolis, MN (2014)

24. Schwalb, D., Dreseler, M., Uflacker, M., Plattner, H.: NVC-hashmap: a persistent
and concurrent hashmap for non-volatile memories. In: 3rd VLDB Workshop on
In-Memory Data Management and Analytics, Kohala, HI (2015)

25. Venkataraman, S., Tolia, N., Ranganathan, P., Campbell, R.H.: Consistent and
durable data structures for non-volatile byte-addressable memory. In: 9th USENIX
Conference on File and Storage Technologies, San Jose, CA (2011)

Linearizability of Persistent Memory Objects 327

26. Volos, H., Tack, A.J., Swift, M.M.: Mnemosyne: lightweight persistent memory.
In: 16th International Conference on Architectural Support for Programming Lan-
guages and Operating Systems, Newport Beach, CA (2011)

27. Yang, J., Wei, Q., Chen, C., Wang, C., Yong, K.L., He, B.: NV-Tree: reducing
consistency cost for NVM-based single level systems. In: 13th USENIX Conference
on File and Storage Technologies, Santa Clara, CA (2015)

Buffer Size for Routing Limited-Rate
Adversarial Traffic

Avery Miller(B) and Boaz Patt-Shamir(B)

Tel Aviv University, Tel Aviv, Israel
avery@averymiller.ca, boaz@tau.ac.il

Abstract. We consider the slight variation of the adversarial queuing
theory model in which an adversary injects packets with routes into the
network subject to the following constraint: For any link e, the total
number of packets injected in any time window [t, t′) and whose route
contains e is at most ρ(t′−t)+σ, where ρ and σ are non-negative parame-
ters. Informally, ρ bounds the long-term rate of injections and σ bounds
the “burstiness” of injection: σ = 0 means that the injection is as smooth
as it can be.

It is known that greedy scheduling of the packets (under which a link
is not idle if there is any packet ready to be sent over it) may result in
Ω(n) buffer size even on an n-node line network and very smooth injec-
tions (σ = 0). In this paper, we propose a simple non-greedy scheduling
policy and show that, in a tree where all packets are destined at the
root, no buffer needs to be larger than σ+2ρ to ensure that no overflows
occur, which is optimal in our model. The rule of our algorithm is to
forward a packet only if its next buffer is completely empty. The policy
is centralized: in a single step, a long “train” of packets may progress
together. We show that, in some sense, central coordination is required
for our algorithm, and even for the more sophisticated “downhill” algo-
rithm in which each node forwards a packet only if its next buffer is less
occupied than its current one. This is shown by presenting an injection
pattern with σ = 0 for the n-node line that results in Ω(n) packets in a
buffer if local control is used.

1 Introduction

We study the process of packet routing over networks, where an adversary injects
packets at nodes, and the routing algorithm is required to forward the packets
along network links until they reach their prescribed destination, subject to link
capacity constraints. Our guiding question is the following: assuming that the
injection pattern adheres to some given upper bound specification, what is the
smallest buffer size that will allow a routing algorithm to deliver all traffic, i.e.,
that will ensure that there is no overflow at the node buffers?

To bound the injection rate, we follow the classical (σ, ρ) burstiness model of
Cruz [9,10]. Specifically, we assume that the number of packets that are injected
in any time interval of t time units is at most σ + ρ · t for some non-negative

c© Springer-Verlag Berlin Heidelberg 2016
C. Gavoille and D. Ilcinkas (Eds.): DISC 2016, LNCS 9888, pp. 328–341, 2016.
DOI: 10.1007/978-3-662-53426-7 24

Buffer Size for Routing Limited-Rate Adversarial Traffic 329

parameters σ and ρ. Intuitively, ρ represents the maximal long-term injection
rate and σ represents the maximal “burstiness” of the injection pattern. We
assume that the injection pattern is feasible, in the sense that the total average
rate of traffic that needs to cross a link does not exceed its capacity.

Our approach is very close to that of the adversarial queuing theory [3,8]
henceforth abbreviated AQT. In the AQT model, packets are injected along
with their routes by an adversary. The adversary is limited by the feasibility
constraint, which is formalized as follows. Assuming that all links have capacity
1, i.e., a link can deliver at most one packet at a time step, the requirement is
that in any time window of length w, the number of injected packets that need
to use any link does not exceed �wρ�, where w and ρ are model parameters.1

The main question in AQT is when a given routing policy is stable, i.e., what is
the maximum rate that allows the queues to be bounded under the given policy.
Furthermore, AQT concerns itself with local, greedy policies. Local policies are
defined by a rule that can be applied by each node based only on it local infor-
mation (packets residing in that node and possibly its immediate neighbors).
Greedy (a.k.a. work conserving) policies are policies under which a link is not
fully utilized only when there are not enough packets ready to be transmitted
over that link. These restrictions are justified by the results that say that there
are local greedy policies that are stable for any feasible injection rate [3]. While
stability means that the required buffer size can be bounded, the bounds are
usually large (polynomial in the network size). It should be noted that even lin-
ear buffer size is not practical in most cases. Furthermore, it is known that in
the Internet, big buffers have negative effect on traffic (cf. “bufferbloat” [12]).

In this work, in contrast to AQT, on one hand we are interested in the
quantitative question of buffer size, and on the other hand we do not restrict
ourselves to local greedy policies. While the interest in buffer size is obvious,
we offer the following justification to our liberalism regarding the nature of
policies we consider. First, we claim that with the advent of software-defined
networks [22], central control over the routing algorithm has become a reality
in many networks and should not be disqualified as a show-stopper anymore.
Moreover, our results give a strong indication that insisting on strict locality
may result in a significant blowup in buffer size. Our second relaxation, namely
not insisting on greedy policies, is not new, as it is already known that greedy
policies may require large buffers. Specifically, in [23], Rosén and Scalosub show
that the buffer size required to ensure no losses in an n-node line network with a
single destination is Θ(nρ2), where ρ is the injection rate. Note that this result
means that for greedy routing, sublinear buffers can guarantee loss-free routing
only if the injection rate is o(1).

We present two sets of results. Our main result is positive: we propose a
centralized routing algorithm that requires buffers whose size is independent of
the network size. We prove that in the case of tree networks, when packets are

1 This model is almost equivalent to Cruz’s (σ, ρ) model (see discussion in [8]). We
chose to use the (σ, ρ) model as it allows for simpler expressions to bound the buffer
size.

330 A. Miller and B. Patt-Shamir

destined to the tree root, if the injection pattern is feasible with injection rate ρ
and maximal burstiness σ, then the required buffer space need not exceed σ+2ρ
in order not to lose any packet. We provide a matching lower bound to show
that this is the optimal buffer size. The routing algorithm, which we believe to
be attractive from the practical point of view, says simply “forward a packet to
the next hop only if its next buffer is empty.” The algorithm is centralized in
that it may simultaneously forward long “trains” of packets (a train consists of
a single packet per node and an empty buffer in front of the leading packet).

Our second set of results is negative. We show that central coordination is
necessary, even for the more refined (and non-greedy) downhill algorithm. In the
downhill algorithm, a packet is forwarded over a link whenever the buffer at
the other endpoint is less full than the buffer in its current location. We show
that even in the n-node line network, there are feasible injection patterns with
0 burstiness under which the downhill algorithm results in buffer buildup of
Ω(n) packets. Interestingly, as we show, there are certain situations where the
downhill algorithm requires buffers of size Ω(n) while the greedy algorithm only
needs buffers of size 1, and other situations where the downhill algorithm needs
buffers of size 1 while the greedy algorithm needs buffers of size Ω(n).

We may note in this context the result of Awerbuch et al. [4], where they con-
sider the case of a single destination node in dynamic networks. They show that
a certain variant of the downhill algorithm ensures that the number of packets
in a buffer is bounded by O(nSmax), where Smax is a bound on the number of
packets co-residing in the network under an unknown optimal schedule.

1.1 More Related Work

In the buffer management model [15,20], a different angle is taken. The idea
is to lift all restrictions on the injection pattern, implying that packet loss is
possible. The goal is to deliver as many packets as possible at their destination.
The buffer management model is usually used to study routing within a single
switch, modeled by very simple topologies (e.g., a single buffer [2], a star [16],
or a complete bipartite graph [18]). The difficulty in such scenarios may be due
to packets with different values or to some dependencies between packets [11].
The tree topology is studied in [17]. The interested reader is referred to [14] for
a comprehensive survey of the work in this area.

The idea of the downhill algorithm has been used for various objectives
(avoiding deadlocks [21], computing maximal flow [13], multicommodity flow
[5,6], and routing in the context of dynamically changing topology [1,4,7,19]).
With the exception of [19], the buffer size is usually assumed to be linear in
the number of nodes (or in the length of the longest possible simple path in the
network). In [19], a buffer’s height is accounted for by counters, so that each
node needs to hold only a constant number of packets and O(log n)-bit counters.

Organization of the paper. The remainder of the paper is structured as follows.
In Sect. 2, we define the network model. Section 3 describes and analyzes our
Forward-If-Empty algorithm. Section 4 gives lower bounds for local downhill
algorithms.

Buffer Size for Routing Limited-Rate Adversarial Traffic 331

2 Model

The system. We model the system as a directed graph G = (V,E), where nodes
represent hosts or network switches (routers), and edges represent communica-
tion links. For a link u → v (denoted by (u, v)), we say that u is an in-neighbor
of v, and v is an out-neighbor of u. Each edge e ∈ E has capacity c(e) ∈ N. We
consider static systems, i.e., G is fixed throughout the execution.

Input (a.k.a. adversary). We assume that in every round t, a set of packets
is injected into the system. Each packet p is injected at a node, along with a
complete route that specifies a simple path, denoted by r(p), in G that starts
at the node of injection, called the source, and ends at the packet’s destination.
The set of all packets injected in the time interval [t, t′] is denoted by P (t, t′).
We use P (t) to denote the set of packets injected in round t. Many packets may
be injected in the same node, and the routes may be arbitrary. However, we
consider the following type of restriction on injection patterns.

Definition 1. For any σ, ρ ≥ 0, an injection pattern is said to adhere to a
(ρ, σ) bound if, in any time interval [t, t′] and for any edge e ∈ E, it holds that
|{p ∈ P (t, t′) | e ∈ r(p)}| ≤ ρ(t′ − t) + σ.

Executions. A system configuration is a mapping of packets to nodes. An execu-
tion of the system is an infinite sequence of configurations C0, C1, C2 . . ., where
Ci for i > 0 is called the configuration after round i, and C0 is the initial con-
figuration. The evolution of the system from Ci to Ci+1 consists of a sequence
of ministeps: 0 or more injection ministeps followed by exactly 1 forwarding
ministep. In particular,

1. There is one injection ministep for each packet p ∈ P (i), and, in this ministep,
p is mapped to the first node in r(p).

2. In the forwarding ministep, for each packet p currently mapped to a node v
such that e = (v, u) is an edge in r(p), packet p may be re-mapped to u. In
this case we say that v forwards p over e to u. If u is the destination of p,
then p is said to be delivered and is removed from subsequent configurations.
The number of packets forwarded over e in one round may not exceed c(e).
The choice of which packets to forward is controlled by the algorithm.

We use v[s] to refer to node v at the start of ministep s. We view packets
mapped to a node as stored by the node’s buffer, which is an array of slots. The
load of a buffer in a given configuration is the number of packets mapped to it
in that configuration. We further assume that in a configuration, each packet
mapped to a node is mapped to a particular slot in that node’s buffer. The slot’s
index is called the packet’s position, denoted pos(p) for a packet p. Note that we
do not place explicit restrictions on the buffer sizes, so overflows never occur.

Algorithms. The role of the algorithm is to determine which packets are for-
warded in each round. The algorithm must obey the link capacity constraints.
We distinguish between two types of algorithms: local and centralized. In a cen-
tralized algorithm, the decisions of the algorithm may depend, in each round, on

332 A. Miller and B. Patt-Shamir

the history of complete system configurations at that time. In a local algorithm,
the decision of which packets should be forwarded from node v may depend only
on the packets stored in the buffer of v and the packets stored in the buffers of
v’s neighbors. Note that both centralized and local algorithms are required to
be on-line, i.e., may not make decisions based on future injections.

Target Problem: Information Gathering on Trees. In this paper, we consider
networks whose underlying topology is a directed tree where all links have the
same capacity c. Furthermore, we assume that the destination of all packets is
the root of the tree. We sometimes call the root the sink of the system. Injections
adhere to a (ρ, σ) bound. To ensure that the injection pattern is feasible, i.e.,
that finite buffers suffice to avoid overflows, we assume that ρ ≤ c.

3 The Forward-If-Empty Algorithm

In this section, we describe the Forward-If-Empty (FIE) algorithm and prove
that, for any (ρ, σ)-injection pattern, the load of every buffer is bounded above
by σ +2ρ during the execution of FIE. We then show that this bound is optimal
by proving that, for any algorithm, there is an injection pattern such that the
load of some buffer reaches σ + 2ρ.

3.1 Algorithm

First, we specify how FIE positions packets within each buffer. Each buffer is
partitioned into levels of c slots each, where level i ≥ 1 consists of slots (i −
1)c + 1, . . . , ic. For a packet p, its level is given by �pos(p)/c�. Suppose that
m ≥ 1 packets are mapped to a node. In the simplest case, i.e., when c = 1, the
algorithm maps the m packets to slots 1, . . . ,m in the node’s buffer. In general,
the m packets are mapped so that m mod c packets are mapped to the first level,
while the rest of the packets fill up levels 2, . . . , �m/c�. More formally, for c ≥ 1,
the algorithm maps the m packets to positions �m/c� · c, . . . , �m/c� · c − m + 1.

Definition 2. The height of a node v at ministep s is denoted by height(v[s])
and is defined as maxp{level of packet p in v[s]}. The height of the sink is defined
to be −∞.

Next, we specify how the algorithm behaves during each forwarding ministep.
Intuitively, we think of the system as having sections of “ground” that consist
of connected subgraphs of nodes with height at most 1, and “hills” that consist
of connected subgraphs of nodes with height greater than 1. The algorithm
works by draining the ground packets “horizontally” towards the sink, and by
breaking off some packets from the boundaries of the hills to fall into empty
nodes surrounding the hills. Notice that nothing happens in the interior of each
hill, e.g., the peak does not get flattened; in each forwarding ministep, only
packets from the boundary of the hill get chipped away.

Buffer Size for Routing Limited-Rate Adversarial Traffic 333

We now describe the algorithm in detail. At the start of every forwarding
ministep s, the algorithm computes a maximal set AP (s) of directed paths called
activation paths for ministep s. All nodes that are contained in paths of AP (s)
are considered activated for ministep s. In what follows, we say that two paths
are node-disjoint if their intersection is empty or equal to the sink. To construct
AP (s), the algorithm greedily adds maximal directed paths to AP (s) and ensures
that all paths in AP (s) are node-disjoint. The paths can be one of three types:

1. Downhill-to-Sink: the first node has height greater than 1, the last node is
the sink, and all other nodes in the path (if any) have height 1.

2. Downhill-to-Empty: the first node has height greater than 1, the last node
has height 0, and all other nodes in the path (if any) have height 1.

3. Flat: the last node is the sink or has height 0, and all other nodes in the path
have height 1.

At the start of ministep s, the algorithm first adds Downhill-to-Sink paths to
AP (s) until none remains, then adds Downhill-to-Empty paths to AP (s) until
none remains, then adds all Flat paths to AP (s). Each time a path is added to
AP (s), the nodes in that path (except the sink) are unusable in the remainder
of the construction of AP (s).

In each forwarding ministep, each activated node for that ministep forwards c
packets (or all of its packets if it has fewer than c). Since the packets are identical,
it does not matter which c packets are forwarded. However, it is convenient for
our analysis to assume that the buffers are LIFO, i.e., the forwarded packets are
taken from an activated node’s highest level and, when received, are stored in
the receiving node’s highest level. This ensures that the level of a packet can
only change when it is forwarded.

3.2 Analysis

We now prove that, for any (ρ, σ)-injection pattern, the load of every buffer is
bounded above by σ+2ρ during the execution of FIE. Without loss of generality,
we may assume that ρ = c, since, if ρ < c, we can artificially restrict the edge
capacity to ρ when executing the algorithm to get the same result.

The analysis of our algorithm depends crucially on what happens to the
loads of connected subsets of nodes that all meet a certain minimum height
requirement. Informally, we can think of any configuration of the system as a
collection of hills and valleys, and, for a given hill, “slice” it at some level h and
look at what happens to all of the packets in that hill above the slice. We call
the portion of the hill that has packets above this slice a plateau.

Definition 3. A plateau of height h (or h-plateau) at ministep s is a maximal
set of nodes forming a connected subgraph such that each node has a packet at
level h − 1 and at least one of the nodes has a packet at level h. A plateau P
at ministep s will be denoted by P [s], and height(P [s]) denotes its height at the
start of ministep s.

334 A. Miller and B. Patt-Shamir

Observation 1. If P [s], Q[s] are plateaus at ministep s, then they are disjoint
or one is a subset of the other. If height(P [s]) = height(Q[s]) and P [s] 	= Q[s],
then P [s] ∩ Q[s] = ∅.

Plateaus are defined so that every pair of disjoint plateaus is separated by a
sufficiently deep “valley”. This ensures that a packet forwarded from one plateau
does not immediately arrive at another plateau, allowing us to argue about the
number of packets in each plateau independently. We measure the “fullness” of
a plateau by the number of packets it contains at a given level and higher.

Definition 4. The k-load of a plateau P [s] is defined to be the number of packets
in P [s] at level k or higher. For any plateau P [s], we denote by loadk(P [s], s′)
the k-load of P [s] at time s′.

In Definition 4, note that P [s] might not be a plateau at the start of a
ministep s′, but it still represents a well-defined set of nodes. Note that we may
speak of the k-load of an h-plateau for any k and h.

We now proceed to analyze the dynamics of the FIE algorithm. By the choice
of activated nodes in each forwarding ministep, whenever a node receives packets
during a forwarding ministep, the packets are always placed at level 1 in that
node’s buffer. In particular, each node receives at most c packets, and, either the
receiving node’s buffer was empty at the beginning of the forwarding ministep,
or, it only had packets at level 1 and it forwarded them all.

Lemma 1. Let w be a non-sink node. Packets forwarded to w in ministep s are
at level 1 in node w’s buffer at the start of ministep s + 1.

We now set out to prove that each 2-plateau “loses” c = ρ packets per round
due to forwarding, which means that any increase in the load of a plateau is
due to the burstiness of injections. Since the network is a directed tree, we know
that, from every node, there exists a unique directed path to the sink. So, we can
uniquely identify how packets will leave each plateau, which we now formalize.

Definition 5. Consider any h-plateau P [s] at the start of a forwarding ministep s.
The node v in P [s] whose outgoing edge leads to a node whose height is at most h−2
at the start of ministep s is called the exit node of P [s] at ministep s and is denoted
by exitNode(P [s], s). We define the landing node of P [s] at ministep s to be the node
at the head of the outgoing edge of exitNode(P [s], s).

In Fig. 1, we illustrate the definitions and concepts introduced so far by giving
an example of how the system evolves in a forwarding step.

We want to show that, for each forwarding ministep s, the 2-load of each
2-plateau shrinks by at least c. The following result shows that this is the case if
the exit node of such a plateau is activated during s. This is because exit node
z is part of some activation path whose first node v is in the same plateau as z,
and, by Lemma 1, v forwards c packets from a level greater than 1 to level 1.

Buffer Size for Routing Limited-Rate Adversarial Traffic 335

Fig. 1. On the left, the state of a network at the start of some forwarding ministep.
Each node is labeled with its load. Dotted lines show the activation paths chosen by
the algorithm. On the right, the network immediately after this ministep. Each light
grey region is a 2-plateau, and each dark grey region is a subplateau with height greater
than 2. In each plateau, the node closest to the sink is the exit node and its parent is
the landing node.

Lemma 2. For any forwarding ministep s and any 2-plateau P [s], we have
load2(P [s], s + 1) ≤ load2(P [s], s). If exitNode(P [s], s) is activated in s, then
load2(P [s], s + 1) ≤ load2(P [s], s) − c.

The next challenge is to deal with the fact that plateaus can merge during
a forwarding ministep. For example, an exit node of one plateau might forward
packets to a node v that was sandwiched between two disjoint plateaus both
with larger height than v, but the increase in v’s height results in one large
plateau formed by the merging of v with the two plateaus. Figure 1 shows an
example of three plateaus merging into one. We want to compare the load of this
newly-formed plateau with the loads of the plateaus that merged. To this end,
we consider the “pre-image” of a plateau: for each plateau P [s + 1] that exists
at the start of ministep s + 1, we keep track of the disjoint plateaus at ministep
s that were merged together to form P [s + 1].

Definition 6. Consider any forwarding ministep s and any h-plateau P [s + 1]
with h ≥ 2 that exists immediately after s. The pre-image of P [s + 1], denoted
by Pre (P [s + 1]), is the set of h-plateaus that existed at the start of s that are
contained in P [s + 1].

Observation 2. For any plateauP [s+1], any plateausP1[s], P2[s] ∈ Pre(P [s+1])
are disjoint. Further, for any two distinct h-plateaus P1[s + 1], P2[s + 1] that exist
at the start of ministep s + 1, we have Pre(P1[s + 1]) ∩ Pre(P2[s + 1]) = ∅.

We now prove that, for any 2-plateau P [s + 1], there always exists a plateau
in Pre(P [s + 1]) whose exit node is activated during ministep s.

Lemma 3. For any forwarding ministep s and any 2-plateau P [s+1] that exists
at the start of ministep s + 1, there exists a P [s] ∈ Pre(P [s + 1]) such that
exitNode(P [s], s) is activated in s.

336 A. Miller and B. Patt-Shamir

Proof: Let P [s] be the plateau in Pre(P [s + 1]) that minimizes the distance
between exitNode(P [s], s) and the sink. If P [s] is activated during ministep s,
we are done. Otherwise, consider the landing node � of P [s]. Since P [s] is a
2-plateau, then, by definition, � is the sink or �’s buffer is empty at the start
of ministep s. The set of activation paths chosen by the algorithm is maximal,
so there is some path Q of nodes with � as its last node. Further, since Flat
paths have lowest priority, we know that Q is either a Downhill-To-Sink path
(if � is the sink) or a Downhill-To-Empty path (if � isn’t the sink). Therefore,
the first node in Q has height at least 2, the last node in Q is �, and all other
nodes (if any) have height exactly 1. Let P ′[s] be the 2-plateau that contains
Q \ {�} at the start of ministep s, and note that exitNode(P ′[s], s) is activated
in ministep s since all nodes in Q are activated. Hence, it is sufficient to show
that P ′[s] ∈ Pre(P [s+1]). To do so, note that, immediately after the forwarding
ministep s, all nodes in Q ∪ {�} have height at least 1, as do all nodes in P [s]
(since no nodes in P [s] were activated in ministep s). Therefore, the nodes of
Q ∪ P [s] ∪ {�} are all contained in the same 2-plateau at the start of ministep
s+1. Since P [s] ⊆ P [s+1], it follows that Q ⊆ P [s+1], and so the plateau P ′[s]
containing Q is a subset of P [s + 1]. This proves that P ′[s] ∈ Pre(P [s + 1]). ��

Next we show that, as plateaus merge during a forwarding ministep, at least
c packets are “lost”. This follows by applying Lemma 2 to each plateau involved
in the merge (which is permitted due to Observation 2), and using Lemma 3 to
show that the exit node of at least one of these plateaus is activated.

Lemma 4. For any forwarding ministep s and any 2-plateau P [s + 1], we have
load2(P [s + 1], s + 1) ≤ load2(

⋃
P [s]∈Pre(P [s+1]) P [s], s) − c.

We now arrive at the main result, which shows that the buffer loads are
always bounded above by σ + 2c.

Theorem 3. Consider the execution of Forward-If-Empty in a directed tree net-
work with link capacity c. Suppose that the destination of all injected packets is
the root, and that the injection pattern adheres to a (c, σ) bound. For each node
v, the number of packets in v’s buffer never exceeds σ + 2c.

Proof: (Sketch). For anyministep s, let round(s) be the round that contains s. Let
flat(s) be the last ministep, up to and including s, such that all nodes have height at
most 1 at the start of the ministep. For any ministeps s1 ≤ s2, let totalinj (s1, s2) be
the total number of packets injected into the system in all ministeps in the range
s1, . . . , s2. The following invariant, which bounds the total number of packets at
level 2 or higher, can be proved by induction on s.

Invariant I: at the start of any ministep s, the sum of 2-loads of all
2-plateaus is bounded above by totalinj (flat(s) + 1, s) − c · (round(s) −
round(flat(s))).

To see why Invariant I is sufficient to prove the theorem, note that, at the start
of any ministep s, the height of any node v is bounded above by the number

Buffer Size for Routing Limited-Rate Adversarial Traffic 337

of packets at level 1 in v’s buffer (i.e., at most c), plus the 2-load of the 2-
plateau containing v. Using the invariant, the 2-load of the 2-plateau containing
v is bounded above by totalinj (flat(s)+1, s)− c · (round(s)− round(flat(s)). By
separately considering the packets injected in the first (round(s)−round(flat(s)))
rounds and the packets injected so far in round(s), we get totalinj (flat(s)+1, s) ≤
c · (round(s)− round(flat(s)))+σ + c. Putting together all of these facts, we get
that the height of any node v is bounded above by c·(round(s)−round(flat(s)))+
σ + c − c · (round(s) − round(flat(s))) + c ≤ σ + 2c. ��

3.3 Existential Optimality

In this section, we show that there is no algorithm that can prevent buffer
overflows when the buffer size is strictly less than σ + 2c.

Theorem 4. Consider the network consisting of nodes v1, . . . , vn such that, for
each i ∈ {1, . . . , n − 1}, there is a directed edge from vi to vi+1. Consider any
edge capacity c ≥ 1 and σ ≥ 0. For any algorithm, there is a (c, σ)-injection
pattern such that the load of some buffer is at least σ + 2c in some configuration
of the algorithm’s execution.

Proof: Consider the following injection pattern that injects packets destined for
node vn. In the first round, inject c packets into v1, and, in each subsequent round
i, injects c packets into the node with smallest index that has the maximum load
at the start of round i. If the maximum load in round i − 1 was mi−1 at some
node vj , then either vj or vj+1 has load at least �mi−1/2� after the forwarding
ministep of round i − 1. Therefore, at the start of each round i > 1, the load at
some node is at least �∑i−1

k=1 c/2k�. So, at the start of some round i, some node
v has load at least c, at which time c+σ packet injections are performed at v. ��

4 Local Downhill Algorithms

In this section, we consider downhill algorithms where each node in the net-
work must decide whether or not it will forward packets based only on local
information. We show that local downhill algorithms require significantly larger
buffer size than the centralized algorithm presented in Sect. 3. We also show
that local downhill algorithms may require significantly larger buffer sizes than
the GREEDY algorithm where each node always forwards packets if it has any.
However, we show that the opposite is also true by providing situations where
GREEDY requires significantly larger buffer sizes than local downhill algorithms.

4.1 Local vs. Centralized Algorithms

Recall that in a downhill algorithm, packets may be forwarded only to a lighter-
load node. Intuitively, the difficulty faced by local downhill algorithms is that
they cannot perform a coordinated move in which all nodes along a path simul-
taneously forward a packet each. In this case, only the node closest to the sink

338 A. Miller and B. Patt-Shamir

knows whether or not it will forward a packet (based on the load of its out-
neighbour) so, to ensure that no packets are forwarded “uphill”, none of the
other nodes in the interval can decide to forward a packet. We now set out
to show the effects of this limitation on a local version of FIE and on a more
sophisticated downhill algorithm.

The bad scenario. We consider a network v1, . . . , vn of nodes (where n > 2) such
that, for each i ∈ {1, . . . , n − 1}, there is a directed edge with capacity 1 from
vi to vi+1. One packet with destination vn is injected at node v1 in each round.
Note that, under this (1, 0)-injection pattern, GREEDY only needs buffers of
size 1 to ensure that no overflows occur.

LOCAL-FIE. The LOCAL-FIE algorithm is a local version of Forward-If-Empty
described in Sect. 3, defined as follows. Each node forwards a packet if and only
if its buffer is non-empty and its out-neighbour has an empty buffer. Under the
injection pattern specified above, v1 receives a packet in every round but only
forwards a packet every two rounds. It follows that, in the first R rounds, the load
of v1 is �R/2�. Note that R can be chosen to be arbitrarily large, independently
of n. This can be generalized to any injection pattern with ρ > 1/2.

Theorem 5. If n > 2, then, for any R and constant ρ > 1/2, there is a (ρ, 1)-
injection pattern of R packets such that LOCAL-FIE requires buffers of size
Ω(R) to prevent overflows.

LOCAL-DOWNHILL. In LOCAL-DOWNHILL, each node forwards a packet if
and only if its buffer is non-empty and the load of its out-neighbour’s buffer
is strictly less than the load of its own buffer. We set out to show that, after
sufficiently many rounds, v1’s load is Ω(n).

For each j ≥ 1, let state Sj be the sequence of n integers corresponding to
the load of each node’s buffer immediately after all injections of round j occur.
In each state, we focus on what happens between v1 and the first empty node.
More formally, for any sequence S of non-negative integers, the initial segment
of S, denoted by init(S), is the maximal prefix of non-zero entries in S. In
what follows, we assume that n is large enough such that init(Sj) is always
a proper subsequence of v1, . . . , vn (we later show that, for an execution of R
rounds, n ≥ √

R + 2 suffices.) For each k ≥ 0, we use f(k) to denote the index
of the first state such that v1’s load is at least k. For each k ≥ 1, we define
Δk = f(k) − f(k − 1). An intuitive definition of Δk is the number of forwarding
ministeps that occur between Sf(k−1) and Sf(k).

To prove the lower bound, we consider the states where the load of v1
increases and show that the number of rounds between consecutive such states
keeps growing by 2. We first illustrate this phenomenon by examining a con-
crete example. In Fig. 2, we have provided a prefix of the execution of LOCAL-
DOWNHILL. Let’s consider the number of rounds between S7 (the state where
v1’s load first becomes 3) and S13 (the state where v1’s load first becomes 4).
Notice that, if we ignore v1 in states S7, . . . , S12, the remainder of their ini-
tial segments is equal to the initial segments of S2, . . . , S7, respectively. Within

Buffer Size for Routing Limited-Rate Adversarial Traffic 339

this interval, notice that S3, . . . , S7 is the part of the execution where v1’s load
first becomes 2 and then first becomes 3. So we can split up the set of states
S7, . . . , S13 as follows: 4 “middle” rounds corresponding to the states S3, . . . , S7,
plus the first round and last round. The above example illustrates (and mimics
the proof structure of) the following general fact.

Lemma 5. For every k ≥ 1, Δk+1 = Δk + 2.

Fig. 2. The first 15 states of LOCAL-DOWNHILL when a packet is injected at v1
in each round. The dotted packets demonstrate that tail(Sf(4)) = init(Sf(3)−1). The
diagonally-hatched packets demonstrate that tail(Sf(4)−1) = init(Sf(3)).

The key to proving Lemma 5 is observing, as we did in the above example,
that the initial segments of some states will reappear later as the suffix of others.
To describe this phenomenon, we divide the initial segment of each state S into
two parts: the first node of the segment is denoted by front(S), and tail(S) is
defined to be init(S) without its first entry2. The main structural result that is
needed to prove Lemma 5 can be stated as follows, and is demonstrated by the
patterned packets in Fig. 2.

Lemma 6. For any positive integer k, we have tail(Sf(k+1)) = init(Sf(k)−1)
and tail(Sf(k+1)−1) = init(Sf(k)).

We now show that v1’s load is eventually Ω(n). Lemma 5 implies that, for
any positive integer k, we have f(k) = k2 − k + 1. It follows that, by choosing
2 LISP programmers might prefer to use car and cdr instead of front and tail !

340 A. Miller and B. Patt-Shamir

k = n−2 and executing LOCAL-DOWNHILL on the specified injection pattern
for k2 − k +1 rounds, the buffer at node v1 will contain n− 2 packets in the last
round of the execution. An induction argument shows that the width of the initial
segment is bounded above by one more than the load of v1, so, as we assumed, the
initial segment is always a proper subsequence of v1, . . . , vn. Therefore, we get
the following lower bound on the buffer size required by LOCAL-DOWNHILL.

Theorem 6. There is a (1,0)-injection pattern such that LOCAL-DOWNHILL
requires buffers of size Ω(n) to prevent overflows.

4.2 Downhill vs. Greedy

We now show that the comparison between local downhill algorithms and the
GREEDY algorithm is not one-sided. For the same network and (1, 0)-injection
pattern used in the lower bounds for LOCAL-FIE and LOCAL-DOWNHILL in
Sect. 4.1, GREEDY only needs buffers of size 1 to prevent overflows. However,
consider the following (1, 0)-injection pattern, assuming that n is even: inject a
single packet at node v2i−1 in each of the rounds i = 1, . . . , n/2, then, inject a
single packet at node vn−1 in each of the rounds n/2+1, . . . , n. Under this injec-
tion pattern, buffers of size 1 suffice for LOCAL-FIE and LOCAL-DOWNHILL
but GREEDY requires buffers of linear size, which gives the following result.

Theorem 7. There exists a (1,0)-injection pattern such that LOCAL-FIE and
LOCAL-DOWNHILL only need buffers of size 1 while GREEDY requires buffers
of size Ω(n) to prevent overflows.

5 Conclusion

In this work, we have shown that an extremely simple algorithm (requiring cen-
tral coordination) suffices to bound the required buffer size by a function of the
burstiness of the injected traffic. In other words, it is possible to design an algo-
rithm that does not increase the inherent burstiness of the traffic. This required
the algorithm to be non-greedy and non-local, and this is not coincidental.

In future work, we would like to extend the results to topologies more general
than trees, and to multiple destinations. It would also be interesting to determine
whether or not there is a more general local algorithm, e.g., that sometimes
sends packets ‘uphill’, whose buffer size requirements depend only on the values
of ρ and σ. The semi-local variant is also intriguing: suppose that nodes can
coordinate within a certain range. How does this affect packet accumulation?

References

1. Afek, Y., Awerbuch, B., Gafni, E., Mansour, Y., Rosén, A., Shavit, N.: Slide-the
key to polynomial end-to-end communication. J. Algorithms 22(1), 158–186 (1997)

2. Aiello, W.A., Mansour, Y., Rajagopolan, S., Rosén, A.: Competitive queue policies
for differentiated services. In: INFOCOM 2000, vol. 2, pp. 431–440 (2000)

Buffer Size for Routing Limited-Rate Adversarial Traffic 341

3. Andrews, M., Awerbuch, B., Fernández, A., Leighton, T., Liu, Z., Kleinberg,
J.: Universal-stability results and performance bounds for greedy contention-
resolution protocols. J. ACM 48(1), 39–69 (2001)

4. Awerbuch, B., Berenbrink, P., Brinkmann, A., Scheideler, C.: Simple routing
strategies for adversarial systems. In: 42nd Annual Symposium on Foundations
of Computer Science FOCS, pp. 158–167. IEEE Computer Society (2001)

5. Awerbuch, B., Leighton, F.T.: A simple local-control approximation algorithm for
multicommodity flow. In: 34th Annual Symposium on Foundations of Computer
Science (FOCS), pp. 459–468 (1993)

6. Awerbuch, B., Leighton, T.: Improved approximation algorithms for the multi-
commodity flow problem and local competitive routing in dynamic networks.
In: Proceedings of the 26th Annual ACM Symposium on Theory of Computing
(STOC), pp. 487–496 (1994)

7. Awerbuch, B., Patt-Shamir, B., Varghese, G.: Self-stabilizing end-to-end commu-
nication. J. High Speed Netw. 5(4), 365–381 (1996)

8. Borodin, A., Kleinberg, J., Raghavan, P., Sudan, M., Williamson, D.P.: Adversarial
queuing theory. J. ACM 48(1), 13–38 (2001)

9. Le Boudec, J.-Y., Thiran, P. (eds.): Network Calculus. LNCS, vol. 2050. Springer,
Heidelberg (2001)

10. Cruz, R.L.: A calculus for network delay, part I: network elements in isolation.
IEEE Trans. Inf. Theory 37(1), 114–131 (1991)

11. Emek, Y., Halldórsson, M.M., Mansour, Y., Patt-Shamir, B., Radhakrishnan, J.,
Rawitz, D.: Online set packing. SIAM J. Comput. 41(4), 728–746 (2012)

12. Gettys, J., Nichols, K.: Bufferbloat: dark buffers in the internet. ACM Queue 9(11)
(2011)

13. Goldberg, A.V., Tarjan, R.E.: Finding minimum-cost circulations by successive
approximation. Math. Oper. Res. 15(3), 430–466 (1990)

14. Goldwasser, M.H.: A survey of buffer management policies for packet switches.
SIGACT News 41(1), 100–128 (2010)

15. Kesselman, A., Lotker, Z., Mansour, Y., Patt-Shamir, B., Schieber, B., Sviridenko,
M.: Buffer overflow management in QoS switches. SIAM J. Comput. 33(3), 563–
583 (2004)

16. Kesselman, A., Mansour, Y.: Harmonic buffer management policy for shared mem-
ory switches. Theoret. Comput. Sci. 324(2–3), 161–182 (2004)

17. Kesselman, A., Mansour, Y., Lotker, Z., Patt-Shamir, B.: Buffer overflows of merg-
ing streams. In: Proceedings of the 15th Annual ACM Symposium on Parallel
Algorithms and Architectures (SPAA), pp. 244–245 (2003)

18. Kesselman, A., Rosén, A.: Scheduling policies for CIOQ switches. J. Algorithms
60(1), 60–83 (2006)

19. Kushilevitz, E., Ostrovsky, R., Rosén, A.: Log-space polynomial end-to-end com-
munication. SIAM J. Comput. 27(6), 1531–1549 (1998)

20. Mansour, Y., Patt-Shamir, B., Lapid, O.: Optimal smoothing schedules for real-
time streams. Distrib. Comput. 17(1), 77–89 (2004)

21. Merlin, P.M., Schweitzer, P.J.: Deadlock avoidance in store-and-forward networks–
I: store and forward deadlock. IEEE Trans. Commun. 28(3), 345–354 (1980)

22. Open Network Foundation: software-defined networking: the new norm for net-
works. White paper, April 2012. https://www.opennetworking.org/images/stories/
downloads/sdn-resources/white-papers/wp-sdn-newnorm.pdf

23. Rosén, A., Scalosub, G.: Rate vs.buffer size-greedy information gathering on the
line. ACM Trans. Algorithms 7(3, article 32) (2011)

https://www.opennetworking.org/images/stories/downloads/sdn-resources/white-papers/wp-sdn-newnorm.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/white-papers/wp-sdn-newnorm.pdf

Distributed Testing of Excluded Subgraphs

Pierre Fraigniaud1, Ivan Rapaport2, Ville Salo2, and Ioan Todinca3(B)

1 CNRS and University Paris Diderot, Paris, France
2 DIM-CMM (UMI 2807 CNRS), Universidad de Chile, Santiago, Chile

3 Université d’Orléans, Orléans, France
ioan.todinca@univ-orleans.fr

Abstract. We study property testing in the context of distributed com-
puting, under the classical CONGEST model. It is known that testing
whether a graph is triangle-free can be done in a constant number of
rounds, where the constant depends on how far the input graph is from
being triangle-free. We show that, for every connected 4-node graph H,
testing whether a graph is H-free can be done in a constant number
of rounds too. The constant also depends on how far the input graph
is from being H-free, and the dependence is identical to the one in the
case of testing triangle-freeness. Hence, in particular, testing whether a
graph is K4-free, and testing whether a graph is C4-free can be done in
a constant number of rounds (where Kk denotes the k-node clique, and
Ck denotes the k-node cycle). On the other hand, we show that testing
Kk-freeness and Ck-freeness for k ≥ 5 appear to be much harder. Specif-
ically, we investigate two natural types of generic algorithms for testing
H-freeness, called DFS tester and BFS tester. The latter captures the
previously known algorithm to test the presence of triangles, while the
former captures our generic algorithm to test the presence of a 4-node
graph pattern H. We prove that both DFS and BFS testers fail to test
Kk-freeness and Ck-freeness in a constant number of rounds for k ≥ 5.

1 Introduction

Let P be a graph property, and let 0 < ε < 1 be a fixed parameter. According
to the usual definition from property testing [16], an n-node m-edge graph G
is ε-far from satisfying P if applying a sequence of at most εm edge-deletions
or edge-additions to G cannot result in a graph satisfying P. In the context of
property testing, graphs are usually assumed to be stored using an adjacency
list1, and a centralized algorithm has the ability to probe nodes, via queries of

Additional support from ANR project DISPLEXITY, Inria project GANG, CONI-
CYT via Basal in Applied Mathematics, Núcleo Milenio Información y Coordinación
en Redes ICM/FIC RC130003, Fondecyt 1130061 and Fondecyt 3150552.

1 Actually, property testing tackles graph problems in both the dense model (graphs
represented by adjacency matrices) and the sparse model (graphs represented by
adjacency lists). In this paper, we are interested in property testing in the sparse
model.

c© Springer-Verlag Berlin Heidelberg 2016
C. Gavoille and D. Ilcinkas (Eds.): DISC 2016, LNCS 9888, pp. 342–356, 2016.
DOI: 10.1007/978-3-662-53426-7 25

Distributed Testing of Excluded Subgraphs 343

the form (i, j) where i ∈ {1, . . . , n}, and j ≥ 0. The answer to a query (i, 0) is
the degree of node i, while the answer to a query (i, j) with j > 0 is the identity
of the jth neighbor of node i. After a small number of queries, the algorithm
must output either accept or reject. An algorithm Seq is a testing algorithm for
P if and only if, for every input graph G,

{
G satisfies P =⇒ Pr[Seq accepts G] ≥ 2

3 ;
G is ε-far from satisfying P =⇒ Pr[Seq rejects G] ≥ 2

3 .

(An algorithm is 1-sided if it systematically accepts every graph satisfying P).
The challenge in this context is to design testing algorithms performing as few
queries as possible.

In the context of distributed property testing [6], the challenge is not the
number of queries (as all nodes perform their own queries in parallel), but the
lack of global perspective on the input graph. The graph models a network. Every
node of the network is a processor, and every processor can exchange messages
with all processors corresponding to its neighboring nodes in the graph. After
a certain number of rounds of computation, every node must output accept or
reject. A distributed algorithm Dist is a distributed testing algorithm for P if
and only if, for any graph G modeling the actual network,
{

G satisfies P =⇒ Pr[Dist accepts G in all nodes] ≥ 2
3 ;

G is ε-far from satisfying P =⇒ Pr[Dist rejects G in at least one node] ≥ 2
3 .

The challenge is to use as few resources of the network as possible. In par-
ticular, it is desirable that every processor could take its decision (accept or
reject) without requiring data from far away processors in the network, and that
processors exchange messages of size respecting the inherent bounds imposed
by the limited bandwidth of the links. These two constraints are well captured
by the CONGEST model. This model is a classical model for distributed com-
putation [27]. Processors are given distinct identities, that are supposed to have
values in [1, nc] in n-node networks, for some constant c ≥ 1. All processors start
at the same time, and then proceed in synchronous rounds. At each round, every
processor can send and receive messages to/from its neighbors, and perform some
individual computation. All messages must be of size at most O(log n) bits. So,
in particular, every message can include at most a constant number of processor
identities. As a consequence, while every node can gather the identities of all its
neighbors in just one round, a node with large degree that is aware of all the
identities of its neighbors may not be able to send them all simultaneously to a
given neighbor. The latter observation enforces strong constraints on distributed
testing algorithms in the CONGEST model. For instance, while the LOCAL model
allows every node to gather its t-neighborhood in t rounds, even just gathering
the 2-neighborhood may require Ω(n) rounds in the CONGEST model (e.g., in
the Lollipop graph, which is the graph obtained by joining a path to a clique). As
a consequence, detecting the presence of even a small given pattern in a graph
efficiently is not necessarily an easy task.

The presence or absence of a certain given pattern (typically, paths, cycles
or cliques of a given size) as a subgraph, induced subgraph, or minor, has a

344 P. Fraigniaud et al.

significant impact on graph properties, and/or on the ability to design efficient
algorithms for hard problems. This paper investigates the existence of efficient
distributed testing algorithms for the H-freeness property, depending on the
given graph H. Recall that, given a graph H, a graph G is H-free if and only if
H is not isomorphic to a subgraph of G, where H is a subgraph of a graph G if
V (H) ⊆ V (G), and E(H) ⊆ E(G). Recently, Censor-Hillel et al. [6] established
a series of results regarding distributed testing of different graph properties,
including bipartiteness and triangle-freeness. A triangle-free graph is a K3-free
graph or, equivalently, a C3-free graph, where Kk and Ck respectively denote the
clique and the cycle on k vertices. The algorithm in [6] for testing bipartiteness
(of bounded degree networks) requires O(log n) rounds in the CONGEST model,
and the authors conjecture that this is optimal. However, quite interestingly,
the algorithm for testing triangle-freeness requires only a constant number of
rounds, O(1/ε2), i.e., it depends only on the (fixed) parameter ε quantifying the
ε-far relaxation.

In this paper, we investigate the following question: what are the (connected)
graphs H for which testing H-freeness can be done in a constant number of
rounds in the CONGEST model?

1.1 Our Results

We show that, for every connected 4-node graph H, testing whether a graph
is H-free can be done in O(1/ε2) rounds. Hence, in particular, testing whether
a graph is K4-free, and testing whether a graph is C4-free can be done in a
constant number of rounds. Our algorithm is generic in the sense that, for all
4-node graphs H, the global communication structure of the algorithm is the
same, with only a variant in the final decision for accepting or rejecting, which
of course depends on H.

In fact, we identify two different natural generic types of testing algorithms
for H-freeness. We call the first type DFS tester, and our algorithm for testing the
presence of 4-node patterns is actually the DFS tester. Such an algorithm applies
to Hamiltonian graphs H, i.e., graphs H containing a simple path spanning all its
vertices (the only non-hamiltonian connected graph on 4 vertices is the star K1,3,
for which the problem is trivial). The DFS tester performs in |H| − 1 rounds.
Recall that, for a node set A, G[A] denotes the subgraph of G induced by A. At
each round t of the DFS tester, at every node u, and for each of its incident edges
e, node u pushes a graph G[At] (where, initially, A0 is just the graph formed
by u alone). The graph G[At] is chosen u.a.r. among the sets of graphs received
from the neighbors at the previous round. More specifically, upon reception of
every graph G[At−1] at round t−1, node u forms a graph G[At−1∪{u}], and the
graph G[At] pushed by u along e at round t is chosen u.a.r. among the collection
of graphs G[At−1∪{u}] currently held by u. By repeating this algorithm O(1/ε2)
times we obtain the desired probability.

We call BFS tester the second type of generic testing algorithm for H-
freeness. The algorithm in [6] for triangle-freeness is a simplified variant of the
BFS tester, and we prove that the BFS tester can test K4-freeness in O(1/ε2)

Distributed Testing of Excluded Subgraphs 345

rounds. Instead of guessing a path spanning H (which may actually not exist
for H large), the BFS tester aims at directly guessing all neighbors in H simul-
taneously. The algorithm performs in D − 1 rounds, where D is the diameter of
H. For the sake of simplicity, let us assume that H is d-regular. At each round,
every node u forms groups of d neighboring nodes. These groups may overlap,
but a neighbor should not participate to more than a constant number of groups.
Then for every edge e = {u, v} incident to u, node u pushes all partial graphs
of the form G[At−1 ∪ {v1, . . . , vt}] where v ∈ {v1, . . . , vt}, At−1 is chosen u.a.r.
among the graphs received at the previous round, and the vi’s will be in charge
of checking the presence of edges between them and the other vj ’s.

We prove that neither the DFS tester, nor the BFS tester can test Kk-freeness
in a constant number of rounds for k ≥ 5, and that the same holds for testing
Ck-freeness (with the exception of a finite number of small values of k). This
shows that testing Kk-freeness or Ck-freeness for k ≥ 5 in a constant number
of rounds requires, if at all possible, to design algorithms which explore G from
each node in a way far more intricate than just parallel DFSs or parallel BFSs.
Our impossibility results, although restricted to DFS and BFS testers, might
be hints that testing Kk-freeness and Ck-freeness for k ≥ 5 in n-node networks
does require to perform a number of rounds which grows with the size n of the
network.

1.2 Related Work

The CONGEST model has become a standard model in distributed compu-
tation [27]. Most of the lower bounds in the CONGEST model have been
obtained using reduction to communication complexity problems [8,11,23]. The
so-called congested clique model is the CONGEST model in the complete graph
Kn [10,22,24,26]. There are extremely fast protocols for solving different types
of graph problems in the congested clique, including finding ruling sets [20],
constructing minimum spanning trees [19], and, closely related to our work,
detecting small subgraphs [7,9].

The distributed property testing framework in the CONGEST model was
recently introduced in the aforementioned paper [6], inspired from classical prop-
erty testing [16,17]. Distributed property testing relaxes classical distributed
decision [12,13,18], typically designed for the LOCAL model, by ignoring ille-
gal instances which are less than ε-far from satisfying the considered property.
Without such a relaxation, distributed decision in the CONGEST model requires
non-constant number of rounds [8]. Other variants of local decision in the LOCAL
model have been studied in [2,3], where each process can output an arbitrary
value (beyond just a single bit — accept or reject), and [4,21], where nodes
are bounded to perform a single round before to output at most O(log n) bits.
Distributed decision has been also considered in other distributed environments,
such as shared memory [14], with application to runtime verification [15], and
networks of finite automata [28].

346 P. Fraigniaud et al.

2 Detecting Small Graphs Using a DFS Approach

In this section, we establish our main positive result, which implies, in particular,
that testing C4-freeness and testing K4-freeness can be done in constant time in
the CONGEST model.

Theorem 1. Let H be a connected graph on four vertices. There is a 1-sided
error distributed property-testing algorithm for H-freeness, performing in a con-
stant number of rounds in the CONGEST model.

Proof. All 4-node connected graphs H contain a P4 (a path on four vertices) as a
subgraph, with the only exception of the star K1,3 (a.k.a. the claw). Nevertheless,
testing whether a graph G is K1,3-free is trivial (every node rejects whenever its
degree is at least three). Therefore, we are going to show the theorem by exhibit-
ing a generic distributed testing protocol for testing H-freeness, that applies to
any graph H on four vertices containing a P4 as a subgraph. The core of this
algorithm is presented as Algorithm 1. Note that the test H ⊆ G[u, u′, v′, w′] at
step 4 of Algorithm 1 can be performed thanks to the bit b that tells about the
only edge that node u is not directly aware of. Algorithm 1 performs in just two
rounds (if we omit the round used to acquire the identities of the neighbors),
and that a single O(log n)-bit message is sent through every edge at each round.
Clearly, if G is H-free, then all nodes accept.

Algorithm 1. Testing H-freeness for 4-node Hamiltonian H. Instructions
for node u.
1 Send id(u) to all neighbors;
2 For every neighbor v, choose a received identity id(w) u.a.r., and send

(id(w), id(u)) to v;
3 For every neighbor v, choose a received pair (id(w′), id(u′)) u.a.r., and send

(id(w′), id(u′), id(u), b) to v, where b = 1 if w′ is a neighbor of u, and b = 0
otherwise;

4 For every received 4-tuple (id(w′), id(v′), id(u′), b), check whether
H ⊆ G[u, u′, v′, w′];

5 If H ⊆ G[u, u′, v′, w′] for one such 4-tuple then reject else accept.

In order to analyze the efficiency of Algorithm 1 in case G is ε-far from being
H-free, let us consider a subgraph G[{u1, u2, u3, u4}] of G containing H, such
that (u1, u2, u3, u4) is a P4 spanning H. Let E be the event “at step 2, vertex
u2 sends (id(u1), id(u2)) to its neighbor u3”. We have Pr[E] = 1/d(u2). Simi-
larly, let E ′ be the event “at step 3, vertex u3 sends (id(u1), id(u2), id(u3)) to its
neighbor u4”. We have Pr[E ′|E] = 1/d(u3). Since Pr[E ∧ E ′] = Pr[E ′|E] · Pr[E], it
follows that

Pr[H is detected by u4 while performing Algorithm 1] ≥ 1
d(u2)d(u3)

. (1)

Distributed Testing of Excluded Subgraphs 347

Note that the events E and E ′ only depend on the choices made by u2 for the
edge {u2, u3} and by u3 for the edge {u3, u4}, in steps 3 and 4 of Algorithm 1,
respectively. Since these choices are performed independently at all nodes, it
follows that if H1 and H2 are edge-disjoint copies of H in G, then the events E1

and E2 associated to them are independent, as well as the events E ′
1 and E ′

2.
The following result will be used throughout the paper, so we state it as a

lemma for further references.

Lemma 1. Let G be ε-far from being H-free. Then G contains at least
εm/|E(H)| edge-disjoint copies of H.

Proof of Lemma 1. Let S = {e1, . . . , ek} be a smallest set of edges whose removal
from G results in an H-free graph. We have k ≥ εm. Let us then remove these
edges from G according to the following process. The edges are removed in
arbitrary order. Each time an edge e is removed from S, we select an arbitrary
copy He of H containing e, we remove all the edges of He from G, and we reset
S as S \ E(He). We proceed as such until we have exhausted all the edges of S.
Note that each time we pick an edge e ∈ S, there always exists a copy He of H
containing e. Indeed, otherwise, S \ {e} would also be a set whose removal from
G results in an H-free graph, contradicting the minimality of |S|. After at most
k such removals, we get a graph that is H-free, and, by construction, for every
two edges e, e′ ∈ S, we have that He and He′ are edge-disjoint. Every step of
this process removes at most |E(H)| edges from S, hence the process performs
at least εm/|E(H)| steps before exhausting all edges in S. Lemma 1 follows. �	

Let us now define an edge {u, v} as important if it is the middle-edge of a
P4 in one of the εm/|E(H)| edge-disjoint copies of H constructed in the proof
of Lemma 1. We denote by I(G) the set of all important edges. Let N0 be the
random variable counting the number of distinct copies of H that are detected
by Algorithm 1. As a direct consequence of Eq. (1), we get that

E(N0) ≥
∑

{u,v}∈I(G)

1
d(u)d(v)

.

Define an edge {u, v} of G as good if d(u)d(v) ≤ 4m|E(H)|/ε, and let g(G)
denote the set of good edges. Note that if there exists a constant γ > 0 such
that |I(G) ∩ g(G)| ≥ γm, then the expected number of copies of H detected
during a phase is

E(N0) ≥
∑

{u,v}∈I(G)∩g(G)

1
d(u)d(v)

≥ γm
1

4m|E(H)|/ε
=

γε

4|E(H)| . (2)

We now show that the number of edges that are both important and good is
indeed at least a fraction γ of the edges, for some constant γ > 0. We first show
that G has at least (1− 3

4|E(H)|ε)m good edges. Recall that
∑

u∈V (G) d(u) = 2m,
and define N(u) as the set of all neighbors of node u. We have

348 P. Fraigniaud et al.

∑

{u,v}∈E(G)

d(u)d(v) =
1
2

∑

u∈V (G)

d(u)
∑

v∈N(u)

d(v) ≤
∑

u∈V (G)

d(u) m ≤ 2m2.

Thus G must have at least (1 − 3
4|E(H)|ε)m good edges, since otherwise

∑

{u,v}∈E(G)

d(u)d(v) ≥
∑

{u,v}∈E(G)\g(G)

d(u)d(v) >
3

4|E(H)|εm
4m|E(H)|

ε
= 3m2,

contradicting the aforementioned 2m2 upper bound. Thus, G has at least (1 −
3

4|E(H)|ε)m good edges. On the other hand, since the number of important edges
is at least the number of edge-disjoint copies of H in G, there are at least
εm/|E(H)| important edges. It follows that the number of edges that are both
important and good is at least ε

4|E(H)|m. Therefore, by Eq. (2), we get that

E(N0) ≥
(

ε
4|E(H)|

)2

.

All the above calculations were made on the εm/|E(H)| edge-disjoint copies
of H constructed in the proof of Lemma1. Therefore, if X

(0)
i denotes the ran-

dom variable satisfying X
(0)
i = 1 if the ith copy H is detected, and X

(0)
i = 0

otherwise, then we have N0 =
∑εm/|E(H)|

i=1 X
(0)
i , and the variables X

(0)
i , i =

1, . . . , εm/|E(H)|, are mutually independent. Let T = 8 ln 3
(

4|E(H)|
ε

)2

.

By repeating the algorithm T times, and defining N =
∑T−1

t=0 Nt where Nt

denotes the number of copies of H detected at the tth independent repetition,
we get E(N) ≥ 8 ln 3. In fact, we also have N =

∑T−1
t=0

∑εm/|E(H)|
i=1 X

(t)
i where

X
(t)
i = 1 if the ith copy H is detected at the tth iteration of the algorithm,

and X
(t)
i = 0 otherwise. All these variables are mutually independent, as there

is mutual independence within each iteration, and all iterations are performed
independently. Therefore, Chernoff bound applies (see Theorem 4.5 in [25]), and
so, for every 0 < δ < 1, we have Pr[N ≤ (1 − δ)E[N]] ≤ e−δ2E[N]/2.

By taking δ = 1
2 we get Pr[N ≤ 4 ln 3] ≤ 1

3 . Therefore, a copy of H is detected
with probability at least 2

3 , which completes the proof of Theorem 1. �	

3 Limits of the DFS Approach

Algorithm 1 can be extended in a natural way to any k-node graph H containing
a Hamiltonian path, as depicted in Algorithm2. At the first round, every vertex
u sends its identifier to its neighbors, and composes the d(u) graphs formed by
the edge {u, v}, one for every neighbor v. Then, during the k−2 following rounds,
every node u forwards through each of its edges one of the graphs formed a the
previous round.

Let (u1, u2, . . . , uk) be a simple path in G, and assume that
G[{u1, u2, . . . , uk}] contains H. If, at each round i, 2 ≤ i < k, vertex ui sends to
ui+1 the graph G[{u1, . . . , ui}], then, when the repeat-loop completes, vertex uk

Distributed Testing of Excluded Subgraphs 349

Algorithm 2. Testing H-freeness: Hamiltonian H, |V (H)| = k. Instruc-
tions for node u.
1 send the 1-node graph G[u] to every neighbor v;
2 form the graph G[{u, v}] for every neighbor v;
3 repeat k − 2 times
4 for every neighbor v do
5 choose a graph G[A] u.a.r. among those formed during the previous

round;
6 send G[A] to v;
7 receive the graph G[A′] from v;
8 form the graph G[A′ ∪ {u}];

9 if H ⊆ G[A] for one of the graphs formed at the last round then reject else
accept.

will test precisely the graph G[{u1, u2, . . . , uk}], and thus H will be detected by
the algorithm. Theorem1 states that Algorithm 2 works fine for 4-node graphs
H. We show that, k = 4 is precisely the limit of detection for graphs that are
ε-far from being H-free, even for the cliques and the cycles.

Theorem 2. Let H = Kk for arbitrary k ≥ 5, or H = Ck for arbitrary odd
k ≥ 5. There exists a graph G that is ε-far from being H-free in which any
constant number of repetitions of Algorithm2 fails to detect H, with probability
at least 1 − o(1).

For the purpose of proving Theorem2, we use the following combinatorial
result, which extends Lemma 7 of [1], where the corresponding claim was proved
for k = 3, with a similar proof. The bound on p′ is not even nearly optimal in
Lemma 2 below, but it is good enough for our purpose2.

Lemma 2. Let k be a constant. For any sufficiently large p, there exists a set
X ⊂ {0, . . . , p − 1} of size p′ ≥ p1− log log log p+4

log log p such that, for any k elements
x1, x2, . . . , xk of X,

∑k−1
i=1 xi ≡ (k−1)xk (mod p) =⇒ x1 = · · · = xk−1 = xk.

Proof. Let b = �log p� and a =
⌊

log p
log log p

⌋
. Take p sufficiently large so that a < b/k

is satisfied. X is a set of integers encoded in base b, on a b-ary digits, such that
the digits of each x ∈ X are a permutation of {0, 1, . . . , a − 1}. More formally,
for any permutation π over {0, . . . , a−1}, let Nπ =

∑a−1
i=0 π(i)bi. Then, let us set

X = {Nπ | π is a permutation of {0, . . . , a − 1}}. Observe that different permu-
tations π and π′ yield different numbers Nπ and Nπ′ because these numbers have
different digits in base b. Hence X has p′ = a! elements. Using the inequality
z! > (z/e)z as in [1] (Lemma 7), we get that a! ≥ p1− log log log p+4

log log p , as desired.

2 The interested reader can consult [29] for the state-of-the-art on such combinator-

ial constructions, in particular constructions for p′ ≥ p1−c/
√
log p, for a constant c

depending on k.

350 P. Fraigniaud et al.

Now, for any x ∈ X, we have x ≤ p/k. Indeed, x < a · ba−1 ≤ 1
k ba,

and ba ≤ (log p)
log p

log log p = p. Consequently, the modulo in the statement of
the Lemma becomes irrelevant, and we will simply consider integer sums. Let
x1, . . . , xk−1, xk in X, such that

∑k−1
l=1 xi = (k − 1)xk. Viewing the xi’s as inte-

gers in base b, and having in mind that all digits are smaller than b/k, we
get that the equality must hold coordinate-wise. For every 1 ≤ l ≤ k, let πl

be the permutation such that xl = Nπl
. For every i ∈ 0, . . . , a − 1, we have∑k−1

l=1 πl(i) = (k − 1)πk(i). By the Cauchy-Schwarz inequality applied to vec-
tors (π1(i), . . . , πk−1(i)) and (1, . . . , 1), for every i ∈ {0, . . . , a − 1}, we also
have

∑k−1
l=1 (πl(i))

2 ≥ (k − 1) (πk(i))2 . Moreover equality holds if and only if
π1(i) = · · · = πk−1(i) = πk(i). By summing up the a inequalities induced by the
a coordinates, observe that both sides sum to exactly (k − 1)

∑a−1
i=0 i2. There-

fore, for every i, the Cauchy-Schwarz inequality is actually an equality, implying
that the ith digit is identical in all the k integers x1, . . . , xk. As a consequence,
x1 = · · · = xk−1 = xk, which completes the proof. �	
Proof of Theorem 2. Assume that G[{u1, u2, . . . , uk}] contains H, where the
sequence (u1, u2, . . . , uk) is a path of G. For 2 ≤ i ≤ k − 1, let us consider the
event “at round i, vertex ui sends the graph G[u1, . . . , ui}] to ui+1”. Observe
that this event happens with probability 1

d(ui)
because ui choses which subgraph

to send uniformly at random among the d(ui) constructed subgraphs. With the
same arguments as the ones used to establish Eq. (1), we get

Pr[H is detected along the path (u1, . . . , uk)] =
1

d(u2)d(u3) . . . d(uk−1)
. (3)

We construct families of graphs which will allow us to show, based on that latter
equality, that the probability to detect a copy of H vanishes with the size of the
input graph G. We actually use a variant of the so-called Behrend graphs (see,
e.g., [1,5]), and we construct graph families indexed by k, and by a parameter
p, that we denote by BC(k, p) for the case of cycles, and by BK(k, p) for the
case of cliques. We prove that these graphs are ε-far from being H-free, while
the probability that Algorithm2 detects a copy of H in these graphs goes to 0.

Let us begin with the case of testing cycles. Let p be a large prime number,
and let X be a subset of {0, . . . , p − 1} of size p′ ≥ p1− log log log p+4

log log p , where p′ is as
defined in Lemma 2. Graph BC(k, p) is then constructed as follows. The vertex
set V is the disjoint union of an odd number k of sets, V 0, V 1, . . . V k−1, of p
elements each. For every l, 0 ≤ l ≤ k − 1, let ul

i, i = 0, . . . , p − 1 be the nodes in
V l so that V l = {ul

i | i ∈ {0, . . . , p − 1}}. For every i ∈ {0, . . . , p − 1} and every
x ∈ X, edges in BC(k, p) form a cycle

Ci,x = (u0
i , . . . , u

l
i+lx, ul+1

i+(l+1)x, . . . , uk−1
i+(k−1)x),

where the indices are taken modulo p. The cycles Ci,x form a set of pp′ edge-
disjoint copies of Ck in BC(k, p). Indeed, for any two distinct pairs (i, x) �=

Distributed Testing of Excluded Subgraphs 351

(i′, x′), the cycles Ci,x and Ci′,x′ are edge-disjoint. Otherwise there exists a com-
mon edge e between the two cycles. It can be either between two consecutive lay-
ers V l and V l+1, or between V 0 and V k−1. There are two cases. If e = {ul

y, ul+1
z }

we must have y = i+lx = i′+lx′ and z = i+(l+1)x = i′+(l+1)x′, where equali-
ties are taken modulo p, and, as a consequence, (i, x) = (i′, x′). If e = {u0

y, uk−1
z }

then we have y = i = i′ and z = i + (k − 1)x′ = i′ + (k − 1)x′, and, since p is
prime, we also conclude that (i, x) = (i′, x′).

We now show that any k-cycle has exactly one vertex in each set V l, for
0 ≤ l < k − 1. For this purpose, we focus on the parity of the layers formed by
consecutive vertices of a cycle. The “short” edges (i.e., ones between consecutive
layers) change the parity of the layer, and hence every cycle must include “long”
edges (i.e., ones between layers 0 and k − 1). However, long edges do not change
the parity of the layer. Therefore, every cycle contains an odd number of long
edges, and an even number of short edges. For this to occur, the only possibility
is that the cycle contains a vertex from each layer.

Next, we show that any cycle of k vertices in BC(k, p) must be of the form
Ci,x for some pair (i, x). Let C = (u0

y0
, . . . ul

yl
, ul+1

yl+1
, . . . , uk−1

yk−1
) be a cycle in

BC(k, p). For every l = 1, . . . , k − 1, let xl = yl − yl−1 mod p. We have xl ∈ X
because the edge {ul−1

yl−1
, ul

yl
} is in some cycle Ci,xl

. Also set xk ∈ X such that the
edge {u0

y0
, uk−1

yk−1
} is in the cycle Cy0,xk

. In particular we must have that yk−1 =
y0 +(k − 1)xk. It follows that yk−1 = y0 +(k − 1)xk = y0 +x1 +x2 + · · ·+xk−1.
By Lemma 2, we must have x1 = · · · = xk−1 = xk, so C is of the form Ci,x.

It follows from the above that BC(k, p) has exactly pp′ edge-disjoint cycles
of k vertices. Since BC(k, p) has n = kp vertices, and m = kpp′ edges, BC(k, p)
is ε-far from being Ck-free, for ε = 1

k . Also, each vertex of BC(k, p) is of degree
2p′ because each vertex belongs to p′ edge-disjoint cycles.

Let us now consider an execution of Algorithm 2 for input BC(k, p). As
BC(k, p) is regular of degree d = 2p′, this execution has probability at most
2k

dk−2 to detect any given cycle C of k vertices. Indeed, C must be detected along
one of the paths formed by its vertices in graph BC(k, p), there are at most
2k such paths in C (because all Ck’s in BC(k, p) are induced subgraphs, and
paths are oriented), and, by Eq. (3), the probability of detecting the cycle along
one of its paths is 1

dk−2 . Therefore, applying the union bound, the probability of
detecting a given cycle C is at most 2k

dk−2 .
Since there are pp′ edge-disjoint cycles, the expected number of cycles

detected in one execution of Algorithm 2 is at most 2kpp′

(2p′)k−2 . It follows that
the expected number of cycles detected by repeating the algorithm T times is at
most 2kpT

2(2p′)k−3 . Consequently, the probability that the algorithm detects a cycle

is at most 2kpT
2(2p′)k−3 . Plugging in the fact that, by Lemma2, p′ = p1−o(1), we con-

clude that, for any constant T , the probability that T repetitions of Algorithm2
detect a cycle goes to 0 when p goes to ∞, as claimed.

The case of the complete graph is treated similarly. Graphs BK(k, p) are
constructed in a way similar to BC(k, p), as k-partite graphs with p vertices in
each partition (in particular, BK(k, p) also has n = kp vertices). The difference
with BC(k, p) is that, for each pair (i, x) ∈ {0, . . . , p − 1} × X, we do not add a

352 P. Fraigniaud et al.

cycle, but a complete graph Ki,x on the vertex set {u0
i , . . . , u

l
i+lx, ul+1

i+(l+1)x, . . . ,

uk−1
i+(k−1)x}. By the same arguments as for BC(k, p), BK(k, p) contains contains

exactly pp′ edge-disjoint copies of Kk (namely Ki,x, for each pair (i, x)). This fact
holds even for even values of k, because any k-clique must have a vertex in each
layer, no matter the parity of k. Thus, in particular BK(k, p) has m =

(
k
2

)
pp′

edges, and every vertex is of degree d = (k − 1)p′. The graph BK(k, p) is ε-far
from being Kk-free, for ε = 2

k(k−1) . The probability that Algorithm2 detects a
given copy of Kk is at most k!

dk−2 . Indeed, a given Kk has k! (oriented) paths of
length k, and, by Eq. (3), the probability that the algorithm detects this copy
along a given path is 1

dk−2 . The expected number E[N] of Kk’s detected in T runs
of Algorithm 2 is, as for BC(k, p), at most k!Tpp′

dk−2 = k! pT
(k−1)k−2(p′)k−3 . Therefore,

since Pr[N �= 0] ≤ E[N], we get that the probability that the algorithm detects
some Kk goes to 0 as p goes to ∞. It follows that the algorithm fails to detect
Kk, as claimed. �	
Remark. The proof that Algorithm2 fails to detect Ck for odd k ≥ 5, can be
extended to all (odd or even) k ≥ 13, as well as to k = 10. The cases of C6,
C8, are C12 are open, although we strongly believe that Algorithm2 also fails to
detect these cycles in some graphs.

4 Detecting Small Graphs Using a BFS Approach

We discuss here another very natural approach, extending the algorithm pro-
posed by Censor-Hillel et al. [6] for testing triangle-freeness. In the protocol of [6],
each node u samples two neighbors v1 and v2 uniformly at random, and asks
them to check the presence of an edge between them. We generalize this protocol
as follows. Assume that the objective is to test H-freeness, for a graph H contain-
ing a universal vertex (a vertex adjacent to every other). Each node u samples
d(u) sets S1, . . . , Sd(u), of |V (H)| − 1 neighbors each. For each i = 1, . . . , d(u),
node u sends Si to all its neighbors in Si, asking them to check the presence
of edges between them, and collecting their answers. Based on these answers,
node u can tell whether G[Si ∪ {u}] contains H. We show that this very simple
algorithm can be used for testing K4-freeness.

Theorem 3. There is a 1-sided error distributed property-testing algorithm for
K4-freeness, performing in a constant number of rounds in the CONGEST model.

Again, we show the theorem by exhibiting a generic distributed testing pro-
tocol for testing H-freeness, that applies to any graph H on four vertices with a
universal vertex. The core of this algorithm is presented as Algorithm3 where all
calculations on indices are performed modulo d = d(u) at node u. This algorithm
is presented for a graph H with k nodes.

At Step 3, node u picks a permutation π u.a.r., in order to compose the d(u)
sets S1, . . . , Sd(u), which are sent in parallel at Steps 4–5. At Step 8, every node
u considers separately each of the k − 1 tuples of size k − 1 received from each

Distributed Testing of Excluded Subgraphs 353

Algorithm 3. Testing H-freeness for H with a universal vertex. Instruc-
tions for node u of degree d. We let k = |V (H)|.
1 send id(u) to all neighbors;
2 index the d neighbors v0, . . . , vd−1 in increasing order of their IDs;
3 pick a permutation π ∈ Σd of {0, 1, . . . , d − 1}, u.a.r.;
4 for each i ∈ {0, . . . , d − 1} do
5 Send (id(vπ(i)), id(vπ(i+1)), . . . , id(vπ(i+k−2))) to vπ(i), vπ(i+1), . . . , vπ(i+k−2);

6 for each i ∈ {0, . . . , d − 1} do

7 for each of the k − 1 tuples (id(w(1)), . . . , id(w(k−1))) received from vi do

8 Send (b(1), . . . , b(k−1)) to vi where b(j) = 1 iff u = w(j) or {u, w(j)} ∈ E;

9 If ∃i ∈ {0, . . . , d − 1} s.t. H ⊆ G[u, vπ(i), . . . , vπ(i+k−2)] then reject else accept.

of its neighbors, checks the presence of edges between u and each of the nodes
in that tuple, and sends back the result to the neighbor from which it received
the tuple. Finally, the tests H ⊆ G[u, vπ(i), vπ(i+1), . . . , vπ(i+k−2)] performed at
the last step is achieved thanks to the (k − 1)-tuple of bits received from each of
the neighbors vπ(i), vπ(i+1), . . . , vπ(i+k−2), indicating the presence or absence of
all the edges between these nodes. Note that exactly 2k−5 IDs are actually sent
through each edges at Steps 4–5, because of the permutation shifts. Similarly,
2k−5 bits are sent through each edge at Steps 6–8. Therefore Algorithm 3 runs in
a constant number of rounds in the CONGEST model. The proof of the following
result will appear in a full version of this paper. Among others, it relies on the
observation that two disjoint copies of K4 share at most one vertex (which does
not hold for other graphs H).

Lemma 3. Let G be ε-far from being K4-free. Algorithm3 for H = K4 rejects
G with constant probability.

5 Limits of the BFS Approach

As it happened with the DFS-based approach, the BFS-based approach fails to
generalize to large graphs H. Actually, it already fails for K5.

Theorem 4. Let k ≥ 5. There exists a graph G that is ε-far from being Kk-free
in which any constant number of repetitions of Algorithm3 fails to detect any
copy of Kk, with probability at least 1 − o(1).

Proof. The family of graphs BK(k, p) constructed in the proof of Theorem2
for defeating Algorithm2 can also be used to defeat Algorithm 3. Recall that
those graphs have n = kp vertices, m =

(
k
2

)
pp′ edges, and every vertex is of

degree d = (k − 1)p′, for p′ = p1−o(1). Moreover, they have exactly pp′ copies of
Kk, which are pairwise edge-disjoint. BK(k, p) is ε-far from being Kk-free with
ε = 1/

(
k
2

)
. For each copy K of Kk, and for every u ∈ K, the probability that u

354 P. Fraigniaud et al.

detects K is d/
(

d
k−1

) ≤ α
dk−2 for some constant α > 0. Therefore, when running

the algorithm T times, it follows from the union bound that the expected number
of detected copies of Kk is at most αkTpp′

dk−2 , which tends to 0 when p → ∞, for
any k ≥ 5. Consequently, the probability of detects at least one copy of Kk also
tends to 0. �	

6 Conclusion and Further Work

The lower bound techniques for the CONGEST model are essentially based on
reductions to communication complexity problems. Such an approach does not
seem to apply easily in the context of distributed testing. The question of whether
the presence of large cliques (or cycles) can be tested in O(1) rounds in the
CONGEST model is an intriguing open problem.

It is worth mentioning that our algorithms generalize to testing the pres-
ence of induced subgraphs. Indeed, if the input graph G contains at least εm
edge-disjoint induced copies of H, for a graph H on four vertices containing a
Hamiltonian path, then Algorithm1 detects an induced subgraph H with con-
stant probability (the only difference is that, in the last line of the algorithm,
we check for an induced subgraph instead of just a subgraph). Moreover, if the
input contains εm edge-disjoint induced claws (i.e., induced subgraphs K1,3),
then Algorithm 3 detects one of them with constant probability. Thus, for any
connected graph H on four vertices, distinguishing between graphs that do not
have H as induced subgraph, and those who have εm edge-disjoint induced copies
of H can be done in O(1) rounds in the CONGEST model. However, we point
out that, unlike in the case of subgraphs, a graph that is ε-far from having H as
induced subgraph may not have many edge-disjoint induced copies of H.

References

1. Alon, N., Kaufman, T., Krivelevich, M., Ron, D.: Testing triangle-freeness in gen-
eral graphs. SIAM J. Discrete Math. 22(2), 786–819 (2008)

2. Arfaoui, H., Fraigniaud, P., Ilcinkas, D., Mathieu, F.: Distributedly testing cycle-
freeness. In: Kratsch, D., Todinca, I. (eds.) WG 2014. LNCS, vol. 8747, pp. 15–28.
Springer, Heidelberg (2014)

3. Arfaoui, H., Fraigniaud, P., Pelc, A.: Local decision and verification with bounded-
size outputs. In: Higashino, T., Katayama, Y., Masuzawa, T., Potop-Butucaru, M.,
Yamashita, M. (eds.) SSS 2013. LNCS, vol. 8255, pp. 133–147. Springer, Heidelberg
(2013)

4. Becker, F., Kosowski, A., Matamala, M., Nisse, N., Rapaport, I., Suchan, K., Tod-
inca, I.: Allowing each node to communicate only once in a distributed system:
shared whiteboard models. Distrib. Comput. 28(3), 189–200 (2015)

5. Behrend, F.A.: On sets of integers which contain no three terms in arithmetical
progression. Proc. Natl. Acad. Sci. 32(12), 331 (1946)

6. Censor-Hillel, K., Fischer, E., Schwartzman, G., Vasudev, Y.: Fast distributed algo-
rithms for testing graph properties. CoRR abs/1602.03718, February 2016

Distributed Testing of Excluded Subgraphs 355

7. Censor-Hillel, K., Kaski, P., Korhonen, J.H., Lenzen, C., Paz, A., Suomela, J.:
Algebraic methods in the congested clique. In: Proceedings of PODC 2015, pp.
143–152 (2015)

8. Das-Sarma, A., Holzer, S., Kor, L., Korman, A., Nanongkai, D., Pandurangan, G.,
Peleg, D., Wattenhofer, R.: Distributed verification and hardness of distributed
approximation. SIAM J. Comput. 41(5), 1235–1265 (2012)

9. Dolev, D., Lenzen, C., Peled, S.: “Tri, Tri Again”: finding triangles and small
subgraphs in a distributed setting. In: Aguilera, M.K. (ed.) DISC 2012. LNCS,
vol. 7611, pp. 195–209. Springer, Heidelberg (2012)

10. Drucker, A., Kuhn, F., Oshman, R.: On the power of the congested clique model.
In: Proceedings of PODC 2014, pp. 367–376 (2014)

11. Elkin, M.: An unconditional lower bound on the time-approximation trade-off for
the distributed minimum spanning tree problem. SIAM J. Comput. 36(2), 433–456
(2006)

12. Fraigniaud, P., Göös, M., Korman, A., Suomela, J.: What can be decided locally
without identifiers? In: Proceedings of PODC 2013, pp. 157–165 (2013)

13. Fraigniaud, P., Korman, A., Peleg, D.: Local distributed decision. In: Proceedings
of FOCS 2011, pp. 708–717 (2011)

14. Fraigniaud, P., Rajsbaum, S., Travers, C.: Locality and checkability in wait-free
computing. Distrib. Comput. 26(4), 223–242 (2013)

15. Fraigniaud, P., Rajsbaum, S., Travers, C.: On the number of opinions needed for
fault-tolerant run-time monitoring in distributed systems. In: Bonakdarpour, B.,
Smolka, S.A. (eds.) RV 2014. LNCS, vol. 8734, pp. 92–107. Springer, Heidelberg
(2014)

16. Goldreich, O. (ed.): Property Testing. LNCS, vol. 6390. Springer, Heidelberg (2010)
17. Goldreich, O., Goldwasser, S., Ron, D.: Property testing and its connection to

learning and approximation. J. ACM 45(4), 653–750 (1998)
18. Göös, M., Jukka Suomela, J.: Locally checkable proofs. In: Proceedings of PODC

2011, pp. 159–168 (2011)
19. Hegeman, J.W., Pandurangan, G., Pemmaraju, S.V., Sardeshmukh, V.B., Scquiz-

zato, M.: Toward optimal bounds in the congested clique: graph connectivity and
MST. In: Proceedings of PODC 2015, pp. 91–100 (2015)

20. Hegeman, J.W., Pemmaraju, S.V., Sardeshmukh, V.B.: Near-constant-time dis-
tributed algorithms on a congested clique. In: Kuhn, F. (ed.) DISC 2014. LNCS,
vol. 8784, pp. 514–530. Springer, Heidelberg (2014)

21. Kari, J., Matamala, M., Rapaport, I., Salo, V.: Solving the induced subgraphprob-
lem in the randomized multiparty simultaneous messages model. In: Scheideler, C.
(ed.) SIROCCO 2015. LNCS, vol. 9439, pp. 370–384. Springer, Heidelberg (2015)

22. Lenzen, C.: Optimal deterministic routing and sorting on the congested clique. In:
Proceedings of PODC 2013, pp. 42–50 (2013)

23. Lotker, Z., Patt-Shamir, B., Peleg, D.: Distributed MST for constant diameter
graphs. Distrib. Comput. 18(6), 453–460 (2006)

24. Lotker, Z., Pavlov, E., Patt-Shamir, B., Peleg, D.: MST construction in O(log log n)
communication rounds. In: Proceedings of SPAA 2003, pp. 94–100 (2003)

25. Mitzenmacher, M., Upfal, E.: Probability and Computing: Randomized Algorithms
and Probabilistic Analysis. Cambridge University Press, Cambridge (2005)

356 P. Fraigniaud et al.

26. Patt-Shamir, B., Teplitsky, M.: The round complexity of distributed sorting. In:
Proceedings of PODC 2011, pp. 249–256 (2011)

27. Peleg, D.: Distributed Computing: A Locality-sensitive Approach. SIAM, Philadel-
phia (2000)

28. Reiter, F.: Distributed graph automata. In: Proceedings of LICS 2015, pp. 192–201
(2015)

29. Schoen, T., Shkredov, I.D.: Roth’s theorem in many variables. Isr. J. Math. 199(1),
287–308 (2014)

How to Discreetly Spread a Rumor in a Crowd

Mohsen Ghaffari1 and Calvin Newport2(B)

1 MIT CSAIL, Cambridge, MA, USA
ghaffari@mit.edu

2 Georgetown University, Washington, D.C., USA
cnewport@cs.georgetown.edu

Abstract. In this paper, we study PUSH-PULL style rumor spread-
ing algorithms in the mobile telephone model, a variant of the classical
telephone model in which each node can participate in at most one con-
nection per round; i.e., you can no longer have multiple nodes pull infor-
mation from the same source in a single round. Our model also includes
two new parameterized generalizations: (1) the network topology can
undergo a bounded rate of change (for a parameterized rate that spans
from no changes to changes in every round); and (2) in each round, each
node can advertise a bounded amount of information to all of its neigh-
bors before connection decisions are made (for a parameterized number
of bits that spans from no advertisement to large advertisements). We
prove that in the mobile telephone model with no advertisements and
no topology changes, PUSH-PULL style algorithms perform poorly with
respect to a graph’s vertex expansion and graph conductance as com-
pared to the known tight results in the classical telephone model. We
then prove, however, that if nodes are allowed to advertise a single bit
in each round, a natural variation of PUSH-PULL terminates in time
that matches (within logarithmic factors) this strategy’s performance in
the classical telephone model—even in the presence of frequent topol-
ogy changes. We also analyze how the performance of this algorithm
degrades as the rate of change increases toward the maximum possible
amount. We argue that our model matches well the properties of emerg-
ing peer-to-peer communication standards for mobile devices, and that
our efficient PUSH-PULL variation that leverages small advertisements
and adapts well to topology changes is a good choice for rumor spreading
in this increasingly important setting.

1 Introduction

Imagine the following scenario. Members of your organization are located
throughout a crowded conference hall. You know a rumor that you want to spread
to all the members of your organization, but you do not want anyone else in the
hall to learn it. To maintain discreetness, communication occurs only through
whispered one-on-one conversations held between pairs of nearby members of

This work is supported in part by NSF grant number CCF 1320279.

c© Springer-Verlag Berlin Heidelberg 2016
C. Gavoille and D. Ilcinkas (Eds.): DISC 2016, LNCS 9888, pp. 357–370, 2016.
DOI: 10.1007/978-3-662-53426-7 26

358 M. Ghaffari and C. Newport

your organization. In more detail, time proceeds in rounds. In each round, each
member of your organization can attempt to initiate a whispered conversation
with a single nearby member in the conference hall. To avoid drawing atten-
tion, each member can only whisper to one person per round. In this paper, we
study how quickly simple random strategies will propagate your rumor in this
imagined crowded conference hall scenario.

The Classical Telephone Model. At first encounter, the above scenario seems
mappable to the well-studied problem of rumor spreading in the classical tele-
phone model. In more detail, the telephone model describes a network topology
as a graph G = (V,E) of size n = |V | with a computational process (called
nodes in the following) associated with each vertex in V . In this model, an edge
{u, v} ∈ E indicates that node u can communicate directly with node v. Time
proceeds in rounds. In each round, each node can initiate a connection (e.g.,
place a telephone call) with a neighbor in G through which the two nodes can
then communicate.

There exists an extensive literature on the performance of a random rumor
spreading strategy called PUSH-PULL in the telephone model under different
graph assumptions; e.g., [2,8–10]. The PUSH-PULL algorithm works as follows:
in each round, each node connects to a neighbor selected with uniform random-
ness; if exactly one node in the connection is informed (knows the rumor) and
one node is uninformed (does not know the rumor), then the rumor is spread
from the informed to the uninformed node. An interesting series of papers culmi-
nating only recently established that PUSH-PULL terminates (with high prob-
ability) in Θ((1/α) log2 n) rounds in graphs with vertex expansion α [9], and in
Θ((1/φ) log n) rounds in graphs with graph conductance φ [8]. (see Sect. 3 for
definitions of α and φ.)

It might be tempting to use these bounds to describe the performance of
the PUSH-PULL strategy in our above conference hall scenario—but they do
not apply. A well-known quirk of the telephone model is that a given node can
accept an unbounded number of incoming connections in a single round. For
example, if a node u has n − 1 neighbors initiate a connection in a given round,
in the classical telephone model u is allowed to accept all n − 1 connections
and communicate with all n − 1 neighbors in that round. In our conference
hall scenario, by contrast, we enforce the natural assumption that each node can
participate in at most one connection per round. (To share the rumor to multiple
neighbors at once might attract unwanted attention.) The existing analyses of
PUSH-PULL in the telephone model, which depend on the ability of nodes
to accept multiple incoming connections, do not carry over to this bounded
connection setting.

The Mobile Telephone Model. In this paper, we formalize our conference hall
scenario with a variant of the telephone model we call the mobile telephone
model. Our new model differs from the classical version in that it now limits
each node to participate in at most one connection per round. We also introduce
two new parameterized properties. The first is stability, which is described with

How to Discreetly Spread a Rumor in a Crowd 359

an integer τ > 0. For a given τ , the network topology must remain stable for
intervals of at least τ rounds before changing. The second property is tag length,
which is described with an integer b ≥ 0. For a given b, at the beginning of each
round, each node is allowed to publish an advertisement containing b bits that
is visible to its neighbors. Notice, for τ = ∞ and b = 0, the mobile telephone
model exactly describes the conference hall scenario that opened this paper.

Our true motivation for introducing this model, of course, is not just to
facilitate covert cavorting at conferences. We believe it fits many emerging peer-
to-peer communication technologies better than the classical telephone model.
In particular, in the massively important space of mobile wireless devices (e.g.,
smartphones, tablets, networked vehicles, sensors), standards such as Bluetooth
LE, WiFi Direct, and the Apple Multipeer Connectivity Framework, all depend
on a scan-and-connect architecture in which devices scan for nearby devices
before attempting to initiate a reliable unicast connection with a single neigh-
bor. This architecture does not support a given device concurrently connecting
with many nearby devices. Furthermore, this scanning behavior enables the pos-
sibility of devices adding a small number of advertisement bits to their publicly
visible identifiers (as we capture with our tag length parameter), and mobility
is fundamental (as we capture with our graph stability parameter).

Results. In this paper, we study rumor spreading in the mobile telephone model
under different assumptions regarding the connectivity properties of the graph
as well as the values of model parameters τ and b. All upper bound results
described below hold with high probability in the network size n.

We begin, in Sect. 5, by studying whether α and φ still provide useful upper
bounds on the efficiency of rumor spreading once we move from the classical
to mobile telephone model. We first prove that offline optimal rumor spread-
ing terminates in O((1/α) log n) rounds in the mobile telephone model in any
graph with vertex expansion α. It follows that it is possible, from a graph theory
perspective, for a simple distributed rumor spreading algorithm in the mobile
telephone model to match the performance of PUSH-PULL in the classical tele-
phone model. (The question of whether simple strategies do match this optimal
bound is explored later in the paper.) At the core of this analysis are two ideas:
(1) the size of a maximum matching bridging a set of informed and uninformed
nodes at a given round describes the maximum number of new nodes that can
be informed in that round; and (2) we can, crucially, bound the size of these
matchings with respect to the vertex expansion of the graph. We later leverage
both ideas in our upper bound analysis.

We then consider graph conductance and uncover a negative answer. In par-
ticular, we prove that offline optimal rumor spreading terminates in O(Δ

δ·φ log n)
rounds in graphs with conductance φ, maximum degree Δ, and minimum degree
δ. We also prove that there exist graphs where Ω(Δ

δ·φ) rounds are required.
These results stand in contrast to the potentially much smaller upper bound
of O((1/φ) log n) for PUSH-PULL in the classical telephone model. In other
words, once we shift from the classical to mobile telephone model, conductance
no longer provides a useful upper bound on rumor spreading time.

360 M. Ghaffari and C. Newport

In Sect. 6, we turn our attention to studying the behavior of the PUSH-PULL
algorithm in the mobile telephone model with b = 0 and τ = ∞.1 Our goal is
to determine whether this standard strategy approaches the optimal bounds
from Sect. 5. For the case of vertex expansion, we provide a negative answer by
constructing a graph with constant vertex expansion α in which PUSH-PULL
requires Ω(

√
n) rounds to terminate. Whether there exists any distributed rumor

spreading algorithm that can approach optimal bounds with respect to vertex
expansion under these assumptions, however, remains an intriguing open ques-
tion. For the case of graph conductance, we note that a consequence of a result
from [4] is that PUSH-PULL in this setting comes within a log factor of the
(slow) O(Δ

δ·φ log n) optimal bound proved in Sect. 5. In other words, in the mobile
telephone model rumor spreading might be slow with respect to a graph’s con-
ductance, but PUSH-PULL matches this slow spreading time.

Finally, in Sect. 7, we study PUSH-PULL in the mobile telephone model
with b = 1. In more detail, we study the natural variant of PUSH-PULL in this
setting in which nodes use their 1-bit tag to advertise at the beginning of each
round whether or not they are informed. We assume that informed nodes select
a neighbor in each round uniformly from the set of their uninformed neighbors
(if any). We call this variant productive PUSH (PPUSH) as nodes only attempt
to push the rumor toward nodes that still need the rumor.

Notice, in the classical telephone model, the ability to advertise your informed
status trivializes rumor spreading as it allows nodes to implement a basic flood
(uninformed nodes pull only from informed neighbors)—which is clearly optimal.
In the mobile telephone model, by contrast, the power of b = 1 is not obvious: a
given informed node can only communicate with (at most) a single uninformed
neighbor per round, and it cannot tell in advance which such neighbor might be
most useful to inform.

Our primary result in this section, which provides the primary upper bound
contribution of this paper, is the following: in the mobile telephone model with
b = 1 and stability parameter τ ≥ 1, PPUSH terminates in O((1/α)Δ

1
r r log3 n)

rounds, where r = min{τ, log Δ}. In other words, for τ ≥ log Δ, PPUSH termi-
nates in O((1/α) log4 n) rounds, matching (within log factors) the performance
of the optimal algorithm in the mobile telephone model and the performance
of PUSH-PULL in the classical telephone model. An interesting implication of
this result is that the power gained by allowing nodes to advertise whether or
not they know the rumor outweighs the power lost by limiting nodes to a single
connection per round.

As the stability of the graph decreases from τ = log Δ toward τ = 1, the per-
formance of PPUSH is degraded by a factor of Δ1/τ . At the core of this result
is a novel analysis of randomized approximate distributed maximal matchings
in bipartite graphs, which we combine with the results from Sect. 5 to con-
nect the approximate matchings generated by our algorithm to the graph vertex

1 As we detail in Sect. 6, there are several natural modifications we must make to
PUSH-PULL for it to operate as intended under the new assumptions of the mobile
telephone model.

How to Discreetly Spread a Rumor in a Crowd 361

expansion. We note that it is not a priori obvious that mobility makes rumor
spreading more difficult. It remains an open question, therefore, as to whether
this Δ1/τ factor is an artifact of our analysis or a reflection of something funda-
mental about changing topologies.

Returning to the Conference Hall. The PPUSH algorithm enables us to tackle
the question that opens the paper: What is a good way to discreetly spread a
rumor in a crowd? One answer, we now know, goes as follows. If you know the
rumor, randomly choose a nearby member that does not know the rumor and
attempt to whisper it in their ear. When you do, also instruct them to make some
visible sign to indicate to their neighborhood that they are now informed; e.g.,
“turn your conference badge upside down”. (This signal can be agreed upon
in advance or decided by the source and spread along with the rumor.) This
simple strategy—which effectively implements PPUSH in the conference hall—
will spread the rumor fast with respect to the crowd topology’s vertex expansion,
and it will do so in a way that copes elegantly and automatically to any level of
encountered topology changes. More practically speaking, we argue that in the
new world of mobile peer-to-peer networking, something like PPUSH is probably
the right primitive to use to spread information efficiently through an unknown
and potentially changing network.

2 Related Work

The telephone model described above was first introduced by Frieze and Grim-
mett [6]. A key problem in this model is rumor spreading: a rumor must spread
from a single source to the whole network. In studying this problem, algorith-
mic simplicity is typically prioritized over absolute optimality. The PUSH algo-
rithm (first mentioned [6]), for example, simply has every node with the message
choose a neighbor with uniform randomness and send it the message. The PULL
algorithm (first mentioned [3]), by contrast, has every node without the mes-
sage choose a neighbor with uniform randomness and ask for the message. The
PUSH-PULL algorithm combines those two strategies. In a complete graph, both
PUSH and PULL complete in O(log n) rounds, with high probability—leveraging
epidemic-style spreading behavior. Karp et al. [11] proved that the average num-
ber of connections per node when running PUSH-PULL in the complete graph
is bounded at Θ(log log n).

In recent years, attention has turned toward studying the performance of
PUSH-PULL with respect to graph properties describing the connectedness or
expansion characteristics of the graph. One such measure is graph conductance,
denoted φ, which captures, roughly speaking, how well-knit together is a given
graph. A series of papers produced increasingly refined results with respect
to φ, culminating in the 2011 work of Giakkoupis [8] which established that
PUSH-PULL terminates in O((1/φ) log n) rounds with high probability in graphs
with conductance φ. This bound is tight in the sense that there exist graphs
with this diameter and conductance φ. Around this same time, Chierichetti

362 M. Ghaffari and C. Newport

et al. [2] motivated and initiated the study of PUSH-PULL with respect to
the graphs vertex expansion number, α, which measures its expansion charac-
teristics. Follow-up work by Giakkoupis and Sauerwald [10] proved that there
exist graphs with expansion α where Ω((1/α) log2 n) rounds are necessary for
PUSH-PULL to terminate, and that PUSH alone achieves this time in regular
graphs. Fountoulakis et al. [5] proved that PUSH performs better—in this case,
O((1/α) log n) rounds—given even stronger expansion properties. A 2014 paper
by Giakkoupis [9] proved a matching bound of O((1/α) log2 n) for PUSH-PULL
in any graph with expansion α.

Recent work by Daum et al. [4] emphasized the shortcoming of the telephone
model mentioned above: it allows a single node to accept an unlimited number of
incoming connections. They study a restricted model in which each node can only
accept a single connection per round. We emphasize that the mobile telephone
model with b = 0 and τ = ∞ is equivalent to the model of [4].2 This existing work
proves the existence of graphs where PULL works in polylogarithmic time in the
classical telephone model but requires Ω(

√
n) rounds in their bounded variation.

They also prove that in any graph with maximum degree Δ and minimum degree
δ, PUSH-PULL completes in O(T · Δ

δ · log n) rounds, where T is the performance
of PUSH-PULL in the classical telephone model. Our work picks up where [4]
leaves off by: (1) studying the relationship between rumor spreading and graph
properties such as α and φ under the assumption of bounded connections; (2)
leveraging small advertisement tags to identify simple strategies that close the
gap with the classical telephone model results; and (3) considering the impact
of topology changes.

Finally, from a centralized perspective, Baumann et al. [1] proved that in
a model similar to the mobile telephone model with b = 1 and τ = ∞ (i.e., a
model where you can only connect with a single neighbor per round but can
learn the informed status of all neighbors in every round) there exists no PTAS
for computing the worst-case rumor spreading time for a PUSH-PULL style
strategy in a given graph.

3 Preliminaries

We will model a network topology with a connected undirected graph G =
(V,E). For each u ∈ V , we use N(u) to describe u’s neighbors and N+(u) to
describe N(u)∪{u}. We define Δ = maxu∈V {|N(u)|} and δ = minu∈V {|N(u)|}.
For a given node u ∈ V , define d(u) = |N(u)|. For given set S ⊆ V , define
vol(S) =

∑
u∈S d(u) and let cut(S, V \ S) describe the number of edges with

one endpoint in S and one endpoint in V \ S. As in [8], we define the graph

2 There are some technicalities in this statement. A key property of the model from [4]
is how concurrent connection attempts are resolved. They study the case where the
successful connection is chosen randomly and the case where it is chosen by an
adversary. In our model, we assume the harder case of multiple connections being
resolved arbitrarily.

How to Discreetly Spread a Rumor in a Crowd 363

conductance φ of a given graph G = (V,E) as follows:

φ = min
S⊆V,0<vol(S)≤vol(V)/2

cut(S, V \ S)
vol(S)

.

For a given S ⊆ V , define the boundary of S, indicated ∂S, as follows: ∂S =
{v ∈ V \ S : N(v) ∩ S 	= ∅}: that is, ∂S is the set of nodes not in S that are
directly connected to S by an edge. We define α(S) = |∂S|/|S|. As in [9], we
define the vertex expansion α of a given graph G = (V,E) as follows:

α = min
S⊂V,0<|S|≤n/2

α(S).

Notice that, despite the possibility of α(S) > 1 for some S, we always have
α ∈ [0, 1]. Our model defined below sometimes considers a dynamic graph which
can change from round to round. Formally, a dynamic graph G is a sequence of
static graphs, G1 = (V,E1), G2 = (V,E2), When using a dynamic graph G to
describe a network topology, we assume the rth graph in the sequence describes
the topology during round r. We define the vertex expansion of a dynamic graph
G to be the minimum vertex expansion over all of G’s constituent static graphs,
and the graph conductance of G to be the minimum graph conductance over
G’s static graphs. Similarly, we define the maximum and minimum degree of a
dynamic graph to be the maximum and minimum degrees defined over all its
static graphs.

Finally, we state a pair of well-known inequalities that will prove useful in
several places below:

Fact 1. For p ∈ [0, 1], we have (1 − p) ≤ e−p and (1 + p) ≥ 2p.

4 Model and Problem

We introduce a variation of the classical telephone model we call the mobile
telephone model. This model describes a network topology in each round as an
undirected connected graph G = (V,E). We assume a computational process
(called a node) is assigned to each vertex in V . Time proceeds in synchronized
rounds. At the beginning of each round, we assume each node u knows its neigh-
bor set N(u). Node u can then select at most one node from N(u) and send a
connection proposal. A node that sends a proposal cannot also receive a proposal.
However, if a node v does not send a proposal, and at least one neighbor sends
a proposal to v, then v can select at most one incoming proposal to accept. (A
slightly stronger variation of this model is that the accepted proposal is selected
arbitrarily by an adversarial process and not by v. Our algorithms work for this
strong variation and our lower bounds hold for the weaker variation.) If node v
accepts a proposal from node u, the two nodes are connected and can perform
an unbounded amount of communication in that round.

We parameterize the mobile telephone model with two integers, b ≥ 0 and
τ ≥ 1. If b > 0, then we allow each node to select a tag containing b bits to

364 M. Ghaffari and C. Newport

advertise at the beginning of each round. That is, if node u chooses tag bu at the
beginning of a round, all neighbors of u learn bu before making their connection
decisions in this round. We also allow for the possibility of the network topology
changing, which we formalize by describing the network topology with a dynamic
graph G. We bound the allowable changes in G with a stability parameter τ . For
a given τ , G must satisfy the property that we can partition it into intervals of
length τ , such that all τ static graphs in each interval are the same.3 For τ = 1,
the graph can change every round. We use the convention of stating τ = ∞ to
indicate the graph never changes.

In the mobile telephone model we study the rumor spreading problem, defined
as follows: A single distinguished source begins with a rumor and the problem
is solved once all nodes learn the rumor.

5 Rumor Spreading with Respect to Graph Properties

As summarized above, a series of recent papers established that in the
classical telephone model PUSH-PULL terminates with high probability in
Θ((1/α) log2 n) rounds in graphs with vertex expansion α, and in Θ((1/φ) log n)
rounds in graphs with graph conductance φ. The question we investigate here is
the relationship between α and φ and the optimal offline rumor spreading time
in the mobile telephone model. That is, we ask: once we bound connections,
do α and φ still provide a good indicator of how fast a rumor can spread in a
graph? The missing proofs for this section can be found in the full version of
this paper [7].

5.1 Optimal Rumor Spreading for a Given Vertex Expansion

Our goal is to prove the following property regarding optimal rumor spreading
in our model and its relationship to the graph’s vertex expansion:

Theorem 1. Fix some connected graph G with vertex expansion α. The opti-
mal rumor spreading algorithm terminates in O((1/α) log n) rounds in G in the
mobile telephone model.

In other words, it is at least theoretically possible to spread a rumor in the
mobile telephone model as fast (with respect to α) as PUSH-PULL in the easier
classical telephone model. In the analysis below, assume a fixed connected graph
G = (V,E) with vertex expansion α and |V | = n.

Connecting Maximum Matchings to Rumor Spreading. The core difference
between our model and the classical telephone model is that now each node

3 Our algorithms work for many different natural notions of stability. For example, it
is sufficient to guarantee that in each such interval the graph is stable with constant
probability, or that given a constant number of such intervals, at least one contains
no changes, etc. The definition used here was selected for analytical simplicity.

How to Discreetly Spread a Rumor in a Crowd 365

can only participate in at most one connection per round. Unlike in the classical
telephone model, therefore, the set of connections in a given round must describe
a matching. To make this more concrete, we first define some notation. In par-
ticular, given some S ⊂ V , let B(S) be the bipartite graph with bipartitions
(S, V \S) and the edge set ES = {(u, v) : (u, v) ∈ E, u ∈ S, and v ∈ V \S}. Also
recall that the edge independence number of a graph H, denoted ν(H), describes
the maximum matching on H. We can now formalize our above claim as follows:

Lemma 1. Fix some S ⊂ V . The maximum number of concurrent connections
between nodes in S and V \ S in a single round is ν(B(S)).

We can connect the smallest such maximum matchings in our graph G to
the optimal rumor spreading time. Our proof of the following lemma combines
the connection between matchings and rumor spreading captured in Lemma 1,
with the same high-level analysis structure deployed in existing studies of rumor
spreading and vertex expansion in the classical telephone model (e.g., [9]):

Lemma 2. Let γ = minS⊂V,|S|≤n/2{ν(B(S))/|S|}. It follows that optimal
rumor spreading in G terminates in O((1/γ) log n) rounds.

Connecting Maximum Matching Sizes to Vertex Expansion. Given Lemma 2,
to connect rumor spreading time to vertex expansion in our mobile telephone
model, it is sufficient to bound maximum matching sizes with respect to α. In
particular, we will now argue that γ ≥ α/4 (the details of this constant factor
do not matter much; 4 happened to be convenient for the below argument).
Theorem 1 follows directly from the below result combined with Lemma 2.

Lemma 3. Let γ = minS⊂V,|S|≤n/2{ν(B(S))/|S|}. It follows that γ ≥ α/4.

Proof. We can restate the lemma equivalently as follows: for every S ⊂ V ,
|S| ≤ n/2, the maximum matching on B(S) is of size at least (α|S|)/4. We will
prove this equivalent formulation.

To start, fix some arbitrary subset S ⊂ V such that |S| ≤ n/2. Let m be
the size of a maximum matching on B(S). Recall that α ≤ α(S) = |∂S|/|S|.
Therefore, if we could show that |∂S| ≤ 4m, we would be done. Unfortunately,
it is easy to show that this is not always the case. Consider a partition S in which
a single node u ∈ S is connected to large number of nodes in V \S, and these are
the only edges leaving S. The vertex expansion in this example is large while the
maximum matching size is only 1 (as all nodes in ∂S share u as an endpoint).
To overcome this problem, we will, in some instances, instead consider a related
smaller partition S′ such that α(S′) ≥ α is small enough to ensure our needed
property. In more detail, we consider two cases regarding the size of m:

The first case is that m ≥ |S|/2. By definition, α ≤ 1. It follows that m ≥
(|S|α)/2, which more than satisfies our claim.

The second (and more interesting) case is that m < |S|/2. Let M be a
maximum matching of size m for B(S). Let MS be the endpoints in M in S. We
define a smaller partition S′ = S\MS . Note, by the case assumption, |S′| ≥ |S|/2.

366 M. Ghaffari and C. Newport

We now argue that every node in ∂S′ is also in M . To see why, assume for
contradiction that there exists some v ∈ ∂S′ that is not in M . Because v ∈ ∂S′,
there must exist some edge (u, v), where u ∈ S′. Notice, however, because u is in
S′ it is not in M . If follows that we could have added (u, v) to our matching M
defined on B(S)—contradicting the assumption that M is maximum. We have
established, therefore, that |∂S′| ≤ 2m. It follows:

α ≤ α(S′) ≤ 2m/|S′| = 2m/(|S| − m)
(m<|S|/2)

<
2m

|S|/2
= (4m)/|S|,

from which it follows that α|S| < 4m ⇒ m > (α|S|)/4, as needed.

5.2 Optimal Rumor Spreading for a Given Graph Conductance

In the classical telephone model PUSH-PULL terminates in O((1/φ) log n)
rounds in a graph with conductance φ. Here we prove optimal rumor spreading
might be much slower in the mobile telephone model. To establish the intuition
for this result, consider a star graph with one center node and n − 1 points. It
is straightforward to verify that the conductance of this graph is constant. But
it is also easy to verify that at most one point can learn the rumor per round
in the mobile telephone model, due to the restriction that each node (including
the center of the star) can only participate in one connection per round. In this
case, every rumor spreading algorithm will be a factor of Ω(n/ log n) slower than
PUSH-PULL in the classical telephone model. Below we formalize a fine-grained
version of this result, parameterized with maximum and minimum degree of
the graph. The proof for this theorem (found in the full version [7]) leverages
Theorem 1 and a useful property from [9].

Theorem 2. Fix some integers δ,Δ, such that 1 ≤ δ ≤ Δ. There exists a
graph G with minimum degree δ and maximum degree Δ, such that every rumor
spreading algorithm requires Ω(Δ/(δ · φ)) rounds in the mobile telephone model.
In addition, for every graph with minimum degree δ and maximum degree Δ, the
optimal rumor spreading algorithm terminates in O(Δ/(δ · φ) · log n) rounds in
the mobile telephone model.

6 PUSH-PULL with b = 0

We now study the performance of PUSH-PULL in the mobile telephone model
with b = 0 and τ = ∞. We investigate its performance with respect to the
optimal rumor spreading performance bounds from Sect. 5. In more detail, we
consider the following natural variation of PUSH-PULL, adapted to our model:

In even rounds, nodes that know the rumor choose a neighbor at ran-
dom and attempt to establish a connection to PUSH the message. In odd
rounds, nodes that do not know the rumor choose a neighbor at random
and attempt to establish a connection to PULL the message.

How to Discreetly Spread a Rumor in a Crowd 367

We study this PUSH-PULL variant with respect to both graph conductance
and vertex expansion. We begin by considering the performance of this algo-
rithm with respect to graph conductance. Theorem 2 tells us that for any mini-
mum and maximum degree δ and Δ, respectively, the optimal rumor spreading
algorithm completes in O(Δ/(δ · φ) · log n) rounds, and there are graphs where
Ω(Δ/δ) rounds are necessary. Interestingly, as noted in Sect. 2, Daum et al. [4]
proved that the above algorithm terminates in O(T · Δ

δ · log n) rounds, where
T is the optimal performance of PUSH-PULL in the classical telephone model.
Because T ∈ O((1/φ) log n) in the classical setting, the above algorithm should
terminate in O(Δ

δ·φ · log2 n) rounds in our model—nearly matching the bound
from Theorem 2. Put another way, rumor spreading potentially performs poorly
with respect to graph conductance, but PUSH-PULL with b = 0 nearly matches
this poor performance.

Arguably, the more important optimal time complexity bound to match is
the O((1/α) log n) bound established in Theorem 1, as it is similar to the per-
formance of PUSH-PULL in the telephone model. In the full version of this
paper [7], however, we prove the following (motivating our subsequent investi-
gation of the b = 1 case):

Lemma 4. There is a graph G with constant vertex expansion, in which the
above algorithm would need at least Ω(

√
n) rounds to spread the rumor, with

high probability.

7 PUSH-PULL with b = 1

In the previous section, we established that PUSH-PULL in the mobile telephone
model and b = 0 fails to match the optimal vertex expansion bound by a factor in
Ω(

√
n) in the worst case. Motivated by this shortcoming, we turn our attention

to the setting where b = 1. In particular, we consider the following natural
variant of PUSH-PULL adapted to our model with b = 1. We call this algorithm
productive PUSH (or, PPUSH) as nodes leverage the 1-bit tag to advertise their
informed status and therefore keep connections productive.4

At the beginning of each round, each node uses a single bit to advertise
whether or not it is informed (knows the rumor). Each informed node that
has at least one uninformed neighbor, chooses an uninformed neighbor
with uniform randomness and tries to form a connection to send it the
rumor.

We now analyze PPUSH in a connected network G with vertex expansion α
and stability factor τ ≥ 1. Our goal is to prove the following theorem:

4 We drop the PULL behavior form PUSH-PULL in this algorithm description as
it does not help the analysis. Focusing just on the PUSH behavior simplifies the
algorithm even further.

368 M. Ghaffari and C. Newport

Theorem 3. Fix a dynamic network G of size n with vertex expansion α and
stability factor at least τ , 1 ≤ τ ≤ log Δ. The PPUSH algorithm solves rumor
spreading in G in (1/α)Δ1/τ τ log3 n rounds, with high probability in n.

To prove this theorem, the core technical part is in studying the success of
PPUSH over a stable period of τ rounds, which we summarize below. This analy-
sis bounds the number of new nodes that receive the message in the stable period
with respect to the size of the maximum matching defined over the informed and
uninformed partitions at the beginning of the stable period. In the full version
of this paper [7], we then connect this analysis back to the vertex expansion
of the graph (leveraging our earlier analysis from Sect. 5 connecting α to edge
independence numbers), and carry it through over multiple stable periods until
we can show rumor spreading completes. The combination of these two steps
provides the above theorem.

Matching Analysis. The main theorem for this analysis lower bounds the number
of rumors that spread across a bipartite subgraph of the network over r stable
rounds. Missing proofs below can be found in the full version [7].

Theorem 4. Fix a bipartite graph G with bipartitions L and R, such |R| ≥
|L| = m and G has a matching of size m. Assume G is a subgraph of some
(potentially) larger network G′, and all uninformed neighbors in G′ of nodes in
L are also in R. Fix an integer r, 1 ≤ r ≤ log Δ, where Δ is the maximum
degree of G. Consider an r round execution of PPUSH in G′ in which the nodes
in L start with the rumor and the nodes in R do not. With constant probability:
at least Ω(mΔ−1/r

r log n) nodes in R learn the rumor.

We start with some helpful notation. For any L′ ⊆ L and R′ ⊆ R, let
G(L′, R′) be the subgraph of G induced by the nodes L′ and R′. Similarly, let
NL′,R′ and degL′,R′ be the neighbor and degree functions, respectively, defined
over G(L′, R′).

We begin with the special case r = 1. We then move to our main analysis
which handles all r ≥ 2. (Notice, our result below r = 1 provides an approxi-
mation of O(

√
Δ log Δ) which is tighter than the Δ approximation for this case

claimed by Theorem 4. We could refine the theorem claim to more tightly cap-
ture performance for small r, but we leave it in the looser more general form for
the sake of concision in the result statement.)

Lemma 5. For r = 1, PPUSH produces a matching of size Ω(m/
√

Δ log Δ),
with constant probability.

We start now the proof of the r ≥ 2 case by making a claim that says if for a
given large subset of L that has a relatively small degree sum, a couple rounds
of the algorithm run on this subset will either generate a large enough matching,
or leave behind a subset with an even smaller degree sum.

Lemma 6. Fix any i ∈ [r], L′ ⊆ L, and R′ ⊆ R, such that: |R′| ≥ |L′| ≥ m/16;
∑

u∈L′ degL′,R′(u) ≤ mΔ1− i−1
r ; all uninformed neighbors of L′ in G′ are in R′;

How to Discreetly Spread a Rumor in a Crowd 369

and G(L′, R′) has a matching of size |L′|. With high probability in n, one of
the following two events will occur if we execute PPUSH with the nodes in L′

knowing the rumor and the nodes in R′ not knowing the rumor:

1. within two rounds, at least Ω(mΔ−1/r

r log n) nodes in R′ learn the rumor; or
2. after one round, we can identify subsets L′′ ⊆ L′, R′′ ⊆ R′, with R′′ con-

taining only nodes that do not know the rumor, such that |R′′| ≥ |L′′| ≥
(1 − 1/r)2 · |L′|; ∑

u∈L′′ degL′′,R′′(u) ≤ mΔ1− i
r ; R′′ contains all uninformed

neighbors of L′′ nodes in G′; and G(L′′, R′′) has a matching of size |L′′|.

We now leverage Lemma 6 to prove Theorem 4. The following argument
establishes a base case that satisfies the lemma preconditions of Lemma 6 and
then repeatedly applies it r times. Either: (1) a matching of sufficient size is
generated along the way (i.e., case 1 of the lemma statement applies); or (2)
we begin round r with a set L′ with size in Ω(m) that has an average degree
in Θ(Δ1/r)—in which case it is easy to show that in the final round we get a
matching of size Ω(mΔ−1/r

r log n).

Proof (of Theorem 4). Fix a bipartite graph G with bipartitions L and R with a
matching of size |L| = m, and a value r, as specified by the theorem statement
preconditions. If r = 1, the claim follows directly from Lemma 5. Assume in the
following, therefore, that r ≥ 2.

We claim that we can apply Lemma 6 to L′ = L, R′ = R, and i = 1. To
see why, notice that this definition of L′ satisfies the preconditions L′ ⊆ L,
R′ ⊆ R, and |R′| ≥ |L′| ≥ m/16. It also satisfies the condition requiring all of
the uninformed neighbors of L′ to be in R′. Finally, because we fixed i = 1, it
holds that:

∑
u∈L′ degL′,R′(u) ≤ mΔ1− i−1

r = mΔ, as there are m nodes in L′

each with a maximum degree of Δ.
Consider this first application of Lemma 6. It tells us that, w.h.p., either

we finish after one or two rounds, or after a single round we identify a smaller
bipartitate graph G(L′′, R′′), where L′′ and R′′ satisfy all the properties needed
to apply the Lemma to L′ = L′′, R′ = R′′, and i = 2. We can keep applying
this lemma inductively, each time increasing the value of i, until either: (1)
we get through i = r − 1; (2) an earlier application of the lemma generates a
sufficiently large matching to satisfy the theorem; or (3) at some point before
either option 1 or 2, the lemma fails to hold. Since the third possibility happens
with probability polynomially small in n at each application, we can use a union
bound and conclude that with high probability, it does not happen in any of
the iterations. Ignoring this negligible probability, we focus on the other two
possibilities.

Before that, let us discuss a small nuance in applying the lemma r times.
We need to ensure that the specified L′ sets are always of size at least m/16,
as required to keep applying the lemma. Notice, however, that we start with an
L′ set of size m, and the lemma guarantees it decreases by a factor of at most
(1 − 1/r)2. Therefore, after i < r ≤ log Δ applications, |L′′| ≥ (1 − 1/r)2i · m >
(1/4)2i/r · m > (1/4)2 · m = m/16.

370 M. Ghaffari and C. Newport

Going back to the two possibilities, if option 2 holds, we are done. On the
other hand, if option 1 holds, we have one final step in our argument. In this case,
we end up with having identified a bipartite subgraph G(L′′, R′′) with a maxi-
mum matching of size at least |L′′| ≥ m/16. We also know

∑
u∈L′′ degL′′,R′′(u) ≤

mΔ1− i
r = mΔ1/r as i = r − 1. In this case, it holds trivially that at most m/32

nodes u of L′′ have degL′′,R′′(u) ≥ 32Δ1/r. Hence, at least m/32 nodes u have
degree at most 32Δ1/r. Now, each of these proposes to its own match in R′′

with probability at least Δ−1/r/32. Thus, we expect Θ(mΔ−1/r) nodes of R′′ to
receive proposals directly from their matches. Note that these events are inde-
pendent. Moreover, we have mΔ−1/r = Ω(log n) as otherwise the claim of the
theorem would be trivial. Therefore, w.h.p., Θ(mΔ−1/r) nodes of R′′ receive pro-
posals from their pairs. Hence, at least Θ(mΔ−1/r) nodes of R′′ get informed,
thus completing the proof.

References

1. Baumann, H., Fraigniaud, P., Harutyunyan, H.A., De Verclos, R.: The worst case
behavior of randomized gossip protocols. Theoret. Comput. Sci. 560, 108–120
(2014)

2. Chierichetti, F., Lattanzi, S., Panconesi, A.: Rumour spreading and graph con-
ductance. In: Proceedings of the ACM-SIAM Symposium on Discrete Algorithms
(SODA) (2010)

3. Clarkson, T., Gorse, D., Taylor, J., Ng, C.: Epidemic algorithms for replicated
database management. IEEE Trans. Comput. 1, 52–61 (1992)

4. Daum, S., Kuhn, F., Maus, Y.: Rumor spreading with bounded in-degree. arXiv
preprint arXiv:1506.00828 (2015)

5. Fountoulakis, N., Panagiotou, K.: Rumor spreading on random regular graphs and
expanders. In: Serna, M., Shaltiel, R., Jansen, K., Rolim, J. (eds.) APPROX 2010.
LNCS, vol. 6302, pp. 560–573. Springer, Heidelberg (2010)

6. Frieze, A.M., Grimmett, G.R.: The shortest-path problem for graphs with random
arc-lengths. Discrete Appl. Math. 10(1), 57–77 (1985)

7. Ghaffari, M., Newport, C.: How to discreetly spread a rumor in a crowd.
http://people.cs.georgetown.edu/∼cnewport/pubs/gn-disc2016.pdf. Also available
on arXiv

8. Giakkoupis, G.: Tight bounds for rumor spreading in graphs of a given conduc-
tance. In: Proceedings of the Symposium on Theoretical Aspects of Computer
Science (STACS) (2011)

9. Giakkoupis, G.: Tight bounds for rumor spreading with vertex expansion. In:
Proceedings of the ACM-SIAM Symposium on Discrete Algorithms (SODA) (2014)

10. Giakkoupis, G., Sauerwald, T.: Rumor spreading and vertex expansion. In:
Proceedings of the ACM-SIAM symposium on Discrete Algorithms (SODA), pp.
1623–1641. SIAM (2012)

11. Karp, R., Schindelhauer, C., Shenker, S., Vocking, B.: Randomized rumor spread-
ing. In: Proceedings of the Annual Symposium on Foundations of Computer Science
(FOCS), pp. 565–574 (2000)

http://arxiv.org/abs/1506.00828
http://people.cs.georgetown.edu/~cnewport/pubs/gn-disc2016.pdf

Depth of a Random Binary Search Tree
with Concurrent Insertions

James Aspnes1(B) and Eric Ruppert2(B)

1 Yale University, New Haven, USA
james.aspnes@gmail.com

2 York University, Toronto, Canada
ruppert@cse.yorku.ca

Abstract. Shuffle a deck of n cards numbered 1 through n. Deal out
the first c cards into a hand. A player then repeatedly chooses one of the
cards from the hand, inserts it into a binary search tree, and then adds
the next card from deck to the hand (if the deck is empty). When the
player finally runs out of cards, how deep can the search tree be?

This problem is motivated by concurrent insertions by c processes of
random keys into a binary search tree, where the order of insertions is
controlled by an adversary that can delay individual processes. We show
that an adversary that uses any strategy based on comparing keys cannot
obtain an expected average depth greater than O(c + log n). However,
the adversary can obtain an expected tree height of Ω(c log(n/c)), using
a simple strategy of always playing the largest available card.

1 Introduction

In the worst case, the height of a binary search tree (BST) can be linear in the
number of keys that it stores. However, if the tree is constructed by inserting the
keys one by one in a random order, then the average node depth, and even the
height of the tree, will be logarithmic [9]. Here, we consider how much worse these
measures become if insertions are performed concurrently by multiple processes.
Consider the tree shown in Fig. 1. Suppose three processes wish to insert keys 12,
13 and 16 simultaneously. The processes will compete to insert their keys into the
slot at the right child of the node containing key 11. The shape of the resulting
tree depends upon which process succeeds first, and this can be determined by
a number of system-dependent factors. For example, the scheduling of steps by
different processes is affected by cache misses, timesharing and other events that
are difficult to predict or analyze. This scheduling will, in turn, determine which
process acquires a lock first (in a lock-based BST implementation) or performs a
CAS first (in a CAS-based non-blocking BST implementation), and hence which
insertion takes effect first. Similarly, in a transactional memory system, the order
of insertions may depend on many details of the implementation of transactional
memory that are outside the direct control of the BST insertion algorithm.
Since the insertion algorithm has no control over these factors, if we wish to
provide a worst-case analysis of the BST being constructed, we can imagine
c© Springer-Verlag Berlin Heidelberg 2016
C. Gavoille and D. Ilcinkas (Eds.): DISC 2016, LNCS 9888, pp. 371–384, 2016.
DOI: 10.1007/978-3-662-53426-7 27

372 J. Aspnes and E. Ruppert

Fig. 1. An example binary search tree.

an adversary choosing which of the concurrent insertions occurs first. This will
make our analysis sufficiently general to cover any kind of synchronization used
to coordinate the insertions by different processes.

Thus, we consider the following experiment, in which c processes simultane-
ously insert n random keys into an initially empty BST. Fix an ordered universe
U and a probability distribution on that universe. The c processes first choose
c keys from U independently at random using this distribution. The c processes
attempt to insert these c keys concurrently. The adversary chooses any one of
the c values to become the root of the BST (by scheduling the corresponding
process p so that it succeeds in installing that value at the root). Process p
completes its insertion and draws the next key, again independently at random
from the fixed probability distribution, and attempts to insert it. Once again,
the adversary can choose any one of the c pending insertions to take effect next,
and this procedure is repeated until all n keys have been inserted. We assume
that the BST does not permit duplicate keys.

The adversarial scheduler is intended to model difficult-to-predict factors
like cache misses or processes being interrupted by higher priority processes.
These factors may depend on the memory addresses accessed by the processes,
which may in turn depend on the relative order of the random keys chosen by
the processes. Beyond this ordering information, the precise values of the keys
chosen are unlikely to have any effect on the scheduling of processes. Thus, we
assume the adversary is comparison-based: it decides which key to insert next
based only on the relative order among the c keys of pending operations and the
keys that have already been inserted.

As discussed in Mahmoud’s monograph [9], if all keys are chosen indepen-
dently at random from the same distribution, the resulting ranks of the keys
form a random permutation of {1, . . . , n}, where each permutation is equally
likely. Since we consider only comparison-based adversaries, we can envision the
concurrent construction of our random BST as follows. We start with an empty
BST. We shuffle a deck of n cards labelled with keys 1 to n. The first c cards
make up the adversary’s initial hand. At each step, the adversary chooses one
card to play from its hand, inserts that card’s key into the BST and, if the deck
is not yet empty, replaces the card by drawing the top card from the deck and
adding it to the hand. We are interested in two measures of the resulting random

Depth of a Random Binary Search Tree with Concurrent Insertions 373

BST. The depth of a node is the number of edges along the path from the root
to that node. The average depth is the sum of all the node depths divided
by n. The height is the maximum of all node depths. Our goal is to establish
bounds on the expected values of these measures, where the expected value is
taken over all random permutations.

We show that the expected average depth is O(c + log n). This bound is
tight within a constant factor: if the adversary always chooses the largest key
among the pending insertions, the expected average depth will be Ω(c + log n).
Unlike the case of sequential insertions, we show that the expected height can
be significantly larger than the average depth: we prove that the adversary that
always chooses the largest key causes the expected height to be Ω(c log(n/c)).

2 Related Work

The height and average depth of randomly constructed BST has been extensively
studied and is a classic problem in average-case complexity. Even the earliest
papers [1,15] on BSTs included a discussion of the expected average depth of nodes
in a tree built from random keys, showing that it is O(log n). Robson [13] showed
that the expected height of a BST built by inserting a random permutation of
{1, . . . , n} is at most (4.311...) log n + o(log n). The constant factor was shown to
be exact by Devroye [5]. Reed [12] proved an even tighter result, showing that the
expected height is (4.311...) log n − (1.953...) log log n + O(1). The variance of the
height is also known to be O(1) [6,12]. More detailed information is known about
the exact distribution of node depths in random trees. Mahmoud’s monograph [9]
provides an overview of many results of this area. The analysis of random trees con-
structed using deletions as well as insertions has had very limited success. There
have been some empirical studies of this scenario, however (see [4]).

In our paper, we start with a random permutation and allow an adversary
to reorder the permutation in a constrained way. A complementary scenario was
considered by Manthey and Reischuk [10]: they instead begin with a permutation
chosen by the adversary and then randomly perturb it (in a limited way) and
analyze the expected height of the resulting BST.

Since BSTs play a central role in computer science, concurrent implementa-
tions of them are of great practical importance. If only insertions are supported,
it is fairly trivial to implement a BST. For example, a non-blocking implementa-
tion can be designed using the compare-and-swap primitive as follows. To insert
a key k, first search for the key k. We assume that duplicate keys are not per-
mitted in the BST, so if the key k is found during this search, the insertion
terminates without altering the tree. Otherwise, the search reaches a nil child
pointer. The process then attempts to install a leaf containing k in place of that
nil pointer. If CAS is available, a single CAS can effect this change. Alterna-
tively, for a lock-based implementation, the process can acquire a lock for the
child pointer, check that it is still nil, replace the nil pointer, and release the
lock. If either of these ways of updating the tree fail (because another process
has already replaced the nil pointer with a different non-nil value), then the

374 J. Aspnes and E. Ruppert

insertion can simply continue searching down the tree from its current location
and try again to insert the new key k. The standard algorithm to search for keys
in a BST will work even if insertions are being done concurrently.

In the case of the CAS-based implementation described above, it is easy to
see that the number of steps performed by an insertion is proportional to the
depth of the node it eventually adds to the tree, since it does a constant amount
of work at each step along the path to that node. Thus, the total number of
steps to construct a random tree of n nodes is proportional to the sum of the
node depths, which has expected value O(n(c + log n)), according to our result.
(The total number of CAS steps is O(nc): each of the n successful CAS steps can
cause at most one failed CAS step at each other process, for a total of O(nc).)

Coordinating updates to the tree becomes considerably more difficult if dele-
tions can also occur. Ensuring the BST is balanced, so that the height of the tree
is logarithmic, adds significant additional complications to concurrent implemen-
tations of BSTs. Lock-based balanced BSTs have long been studied. As early
as 1978, Guibas and Sedgewick [8] sketched a lock-based implementation when
they introduced their balanced red-black trees. For a more up-to-date example,
see Bronson et al.’s lock-based implementation of an AVL tree [2]. Ellen et al. [7]
gave a non-blocking implementation of an unbalanced BST from CAS instruc-
tions. There have been several subsequent non-blocking BST implementations,
including one that extends the scheme of [7] to yield a balanced BST [3], ensur-
ing that the height is O(c + log n) whenever there are n keys in the tree and c
pending operations on it. However, concurrent balanced trees are considerably
more complex than unbalanced ones, and the tree rotation operations that are
required to maintain balance incur a significant overhead. In applications where
keys will be inserted in random order, our work suggests that this overhead
and additional complexity can be avoided by using unbalanced trees without
sacrificing good search times in the resulting BST.

3 Problem Statement

We are given a deck of n cards with unique keys from some ordered universe U ,
which are shuffled according to a uniform random permutation π. We start with
an empty BST. At each step, a player (representing the adversary) chooses to
insert into a BST one card from a hand consisting of the first c cards in the
permutation that have not yet been inserted, or, if fewer than c cards remain,
all remaining cards.

In making this decision, the player can only observe the cards in the hand
and the tree; it cannot predict the order of the remaining cards in the deck.
Cards already inserted in the tree or present in the hand at some step are called
dealt; the remaining cards are called undealt.

A play consists of taking one card from the hand and inserting it into the
tree. The game continues for n plays. We formalize the notion of a comparison-
based adversary as follows. When deciding which card to play, the player can only
observe the relative order of the dealt cards. In particular, if two permutations π

Depth of a Random Binary Search Tree with Concurrent Insertions 375

and π′ produce the same relative order of their first t cards, then the play after t
cards have been dealt will be from the same position in both π and π′. Note that
the dealt cards at this time will always be the first t cards in the permutation π.

We have two measures of performance for an adversary strategy:

1. The expected height is the expected maximum depth of any node in the
binary search tree after all n plays, where the expectation is taken over all
choices of the permutation π.

2. The expected average depth of all nodes in the tree under the same con-
ditions.

4 An Upper Bound on Expected Average Depth

In this section, we prove the following upper bound on the expected average
depth of a random BST.

Theorem 1. For every comparison-based adversary, the expected average depth
of a random BST is O(c + log n).

Proof. To simplify the argument, we assume that the player is deterministic.
This means that when conditioning on various events we do not need to take
into account any random choices made by the player. However, the argument
applies equally well to a randomized player, as such a player can be described
as a random mixture of deterministic players, and hence the expected average
depth for a randomized player will be a weighted average of the expected average
depths for various deterministic players.

Number the cards from 1 to n in the order they are dealt. Let Aij be the
indicator variable for the event that, in the final tree, card i is a proper ancestor
of card j. Then the depth of j is exactly

∑
i Aij , and the total depth of the

tree is
∑

j

∑
i Aij . Interchanging the summations gives

∑
i

∑
j Aij , which shows

that the total depth is equal to the sum of the number of proper descendants
of each node. In the argument below, we will bound this sum instead, booking
the expected number of proper descendants of a card i, conditioned on the
information available to the player, as soon as it is inserted into the tree.

Let R be the order relation on the shuffled cards, so that i <R j means that
the i-th card in the deck is less than the j-th card in the deck. Recall that we
assume all n! permutations of the deck are equally likely.

Define time t, for c≤ t≤n, as the first time at which t ≥ c cards have been
dealt, of which c are held in the player’s hand and t − c have already been
inserted in the tree. We will define a supermartingale process that bounds the
expected return to the player up to time n, and use a separate argument to
handle the insertion of the last c cards. (See the appendix for background on
supermartingales.)

Let Rt be the subrelation of R that includes only cards 1 through t. Since the
player is comparison-based, Rt includes all information available to the player
at time t. No new information is revealed to the player after time n, because the

376 J. Aspnes and E. Ruppert

v2

v4

v7

v2 v4 v7 v8

c19 = 1 c29 = 1 c39 = 2 c59 = 1

v3 v5 v6 v9

(v9, n](v8, v9)(v7, v8)(v6, v7)(v5, v6)(v4, v5)(v3, v4)(v2, v3)

v1

(v1, v2)[1, v1)

c49 = 0

v8

Fig. 2. An example when t = 9 and c = 5. The values on the cards are v1 < v2 < · · · <
v9. 4 cards have been inserted into the tree and 5 cards are in the player’s hand. The
small squares in the tree represent nil pointers.

last of the n cards is dealt at time n. For any undealt card j > t, we have that all
(t + 1)! permutations of {1, . . . , t, j} are equally likely, and conditioning on Rt,
we get that all t + 1 possible positions of j relative to cards 1, . . . , t are equally
likely. So the probability that j appears in each of these positions is 1

t+1 , and
summing over all n − t undealt cards gives an expected number of n−t

t+1 undealt
cards in each of these positions.

We now look at the expected return to the player, in terms of the number
of proper descendants, of playing a particular card at time t < n. Because the
tree contains t − c nodes, it has t − c + 1 null leaf pointers at which we might
insert a new card. Let ckt, the multiplicity of leaf k, be defined as the number of
cards in the hand that would be inserted at k. We will refer to the set of these
ckt cards as the k-th pile at time t. See Fig. 2 for an example.

Suppose now that we insert one of these ckt cards it at leaf k. Each of the
remaining ckt − 1 cards will eventually become a descendant of it. When t≤n,
so will an average of (ckt + 1)n−t

t+1 undealt cards. So for t≤n, we have

E

⎡

⎣
∑

j

Aitj

∣
∣
∣
∣
∣
∣
Rt

⎤

⎦ = ckt − 1 + (ckt + 1)
n − t

t + 1

= (ckt + 1)
(

1 +
n − t

t + 1

)
− 2

= (ckt + 1)
n + 1
t + 1

− 2. (1)

Depth of a Random Binary Search Tree with Concurrent Insertions 377

One way to interpret (1) is that (ckt + 1)n+1
t+1 is the expected number of leaf

pointers in the final subtree rooted at it. Subtracting one gets the number of
nodes in this subtree, and subtracting one again removes the subtree’s root it to
get the number of proper descendants.

The values of ckt may evolve over time in a complex way as new cards are
dealt and as the player chooses which cards to play based on the current state.
We will track the effect of these choices using a shape function proportional to∑

k c2kt that will reflect the player’s future ability to accrue expected descendants
by playing cards from large piles.

Let c′
kt be the number of cards that can be inserted under the k-th leaf after

it is inserted but before any new card is dealt. Playing a card splits ckt into two
new piles of size c′

k1t and c′
k2t, where c′

k1t + c′
k2t = ckt − 1; the remaining piles

are unaffected, so that each c�t for a pile that does not contain it becomes c′
�′t

for some distinct �′. After playing a card, replacing that card in the hand by
dealing a new card adds one to each c′

�t with probability c′
�t+1
t+1 , since the new

card is equally likely to fall into any of the t + 1 intervals shown at the bottom
of Fig. 2.

Splitting ckt into c′
k1t and c′

k2t reduces the sum of the squares by at least
2ckt − 1, since (c′

k1t)
2 + (c′

k2t)
2 − c2kt = (c′

k1t)
2 + (c′

k2t)
2 − (c′

k1t + c′
k2t + 1)2 =

−2c′
k1tc

′
k2t − 2(c′

k1t + c′
k2t + 1) + 1 ≤ −(2ckt − 1). Dealing a new card to pile �

increases the sum by 2c′
�t + 1. So for t < n,

E

[
∑

�

c2�,t+1 −
∑

�

c2�t

∣
∣
∣
∣
∣
Rt

]

≤ −(2ckt − 1) +
∑

�

(2c′
�t + 1)

c′
�t + 1
t + 1

= 1 − 2ckt +
2

t + 1

(
∑

�

(c′
�t)

2 +
∑

�

c′
�t

)

+
∑

�

c′
�t + 1
t + 1

≤ 1 − 2ckt +
2

t + 1

⎛

⎝

(
∑

�

c′
�t

)2

+
∑

�

c′
�t

⎞

⎠ +
∑

�

c′
�t + 1
t + 1

= 1 − 2ckt +
2

t + 1
(
(c − 1)2 + (c − 1)

)
+ 1

= 2 − 2ckt +
2c(c − 1)

t + 1
. (2)

We will now define a supermartingale process Xc,Xc+1 . . . , Xn to bound the
expected increase in

∑
i

∑
j Aij up to time n. In this context, the supermartin-

gale property means that Xt≥E [Xt+1 | Rt] for all t, from which it can be shown
by induction that Xc≥E [Xn | Rc]. We will structure this process so that Xc is
a fixed bound and Xn always exceeds

∑
i

∑
j Aij .

Let χit be the indicator variable for the event that the i-th card dealt from
the deck is in the tree at time t. This decision is made based on values observable
in Rt−1.

378 J. Aspnes and E. Ruppert

Define

Xt = Ut + Vt + Wt,

where

Ut =
n∑

i=1

χitE

⎡

⎣
n∑

j=1

Aij

∣
∣
∣
∣
∣
∣
Rt

⎤

⎦

is the expected total descendants of all nodes already inserted,

Vt =
n + 1

2(t + 1)

t−c+1∑

�=1

c2�t

is a scaled version of the shape factor discussed above, that will offset changes
to Ut that depend on which card is played at time t, and

Wt =
n−1∑

s=t

(
2
n + 1
s + 1

− 2 + (n + 1)
c(c − 1)
(s + 1)2

)
.

pays for the total expected changes to Ut and Vt that do not depend on which
card is played at time t.

Let us now demonstrate that Xc, . . . , Xn is in fact a supermartingale with
respect to Rc, . . . , Rn. We will start by considering Ut+1. Since χi,t+1 is com-
pletely determined by Rt, we have

E [Ut+1 | Rt] =
n∑

i=1

E

⎡

⎣χi,t+1E

⎡

⎣
n∑

j=1

Aij

∣
∣
∣
∣
∣
∣
Rt+1

⎤

⎦

∣
∣
∣
∣
∣
∣
Rt

⎤

⎦

=
n∑

i=1

χi,t+1E

⎡

⎣E

⎡

⎣
n∑

j=1

Aij

∣
∣
∣
∣
∣
∣
Rt+1

⎤

⎦

∣
∣
∣
∣
∣
∣
Rt

⎤

⎦

=
n∑

i=1

χi,t+1E

⎡

⎣
n∑

j=1

Aij

∣
∣
∣
∣
∣
∣
Rt

⎤

⎦

= Ut + E

⎡

⎣
n∑

j=1

Aitj

∣
∣
∣
∣
∣
∣
Rt

⎤

⎦

= Ut + (ckt + 1)
n + 1
t + 1

− 2, (3)

where k is the number of the pile that contains it. In the second-to-last step, we
use the fact that only χit

changes between t and t+1. The last step applies (1).

Depth of a Random Binary Search Tree with Concurrent Insertions 379

Now we turn to Vt. For t < n, use (2) to get

E [Vt+1 | Rt] =
n + 1

2(t + 2)
E

[
t−c+2∑

�=1

c2�,t+1

∣
∣
∣
∣
∣
Rt

]

<
n + 1

2(t + 1)
E

[
t−c+2∑

�=1

c2�,t+1

∣
∣
∣
∣
∣
Rt

]

≤ n + 1
2(t + 1)

(
t−c+1∑

�=1

c2�t + 2 − 2ckt +
2c(c − 1)

t + 1

)

= Vt +
n + 1
t + 1

− ckt
n + 1
t + 1

+ (n + 1)
c(c − 1)
(t + 1)2

. (4)

When we add Ut+1 and Vt+1 together, the ckt
n+1
t+1 terms on the right-hand

sides of (3) and (4) cancel out, so we are left with

E [Ut+1 + Vt+1 | Rt] < Ut + Vt + 2
n + 1
t + 1

− 2 + (n + 1)
c(c − 1)
(t + 1)2

. (5)

Since the extra terms on the right-hand side of (5) are precisely the value
of Wt − Wt+1, we have E [Xt+1 | Rt] = E [Ut+1 + Vt+1 + Wt+1 | Rt] < Ut + Vt +
Wt = Xt, and the supermartingale property holds. It follows that E [Xn] =
E [Un + Vn + Wn] ≤ Uc + Vc + Wc = Xc.

Let us look now at Un, Vn, and Wn. We have

Un =
n∑

i=1

χinE

⎡

⎣
n∑

j=1

Aij

∣
∣
∣
∣
∣
∣
Rn

⎤

⎦

=
n∑

i=1

χin

n∑

j=1

Aij .

This misses all pairs ij where i is among the c cards left in the hand at time n.
However, at this point the remaining play of the game is purely deterministic, and
it is straightforward to see that the player’s optimal strategy is to play the cards
under each leaf in increasing order, adding

∑n−c+1
k=1

(
ckn

2

) ≤ ∑n−c+1
k=1

1
2c2kn = Vn

to the total. So we have Un + Vn ≥ ∑
ij Aij . But Wn = 0, so this means Xn ≥∑

ij Aij .
Now let us return to the start of the process. At time c, we have χic = 0 for

all i, so Uc = 0. We have only one c�c, which equals c, so Vc = (n+1)c2

2(c+1) = O(cn).

380 J. Aspnes and E. Ruppert

Using H(n) to denote the nth harmonic number,

Wc =
n−1∑

s=c

(
2
n + 1
s + 1

− 2 + (n + 1)
c(c − 1)
(s + 1)2

)

< 2(n + 1) (H(n) − H(c)) + (n + 1) · c(c − 1) ·
∫ ∞

x=c

1
x2

dx

= O(n log(n/c)) + (n + 1) · c(c − 1) · 1
c

= O(cn + n log n).

It follows that E
[∑

ij Aij

]
≤ E [Xn] ≤ Xc = O(cn + n log n). Dividing by n

to convert the total to an average then gives the claimed bound. ��

4.1 A Matching Lower Bound

A simple strategy for the comparison-based adversary gets expected Ω(c+log n)
average depth, matching the bound in Theorem 1.

Theorem 2. There is a comparison-based adversary that yields an expected
average depth of Ω(c + log n).

Proof. Consider the comparison-based adversary that always inserts the largest
card in its hand. Let m be the upper median in the initial hand of c cards (i.e., the
� c+1

2 �th smallest card in the hand). With probability at least 1/2, there are at least
�n/2	 cards in the deck that are smaller than m. When this occurs, m is placed at
depth at least �c/2�−1 and at least �n/2	 keys are placed in the left subtree of m.
Even if that subtree is perfectly balanced, the leaf nodes of that subtree alone have
a total path length of at least (n/4)(�c/2�+�log�n/2		−1) = Ω(n(c+log n)). So,
with probability 1/2, the average depth of all nodes will be at least Ω(c + log n),
and hence the expected average depth will also be Ω(c + log n). ��

5 A Lower Bound on Expected Height

In this section, we show a lower bound on the expected height of a BST obtained
by the particular adversary strategy that always plays the largest available card.

We first introduce some notation from the calculus of finite differences that
will be useful in the proof. The forward difference operator Δf is defined by

Δf(k) = f(k + 1) − f(k).

Depth of a Random Binary Search Tree with Concurrent Insertions 381

This operator satisfies the summation by parts formula,

n∑

k=m

a(k)Δb(k)

=
n∑

k=m

a(k)b(k + 1) −
n−1∑

k=m−1

a(k + 1)b(k + 1)

= a(n + 1)b(n + 1) − a(m)b(m) −
n∑

k=m

b(k + 1)Δa(k). (6)

The falling factorial (x)c is defined by

(x)c = x(x − 1)(x − 2) . . . (x − c + 1).

Then, we have

Δ(k − 1)c = (k)c − (k − 1)c

= (k)(k − 1)c−1 − (k − c)(k − 1)c−1

= c(k − 1)c−1. (7)

Theorem 3. There is a comparison-based adversary strategy that yields a BST
with expected height Ω(c log(n/c)).

Proof. We consider the leftmost path in the BST, assuming the adversary always
plays the largest available card. Let Li be the value on the i-th card that appears
in the leftmost path (starting from the root of the BST), and let Xi be the total
number of cards whose values are strictly less than Li (i.e., Xi = Li − 1). Let
X0 = n. When the leftmost path has length i, then no card less than Li has yet
been played, and as long as the hand contains any card greater than Li, playing
this card does not increase the length of the leftmost path. It follows that the
leftmost path increases only when the hand consists entirely of cards less than
Li, and that Li+1 is the largest of the min(c,Xi) cards present in the hand at
this time.

This can be used to show that H(Xi) does not drop too quickly on average,
giving a lower bound on the expected length of the leftmost path. Here, H(n)
denotes the nth harmonic number, H(n) =

∑n
i=1

1
i .

We now consider the effect of playing a card less than Li. Suppose the value
of the random variable Xi is x. For any k ≤ x, the probability that c cards
chosen uniformly without replacement from the x smallest cards are all at most
k is exactly (k)c/(x)c, and the probability that the largest of these c cards is
exactly k is (k)c/(x)c − (k − 1)c/(x)c = Δ(k − 1)c/(x)c. Now let us compute, for
x ≥ c,

Pr [Xi+1 = k − 1 | Xi = x] = Δ(k − 1)c/(x)c, for c ≤ k ≤ x,

382 J. Aspnes and E. Ruppert

and

E[H(Xi+1) | Xi = x]

=
x∑

k=c

H(k − 1)Δ(k − 1)c/(x)c

=
1

(x)c

(

H(x)(x)c − H(c − 1)(c − 1)c −
x∑

k=c

(k)cΔH(k − 1)

)

by (6)

= H(x) − 1
(x)c

·
x∑

k=c

(k)c

k

= H(x) − 1
(x)c

·
x∑

k=c

(k − 1)c−1

= H(x) − 1
(x)c

·
x∑

k=c

Δ(k − 1)c

c
by (7)

= H(x) − 1
c · (x)c

((x)c − (c − 1)c)

= H(x) − 1
c
.

Let Yi = H(Xi) + i/c. Then

E[Yi+1 | X0, . . . , Xi] = E[H(Xi+1) | X0, . . . , Xi] +
i + 1

c

= H(Xi) − 1
c

+
i + 1

c

= H(Xi) +
i

c
= Yi

The remainder of the proof uses martingales, which are described in the appen-
dix. The sequence {Yi} is a martingale with respect to {Xi}. Let τ be the
first index at which Xτ ≤ c − 1. Then τ is not only a lower bound on the
depth of the tree, but is also a stopping time with respect to {Xi}. It fol-
lows from Doob’s Optional Stopping Theorem that E [Yτ] = E [Y0] = H(n).
So, we have H(n) = E[Yτ] = E[H(Xτ) + τ/c] = E[H(Xτ)] + E[τ]/c. Solving
for E[τ] gives E[τ] = c (H(n) − E[H(Xτ)]) ≥ c (H(n) − H(c − 1)) = c

∑n
k=c

1
k =

Ω (c log(n/c)). ��

6 Conclusion

We considered a node-oriented (or internal) BST, where keys are stored both in
internal nodes and leaves. Some concurrent implementations of BSTs are based
on leaf-oriented (or external) BSTs, where the keys are stored only in the leaves,

Depth of a Random Binary Search Tree with Concurrent Insertions 383

and internal nodes are used only to direct searches to the appropriate leaf. Our
height lower bound extends to leaf-oriented trees. It would be interesting to see
whether our average depth upper bound does too.

Although the comparison-based adversaries discussed here are intended to
model schedulers accurately (and pessimistically), it might be interesting to see
whether even stronger malicious adversaries could force the height or average
depth of random trees to grow higher by using the actual values of the keys.
For example, if keys are drawn uniformly at random from the interval [0, 1], and
the initial hand consisted of c = 3 cards labelled with 0.03, 0.45 and 0.54, the
adversary would be better off choosing 0.03 as the root to ensure a more lopsided
tree, whereas if the initial hand contained 0.46, 0.55 and 0.97 the adversary
should choose 0.97 as the root.

Acknowledgements. Funding for the second author was provided by the Natural
Sciences and Engineering Research Council of Canada.

A Background on Martingales

Here, for the sake of completeness, we present background information about
martingales that is used in our paper, following the presentation of Mitzenmacher
and Upfal’s textbook [11].

We say that a sequence Y0, Y1, . . . of random variables is a martingale with
respect to another sequence X0,X1, . . . of random variables if for all n ≥ 0

– Yn is a function of X0,X1, . . . , Xn,
– E [|Yn|] < ∞, and
– E [Yn+1 | X0,X1, . . . , Xn] = Yn.

The last property is called the martingale property. When Xn contains
all the information in the Xi for i < n, we can write it more succinctly as
E [Yn+1 | Xn] = Yn.

A random variable τ that takes values from N is a stopping time with
respect to X0,X1, . . . if, for all n ≥ 0, the event τ = n depends only on
X0,X1, . . . , Xn.

See [14, Sect. 10.10] for a proof of Doob’s Optional Stopping Theorem, of
which the following is a special case.

Theorem 4. If Y0, Y1, . . . is a martingale and τ is a stopping time, both with
respect to X0,X1, . . ., and τ is bounded, then E [Yτ] = E [Y0].

For some applications, it makes sense to replace the martingale property
with an inequality. A supermartingale is a process defined as above except
that Yn ≥ E [Yn+1 | X0, . . . , Xn]; where a martingale stays the same on average, a
supermartingale is non-increasing on average. A straightforward induction shows
that supermartingales satisfy Yk ≥ E [Yn | X0, . . . , Xk] whenever k ≤ n.

384 J. Aspnes and E. Ruppert

References

1. Booth, A.D., Colin, A.J.T.: On the efficiency of a new method of dictionary con-
struction. Inf. Control 3(4), 327–334 (1960)

2. Bronson, N.G., Casper, J., Chafi, H., Olukotun, K.: A practical concurrent binary
search tree. In: Proceedings of the 15th ACM Symposium on Principles and Prac-
tice of Parallel Programming, pp. 257–268 (2010)

3. Brown, T., Ellen, F., Ruppert, E.: A general technique for non-blocking trees. In:
Proceedings of the 19th ACM Symposium on Principles and Practice of Parallel
Programming, pp. 329–342 (2014)

4. Culberson, J., Munro, J.I.: Explaining the behaviour of binary search trees under
prolonged updates: a model and simulations. Comput. J. 32(1), 68–75 (1989)

5. Devroye, L.: A note on the height of binary search trees. J. ACM 33(3), 489–498
(1986)

6. Drmota, M.: An analytic approach to the height of binary search trees II. J. ACM
50(3), 333–374 (2003)

7. Ellen, F., Fatourou, P., Ruppert, E., van Breugel, F.: Non-blocking binary search
trees. In: Proceedings of the 29th ACM Symposium on Principles of Distributed
Computing, pp. 131–140 (2010)

8. Guibas, L.J., Sedgewick, R.: A dichromatic framework for balanced trees. In: Pro-
ceedings of the 19th IEEE Symposium on Foundations of Computer Science, pp.
8–21 (1978)

9. Mahmoud, H.M.: Evolution of Random Search Trees. Wiley, New York (1992)
10. Manthey, B., Reischuk, R.: Smoothed analysis of binary search trees. Theoret.

Comput. Sci. 378(3), 292–315 (2007)
11. Mitzenmacher, M., Upfal, E.: Probability and Computing: Randomized Algorithms

and Probabilistic Analysis, Chap. 12. Cambridge University Press, Cambridge
(2005)

12. Reed, B.: The height of a random binary search tree. J. ACM 50(3), 306–332
(2003)

13. Robson, J.M.: The height of binary search trees. Aust. Comput. J. 11(4), 151–153
(1979)

14. Williams, D.: Probability with Martingales. Cambridge University Press,
Cambridge (1991)

15. Windley, P.F.: Trees, forests and rearranging. Comput. J. 3(2), 84–88 (1960)

Priority Mutual Exclusion: Specification
and Algorithm

Chien-Chung Huang1 and Prasad Jayanti2(B)

1 Chalmers University of Technology, Gothenburg, Sweden
villars@gmail.com

2 Dartmouth College, Hanover, USA
prasad@cs.dartmouth.edu

Abstract. Mutual exclusion is a fundamental problem in distributed
computing. In one well known variant of this problem, which we call
priority mutual exclusion, processes have priorities and the requirement
is that, whenever the critical section becomes vacant, the next occupant
should be the process that has the highest priority among the waiting
processes. Instead of first capturing this vague, but intuitively appealing
requirement by a rigorously specified condition, earlier research rushed
into proposing algorithms. Consequently, as we explain in the paper, none
of the existing algorithms meet the reasonable expectations we would
have of an algorithm that claims to respect process priorities. This paper
fixes this situation by rigorously specifying the priority mutual exclusion
problem and designing an efficient algorithm for it. Our algorithm sup-
ports an arbitrary number of processes and, when configured to support
m priority levels (m can be any natural number), the algorithm has O(m)
RMR complexity on both DSM and CC machines.

1 Introduction

Mutual Exclusion [5] is a fundamental problem in distributed computing. This
problem and its variants—such as readers-writers exclusion [3], group mutual
exclusion [8], and abortable mutual exclusion [12]—are extensively researched.
One such well-known variant, known as priority mutual exclusion, is the subject
of this paper.

In the priority mutual exclusion problem, each process, as it moves from the
Remainder section to the Try section, picks a number, called its priority. Infor-
mally, the requirement is that processes enter the CS by the priority order: when
selecting which process enters the CS next, the algorithm must pick the process
whose priority is the highest among the waiting processes. This statement has
an intuitive appeal, but its meaning is vague. Unfortunately, instead of first
capturing this intuitive requirement of “enter by priority” by a rigorously spec-
ified condition, prior works on priority mutual exclusion that we are aware of
[4,6,7,10] rushed to propose algorithms.

In this paper, we make two contributions. First, we give a rigorous spec-
ification for the priority mutual exclusion problem and explain how existing
c© Springer-Verlag Berlin Heidelberg 2016
C. Gavoille and D. Ilcinkas (Eds.): DISC 2016, LNCS 9888, pp. 385–398, 2016.
DOI: 10.1007/978-3-662-53426-7 28

386 C.-C. Huang and P. Jayanti

algorithms do not meet this specification; thus, they do not meet some reason-
able expectations we would have for an algorithm that claims to respect priority.
Our second contribution is a novel algorithm that fills this gap. The algorithm
supports a finite number m of priority levels, but can handle an arbitrary and
unknown number of processes. It has O(m) RMR complexity on both CC and
DSM machines. The algorithm uses the swap operation, where swap(X, v) writes
the value v in the shared variable X and returns X’s previous value.

2 Specification of Priority Mutual Exclusion

We consider a system that consists of asynchronous processes that communicate
by applying atomic operations on shared variables. The program of each process
is a loop that consists of two sections of code—Try section and Exit section. We
say a process is in the Remainder section if its program counter points to the
first statement of the Try section; and that it is in the Critical section (CS) if
its program counter points to the first statement of the Exit section. The Try
section, in turn, consists of two code fragments—a doorway, followed by a waiting
room—with the requirement that the doorway is a bounded “straight line” code
[9]. Intuitively, a process “registers” its request for the CS by executing the
doorway, and then busywaits in the waiting room until it has the “permission”
to enter the CS. Initially, all processes are in their Remainder section. Each time
a process p executes the first step of the Try section, it selects a number, which
is p’s priority until it returns to the Remainder section.

A run is a (finite or infinite) sequence of steps, where each step is executed
by some process at some time. An attempt in a run is (p, [t, t′]), where p is a
process, t is a time when p enters the Try section, and t′ is the earliest time after
t when p returns to the Remainder section. Notice that a process may have many
attempts in a run. If α = (p, [t, t′]) and β = (q, [τ, τ ′]) are any two attempts in a
run, we say:

– α is an attempt by p.
– priority(α) is p’s priority during the attempt α.
– α is active at time s if t ≤ s ≤ t′.
– α is in the Waiting Room (respectively, Try, CS, or Exit) at time s if p is in

the Waiting Room (respectively, Try, CS, or Exit) at s and t ≤ s ≤ t′.
– α doorway precedes β if the time when p completes the doorway during the

attempt α is before the time when q enters the doorway during the attempt β.

The Priority Mutual Exclusion Problem is to design the code for the Try and
Exit sections so that five properties—the three stated below and the two defined
in Sects. 2.1 and 2.2—hold in all runs.

– Mutual Exclusion: At most one process is in the CS at any time.
– Bounded Exit: There is an integer b such that every process completes the

Exit section in at most b of its steps.

Priority Mutual Exclusion: Specification and Algorithm 387

– Livelock Freedom: On the assumption that no process permanently stops tak-
ing steps in the Try and Exit sections and no process stays in the CS forever,
if a process is in the Try section at a point in time, then some process is in
the CS at a later point in time.

The remaining two properties capture priorities. Since these properties are
new, we have motivated and carefully defined them in the next two subsections.

2.1 Priority Entry

Intuitively, the purpose of the bounded doorway is to make it possible for a
process to “register” its priority and its interest in the CS, without being hin-
dered by other processes. Accordingly, if a high priority process p completes the
doorway before a lower priority process q even enters the doorway, it makes sense
to require that q does not enter the CS before p.

What else must we ensure? Consider a scenario where, while p is in the CS
and q is in the waiting room, a process r of higher priority than q enters the
Try section, completes the doorway, and enters the waiting room. Later, when p
leaves the CS, we would want r, and not q, to enter the CS, even though q has
been waiting much longer than r.

To capture the above expectations, we define a “dominates” binary relation,
denoted �, on the set of attempts in a run as follows:

Definition 1. For any two attempts α and α′ in a run, we say α dominates α′,
written α � α′, if

priority(α) > priority(α′) and α doorway precedes α′, or
priority(α) > priority(α′) and there is a time when some process is in the CS,
α is in the waiting room, and α′ is in the Try section.

The next property states what it really means for processes to enter the CS by
priority order.

– Priority Entry: If α and α′ are any two attempts in a run such that α � α′,
then α′ does not enter the CS before α.

2.2 Wait-Free Progress for Dominator

The Priority Entry property stated above only ensures that a low priority process
does not race ahead of a higher priority process into the CS, but it makes no
guarantee that the higher priority process is not obstructed by a lower priority
process. This observation motivates the need to formulate a property that guar-
antees that, under suitable conditions, a high priority process’ progress to the
CS is not hindered by a lower priority process.

To understand what this property should be fleshed out, consider a scenario
where a process q is in the CS, a process p is in the waiting room, and a set S of
additional processes are in the Try section. Assume that p has a higher priority

388 C.-C. Huang and P. Jayanti

than every process in the set S. Then, p dominates every process in S. Suppose
now that q leaves the CS, completes the Exit section, and goes back to the
remainder section. Assuming that no new processes will enter the Try section
with a priority higher than p’s, process p finds itself in a favorable situation
where no process is in the CS or the Exit section, and p dominates every other
process in the Try section forever. Under these circumstances, it makes sense
to require that p be able to enter the CS in a finite number of its own steps,
regardless of whether other processes are slow, fast, or have crashed. Thus, we
are led to the following property: If no process is in the CS or the Exit section
and a process p in the waiting room dominates forever every other process in
the Try section, then p enters the CS in a finite number of its own steps. More
precisely:

– Wait-free Progress for Dominator: If an attempt α by a process p is in the
waiting room at time τ , no process is in the CS or the Exit section at τ , and,
for all τ ′ ≥ τ , α dominates every attempt that is active at τ ′, then p enters the
CS during the attempt α in a finite number of its steps, regardless of whether
other processes take any steps or crash.

3 Stronger Version of Priority Mutual Exclusion

So far we have been silent on the order in which processes of the same priority
may enter the CS, and on whether a process can obstruct another process of the
same priority. In particular, the properties stated above allow a process p to be
stuck in the waiting room while another process q of equal priority repeatedly
enters and leaves the CS. We could prevent such a scenario by requiring that
processes of equal priority enter the CS in the FCFS order: if p and q have the
same priority and p doorway-precedes q, then q does not enter the CS before p.

Similarly, if p and q have the same priority and p doorway-precedes q, we
might wish to strengthen the “Wait-free Progress for Dominator” property by
requiring that q does not obstruct p’s entry into the CS.

To capture these ideas, it is convenient to weaken the earlier defined “dom-
inates” relation slightly by replacing “>” with “≥” in the first condition, as
follows:

Definition 2. For any two attempts α and α′ in a run, we say α weakly domi-
nates α′, written α �w α′, if

priority(α) ≥ priority(α′) and α doorway precedes α′, or
priority(α) > priority(α′) and there is a time when some process is in the CS,
α is in the waiting room, and α′ is in the Try section.

Notice that, for any two attempts α and α′, α � α′ implies α �w α′. Now, we
can capture both Priority Entry and FCFS (among processes of equal priority)
together as follows:

Priority Mutual Exclusion: Specification and Algorithm 389

– Priority Entry + FCFS: If α and α′ are any two attempts in a run such that
α �w α′, then α′ does not enter the CS before α.

And we can strengthen the “Wait-free Progress for Dominator” property by
replacing “�” with the weaker “�w” in its definition:

– Strong Wait-free Progress for Dominator: If an attempt α by a process p is in
the waiting room at time τ , no process is in the CS or the Exit section at τ ,
and, for all τ ′ ≥ τ , α weakly dominates every attempt that is active at τ ′,
then p enters the CS during the attempt α in a finite number of its steps,
regardless of whether other processes take any steps or crash.

Finally, we define the Strong Priority Mutual Exclusion Problem as designing
the code for the Try and Exit sections so that the following five properties hold
in all runs: Mutual Exclusion, Livelock Freedom, Bounded Exit, Priority Entry
+ FCFS, and Strong Wait-free Progress for Dominator.

4 Discussion of Previous Research

The idea of dividing the Try section into a bounded doorway and waiting room is
due to Lamport [9], who introduced this structure to capture FCFS—a fairness
condition for Mutual Exclusion. Our specification of the Priority Mutual Exclu-
sion Problem is inspired by Bhatt and Jayanti’s formulations of the Readers-
Writers Exclusion Problem [1]. To the best of our knowledge, there are four
papers that proposed algorithms of bounded RMR complexity for the priority
mutual exclusion problem [4,6,7,10], but no prior work has attempted a rigorous
specification of the problem. Below, we briefly describe why the algorithms in
[4,6,7,10] do not meet our specification.

4.1 Algorithms of Markatos [10] and Craig [4]

Markatos’ and Craig’s algorithms, which are adaptations of Mellor-Crummey
and Scott’s queue-based mutual exclusion algorithm [11], do not satisfy Priority
Entry because they admit the following scenario:

– While a process p is in the CS, three processes q, r, and s enter the Try section
and queue themselves up in that order (q, followed by r, followed by s). Assume
that s has a higher priority than both q and r.

– q and s complete their doorways, but r stops in the doorway before setting the
link at q to point to r.

– p leaves the CS and makes the “best effort” to traverse the queue of waiting
processes to locate the highest priority process. It sees q, but will not be able
to see the next element r in the queue (since r has not yet installed a link at q
to point to r). Because p can’t see r, it can’t see s either. Thus, q is the only
waiting process that p is aware of. So, p lets q into the CS.

In the above scenario, s � q, yet q enters the CS before s, thereby violating
Priority Entry.

390 C.-C. Huang and P. Jayanti

4.2 A Second Algorithm of Markatos [10]

Another algorithm in Markatos’ paper adapts Burns’ algorithm [2] for standard
mutual exclusion. In Markatos’ algorithm, when a process p leaves the CS, it
scans all n processes to find out which ones are waiting and lets into the CS
the highest priority process among them. To implement this strategy, p reads
want[1], want[2], . . . , want[n] in that order, where want[i] is a shared flag that
process i sets to request the CS. This algorithm violates Priority Entry because
it admits the following scenario:

– Process p is in the CS while all others are in the remainder section. Then, p
leaves the CS and reads false in want[1] (because process 1 is in the remainder
section).

– Process 1 enters the Try section with a high priority, completes the doorway,
and proceeds to busywait in the waiting room. (During the doorway, process
1 sets want[1], but p does not notice it because it has already gone past 1.)

– Process 2 enters the Try section with a low priority, completes the doorway
(setting want[2] along the way), and proceeds to busywait in the waiting room.

– p reads true in want[2] and false in want[3], want[4], . . . , want[n]. Believing
that process 2 is the only waiting process, p lets process 2 into the CS.

In the above scenario, process 1 dominates process 2 because it has a higher
priority and doorway-precedes process 2. Therefore, process 2 entering the CS
before process 1 is a violation of Priority Entry.

4.3 Johnson and Harathi’s Algorithm [7]

Johnson and Harathi’s algorithm maintains a list of waiting processes, ordered
by their priority. For example, if the list is p, q, r, it means that three processes
are waiting, p has the highest priority, q has the second highest priority, and r
has the least priority. When a process enters the Try section, it traverses this list
and attempts to insert itself at the appropriate position (so as to preserve the
priority order of the list). When a process leaves the CS, if the list is not empty,
it removes the first process in the list and lets it into the CS. The algorithm uses
CAS to manipulate the queue.

Consider a scenario involving four processes a, b, c, x, where a, b, c have the
same priority and x has a higher priority. Suppose that a is in the CS; the list
has b, c; and x is in the Try section, trying to insert itself at the front of the
list. Suppose that a then leaves the CS and acts on the list (to remove the front
element) concurrently with x, which also acts on the list to insert itself at the
front. Suppose that a succeeds and x fails (because a’s CAS succeeds and x’s
CAS fails). Then, the situation is that b is in the CS, a is back in the remainder
section, and x has still not inserted itself in the list. Suppose that a then comes
back and inserts itself in the list (to make the list c, a). As b leaves the CS, as
before suppose that b and x act on the list concurrently, b’s CAS succeeds and
x’s CAS once again fails. We can repeat the above actions forever to ensure that

Priority Mutual Exclusion: Specification and Algorithm 391

x will never be able to insert itself into the list, even though x never ceases to
take steps.

The above scenario is damning: even though x has higher priority than all
others and takes steps repeatedly forever, it is stuck in the Try section without
being able to even get into the wait-queue! In particular, the algorithm violates
Priority Entry.

4.4 Jayanti’s Algorithm [6]

Jayanti’s algorithm satisfies Priority Entry, but violates “Wait-free Progress for
Dominator” by admitting the following scenario. While a process p is in the CS, a
high priority process q inserts its name into the wait-queue, which is maintained
as a priority queue (using LL/SC). Then, p leaves the CS, depositing a token in
a central location (to indicate that the CS is vacant) and proceeding to inspect
the priority queue. A low priority process r then enters the Try section, inserts
its name in the priority queue, grabs the token from the central location, and
goes back to the priority queue to hand the token to the highest priority waiting
process. However, before r finds out that q is the highest priority waiting process,
process p completes the Exit section and goes back to the remainder section,
which is possible with that algorithm. At this point, there is no process in the
CS or the Exit section, and q dominates r. Yet, q cannot enter the CS until r
hands it the token, violating “Wait-free Progress for Dominator.”

5 The Auxiliary Lock object

Our priority mutual exclusion algorithm, described in the next section, is
designed using auxiliary objects that we call lock objects. In this section, we
specify this object and state how it can be efficiently implemented.

5.1 Specification of a Lock Object

A lock object L is an abstraction that helps solve FCFS mutual exclusion, and
is specified in Fig. 1. Its state is represented by (i) L.waitqueue, the sequence
of processes waiting for the lock, and (ii) L.open, which is true if and only if
the lock is available. A process p requests the lock by executing L.requestp(),
which appends p to the wait queue. When the lock is not open, p can open it by
executing L.releasep(). After p requests the lock, it can execute L.isGrantedp()
to attempt to own the lock. If the lock is open and p is at the front of the wait
queue, the attempt succeeds—i.e., the lock is granted to p, p is removed from
the queue, and the lock is no longer open. Finally, p can find out if one or more
processes are waiting for the lock by executing L.areProcsWaiting(). We named
this object a lock object because it is trivial to solve FCFS mutual exclusion
using this object, as follows:

392 C.-C. Huang and P. Jayanti

State
L.waitqueue: Sequence of processes, initially empty
L.open: Boolean, initially true if we want the lock to be open initially,

and false otherwise

Operations
Precondition: p L.waitqueue
L.requestp()

append p to L.waitqueue

Precondition: L.open is false
L.releasep()

L.open = true

Precondition: p ∈ L.waitqueue
L.isGrantedp()

if (L.open == true) ∧ (p is at the front of L.waitqueue)
remove p from L.waitqueue
L.open = false
return true

else return false

L.areProcsWaitingp()
return (L.waitqueue == empty)

Fig. 1. Specification of a lock object L

L.requestp()
repeat till L.isGrantedp() returns true
critical section

L.releasep()

5.2 Implementing the Lock Object

Mellor-Crummey and Scott [11] and Craig [4] designed constant RMR algo-
rithms for FCFS mutual exclusion using shared variables that support the swap
operation. With a straightforward adaptation of their algorithm, we get an imple-
mentation of the lock object, which we omit due to space constraints. The result
that we achieve is summarized as follows:

Theorem 1. There is an algorithm that correctly implements a lock object L
(using read, write, and swap operations) under the assumption that L.open =
false in every interval during which a process p executes L.areProcsWaitingp().
On both DSM and CC machines, executing any of L.requestp(), L.releasep(),
or L.areProcsWaitingp(), or repeatedly executing L.isGrantedp() until it returns
true incurs only O(1) RMRs.

Priority Mutual Exclusion: Specification and Algorithm 393

6 The Algorithm

In this section, we present a novel priority mutual exclusion algorithm that
supports priorities from a set {1, 2, . . . ,m}, can handle an arbitrary and unknown
number of processes, and has O(m) RMR complexity on both DSM and CC
machines.

The algorithm employs m lock objects lock[1 · ·m]. When a process p enters
the Try section with a priority π ∈ {1, 2, . . . ,m}, it inserts itself in the wait-
queue of lock[π], the lock associated with priority π. When p leaves the CS, it
checks if processes are waiting in any of the wait-queues. If there are, it releases
the highest priority lock whose wait-queue is nonempty. On the other hand, if no
processes are waiting, p leaves a token in a “depository” dep so that a process
q that enters the Try section in the future can grab the token and enter the CS.
These ideas lead to our first attempt towards an algorithm, which we present in
Fig. 2. Two lines (2 and 7) are currently left blank, which we will fill later. The
code is described informally as follows.

Process p picks a priority π (Line 0) and inserts itself in the wait-queue of
lock[π], the lock associated with its priority (Line 1). Since it is possible that the
depository contains the token, p attempts to grab the token from the depository
(Line 3). If the depository contains the token, p grabs it and simultaneously
erases the token from the depository by swapping the integer π (its priority).
If p gets the token, it opens lock[π] (Line 4) so that the process at the front
of its wait-queue is granted the lock, enabling that process to proceed to the
CS (note that p knows that lock[π]’s wait-queue is nonempty because p itself
is in that wait-queue). The process p then busywaits until it is granted the
lock and then enters the CS (Line 5). When p leaves the CS, it goes through
all locks, from 1 to m, to identify the highest priority nonempty wait-queue, if
there is any (Lines 8 to 10). If k �= 0 when the for-loop on Line 9 terminates, it
means that some processes are waiting at lock[k] and p found the wait-queues
associated with locks k+1, k+2, . . . , n to be empty. In this case, p skips Line 11
and releases lock[k] (Line 12), which enables the earliest process waiting on
that lock to enter the CS. On the other hand, if k = 0 when the for-loop on
Line 9 terminates, it means that p found all wait-queues to be empty. In this
case, p puts a token in the depository dep (Line 11) so that a process q that
enters the Try section in the future can grab the token and proceed to the CS.
The swap operation at Line 11 enables p to both deposit the token in dep and
simultaneously read into k what was in dep. If k = ⊥, p infers that since the
time that p had cleared the depository at Line 6 no process executed Line 3;
in this case, p skips Line 12 and exits to the remainder section, aware that the
token it left behind in dep will be picked up by a process that enters the Try
section in the future. On the other hand, if the swap operation at Line 11 swaps
into k a positive integer, p infers that since the time it had cleared dep at Line 6,
some process q of priority k executed the swap operation at Line 3. The value
that this swap operation returned to q could not have been “token” since p had
not deposited the token in dep by that time. So, q must have skipped Line 4 and
be busywaiting at Line 5 for grant of access to lock[k]. If p takes no action and

394 C.-C. Huang and P. Jayanti

Shared variables
dep ∈ {token, ⊥, 1, 2, . . . , m}, initialized to token; supports swap operation
lock[1 . . . m]: array of m lock objects; initially all are closed,

i.e., ∀i, lock[i].open = false

0. select a priority π ∈ {1, 2, . . . , m}
1. lock[π].requestp()
2.
3. if swap(dep, π) == token
4. lock[π].releasep()
5. repeat till lock[π].isGrantedp() returns true

Critical Section
6. dep = ⊥
7.
8. k = 0
9. for i = 1 to m
10. if lock[i].areProcsWaitingp () then k = i
11. if k = 0 then k = swap(dep, token)
12. if k ∈ {1, 2, . . . , m} then lock[k].releasep()

Fig. 2. First attempt towards a priority mutual exclusion algorithm: code shown is for
process p

moves on to the remainder section, q will busywait forever at Line 5, leading to
livelock. To prevent this situation, p releases lock[k] (Line 12), which enables
the process r at the front of that lock’s wait-queue (which is possibly, but not
necessarily, q) to enter the CS. There is however a nasty race condition here:
the depository dep currently contains the token, which means that a process s
that might now enter the Try section with a new priority π executes Lines 0
through 3, grabs the token at Line 3, releases its lock at Line 4, so finds the lock
granted at Line 5, and enters the CS that already contains r, violating mutual
exclusion! We prevent this scenario by placing a “gate” to regulate access to the
depository. Specifically, our final algorithm, presented in Fig. 3, is obtained by
making the following three small additions to the code described so far:

– A new shared variable gate, which can take on two values—open or closed.
Initially, the gate is open, i.e., gate = open.

– Line 2, which ensures that a process p attempts to grab the token at Line 3
only if it finds the gate open. The swap operation at Line 2 lets p close the
gate and simultaneously learn if the gate was open just before the operation.

– Line 7, where an exiting process opens the gate.

With these changes, the algorithm prevents violation of mutual exclusion
because, as we now explain, an exiting process either wakes up a waiting process or
leaves the token behind for later pick up, but never does both. Consider a process
p as it leaves the CS. When p’s for-loop at Lines 9 and 10 terminates, either k = 0

Priority Mutual Exclusion: Specification and Algorithm 395

Shared variables
gate ∈ {open, closed}, initialized to open; supports swap operation
dep ∈ {token, ⊥, 1, 2, . . . , m}, initialized to token; supports swap operation
lock[1 . . . m]: array of m lock objects; initially all are closed, i.e.,

∀i, lock[i].open = false

0. select a priority π ∈ {1, 2, . . . , m}
1. lock[π].requestp()
2. if swap(gate, closed) == open
3. if swap(dep, π) == token
4. lock[π].releasep()
5. repeat till lock[π].isGrantedp() returns true

Critical Section
6. dep = ⊥
7. gate = open
8. k = 0
9. for i = 1 to m
10. if lock[i].areProcsWaitingp () then k = i
11. if k = 0 then k = swap(dep, token)
12. if k ∈ {1, 2, . . . , m} then lock[k].releasep()

Fig. 3. Priority mutual exclusion algorithm: code shown is for process p. Supports lim-
ited priorities from {1, 2, . . . ,m}, but an arbitrary and unknown number of processes.

or k ∈ {1, 2, . . . ,m}. If k > 0, p skips Line 11 and executes Line 12; thus, p opens a
lock but does not leave the token in the depository, thereby giving no scope for any
violation of mutual exclusion. For the remaining case, suppose that k = 0, which
implies that p found every wait-queue to be empty when it executed the for-loop
on Lines 9 and 10. It follows that all wait-queues were empty at the point when p
had executed Line 6. Therefore, during the interval I spanning from when p had
executed Line 6 to when p executes Line 11, at most one process could have gone
past the gate at Line 2 and onto Line 3 (because the first process to execute Line 2
closes the gate). If no process executed Line 3 during the interval I, when p executes
Line 11 to put the token in the depository, the swap operation returns ⊥ (because
p had put ⊥ in dep at Line 6), so p skips Line 12 and goes back to the remainder
section without waking anyone from a wait-queue (so there is no scope for violating
mutual exclusion). On the other hand, if exactly one process q of priority π executes
Line 3 during the interval I, q would read ⊥ from dep at Line 3 (because p had put
⊥ in dep at Line 6) and busywait at Line 5. And when p executes Line 11 to put the
token in the depository, the swap operation returns π ∈ {1, 2, . . . ,m} (that q put
into dep). In this case, p executes Line 12 to open lock[π], while still leaving the
token in the depository. However, there is no danger of some other process picking
up this token because the gate is closed at this point, so no process will be able to
get to Line 3 to grab the token! Hence, mutual exclusion won’t be violated. This is
just the intuition, and the next section provides a rigorous proof of all properties.

396 C.-C. Huang and P. Jayanti

6.1 Proof of Mutual Exclusion and Livelock Freedom

We present a rigorous proof of correctness, which we found to be as challenging
as the algorithm. The crux lies in identifying the invariant, presented in Fig. 4.
The proof that the algorithm satisfies the invariant is by induction, which is
omitted due to space constraints.

Lemma 1 (Mutual Exclusion). The algorithm satisfies Mutual Exclusion.

Proof. Immediate from Part (4) of the invariant. �

Lemma 2 (Bounded Exit). The algorithm satisfies Bounded Exit.

Proof. Obvious since the exit section involves no waiting and consists of at most
m + 4 steps. �

Lemma 3 (Livelock Freedom). The algorithm satisfies Livelock Freedom.

Proof. Let C be any configuration in which no process is in the CS or the exit
section (i.e., ∀p : PCp �∈ {7, 8, 9, 10, 11, 12}) and at least one process is in the
Try section (i.e., PCp ∈ {2, 3, 4, 5} for some p). To prove the lemma, we argue
below that some process is guaranteed to eventually enter the CS. We begin by
noting that Part (7a) of the invariant is false in C. Then, it follows from (7) that
exactly one of (7b) or (7c) is true.

Case 1: Assume that (7c) is true and (7b) is false. Then, there are three subcases:
(i) dep = token and gate = open, or (ii) dep = token and PCp = 3 for some
p, or (iii) PCp = 4 for some p.

In Subcase (i), it follows from Part (6) of the invariant that all processes in
the Try section are at Lines 2. Whichever process executes Line 2 first, it finds
that gate = open and moves to Line 3, thereby bringing the configuration to
Subcase (ii).

In Subcase (ii), it follows from Part (5) of the invariant that gate = closed
and no process other than p is at Lines 3 or 4. Thus, we have the gate closed, p at
Line 3, all other processes at Lines 0, 1, 2, or 5, and none of the locks in an open
state (since (7b) is false in the case under consideration). So, no process can go
past Line 5 or enter Line 3 until p executes a step. When p executes Line 3, it
finds the token in dep and moves to Line 4, thereby bringing the configuration
to Subcase (iii).

In Subcase (iii), p is at Line 4 and, by Part (1) of the invariant, the wait-queue
of lock[πp] is nonempty. When p executes Line 4, it opens this lock, thereby
bringing the configuration to Case (2), which we deal with below.

Case 2: Assume that (7b) is true, i.e., some lock � is open. Then, by Part (2),
the wait-queue associated with this lock is nonempty. Let q be the process at the
front of this queue. By (1), q is at one of Lines 2, 3, 4, or 5. When q moves to
Line 5 and executes the first iteration of the repeat-until loop at Line 5, q finds
the lock granted to it (because lock � is open), so moves to Line 6 (i.e., enters
the CS).

We conclude from the above that livelock is not possible. �

Priority Mutual Exclusion: Specification and Algorithm 397

Fig. 4. Invariant satisfied by the algorithm

Due to space limitation, we omit the proof of the Priority Entry + FCFS
and Strong Wait-free Progress for Dominator properties, and proceed to state
the main result of this work.

398 C.-C. Huang and P. Jayanti

Theorem 2. The algorithm in Fig. 3 correctly solves the Strong Priority Mutual
Exclusion Problem for an arbitrary and unknown number of processes, when pri-
orities are drawn from {1, 2, . . . ,m}. The algorithm has O(m) RMR complexity
on both DSM and CC machines.

References

1. Bhatt, V., Jayanti, P.: Constant RMR solutions to reader writer synchronization.
In: PODC 2010: Proceedings of the Twenty-Ninth Annual Symposium on Princi-
ples of Distributed Computing, pp. 468–477 (2010)

2. Burns, J.E.: Mutual exclusion with linear waiting using binary shared variables.
SIGACT News 10(2), 42–47 (1978)

3. Courtois, P.J., Heymans, F., Parnas, D.L.: Concurrent control with “readers” and
“writers”. Commun. ACM 14(10), 667–668 (1971)

4. Craig, T.: Queuing spin lock algorithms to support timing predictability. In: Pro-
ceedings of the 14th IEEE Real-time Systems Symposium, pp. 148–156. IEEE
(1993)

5. Dijkstra, E.W.: Solution of a problem in concurrent programming control. Com-
mun. ACM 8(9), 569 (1965)

6. Jayanti, P.: Adaptive and efficient abortable mutual exclusion. In: PODC 2003:
Proceedings of the Twenty-Second Annual Symposium on Principles of Distributed
Computing, pp. 295–304. ACM, New York (2003)

7. Johnson, T., Harathi, K.: A prioritized multiprocessor spin lock. IEEE Trans. Par-
allel Distrib. Syst. 8, 926–933 (1997)

8. Joung, Y.J.: Asynchronous group mutual exclusion (extended abstract). In: PODC
1998: Proceedings of the Seventeenth Annual ACM Symposium on Principles of
Distributed Computing, pp. 51–60. ACM, New York (1998)

9. Lamport, L.: A new solution of Dijkstra’s concurrent programming problem. Com-
mun. ACM 17(8), 453–455 (1974)

10. Markatos, E.: Multiprocessor synchronization primitives with priorities. In: Pro-
ceedings of the 1991 IFAC Workshop on Real-Time Programming, pp. 1–7 (1991)

11. Mellor-Crummey, J.M., Scott, M.L.: Algorithms for scalable synchronization on
shared-memory multiprocessors. ACM Trans. Comput. Syst. 9(1), 21–65 (1991)

12. Scott, M., Scherer III., W.: Scalable queue-based spin locks with timeout. In: Pro-
ceedings of the Eight Symposium on Principles and Practice of Parallel Program-
ming, June 2001

Information Spreading in Dynamic Networks
Under Oblivious Adversaries

John Augustine1, Chen Avin2, Mehraneh Liaee3, Gopal Pandurangan4,
and Rajmohan Rajaraman3(B)

1 IIT Madras, Chennai 600036, India
augustine@iitm.ac.in

2 Ben-Gurion University of the Negev, 84105 Beersheba, Israel
avin@cse.bgu.ac.il

3 Northeastern University, Boston 02115, USA
{mehraneh,rraj}@ccs.neu.edu

4 University of Houston, Houston, TX 77204, USA
gopalpandurangan@gmail.com

Abstract. We study the problem of gossip in dynamic networks con-
trolled by an adversary that can modify the network arbitrarily from
one round to another, provided that the network is always connected.
In the gossip problem, there are n tokens arbitrarily distributed among
the n network nodes, and the goal is to disseminate all the n tokens to
every node. Our focus is on token-forwarding algorithms, which do not
manipulate tokens in any way other than storing, copying, and forward-
ing them. An important open question is whether gossip can be realized
by a distributed protocol that can do significantly better than an easily
achievable bound of O(n2) rounds.

In this paper, we study oblivious adversaries, i.e., those that are obliv-
ious to the random choices made by the protocol. We consider Rand-
Diff, a natural distributed algorithm in which neighbors exchange a
token chosen uniformly at random from the difference of their token
sets. We present an Ω̃(n3/2) lower bound for Rand-Diff under an
oblivious adversary. We also present an Ω̃(n4/3) lower bound under a
stronger notion of oblivious adversary for a class of randomized dis-
tributed algorithms—symmetric knowledge-based algorithms— in which
nodes make token transmission decisions based entirely on the sets of
tokens they possess over time. On the positive side, we present a central-
ized algorithm that completes gossip in Õ(n3/2) rounds with high prob-
ability, under any oblivious adversary. We also show an Õ(n5/3) upper
bound for Rand-Diff in a restricted class of oblivious adversaries, which
we call paths-respecting, that may be of independent interest.

J.A. was supported by IIT Madras New Faculty Seed Grant, IIT Madras Exploratory
Research Project, and Indo-German Max Planck Center for Computer Science
(IMPECS). G.P. was partially supported by NSF grants CCF-1527867 and CCF-
1540512. M.L. and R.R were partially supported by grants NSF CCF-1422715, NSF
CCF-1535929, and ONR N00014-12-1-1001.

c© Springer-Verlag Berlin Heidelberg 2016
C. Gavoille and D. Ilcinkas (Eds.): DISC 2016, LNCS 9888, pp. 399–413, 2016.
DOI: 10.1007/978-3-662-53426-7 29

400 J. Augustine et al.

1 Introduction

In a dynamic network, nodes (processors/end hosts) and communication links
can appear and disappear over time. The networks of the current era are inher-
ently dynamic. Modern communication networks (e.g., Internet, peer-to-peer,
ad-hoc networks and sensor networks) and information networks (e.g., the Web,
peer-to-peer networks and on-line social networks), and emerging technologies
such as drone swarms are dynamic networked systems that are larger and more
complex than ever before. Indeed, many such networks are subject to continuous
structural changes over time due to sleep modes, channel fluctuations, mobil-
ity, device failures, nodes joining or leaving the system, and many other fac-
tors [1,9,14,18,25,29,31]. Therefore the formal study of algorithms for dynamic
networks have gained much popularity in recent years and many of the classical
problems and algorithms for static networks were extended to dynamic net-
works. During the past decade, new dynamic network models have been intro-
duced to capture specific applications [9,10,16,18,25,30], and the last few years
have witnessed a burst of research activity on broadcasting, flooding, random-
walk based, and gossip-style protocols in dynamic networks [3–8,11–13,15,19–
22,26,27,33,34].

Our paper continues this effort and studies a fundamental problem of informa-
tion spreading, called k-gossip, on dynamic networks. In k-gossip (also referred to
as k-token dissemination), k distinct pieces of information (tokens) are initially
present in some nodes, and the problem is to disseminate all the tokens to all
the nodes, under the constraint that one token can be sent on an edge per round
of synchronous communication. This problem is a fundamental primitive for dis-
tributed computing; indeed, solving n-gossip, where each node starts with exactly
one token, allows any function of the initial states of the nodes to be computed,
assuming the nodes know n [26]. This problem was analyzed for static networks
by Topkis [35], and was first studied on dynamic networks for general k in [26],
and previously for the special case of one token and a random walk in [6].

In this paper, we consider token-forwarding algorithms, which do not manipu-
late tokens in any way other than storing, copying, and forwarding them. Token-
forwarding algorithms are simple and easy to implement, typically incur low
overhead, and have been widely studied (e.g., see [28,32]). In any n-node static
network, a simple token-forwarding algorithm that pipelines tokens up a rooted
spanning tree, and then broadcasts them down the tree completes k-gossip in
O(n+ k) rounds [32,35]; this is tight since Ω(n+ k) is a trivial lower bound due
to bandwidth constraints. A central question motivating our study is whether a
linear or near-linear bound is achievable for k-gossip on dynamic networks. It is
important to note that algorithms that manipulate tokens, e.g., network coding
based algorithms, have been shown to be efficient in dynamic settings [21], but
are harder to implement and incur a large overhead in message sizes.

Several models have been proposed for dynamic networks in the literature
ranging from stochastic models [6,13] to weak and strong adaptive adversaries
[26]. In this paper we consider one of the most basic models known as the obliv-
ious adversary [6] or the evolving graph model [16,17,24,33]. In this model,

Information Spreading in Dynamic Networks Under Oblivious Adversaries 401

the adversary is unaware of any random decisions of the algorithm/protocol and
must fix the sequence of graphs before the algorithm starts. The oblivious adver-
sary can choose an arbitrary set of communication links among the (fixed set) of
nodes for each round, with the only constraint being that the resulting commu-
nication graph is connected in each round. Formally, oblivious adversary fixes
an infinite sequence of connected graphs G = G1, G2, . . . on the same vertex set
V ; in round t, the algorithm operates on graph Gt. The adversary knows the
algorithm, but is unaware of the outcome of its random coin tosses.

The oblivious adversary model captures worst-case dynamic changes that
may occur independent of the algorithm’s (random) actions. On the other hand,
an adaptive adversary can choose the communication links in every round —
depending on the actions of the algorithm — and is much stronger. Indeed,
strong lower bounds are known for these adversaries [15,23]: in particular, for
the strongly adaptive adversary1, there exists a Θ̃(nk) lower bound2 for k-gossip,
essentially matching the trivial upper bound of O(nk).

The main focus of this paper is on closing the gap for the complexity of k-
gossip under an oblivious adversary between the straightforward upper bound
of O(nk) and the trivial lower bound of Ω(n + k). In particular, can we achieve
an upper bound of the form Θ̃(n+ k)? In fact, it is not even clear whether there
even exists a centralized algorithm that can do significantly better than the naive
bound of O(nk).

The starting point of our study is Rand-Diff, a simple local randomized
algorithm for k-gossip. In each round of Rand-Diff, along every existing edge
(u, v) at that round, u sends a token selected uniformly at random from the
difference between the set of tokens held by u and that held by node v, if such
a token exists. Note that in Rand-Diff, a node is aware of the tokens that its
neighbours have and therefore Rand-Diff guarantees progress, i.e., exchange of
a missing token along every edge where such a progress is possible. Moverover,
by using randomization it tries to keep the entropy of token distribution as high
as possible in the presence of an adversary. Rand-Diff is optimal for static
networks, while for dynamic networks under an oblivious adversary, it completes
k-gossip in Õ(n+k) rounds for certain initial token distributions which take any
token-forwarding algorithm Ω̃(nk) rounds under adaptive adversaries [15]3

1.1 Our Contributions

We present lower and upper bounds for information spreading under the oblivi-
ous adversary model.
1 In each round of the strongly adaptive adversary model, each node first chooses a

token to broadcast to all its neighbors, and then the adversary chooses a connected
network for that round with the knowledge of the tokens chosen by each node.

2 The notation Ω̃ hides polylogarithmic factors in the denominator and Õ hides poly-
logarithmic factors in the numerator.

3 Actually, [15] shows the O(npolylog(n)) bound applies even for a weaker protocol
called Sym-Diff, where the token exchanged between two neighbouring nodes is a
random token from the symmetric difference of the token sets of the two nodes.

402 J. Augustine et al.

Lower Bound for Rand-Diff. We show that Rand-Diff requires Ω̃(n
3
2)

rounds to complete n-gossip under an oblivious adversary with high probabil-
ity4 (Sect. 2). Our proof shows that even an oblivious adversary can block Rand-
Diff using a sophisticated strategy that prevents some tokens from reaching cer-
tain areas of the network. Although the adversary is unaware of the algorithm’s
random choices, the adversary can exploit the randomization of the algorithm
to act against its own detriment.

Lower bound for symmetric knowledge-based algorithms. We use the
technical machinery developed for the Rand-Diff lower bound to attack a broad
class of randomized k-gossip algorithms called symmetric knowledge-based (SKB)
algorithms, which are a subclass of the knowledge-based class introduced in [26]
(Sect. 2.3). In any round, the token sent by a node in a knowledge-based algo-
rithm is based entirely on the set of tokens it possesses over time; an SKB
algorithm has the additional constraint that if two tokens first arrived at the
node at the same time, then their transmission probabilities are identical. SKB
algorithms are quite general in the sense that each node can use any probabilistic
function that may depend on the node’s identity and the current round num-
ber to decide which token to send in a round. Indeed, this offers an attractive
algorithmic feature that does not exist in Rand-Diff: exploitation of informa-
tion on the history of token arrivals. We show that this may not help achieve a
near-linear bound: any SKB algorithm for n-gossip requires Ω̃(n

4
3) rounds whp,

under a stronger kind of oblivious adversary, which is also allowed to add tokens
from the universe of n tokens to any node in any round.

We do not know whether either of the above lower bounds is tight. Our
bounds do raise some intriguing questions: Can n-gossip be even solved in
O(n2−ε) rounds (for some constant ε > 0) rounds by any algorithm? Are there
restricted versions of the oblivious adversary that are more amenable to dis-
tributed algorithms? We present two upper bound results that partially answer
these questions.

Upper bound for Rand-Diff under restricted oblivious adversaries.
We introduce a new model for dynamic networks which restricts the oblivious
adversary in the extent and location of dynamics it can introduce (Sect. 3). In
the paths-respecting model, we assume that in each round, the dynamic network
is a subgraph of an an underlying infrastructure graph N ; furthermore, for every
pair (s, d) of nodes in N , there exists a set Nsd of simple vertex-disjoint paths
from s to d in N such that in any round the adversary can remove at most
Nsd − 1 edges from these paths. The paths-respecting model is quite general
and of independent interest in modeling and analyzing protocols for dynamic

4 Throughout, by “with high probability” or whp, we mean with probability at least
1 − 1/nc, where the constant c can be made sufficiently large by adjusting other
parameters in the analysis.

Information Spreading in Dynamic Networks Under Oblivious Adversaries 403

networks.5 A basic special case of the paths-respecting model is one where N
is a λ-vertex-connected graph and the adversary fails at most λ − 1 edges in
each round. Even for this special case, it is not obvious how to design fast
distributed algorithm for n-gossip. In Sect. 3, we also present examples in this
model where the adversary can remove a constant fraction of the edges of an
infrastructure graph. We show that Rand-Diff completes n-gossip in Õ(n5/3)
rounds under the paths-respecting model (Sect. 3). From a technical standpoint,
this result is the most difficult one in this paper; it relies on a novel delay
sequence argument, which may offer a framework for other related routing and
information dissemination algorithms in dynamic networks.

A min{nk, Õ((n + k)
√

n)} centralized algorithm for k-gossip. Finally,
we present a centralized algorithm (cf. Sect. 4) that completes k-gossip in
min{nk, Õ((n+k)

√
n)} rounds (and hence n-gossip in Õ(n

3
2) rounds) whp, under

an oblivious adversary. This answers the main open question affirmatively, albeit
in the centralized setting. This result provides the first sub-quadratic token dis-
semination schedule in a dynamic network controlled by an oblivious adversary.
One of the key ingredients of our algorithm is a load balancing routine that is
of independent interest: n tokens are at a node, and the goal is to distribute
these tokens among the n nodes, without making any copies of the tokens. This
load balancing routine is implemented in a centralized manner; its complexity
in the distributed setting under an oblivious adversary, however, is open. We
believe that our centralized algorithm is a step towards designing a possible
subquadratic-round fully distributed algorithm under an oblivious adversary.

Due to space constraints, we have to omit many proofs; we refer the reader
to the full paper for all missing proofs [2].

2 An Ω̃(n1.5) Lower Bound for Rand-Diff

In this section, we show that there exists an oblivious adversary under which
Rand-Diff takes Ω̃(n3/2) rounds to complete n-gossip whp. We will establish
this result in two stages. In the first stage, we will introduce a more powerful
class of adversaries, which we refer to as invasive adversaries. Like an oblivious
adversary, an invasive adversary can arbitrarily change the graph connecting the
nodes in each round, subject to the constraint that the network is connected.
In addition, an invasive adversary can add, to each node, an arbitrary set of
tokens from the existing universe of tokens. Similar to an oblivious adversary,
an invasive adversary needs to specify, for each round, the network connecting
the nodes as well as the tokens to add to each node, in advance of the execution
of the gossip algorithm.

In Sect. 2.1, we will first show that there exists an invasive adversary under
which Rand-Diff takes Ω̃(n3/2) rounds to complete n-gossip whp. In Sect. 2.2,
5 Indeed, an infrastructure-based model captures many real-world scenarios involv-

ing an underlying communication network with dynamics restricted to the network
edges. This is unlike the case of a general oblivious adversary where the graph can
change arbitrarily from round to round.

404 J. Augustine et al.

v0

inner nodes

(i, j)-interval (i, j+1)-interval

outer nodes

"old" inner nodes inner nodes

outer nodes "old" outer nodes
blockers

Fig. 1. The dynamic line network for the lower bound for Rand-Diff

we will simulate the token addition process using Rand-Diff and extend the
lower bound claim to oblivious adversaries.

2.1 Lower Bound Under an Invasive Adversary

Our invasive adversary proceeds in
√

n/(2 log n) phases, each phase consisting of
Ω(n) rounds, divided into segments of

√
n rounds each. Throughout the process,

the network is always a line, you can refer to Fig. 1 throughout the description on
the network. We build this line network by attaching two line networks – which
we refer to as left and right lines – each of which has the same designated source
node v0 at one of its ends. The size of the left line keeps growing with time, while
the size of the right line shrinks with time. After the end of each segment, we
move log n nodes closest to v0 in the right line to the left line, so the size of the
left line at the start of segment j of phase i is exactly ((i − 1)

√
n
3 + j − 1) log n.

At the start of each phase, we label the nodes in the right line (other than
the source v0) as v1 through vp (where p is the number of nodes in the right
line at that time). For any j, we refer to set {vl : 2(j − 1)

√
n ≤ l < 2j

√
n} as

the (i, j)-interval. We refer to the first log n nodes of the (i, j)-interval as the
(i, j)-inner nodes, and the remaining 2

√
n− log n nodes as the (i, j)-outer nodes.

Initially, v0 has all of the n tokens and every other node has no token. We arbi-
trarily partition the tokens into

√
n groups of

√
n tokens each. We use Bi to denote

the ith group, and refer to any token in Bi, 1 ≤ i ≤ √
n/(2 log n) as an i-blocker

since the adversary will use the tokens in Bi in phase i to impede the progress of
tokens not in ∪j≤iBi. Let M(u) denote the set of tokens in node u at any time.

At a high level, our adversary operates as follows. Throughout segment j
of phase i, the adversary keeps the line unchanged. At the start of segment j,
the adversary adds randomly chosen subsets of tokens from Bi to the

√
n nodes

of (i, j)-interval which are the
√

n consecutive nodes adjacent to v0 from the
right. We argue that this action ensures that in subsequent ε

√
n rounds, no

token outside the set ∪i′≤iBi′ makes it to an (i, j)-outer node. Since in each
phase the adversary uses the same set of

√
n tokens, namely Bi, as “blockers”,

it can continue this for Ω(
√

n/ log n) phases, and ensure that whp, no token in,
say B√

n, has reached the right line in Ω(n3/2/ log n) rounds. We now formally
describe how our adversary operates.

Phase i, 1 ≤ i ≤ √
n/(2 log n):

• Segment j, 1 ≤ j ≤ √
n/3: The network is a line, that has two parts. The

first part is the left line with v0 at one end, connected to all the (i′, j′)-inner

Information Spreading in Dynamic Networks Under Oblivious Adversaries 405

nodes, where either A: i′ < i or B : i′ = i and j′ < j. The second part is a line
with v0 at one end connected to (i, j′)-intervals in sequence, j′ ≥ j, followed
by (i, j′)-outer nodes, j′ < j.
• Pre-Segment Insertion: For each token τ in Bi and each node v among

the first
√

n nodes of (i, j)-interval nodes: adversary inserts τ in v indepen-
dently with probability 1/2.

• Run: Execute Rand-Diff for ε
√

n rounds of segment j.
• Post-Segment Shifting: The adversary moves the (i, j)-inner nodes to

the left line, and the (i, j)-outer nodes to the right end of the line and
connect the (i, j + 1)-interval to v0.

• Post-Phase Insertion: For every node in the right line, the adversary inserts
any token missing from Bi.

Lemma 1. In every round of phase i and segment j, for any of two adjacent
nodes u and v on the (i, j)-inner nodes, the probability that |M(u) − M(v)| is
less than

√
n/16 is at most e−Ω(

√
n).

Proof. Let X be the random variable denoting the number of tokens node u
has but node v does not have, at the start of segment j. Clearly, X equals∑

τ∈Bi
Iτ , where Iτ is the indicator variable for token τ ; Iτ is 1 if u has token

τ and v does not have τ ; otherwise it is 0. Using linearity of expectation, we
obtain E[X] =

∑
τ∈Bi

E[Iτ]. Since the adversary adds each token to each node
with probability of 1/2 independently, we have E[Iτ] = 1/4 and E[X] =

√
n/4.

Using a standard Chernoff bound argument, we obtain that the probability that
X ≤ √

n/8 is e−Ω(
√

n). During the remainder of segment j, since each node has
two neighbors on the line, node v may receive at most 2ε

√
n new tokens. Thus,

|M(u) − M(v)| is at least
√

n/8 − 2ε
√

n whp (for ε ≤ 1/32, this difference is at
least

√
n/16).

Lemma 2. In segment j of phase i, the probability that any token in ∪i′>iBi′

reaches an (i, j)-outer node is at most 1/n9.

Proof. Let α be an arbitrary token in the set ∪i′>iBi′ . By Lemma 1, the prob-
ability that at an arbitrary round token α is sent from one node to its adjacent
node on (i, j)-interval is at most 16/

√
n. The probability that token α goes

further than log n steps during segment j (which is ε
√

n rounds) is at most
(

ε
√

n
log n

)
(16√

n
)log n, which is O(1/n10). Now using union bound, we obtain that

the probability that any token in ∪i′>iBi′ reaches any i-outer node is at most
n/n10 = 1/n9.

Lemma 3. At the end of phase i, the set of tokens in any node �= v0 in the right
line is ∪i′≤iBi′ whp.

Proof. The proof is by induction on i. For convenience, we set the induction base
case to be i = 0 and assume B0 is the empty set. So the base case, at the start
of the algorithm, is trivial since initally every node other than v0 has no tokens.
For the induction step, we consider phase i > 0. Let Ri denote the set of nodes

406 J. Augustine et al.

in the right line at the end of phase i. We first observe that Ri ⊆ Ri−1. By the
induction hypothesis, it follows that the token set at every node in Ri at the end
of phase i − 1 is precisely ∪i′<iBi′ . Furthermore, the adversary guarantees that
every node in Ri has all tokens from Bi at the end of phase i.

It remains to prove that no token from ∪i′>iBi′ arrives at any node in Ri

during phase i. Our proof is by contradiction. Let v be the first node in Ri to
receive a token τ from ∪i′>iBi′ in phase i. Since v is first such node, it received
τ from v0 or from an (i, j)-inner node since Ri is the union of the sets of all
(i, j)-outer nodes. Now, v can be connected to such an (i, j)-inner node only
during segment j. By Lemma 2, however, no (i, j)-outer node receives a token
from ∪i′>iBi′ whp.

Theorem 1. Under the invasive adversary defined above, whp, Rand-Diff
requires Ω(n3/2/ log n) rounds to complete n-gossip.

Proof. Each phase consists of
√

n/3 segments, with each segment having ε
√

n
rounds. So the total number of rounds after

√
n/(2 log n) phases is Ω(n3/2/ log n).

We obtain that after
√

n/(2 log n) phases, the size of the left line is at most n/2,
implying that the right line has Ω(n) nodes. By Lemma 3, whp, every node in
the right line is missing at least one token, completing the proof of the theorem.

2.2 Lower Bound Under an Oblivious Adversary

In this section, we extend the lower bound established in Sect. 2.1 to oblivious
adversaries. Thus, the adversary can no longer insert tokens into the network
nodes; the pre-segment insertion and post-phase insertion steps of the adversary
of Sect. 2.1 are no longer permitted. We simulate these two steps using Rand-
Diff and a judicious use of (oblivious) network dynamics.

Theorem 2. Rand-Diff requires Ω(n3/2/ log n) rounds whp under an oblivious
adversary.

2.3 Lower Bound for Symmetric Knowledge-Based Algorithms

In this section, we present a lower bound for a broad class of randomized algo-
rithms for gossip, called symmetric knowledge-based (SKB) algorithms. We first
introduce some notation. For round t, we define at : U × V → T , where U is the
universe of all tokens and V is the set of all nodes: if τ is at u at the start of round
t, then at(τ, u) is the time that τ first arrived at u; otherwise at(τ, u) is ⊥.

Definition 1. An SKB algorithm is specified by a collection of functions Pt,u :
U → [0, 1], where Pt,u(τ) is the probability with which u sends τ to each of its
neighbors in round t, satisfying the following properties:

• Token transmission: for any t, if at(τ, u) = ⊥, then Pt,u = 0, the differ-
ent token sending events for a node in round t are mutually exclusive, and∑

τ∈U Pt,u(τ) ≤ 1.

Information Spreading in Dynamic Networks Under Oblivious Adversaries 407

• Symmetry: for any τ1, τ2 such that at(τ1, u) = at(τ2, u), Pt,u(τ1) = Pt,u(τ2).

We note that the Pt,u may differ arbitrarily from node to node and round to
round. The symmetry property and the resulting dependence on the arrival times
of tokens are the only constraint on the algorithm.

We now show that there exists an invasive adversary under which SKB takes
Ω(n4/3

log n) rounds to complete n-gossip whp. In order to block the progress of an
arbitrary token, the adversary inserts a subset of m tokens, for a suitable choice
of m, at the same time as that token reaches a node. We refer to this subset
of tokens as a Blocker Set. A random selection of the blocker sets, a judicious
repetition of this process, together with appropriate network dynamics, yields
the desired lower bound.

Theorem 3. Under an invasive adversary, SKB requires Ω(n4/3

log n) rounds whp.

3 Analysis of Rand-Diff Under a Paths-Respecting
Adversary

In this section, first we introduce a new model, the paths-respecting adversary,
under which we show that Rand-Diff completes n-gossip in Õ(n5/3) rounds
whp.

3.1 The Paths-Respecting Model

In the paths-respecting model we assume that there is an underlying infrastruc-
ture network N such that at the start of every round t, the network Nt laid
out by the adversary is a subgraph of N ; we refer to any edge in N − Nt as an
inactive or failed edge in round t. Before presenting the model, we note that the
assumption of an infrastructure network is essentially without loss of general-
ity. For instance, it captures 1-interval connectivity, a central dynamic network
model of Kuhn et al [26]: we can let N be the complete graph and require that
Nt be a connected subgraph of N for each t.

Definition 2. The paths-respecting model places some constraints on N and
the set of edges that the adversary can render inactive in any given round. In
particular, we assume that for every pair (s, d) of nodes in N , there exists a set
Nsd of simple vertex-disjoint paths from s to d such that the total number of
inactive edges of paths in Nsd in any round is at most |Nsd| − 1.

Before analyzing the paths-respecting model, we present two examples. First,
a natural special case of this model is one where N is a λ-vertex-connected graph
and the adversary fails at most λ − 1 edges in each round. If λ = 2, then a simple
example is that of a ring network in which an arbitrary edge fails in each round.
In this example, the adversary is significantly restricted in the number of total
edges it can fail in a given round; yet, it is not obvious how a distributed token-
forwarding algorithm can exploit this fact since for any pair of vertices, no specific

408 J. Augustine et al.

path between the two may be active for more than n rounds over an interval of λn
rounds. A radically different example of the paths-respecting model in which the
adversary can fail a constant fraction of edges in each round is the following: N
consists of a set of r center vertices and a set of n − r terminals, with an edge
between each center and each other vertex. Any two vertices have at least r − 1
vertex-disjoint paths between them. An adversary can remove edges between
(r−
2)/2� of the centers and all the terminals – and hence, nearly half of the edges of
the network – while satisfying the constraint that at most r−2 edges are removed
in any collection of r − 1 vertex-disjoint paths passing through the centers.

Our main result here is the analysis of Rand-Diff in the paths-respecting
model.

Theorem 4. Under any n-node paths-respecting dynamic network, Rand-Diff
completes n-gossip in O(n5/3 log3 n) rounds whp.

Our proof of Theorem 4 proceeds in a series of arguments, beginning with
a restricted version of the paths-respecting model, and successively relaxing the
restriction until we have the result for the paths-respecting model. Fix a token τ ,
and source s that has τ at the start of round 0. Let d be an arbitrary node in the
network. In our analysis, we focus our attention on the set Nsd of vertex-disjoint
paths between s and d such that the total number of inactive edges of Nsd in
any round is at most |Nsd| − 1. In Sect. 3.2, we analyze Rand-Diff under the
assumption that the lengths of all paths in Nsd are within a factor of two of
one another, and the adversary fails at most one edge in any path. In Sect. 3.3,
we drop the restrictions that at most one edge is inactive in any path and path
lengths are near-uniform, and complete the proof of Theorem 4.

3.2 Near-Uniform Length Paths and at Most One Inactive Edge
per Path

Lemma 4. Suppose there exists an integer l > 0 such that the length of each path
in Nsd is in [l, 2l). Further suppose that in addition to the conditions of the paths-
respecting model, for every path in Nsd, the adversary can fail at most one edge in
the path in any round. Then, the token τ is at d in O(n5/3 log n) rounds whp.

The proof of Lemma 4 is a delay sequence argument that proceeds backwards
in time. Delay sequence arguments have been extensively used in the analysis
of routing algorithms [28]. A major technical challenge we face in our analysis,
distinct from previous use of delay sequence arguments, is network dynamics.
The number of possible dynamic networks, even subject to the paths-respecting
model, is huge and our analysis cannot afford to account for them independent
of the actions of the algorithm.

3.3 Removing Restriction on Path Lengths and Inactive Edges
per Path

We first extend the claim of the preceding section to the case where the adversary
can fail an arbitrary number of edges in any path of Nsd, subject to the constraint

Information Spreading in Dynamic Networks Under Oblivious Adversaries 409

imposed by the paths-respecting model that the number of inactive edges in Nsd

is at most |Nsd| − 1. We continue to make the assumption of near-uniform path
lengths. In a round, call a path active if none of its edges is failed, 1-inactive if
exactly one of its edges is inactive, and dead if more than one of its edges are
inactive. Since the adversary can fail at most |Nsd|−1 edges among |Nsd| disjoint
paths, it follows that the number of active paths is at least one more than the
number of dead paths. This is the only constraint we place on the adversary that
we analyze in this section: the number of active paths is at least one more than
the number of dead paths.

Lemma 5. Suppose there exists an integer l > 0 such that the length of each
path in Nsd is in [l, 2l). Further assume that the number of dead paths is in [a, 2a)
for some a, in each round. Then, under Rand-Diff, τ is at d in O(n5/3 log n)
rounds whp.

Now, we extend Lemma 5 by removing the constraint on the number of dead
paths.

Lemma 6. Suppose there exists an integer l > 0 such that the length of each
path in Nsd is in [l, 2l). Then, in the paths-respecting model, using Rand-Diff,
the token τ is at d in O(n5/3 log2 n) rounds whp.

We now complete the proof of Theorem 4 by removing the assumption of
near-uniform path lengths in the paths of Nsd. This is a standard argument in
which we incur another multiplicative factor of log n in our bound.

4 Centralized k-gossip in min{nk, Õ((n + k)
√

n)} rounds

In this section we present a centralized algorithm that completes k-gossip in
Õ((n + k)

√
n) rounds against any oblivious adversary. Since k-gossip can be

completed in nk rounds by separately broadcasting each token over n rounds,
this yields a bound of min{nk, Õ((n+k)

√
n)} on centralized k-gossip using token

forwarding.
In the full paper, we give a simple argument that a Õ(n3/2)-round algorithm

for n-gossip implies a Õ((n + k)
√

n)-round algorithm for k-gossip. We present
our centralized algorithm for n-gossip in two parts. We first solve a special case
of n-gossip – n-broadcast – in which all the tokens are located in one node. We
then extend the claim to arbitrary initial distributions of the n tokens. We start
by introducing two useful subroutines: random load balancing and greedy token
exchange.

4.1 Random Load Balancing and Greedy Token Exchange

In the random load balancing subroutine, we have a set F of nodes, each of
which contains the same set T of at least n items (each item is a copy of some
token), and a set R of nodes such that F ∪ R is the set of all n nodes. The goal

410 J. Augustine et al.

is to distribute the items among nodes in R such that the following properties
hold at the end of the subroutine: (B1) each item in T is in exactly one node in
R; (B2) every node has either
|T |/|R|� or �|T |/|R| items; (B3) the set X of
items placed at any subset S ⊆ R of nodes is drawn uniformly at random from
the collection of all subsets of T of size |X|.
LoadBalance(F, T,R): Assign a rank to each item in T using a random per-
mutation. In round i, i ∈ [|T |]:
1. Identify a node v ∈ R that has been distributed fewer than
|T |/|R|� items

yet, and is closest to a node in F , say v0, among all such nodes in R.
2. Let P denote a shortest path from v0 to v. Let 	 be the number of edges in

P , and let (vj−1, vj), 0 ≤ j < 	, denote the jth edge in P ; so v� = v. Then,
v0 sends item of rank i to v1; in parallel, for every edge (vj−1, vj), 1 ≤ j < 	,
vj−1 sends an arbitrary item it received earlier in this subroutine to vj .

Lemma 7. The subroutine LoadBalance(F, T,R) completes in |T | rounds and
satisfies the properties (B1), (B2), and (B3).

The greedy token exchange is a one round subroutine in which the goal is to
maximize the number of new tokens received at each node in that round.

GreedyExchange: Fix a round. For each node v, let S(v) be the set of tokens
that node v has at the start of the round. Let Nv denote the set of neighbors of
v. Let Uv be the set ∪u∈Nv

S(u)\S(v). For each node v, we perform the following
operations. Construct a bipartite graph Hv, in which one side is the set Nv, and
the other side is the set Uv. For each u ∈ Nv and τ ∈ Uv, there is a link between
u and τ if token τ ∈ S(u). Compute a maximum bipartite matching Mv in Hv.
If (τ, u) is in Mv, then u sends token τ to v.

Lemma 8. In each round, the subroutine GreedyExchange maximizes, for
each node v, number of new tokens that can be added to the node in that round.

4.2 n-broadcast

We now present a Θ̃(n3/2)-round algorithm for n-broadcast, where all tokens are
located initially in a single node. The algorithm consists of O(log n) stages. Let
U denote the set of all n tokens. We now describe each stage. Call a node full if
it has all of the n tokens at the start of the stage, and non-full otherwise. Let
R denote the set of non-full nodes at the start of the stage, and let r = |R|. The
stage consists of Θ(

√
n log n) identical phases. Each phase consists of a sequence

of steps divided into two segments: distribution and exchange.

Distribution segment: Distribute the n tokens among the non-full
nodes R in the network, as evenly as possible, in n rounds by running
LoadBalance(F,R,U).

Exchange segment: Starting with the distribution of tokens as specified in the
preceding distribution segment; i.e., each full node has all tokens, and each non-
full node has exactly the tokens distributed in the above segment, run n rounds

Information Spreading in Dynamic Networks Under Oblivious Adversaries 411

of GreedyExchange maximizing the total number of new tokens received by
the nodes in each round.

Theorem 5. The n-broadcast problem completes in O(n3/2log2 n) rounds whp.

4.3 n-gossip

Our centralized algorithm for arbitrary n-gossip instances is as follows.

Consolidation stage: (a) For each token i, in sequence: for
√

n rounds, every
node holding token i broadcasts token i (i.e., flooding of token i); (b) Identify
a set S of Õ(

√
n) nodes such that every token is in some node in S; arbitrarily

assign each token to a node in S that has the token.

Distribution stage: Each node in S makes
√

n copies of each of its allocated
tokens, for a total of n3/2 tokens in all, including copies. If any node in S has a
token multiset of fewer than n tokens, then it adds dummy tokens to the multiset
to make it of size n. Let Tu denote the multiset of tokens at u. For each node u in
S, we ensure that each node receives a distinct random token from the multiset
of u: LoadBalance({u}, V, Tu).

Exchange stage: Maximize the number of token exchanges in each round by
repeatedly calling GreedyExchange, until some node, say s, has at least n −
c
√

n log n tokens, for a constant c that is chosen sufficiently large. If n-gossip
is not yet completed, then: (a) Run n-broadcast with source s to complete the
dissemination of the n−c

√
n log n tokens at s; (b) Run at most c

√
n log n separate

broadcasts, spanning n rounds, disseminating the remaining at most c
√

n log n
tokens to all nodes.

Theorem 6. Our centralized algorithm completes in O(n3/2 log2 n) rounds, whp.

5 Concluding Remarks

Our work leaves several intriguing open problems and directions for future
research: Is there a hybrid of Rand-Diff and a knowledge-based algorithm
that can achieve sub-quadratic complexity? What is the best bound for n-gossip
achieved by centralized token-forwarding? Explore paths-respecting and related
models further to gain a better understanding of network dynamics from a prac-
tical standpoint.

References

1. Augustine, J., Pandurangan, G., Robinson, P., Upfal, E.: Towards robust and
efficient computation in dynamic peer-to-peer networks. In: SODA, pp. 551–569
(2012)

2. Augustine, J., Avin, C., Liaee, M., Pandurangan, G., Rajaraman, R.: Infor-
mation spreading in dynamic networks under oblivious adversaries (2016).
arXiv:1603.06109

http://arxiv.org/abs/1603.06109

412 J. Augustine et al.

3. Augustine, J., Molla, A.R., Morsy, E., Pandurangan, G., Robinson, P., Upfal, E.:
Storage and search in dynamic peer-to-peer networks. In: SPAA, pp. 53–62 (2013)

4. Augustine, J., Pandurangan, G., Robinson, P.: Fast byzantine agreement in
dynamic networks. In: PODC, pp. 74–83 (2013)

5. Augustine, J., Pandurangan, G., Robinson, P., Roche, S., Upfal, E.: Enabling
robust and efficient distributed computation in dynamic peer-to-peer networks.
In: FOCS, pp. 350–369 (2015)

6. Avin, C., Koucký, M., Lotker, Z.: How to explore a fast-changing world (cover time
of a simple random walk on evolving graphs). In: Aceto, L., Damg̊ard, I., Goldberg,
L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part
I. LNCS, vol. 5125, pp. 121–132. Springer, Heidelberg (2008)

7. Baumann, H., Crescenzi, P., Fraigniaud, P.: Parsimonious flooding in dynamic
graphs. In: PODC, pp. 260–269 (2009)

8. Baumann, H., Crescenzi, P., Fraigniaud, P.: Parsimonious flooding in dynamic
graphs. Distrib. Comput. 24(1), 31–44 (2011)

9. Bollobás, B., Riordan, O.: The diameter of a scale-free random graph. Combina-
torica 24(1), 5–34 (2004)

10. Broder, A., Kumar, R., Maghoul, F., Raghavan, P., Rajagopalan, S., Stata, R.,
Tomkins, A., Wiener, J.: Graph structure in the web. Comput. Netw. 33(1–6),
309–320 (2000)

11. Casteigts, A., Flocchini, P., Quattrociocchi, W., Santoro, N.: Time-varying graphs
and dynamic networks. Int. J. Parallel Emergent Distrib. Syst. 27(5), 387–408
(2012)

12. Clementi, A.E.F., Monti, A., Pasquale, F., Silvestri, R.: Broadcasting in dynamic
radio networks. J. Comput. Syst. Sci. 75(4), 213–230 (2009)

13. Clementi, A.E.F., Macci, C., Monti, A., Pasquale, F., Silvestri, R.: Flooding time
in edge-markovian dynamic graphs. In: PODC, pp. 213–222 (2008)

14. Cooper, C., Frieze, A.: Crawling on simple models of web graphs. Internet Math.
1, 57–90 (2003)

15. Dutta, C., Pandurangan, G., Rajaraman, R., Sun, Z., Viola, E.: On the complexity
of information spreading in dynamic networks. In: SODA, pp. 717–736 (2013)

16. Ferreira, A.: Building a reference combinatorial model for manets. IEEE Netw.
18(5), 24–29 (2004)

17. Ferreira, A., Goldman, A., Monteiro, J.: On the evaluation of shortest journeys in
dynamic networks. In: NCA, pp. 3–10 (2007)

18. Flaxman, A., Frieze, A.M., Upfal, E.: Efficient communication in an ad-hoc net-
work. J. Algorithms 52(1), 1–7 (2004)

19. Georgiou, C., Gilbert, S., Guerraoui, R., Kowalski, D.R.: On the complexity of
asynchronous gossip. In: PODC, pp. 135–144 (2008)

20. Gurevich, M., Keidar, I.: Correctness of gossip-based membership under message
loss. In: PODC, pp. 151–160 (2009)

21. Haeupler, B.: Analyzing network coding gossip made easy. In: STOC, pp. 293–302
(2011)

22. Haeupler, B., Karger, D.: Faster information dissemination in dynamic networks
via network coding. In: PODC, pp. 381–390 (2011)

23. Haeupler, B., Kuhn, F.: Lower bounds on information dissemination in dynamic
networks. In: Aguilera, M.K. (ed.) DISC 2012. LNCS, vol. 7611, pp. 166–180.
Springer, Heidelberg (2012)

24. Jarry, A., Lotker, Z.: Connectivity in evolving graph with geometric properties. In:
DIALM-POMC, pp. 24–30 (2004)

Information Spreading in Dynamic Networks Under Oblivious Adversaries 413

25. Kempe, D., Kleinberg, J., Kumar, A.: Connectivity and inference problems for
temporal networks. JCSS 64(4), 820–842 (2002)

26. Kuhn, F., Lynch, N., Oshman, R.: Distributed computation in dynamic networks.
In: STOC, pp. 513–522 (2010)

27. Kuhn, F., Oshman, R., Moses, Y.: Coordinated consensus in dynamic networks.
In: PODC, pp. 1–10 (2011)

28. Leighton, F.T.: Introduction to Parallel Algorithms and Architectures: Arrays,
Trees, and Hypercubes. Morgan-Kaufmann (1991)

29. Liben-Nowell, D., Novak, J., Kumar, R., Raghavan, P., Tomkins, A.: Geographic
routing in social networks. PNAS 102(33), 11623–11628 (2005)

30. O’Dell, R., Wattenhofer, R.: Information dissemination in highly dynamic graphs.
In: DIALM-POMC, pp. 104–110 (2005)

31. Pandurangan, G.: Distributed algorithmic foundations of dynamic networks. In:
Halldórsson, M.M. (ed.) SIROCCO 2014. LNCS, vol. 8576, pp. 18–22. Springer,
Heidelberg (2014)

32. Peleg, D.: Distributed Computing: A Locality-Sensitive Approach. SIAM (2000)
33. Das Sarma, A., Molla, A.R., Pandurangan, G.: Fast distributed computation in

dynamic networks via random walks. In: Aguilera, M.K. (ed.) DISC 2012. LNCS,
vol. 7611, pp. 136–150. Springer, Heidelberg (2012)

34. Sarwate, A.D., Dimakis, A.G.: The impact of mobility on gossip algorithms. In:
INFOCOM, pp. 2088–2096 (2009)

35. Topkis, D.M.: Concurrent broadcast for information dissemination. IEEE Trans.
Soft. Eng. 11, 1107–1112 (1985)

Non-Bayesian Learning in the Presence
of Byzantine Agents

Lili Su(B) and Nitin H. Vaidya

Department of Electrical and Computer Engineering,
University of Illinois at Urbana-Champaign, Champaign, USA

{lilisu3,nhv}@illinois.edu

Abstract. This paper addresses the problem of non-Bayesian learn-
ing over multi-agent networks, where agents repeatedly collect partially
informative observations about an unknown state of the world, and try
to collaboratively learn the true state. We focus on the impact of the
Byzantine agents on the performance of consensus-based non-Bayesian
learning. Our goal is to design an algorithm for the non-faulty agents to
collaboratively learn the true state through local communication.

We propose an update rule wherein each agent updates its local beliefs
as (up to normalization) the product of (1) the likelihood of the cumula-
tive private signals and (2) the weighted geometric average of the beliefs
of its incoming neighbors and itself (using Byzantine consensus). Under
mild assumptions on the underlying network structure and the global
identifiability of the network, we show that all the non-faulty agents
asymptotically agree on the true state almost surely.

Keywords: Distributed learning · Byzantine agreement · Fault-
tolerance · Adversary attacks · Security

1 Introduction

Learning is closely related to decentralized hypothesis testing, which has received
a significant amount of attention [3,6,8,24,28]. The traditional decentralized
detection framework consists of a collection of spatially distributed sensors and
a fusion center [24,28]. The sensors independently collect noisy observations of
the environment state, and send only summary of the private observations to
the fusion center, where a final decision is made.

Distributed hypothesis testing in the absence of fusion center is considered in
[1,2,6,10]. In particular, Gale and Kariv [6] studied the problem in the context
of social learning, where a fully Bayesian belief update rule is studied.

To avoid the complexity of Bayesian learning, a non-Bayesian learning frame-
work that combines local Bayesian learning with consensus was proposed by

This research is supported in part by National Science Foundation awards NSF
1329681 and 1421918. Any opinions, findings, and conclusions or recommendations
expressed here are those of the authors and do not necessarily reflect the views of
the funding agencies or the U.S. government.

c© Springer-Verlag Berlin Heidelberg 2016
C. Gavoille and D. Ilcinkas (Eds.): DISC 2016, LNCS 9888, pp. 414–427, 2016.
DOI: 10.1007/978-3-662-53426-7 30

Non-Bayesian Learning in the Presence of Byzantine Agents 415

Jadbabaie et al. [8], and has attracted much attention [9,11,14,15,18–20]. Jad-
babaie et al. [8] considered the general setting where external signals are observed
during each iteration of the algorithm execution. Specifically, the belief of each
agent is repeatedly updated as the arithmetic mean of its local Bayesian update
and the beliefs of its neighbors, combining iterative consensus algorithm with
local Bayesian update. It is shown [8] that, under this learning rule, each agent
learns the true state almost surely. The publication of [8] has inspired significant
efforts in designing and analyzing non-Bayesian learning rules with a particular
focus on refining the fusion strategies and analyzing the (asymptotic and/or finite
time) convergence rates of the refined algorithms [9,11,14,15,18–21]. Among the
various proposed fusion rules, in this paper we are particularly interested in the
log-linear form of the update rule, in which, essentially, each agent updates its
belief as the geometric average of the local Bayesian update and its neighbors’
beliefs [9,11,14,15,18–21]. The log-linear form (geometric averaging) update rule
is shown to converge exponentially fast [9,19]. Taking an axiomatic approach, the
geometric averaging fusion is proved to be optimal [14]. An optimization-based
interpretation of this rule is presented in [19], using dual averaging method with
properly chosen proximal functions. Finite-time convergence rates are investi-
gated independently in [11,15,20]. Both [15,21] consider time-varying networks,
with slightly different network models. Specifically, [15] assumes that the union
of every consecutive B networks is strongly connected, while [21] considers ran-
dom networks. In this paper, we consider static networks for ease of exposition
– our results can be easily generalized to time-varying networks.

The prior work implicitly assumes that the networked agents are reliable in
the sense that they correctly follow the specified distributed algorithm. However,
in some practical multi-agent networks, this assumption may not hold. For exam-
ple, in social networks, it is possible that some agents are adversarial, and try
to prevent the true state from being learned by the good agents. In this paper,
we focus on the fault-tolerant version of the non-Bayesian framework proposed
in [8]. In particular, we assume that an unknown subset of agents may suffer
Byzantine faults – agents suffering Byzantine faults can behave arbitrarily. The
Byzantine fault-tolerance problem was introduced by Pease et al. [16] and has
attracted intensive attention from researchers [4,5,13,25,27]. For the Byzantine
fault-tolerant non-Bayesian learning problem, the goal is to design an algorithm
that enables all the non-faulty agents learn the underlying true state.

Contributions: The existing algorithms [9,11,15,18,20,21] are not robust to
Byzantine agents, since the malicious messages sent by the Byzantine agents are
indiscriminatingly utilized in the local belief updates. On the other hand, incor-
porating Byzantine consensus is non-trivial, since the effective communication
networks are dependent on the choice of received messages (i.e., local beliefs)
that need to be trimmed away, which is in turn dependent on all the random
local observations obtained so far. This dependency makes it non-trivial to adapt
analysis of previous algorithms to our setting.

To circumvent the technical difficulties, we consider a different update rule
wherein each agent updates its local beliefs as (up to normalization) the product

416 L. Su and N.H. Vaidya

of (1) the likelihood of the cumulative private signals and (2) the weighted geo-
metric average of the beliefs of its incoming neighbors and itself (using Byzantine
consensus). In contrast to the existing algorithms [11,15], where only the current
private signal is used in the update, our proposed algorithm relies on the cumu-
lative private signals. As it can be seen later, the likelihoods of the cumulative
signals are easy to compute – only a constant number multiplication operations is
needed per iteration. Under mild assumptions on the underlying network struc-
ture and the global identifiability of the network, we show that all the non-faulty
agents asymptotically agree on the true state almost surely.

Weaker assumptions on the network structure and global identifiability are
characterized in our recent work [23] where different learning rules are considered.

2 Problem Formulation

Network Model: Our network model is similar to the model used in [22,27]. We
consider a synchronous system. A collection of n agents (also referred as nodes)
are connected by a directed network G(V, E), where V = {1, . . . , n} and E is the
collection of directed edges. For each i ∈ V, let Ii denote the set of incoming
neighbors of agent i. In any execution, up to f agents suffer Byzantine faults.
For a given execution, let F denote the set of Byzantine agents, and N denote
the set of non-faulty agents. We assume that each non-faulty agent knows f ,
but does not know the actual number of faulty agents |F|. Possible misbehavior
of faulty agents includes sending incorrect and mismatching (or inconsistent)
messages. The Byzantine agents are also assumed to have complete knowledge
of system, including the network topology, underlying running algorithm, the
states or even the entire history. The faulty agents may collaborate with each
other adaptively [12]. Note that |F| ≤ f and |N | ≥ n− f since at most f agents
may fail. (As noted earlier, although we assume a static network topology, our
results can be easily generalized to time-varying networks.)

Observation Model: Our observation model is identical to that used in [8,11,
21]. Let Θ = {θ1, . . . , θm} be a set of m environmental states, which we call
hypotheses. In the t-th iteration, each agent independently obtains a private signal
about the environmental state θ∗, which is initially unknown to each networked
agent. However, the private signals may not be sufficient for the agents to learn
the true state θ∗ individually. Thus, collaboration is needed for θ∗ to be learned.

Each agent i knows the structure of its private signals, which is represented
by a set of parameterized marginal distributions Di = {�i(wi|θ)| θ ∈ Θ, wi ∈ Si},
where �i(·|θ) is the distribution of private signal when θ is the true state, and
Si is the finite private signal space. For each θ ∈ Θ, and each i ∈ V, the support
of �i(·|θ) is the whole signal space, i.e., �i(wi|θ) > 0, ∀wi ∈ Si and ∀ θ ∈ Θ.
Precisely, let si

t be the private signal observed by agent i in iteration t, and
let st = {s1t , . . . , s

n
t } be the signal profile at time t (i.e., signals observed by

the agents in iteration t). Given an environmental state θ, the signal profile st is
generated according to the joint distribution �1(s1t |θ)×· · ·×�n(sn

t |θ). In addition,

Non-Bayesian Learning in the Presence of Byzantine Agents 417

let si
1,t be the cumulative private signals obtained by agent i up to iteration t,

and s1,t = {s11,t, . . . , s
n
1,t} be the signal profile history up to time t.

In this paper, we present a sufficient condition on the collaborative identifi-
ability (Sect. 4.1) for the non-faulty agents to learn the true state θ∗.

Local Beliefs: Each agent i maintains a belief vector μi ∈ R
m, which is a dis-

tribution over the set Θ, with μi(θ) being the probability with which the agent
i believes that θ is the true environmental state. Since no signals are observed
before the execution of an algorithm, the belief μi is often initially set to be uni-
form over the set Θ, i.e.,

(
μi
0(θ1), . . . , μ

i
0(θm)

)T =
(

1
m , . . . , 1

m

)T .1 In this work,
we also adopt the above convention. (For our results to hold, it suffices to have
μi
0(θ) > 0,∀θ ∈ Θ, i ∈ V.)

Correctness: Recall that θ∗ is the true environmental state. We say the net-
worked agents collaboratively learn θ∗ if for every non-faulty agent i ∈ N

lim
t→∞ μi

t(θ
∗) = 1 almost surely. (1)

3 Byzantine Consensus

Byzantine consensus has attracted intensive attention [4,5,13,25–27]. While the
past work mostly focuses on scalar inputs, the more general vector (or multidi-
mensional) inputs have been studied recently [13,25,26]. Complete communica-
tion networks are considered in [13,26], where tight conditions on the number
of agents are identified. Incomplete communication networks are studied in [25].
Closer to the non-Bayesian learning problem is the class of iterative approximate
Byzantine consensus algorithms, where each agent is only allowed to exchange
information about its state with its neighbors. In particular, our learning algo-
rithm builds upon the Byz-Iter algorithm proposed in [25] for iterative Byzan-
tine consensus with vector inputs in incomplete networks. [25] provides a matrix
representation of the non-faulty agents’ states evolution, which is useful in our
analysis as well. To make this paper self-contained, in this section, we briefly
review the algorithm Byz-Iter and its matrix representation.

3.1 Algorithm Byz-Iter [25]

Algorithm Byz-Iter is based on Tverberg’s Theorem [17].

Theorem 1. [17] Let f be a nonnegative integer. Let Y be a multiset contain-
ing vectors from R

m such that |Y | ≥ (m + 1)f + 1. There exists a partition
Y1, Y2, · · · , Yf+1 of Y such that Yi is nonempty for 1 ≤ i ≤ f + 1, and the inter-
section of the convex hulls of Yi’s are nonempty, i.e., ∩f+1

i=1 Conv(Yi) �= ∅, where
Conv(Yi) is the convex hull of Yi for i = 1, · · · , f + 1.

1 In this paper, every vector considered is a column vector.

418 L. Su and N.H. Vaidya

The proper partition in Theorem1, and the points in ∩f+1
i=1 Conv(Yi), are referred

as Tverberg partition of Y and Tverberg points of Y , respectively.
For convenience of presenting our algorithm in Sect. 4, we present Byz-Iter

(described in Algorithm 2) below using One-Iter (described in Algorithm 1) as a
primitive. The parameter xi passed to One-Iter at agent i, and yi returned by
One-Iter are both m-dimensional vectors. Let vi be the state of agent i that will
be iteratively updated, with vi

t being the state at the end of iteration t and vi
0

being the input of agent i. In each iteration t ≥ 1, a non-faulty agent performs
the steps in One-Iter. In particular, in the message receiving step, if a message
is not received from some neighbor, that neighbor must be faulty, as the system
is synchronous. In this case, the missing message values are set to some default
value. Faulty agents may deviate from the algorithm specification arbitrarily. In
Byz-Iter, the value returned by One-Iter at agent i is assigned to vi

t.

Algorithm 1. Algorithm One-Iter with input xi at agent i

1 Zi ← Ø;

2 Transmit xi on all outgoing links;

3 Receive messages on all incoming links. These message values form a multiset

Ri of size |Ii|;
4 for every C ⊆ Ri ∪ {xi} such that |C| = (m + 1)f + 1 do
5 add to Zi a Tverberg point of multiset C
6 end

7 Compute yi as follows: yi ← 1
1+|Zi|

(
xi +

∑
z∈Zi z

)
;

8 Return yi;

Algorithm 2. Algorithm Byz-Iter [25]: t-th iteration at agent i

1 vi
t ← One-Iter(vi

t−1);

3.2 Correctness of Algorithm Byz-Iter

We briefly summarize the aspects of correctness proof of Algorithm 2 from [25]
that are necessary for our subsequent discussion. By using the Tverberg points
in the update of vi

t above, effectively, the extreme message values (that may
potentially be sent by faulty agents) are trimmed away. Informally speaking,
trimming certain messages can be viewed as ignoring (or removing) incoming
links that carry the outliers. [25] shows that the effective communication network
thus obtained can be characterized by a “reduced graph” of G(V, E), defined
below. It is important to note that the non-faulty agents do not know the
identity of the faulty agents.

Non-Bayesian Learning in the Presence of Byzantine Agents 419

Definition 1. A reduced graph H(N , EF) of G(V, E) is obtained by (i) removing
all faulty nodes F , and all the links incident on the faulty nodes F ; and (ii) for
each non-faulty node (nodes in N), removing up to mf additional incoming links.

Definition 2. A source component in any given reduced graph is a strongly
connected component (of that reduced graph), which does not have any incoming
links from outside that component.

It turns out that the effective communication network is potentially time-varying
(partly) due to the time-varying behavior of faulty nodes. Assumption 1 below
states a condition that is sufficient for Algorithm1 [25] to work.

Assumption 1. Every reduced graph of G(V, E) has a unique source component.

Let C be the set of all the reduced graph of G(V, E). Define χ � |C| < ∞. Let
H ∈ C be a reduced graph of G(V, E) with source component SH. Define

γ � min
H∈C

|SH| ≥ 1, (2)

i.e., γ is the minimum source component size among all the reduced graphs.

Theorem 2. [25] If Assumption 1 holds, using Algorithm1, all the non-faulty
agents reach consensus asymptotically, i.e., limt→∞ |vi

t − vj
t | = 0,∀ i, j ∈ N .

The proof of Theorem2 relies on a matrix representation of the state evolution.

3.3 Matrix Representation [25]

Let |F| = φ (thus, 0 ≤ φ ≤ f). Without loss of generality, assume that agents 1
through n − φ are non-faulty, and agents n − φ + 1 to n are Byzantine.

Lemma 1. [25] Suppose that Assumption 1 holds. The state updates performed
by the non-faulty agents in the t–th iteration (t ≥ 1) can be expressed as

vi
t =

n−φ∑

j=1

Aij [t]v
j
t−1, (3)

where A[t] ∈ R
(n−φ)×(n−φ) is a row stochastic matrix for which there exists a

reduced graph H[t] with adjacency matrix H[t] such that A[t] ≥ βH[t], where
0 < β ≤ 1 is a constant that depends only on G(V, E).

Let Φ(t, r) � A[t] · · ·A[r] for 1 ≤ r ≤ t + 1. By convention, Φ(t, t) = A[t]
and Φ(t, t + 1) = I. Using prior work on coefficients of ergodicity [7], under
Assumption 1, it was shown [25,29] that

lim
t≥r, t→∞

Φ(t, r) = 1π(r), (4)

420 L. Su and N.H. Vaidya

where π(r) ∈ R
n−φ is a row stochastic vector. Recall that χ is the total number

of reduced graphs of G(V, E), and β is defined in Lemma 1, and φ � |F|. Also
define ν � χ(n − φ). The convergence rate in (4) is exponential.

Theorem 3. [25] |Φij(t, r) − πj(r)| ≤ (1 − βν)� t−r+1
ν 	 for all t ≥ r ≥ 1.

The next lemma is a consequence of the results in [25].

Lemma 2. [25] For any r ≥ 1, there exists a reduced graph H[r] with source
component Sr such that πi(r) ≥ βχ(n−φ) for each i ∈ Sr. In addition, |Sr| ≥ γ.

With the above background on Byzantine vector consensus, we are now ready
to present our algorithm and its analysis.

4 Byzantine Fault-Tolerant Non-Bayesian Learning

We will use a modified version of the geometric averaging update rule that
has been investigated in previous work [11,15,18,20] to take into account of
Byzantine faults. In particular, in each iteration, the likelihood of the cumulative
observations si

1,t (instead of the likelihood of the current observation si
t only) to

is used to update the local beliefs.
For t ≥ 1, the steps to be performed by agent i in the t–th iteration are listed

below, where in step 4, N i
t is the normalization factor such that

∑m
p=1 μi

t(θp) =
1. Note that faulty agents can deviate from the algorithm specification. The
algorithm below uses One-Iter presented in the previous section as a primitive.
Recall that si

1,t is the cumulative local observations up to iteration t. Since
the observations are i.i.d., it holds that �i(si

1,t|θ) =
∏t

r=1 �i(si
r|θ). So �i(si

1,t|θ)
can be computed iteratively in Algorithm3. The main difference of Algorithm 3
with respect to the algorithms in [11,15,18,20] is that (i) our algorithm uses a
Byzantine consensus iteration as a primitive (in line 1), and (ii) �i(si

1,t|θ) used
in line 5 is the likelihood for observations from iteration 1 to t (the previous
algorithms instead use �i(si

t|θ) here). Observe that the consensus step is being
performed on log of the beliefs, with the result being stored as ηi

t (in line 1) and
used in line 4 to compute the new beliefs.

Algorithm 3. Byzantine Tolerant Non-Bayesian Learning: Iteration t ≥ 1
at agent i

1 ηi
t ← One-Iter(log μi

t−1);

2 Observe si
t;

3 for θ ∈ Θ do
4 �i(s

i
1,t|θ) ← �i(s

i
t|θ) �i(s

i
1,t−1|θ);

5 μi
t(θ) ← 1

Ni
t

(
�i(s

i
1,t|θ) exp

(
ηi

t(θ)
))

;

6 end

Non-Bayesian Learning in the Presence of Byzantine Agents 421

Recalling the matrix representation of the Byz-Iter algorithm as per
Lemma 1, we can write the following equivalent representation of line 1 of
Algorithm 3.

ηi
t(θ) =

n−φ∑

j=1

Aij [t] log μj
t−1(θ) = log

n−φ∏

j=1

μj
t−1(θ)

Aij [t], ∀θ ∈ Θ. (5)

where A[t] is a row stochastic matrix whose properties are specified in Lemma 1.
Note that μi

t(θ) is random for each i ∈ N and t ≥ 1, as it is updated according
to local random observations. Since the consensus is performed over log μi

t ∈ R
m,

the update matrix A[t] is also random. In particular, for each t ≥ 1, matrix A[t]
is dependent on all the cumulative observations over the network up to iteration t.
This dependency makes it non-trivial to adapt analysis from previous algorithms
to our setting. In addition, adopting the local cumulative observation likelihood
makes the analysis with Byzantine faults easier.

4.1 Identifiability

In the absence of agent failures [8], for the networked agents to detect the true
hypothesis θ∗, it is enough to assume that G(V, E) is strongly connected, and
that θ∗ is globally identifiable. That is, for any θ �= θ∗, there exists a node j ∈ V
such that the Kullback-Leiber divergence between the true marginal �j(·|θ∗) and
the marginal �j(·|θ), denoted by D (�j(·|θ∗)||�j(·|θ)), is nonzero; equivalently,

∑

j∈V
D (�j(·|θ∗)||�j(·|θ)) �= 0, (6)

where D (�j(·|θ∗)||�j(·|θ)) is defined as

D (�j(·|θ∗)||�j(·|θ)) �
∑

wj∈Sj

�j(wj |θ∗) log
�j(wj |θ∗)
�j(wj |θ) . (7)

Since θ∗ may change from execution to execution, (6) is required to hold for any
choice of θ∗. Intuitively speaking, if any pair of states θ1 and θ2 can be distin-
guished by at least one agent in the network, then sufficient exchange of local
beliefs over strongly connected network will enable every agent distinguish θ1
and θ2. However, in the presence of Byzantine agents, the effective communica-
tion network may not be strongly connected. Thus, stronger global identifiability
is required. The following assumption builds upon Assumption 1.

Assumption 2. Suppose that Assumption 1 holds. For any θ �= θ∗, and for any
reduced graph H of G(V, E) with SH denoting the unique source component,

∑

j∈SH

D (�j(·|θ∗) ‖ �j(·|θ)) �= 0. (8)

422 L. Su and N.H. Vaidya

In contrast to (6), where the summation is taken over all the agents in the
network, in (8), the summation is taken over agents in the source component
only. Intuitively, the condition imposed by Assumption 2 is that all the agents
in the source component can detect the true state θ∗ collaboratively. If iterative
consensus is achieved, the accurate belief can be propagated from the source
component to every other non-faulty agent in the network.

4.2 Convergence Results

Our proof parallels the structure of a proof in [15], but with some key differences
to take into account our update rule for the belief vector.

For any θ1, θ2 ∈ Θ, and any i ∈ V, define ψi
t(θ1, θ2) and Lt(θ1, θ2) as follows

ψi
t(θ1, θ2) � log

μi
t(θ1)

μi
t(θ2)

, Li
t(θ1, θ2) � log

�i(si
t|θ1)

�i(si
t|θ2)

. (9)

To show Algorithm 3 solves (1), we show that ψi
t(θ, θ

∗) a.s.−−→ −∞, which implies
that μi

t(θ)
a.s.−−→ 0 for all θ �= θ∗ and for all i ∈ N , i.e., all non-faulty agents

asymptotically concentrate their beliefs on the true hypothesis θ∗. We do this
by investigating the dynamics of beliefs which is represented in a matrix form.

For each θ �= θ∗, and each i ∈ N = {1, · · · , n − φ}, we have

ψi
t(θ, θ

∗) = log
μi

t(θ)
μi

t(θ∗)
(a)
= log

⎛

⎝
n−φ∏

j=1

(
μj

t−1(θ)

μj
t−1(θ∗)

)Aij [t]

× �i(si
1,t|θ)

�i(si
1,t|θ∗)

⎞

⎠

=
n−φ∑

j=1

Aij [t] log
μj

t−1(θ)

μj
t−1(θ∗)

+ log
�i(si

1,t|θ)
�i(si

1,t|θ∗)

=
n−φ∑

j=1

Aij [t]ψ
j
t−1(θ, θ

∗) +
t∑

r=1

Li
r(θ, θ

∗), (10)

where equality (a) follows from (5) and the update of μi in Algorithm 3, and the
last equality follows from (9) and the fact that the local observations are i.i.d..

Let ψt(θ, θ∗) ∈ R
n−φ be the vector that stacks ψi

t(θ, θ
∗), with the i–th entry

being ψi
t(θ, θ

∗) for all i ∈ N . The evolution of ψ(θ, θ∗) can be written as

ψt(θ, θ∗) = A[t]ψt−1(θ, θ∗) +
t∑

r=1

Lr(θ, θ∗) (11)

= Φ(t, 1)ψ0(θ, θ∗) +
t∑

r=1

Φ(t, r + 1)
r∑

k=1

Lk(θ, θ∗). (12)

Non-Bayesian Learning in the Presence of Byzantine Agents 423

For each θ ∈ Θ and i ∈ V, define Hi(θ, θ∗) ∈ R
n−φ as

Hi(θ, θ∗) �
∑

wi∈Si

�i(wi|θ∗) log
�i(wi | θ)
�i(wi | θ∗)

= −D(�i(·|θ∗) ‖ �i(·|θ)) by (7)

≤ 0. (13)

Let H ∈ C be a reduced graph with source component SH. Define C0 and C1 as

−C0 � min
i∈V

min
θ1,θ2∈Θ;θ1
=θ2

min
wi∈Si

(
log

�i(wi|θ1)
�i(wi|θ2)

)
, (14)

C1 � min
H∈C

min
θ,θ∗∈Θ;θ
=θ∗

∑

i∈SH

D(�i(·|θ∗) ‖ �i(·|θ)). (15)

The constant C0 serves as an universal upper bound on | log �i(wi|θ1)
�i(wi|θ2)

| for all
choices of θ1 and θ2, and for all signals. Intuitively, the constant C1 is the minimal
detection capability of the source component under Assumption 2.

Due to |Θ| = m < ∞ and |Si| < ∞ for each i ∈ N , we know that C0 < ∞.
Besides, it is easy to see that −C0 ≤ 0 (thus, C0 ≥ 0). In addition, under
Assumption 2, we have C1 > 0.

Now we present a key lemma for our main theorem.

Lemma 3. Under Assumption 2, for any θ �= θ∗, it holds that

1
t2

t∑

r=1

⎛

⎝
n−φ∑

j=1

Φij(t, r + 1)
r∑

k=1

Lj
k(θ, θ∗) − r

n−φ∑

j=1

πj(r + 1)Hj(θ, θ∗)

⎞

⎠ a.s.−−→ 0.

The proof of Lemma 3 is different from the analogous lemma in [15], and will
be sketched at the end of this section. The complete proof can be found in our
extended version [23].

Theorem 4. When Assumption 2 holds, each non-faulty agent (i ∈ N) concen-
trates its belief on the true hypothesis θ∗ almost surely, i.e., μi

t(θ)
a.s.−−→ 0, ∀θ �= θ∗.

Proof. Consider any θ �= θ∗. Recall from (12) that

ψt(θ, θ∗) = Φ(t, 1)ψ0(θ, θ∗) +
t∑

r=1

Φ(t, r + 1)
r∑

k=1

Lk(θ, θ∗)

=
t∑

r=1

Φ(t, r + 1)
r∑

k=1

Lk(θ, θ∗).

The last equality holds as μi
0 is uniform, and ψi

0(θ, θ
∗) = 0 for each i ∈ N . Since

the supports of �i(·|θ) and �i(·|θ∗) are the whole signal space Si for each agent
i ∈ N , it holds that

∣
∣
∣ �i(wi|θ)
�i(wi|θ∗)

∣
∣
∣ < ∞ for each wi ∈ Si, and

0 ≥ Hi(θ, θ∗) ≥ min
wi∈Si

(
log

�i(wi|θ)
�i(wi|θ∗)

)
≥ − C0 > −∞. (16)

424 L. Su and N.H. Vaidya

By (16), we know that |∑n−φ
j=1 πj(r + 1)Hj(θ, θ∗)| ≤ C0 < ∞. Due to the finite-

ness of
∑n−φ

j=1 πj(r + 1)Hj(θ, θ∗), we get

ψt(θ, θ∗) =
t∑

r=1

⎛

⎝Φ(t, r + 1)
r∑

k=1

Lk(θ, θ∗) − r1
n−φ∑

j=1

πj(r + 1)Hj(θ, θ∗)

⎞

⎠

+
t∑

r=1

r1
n−φ∑

j=1

πj(r + 1)Hj(θ, θ∗). (17)

For each i ∈ N , we have

ψi
t(θ, θ

∗) =
t∑

r=1

⎛

⎝
n−φ∑

j=1

Φij(t, r + 1)
r∑

k=1

Lj
k(θ, θ∗) − r

n−φ∑

j=1

πj(r + 1)Hj(θ, θ∗)

⎞

⎠

+
t∑

r=1

r

n−φ∑

j=1

πj(r + 1)Hj(θ, θ∗). (18)

To show limt→∞ μi
t(θ)

a.s.−−→ 0 for θ �= θ∗, it is enough to show ψi
t(θ, θ

∗) a.s.−−→ −∞.
Our proof has similar structure as that in [15]. From Lemma 3, we get

1

t2

t∑

r=1

(
n−φ∑

j=1

Φij(t, r + 1)
r∑

k=1

Lj
k(θ, θ∗) − r

n−φ∑

j=1

πj(r + 1)Hj(θ, θ∗)

)
a.s.−−→ 0. (19)

Next we bound the second term of the right hand side of (18).

t∑

r=1

r

n−φ∑

j=1

πj(r + 1)Hj(θ, θ∗) ≤
t∑

r=1

r
∑

j∈Sr

πj(r + 1)Hj(θ, θ∗) by (13)

≤
t∑

r=1

rβχ(n−φ)
∑

j∈Sr

Hj(θ, θ∗) by Lemma 2

≤ −
t∑

r=1

rβχ(n−φ)C1 by (15) and (13)

≤ − t2

2
βχ(n−φ)C1. (20)

Thus, by (18), (19) and (20), almost surely, limt→∞ 1
t2 ψi

t(θ, θ
∗) ≤ − 1

2βχ(n−φ)C1.

Therefore, ψi
t(θ, θ

∗) a.s.−−→ −∞ and μi
t(θ)

a.s.−−→ 0 for i ∈ N and θ �= θ∗. �

From the proof of Theorem 4, we know that with probability 1, each non-
faulty agent learns the true state θ∗ exponentially fast in t.

We now sketch the proof of Lemma 3.

Non-Bayesian Learning in the Presence of Byzantine Agents 425

Proof (Proof Sketch of Lemma 3). Since |Li
r(θ, θ

∗)| ≤ C0 < ∞ for all i ∈ N and
r ≥ 1, adding to and subtracting 1

t2

∑t
r=1

∑n−φ
j=1 πj(r + 1)

∑r
k=1 Lj

k(θ, θ∗) from
the target term – the first term on the right hand side of (18), we get

1
t2

t∑

r=1

⎛

⎝
n−φ∑

j=1

Φij(t, r + 1)
r∑

k=1

Lj
k(θ, θ∗) − r

n−φ∑

j=1

πj(r + 1)Hj(θ, θ∗)

⎞

⎠

=
1
t2

t∑

r=1

n−φ∑

j=1

(Φij(t, r + 1) − πj(r + 1))
r∑

k=1

Lj
k(θ, θ∗)

+
1
t2

t∑

r=1

n−φ∑

j=1

πj(r + 1)

(
r∑

k=1

Lj
k(θ, θ∗) − rHj(θ, θ∗)

)

. (21)

By Theorem 3, Φij(t, r + 1) (although random) will converge to πj(r + 1) expo-
nentially fast. Additionally, it holds from (14) that

∑r
k=1 Lj

k(θ, θ∗) ≤ rC0. Then,
we are able to show that for every sample path,

1
t2

t∑

r=1

n−φ∑

j=1

(Φij(t, r + 1) − πj(r + 1))
r∑

k=1

Lj
k(θ, θ∗) → 0.

Thus, to prove Lemma 3, it remains to show that

1
t2

t∑

r=1

n−φ∑

j=1

πj(r + 1)

(
r∑

k=1

Lj
k(θ, θ∗) − rHj(θ, θ∗)

)
a.s.−−→ 0,

i.e., we need to show that almost surely for any ε > 0, there exists sufficiently
large t(ε) such that ∀ t ≥ t(ε) the following holds

1
t2

∣
∣
∣
∣
∣
∣

t∑

r=1

n−φ∑

j=1

πj(r + 1)

(
r∑

k=1

Lj
k(θ, θ∗) − rHj(θ, θ∗)

)∣
∣
∣
∣
∣
∣

≤ ε. (22)

We prove this by dividing r into two ranges r ∈ {1, · · · ,
√

t} and r ∈ {√t +
1, · · · , t}. We can show that there exists t1(ε) such that

1
t2

∣
∣
∣
∣
∣
∣

√
t∑

r=1

n−φ∑

j=1

(
r∑

k=1

Lj
k(θ, θ∗) − rHj(θ, θ∗)

)∣
∣
∣
∣
∣
∣
≤ ε

2
for all t ≥ t1(ε).

Now consider 1
t

∑t
r=

√
t+1

∑n−φ
j=1 πj(r + 1) r

t

(
1
r

∑r
k=1 Lj

k(θ, θ∗) − Hj(θ, θ∗)
)

.

Since Lj
k(θ, θ∗)’s are i.i.d., from strong LLN, we know that

1
r

r∑

k=1

Lj
k(θ, θ∗) − Hj(θ, θ∗) a.s.−−→ 0, as r → ∞.

426 L. Su and N.H. Vaidya

That is, with probability 1, a sample path converges. Now, focus on each con-
vergent sample path. For sufficiently large r(ε), it holds that for any r ≥ r(ε),

∣
∣
∣
∣
∣
1
r

r∑

k=1

Lj
k(θ, θ∗) − Hj(θ, θ∗)

∣
∣
∣
∣
∣
≤ ε

2
. (23)

Recall that r ≥ √
t. Thus, we know that exists sufficiently large t2(ε) such that

∀ t ≥ t2(ε), r ≥ √
t is large enough and (23) holds.

Therefore, (22) holds almost surely, proving the lemma. �

5 Conclusion

This paper addresses the problem of consensus-based non-Bayesian learning over
multi-agent networks when an unknown subset of agents may be adversarial
(Byzantine). We propose an update rule where each agent updates its local
beliefs as (up to normalization) the product of (1) the likelihood of the cumula-
tive private signals and (2) the weighted geometric average of the beliefs of its
incoming neighbors and itself (using Byzantine consensus algorithm Byz-Iter).
In contrast, only the newly obtained private signals are used in updating local
beliefs in previous algorithms [11,15,18]. We show that all the agents will identify
a common optimal θ almost surely. Weaker assumptions on the network struc-
ture and global identifiability are characterized in our recent paper [23] where
an alternative family of learning rules are considered.

References

1. Bajovic, D., Jakovetic, D., Moura, J.M., Xavier, J., Sinopoli, B.: Large deviations
performance of consensus+ innovations distributed detection with non-gaussian
observations. IEEE Trans. Signal Process. 60(11), 5987–6002 (2012)

2. Cattivelli, F.S., Sayed, A.H.: Distributed detection over adaptive networks using
diffusion adaptation. IEEE Trans. Signal Process. 59(5), 1917–1932 (2011)

3. Chamberland, J.-F., Veeravalli, V.V.: Decentralized detection in sensor networks.
IEEE Trans. Signal Process. 51(2), 407–416 (2003)

4. Dolev, D., Lynch, N.A., Pinter, S.S., Stark, E.W., Weihl, W.E.: Reaching approx-
imate agreement in the presence of faults. J. ACM 33(3), 499–516 (1986)

5. Fekete, A.D.: Asymptotically optimal algorithms for approximate agreement. Dis-
trib. Comput. 4(1), 9–29 (1990)

6. Gale, D., Kariv, S.: Bayesian learning in social networks. Games Econ. Behav.
45(2), 329–346 (2003)

7. Hajnal, J., Bartlett, M.: Weak ergodicity in non-homogeneous markov chains. In:
Mathematical Proceedings of the Cambridge Philosophical Society, vol. 54, pp.
233–246. Cambridge University Press (1958)

8. Jadbabaie, A., Molavi, P., Sandroni, A., Tahbaz-Salehi, A.: Non-bayesian social
learning. Games Econ. Behav. 76(1), 210–225 (2012)

9. Jadbabaie, A., Molavi, P., Tahbaz-Salehi, A.: Information heterogeneity and the
speed of learning in social networks. Columbia Business School Research Paper,
(13–28) (2013)

Non-Bayesian Learning in the Presence of Byzantine Agents 427

10. Jakovetic, D., Moura, J.M., Xavier, J.: Distributed detection over noisy networks:
large deviations analysis. IEEE Trans. Signal Process. 60(8), 4306–4320 (2012)

11. Lalitha, A., Sarwate, A., Javidi, T.: Social learning and distributed hypothesis
testing. In: IEEE International Symposium on Information Theory, pp. 551–555.
IEEE (2014)

12. Lynch, N.A.: Distributed Algorithms. Morgan Kaufmann, San Francisco (1996)
13. Mendes, H., Herlihy, M.: Multidimensional approximate agreement in Byzantine

asynchronous systems. In: Proceedings of the Forty-fifth Annual ACM Symposium
on Theory of Computing, STOC 2013, pp. 391–400. ACM, New York (2013)

14. Molavi, P., Tahbaz-Salehi, A., Jadbabaie, A.: Foundations of non-bayesian social
learning. Columbia Business School Research Paper (2015)

15. Nedic, A., Olshevsky, A., Uribe, C.A.: Nonasymptotic convergence rates for coop-
erative learning over time-varying directed graphs. ArXiv e-prints 1410.1977 (2014)

16. Pease, M., Shostak, R., Lamport, L.: Reaching agreement in the presence of faults.
J. ACM 27(2), 228–234 (1980)

17. Perles, M.A., Sigron, M.: A generalization of tverberg’s theorem. ArXiv e-prints
0710.4668 (2007)

18. Rad, K.R., Tahbaz-Salehi, A.: Distributed parameter estimation in networks. In:
49th IEEE Conference on Decision and Control (CDC), pp. 5050–5055. IEEE
(2010)

19. Shahrampour, S., Jadbabaie, A.: Exponentially fast parameter estimation in net-
works using distributed dual averaging. In: 52nd IEEE Conference on Decision and
Control, pp. 6196–6201. IEEE (2013)

20. Shahrampour, S., Rakhlin, A., Jadbabaie, A.: Distributed detection: finite-time
analysis and impact of network topology (2014)

21. Shahrampour, S., Rakhlin, A., Jadbabaie, A.: Finite-time analysis of the distrib-
uted detection problem. In: 2015 53rd Annual Allerton Conference on Communi-
cation, Control, and Computing (Allerton), pp. 598–603. IEEE (2015)

22. Su, L., Vaidya, N.: Reaching approximate Byzantine consensus with multi-hop
communication. In: Pelc, A., Schwarzmann, A.A. (eds.) SSS 2015. LNCS, vol. 9212,
pp. 21–35. Springer, Heidelberg (2015)

23. Su, L., Vaidya, N.H.: Defending non-Bayesian learning against adversarial attacks.
ArXiv e-prints, June 2016

24. Tsitsiklis, J.N.: Decentralized detection by a large number of sensors. Math. Con-
trol Signals Syst. 1(2), 167–182 (1988)

25. Vaidya, N.H.: Iterative Byzantine vector consensus in incomplete graphs. In:
Chatterjee, M., Cao, J., Kothapalli, K., Rajsbaum, S. (eds.) ICDCN 2014. LNCS,
vol. 8314, pp. 14–28. Springer, Heidelberg (2014)

26. Vaidya, N.H., Garg, V.K.: Byzantine vector consensus in complete graphs. In: Pro-
ceedings of the ACM Symposium on Principles of Distributed Computing, PODC
2013, pp. 65–73. ACM, New York (2013)

27. Vaidya, N.H., Tseng, L., Liang, G.: Iterative approximate Byzantine consensus in
arbitrary directed graphs. In: Proceedings of the ACM Symposium on Principles
of Distributed Computing, pp. 365–374. ACM (2012)

28. Varshney, P.K.: Distributed bayesian detection: Parallel fusion network. In: Dis-
tributed Detection and Data Fusion, pp. 36–118. Springer, New York (1997)

29. Wolfowitz, J.: Products of indecomposable, aperiodic, stochastic matrices. Proc.
Am. Math. Soc. 14(5), 733–737 (1963)

Asynchronous Computability Theorems
for t-Resilient Systems

Vikram Saraph1(B), Maurice Herlihy1, and Eli Gafni2

1 Department of Computer Science, Brown University, Providence, USA
{vsaraph,mph}@cs.brown.edu

2 Department of Computer Science, UCLA, Los Angeles, USA
eli@cs.ucla.edu

Abstract. A task is a distributed coordination problem where processes
start with private inputs, communicate with one another, and then halt
with private outputs. A protocol that solves a task is t-resilient if it
tolerates halting failures by t or fewer processes. The t-resilient asyn-
chronous computability theorem stated here characterizes the tasks that
have t-resilient protocols in a shared-memory model. This result general-
izes the prior (wait-free) asynchronous computability theorem of Herlihy
and Shavit to a broader class of failure models, and requires introducing
several novel concepts.

1 Introduction

A distributed system is a collection of n + 1 sequential automatons, called
processes, that cooperate to solve a problem, called a task. Here, processes com-
municate by reading and writing a shared memory. Processes are asynchronous:
there is no bound on their relative execution speeds, and up to t ≤ n processes
can fail by crashing (taking no more steps). A protocol is a program that solves
a task, where each process must halt with a correct output after a finite num-
ber of steps. A protocol is t-resilient if it tolerates crash failures by t or fewer
processes. When t = n, we say the protocol is wait-free.

As discussed in more detail in Sect. 9, the question of which tasks have
t-resilient protocols has a long history. Fischer et al. [6] showed that the fun-
damental consensus problem has no 1-resilient protocol in message-passing sys-
tems. Later, the Asynchronous Computability Theorem (ACT) of Herlihy and
Shavit [14] characterized which tasks have wait-free protocols in shared-memory
and message-passing models. More recently, Gafni et al. [9] gave a general for-
mulation applicable, in principle, to a variety of computational models.

This paper presents the t-resilient ACT, characterizing which tasks have
t-resilient protocols in shared memory models. As we will see, this generaliza-
tion is not straightforward: it requires introducing several novel constructs and
insights.

Before we can explain the contribution of this paper, we need to introduce
some terminology in the next section.

c© Springer-Verlag Berlin Heidelberg 2016
C. Gavoille and D. Ilcinkas (Eds.): DISC 2016, LNCS 9888, pp. 428–441, 2016.
DOI: 10.1007/978-3-662-53426-7 31

Asynchronous Computability Theorems for t-Resilient Systems 429

2 Elements of Combinatorial Topology

Our mathematical model employs concepts from combinatorial topology, a kind
of generalization of graph theory to higher dimensions. A complete formal state-
ment of the model appears in Herlihy et al. [12]. Here, we give a concise summary
to make this document as self-contained as possible.

A simplicial complex (or just complex) K consists of a finite set V along
with a collection of subsets of V closed under containment. An element of V is
called a vertex, and each set in K is called a simplex. A simplex σ has dimension
dim(σ) = |σ| − 1. A subset of a simplex is called a face. We use “k-simplex” as
shorthand for “k-dimensional simplex” and similarly for “k-face”. The dimension
dim(K) of a complex is the maximal dimension of its simplexes. A simplex of
maximal dimension in K is called a facet of K. A complex is pure if all its facets
have the same dimension. The set of simplexes of K having dimension at most
m is called the m-skeleton of K, denoted skelm(K). Simplicial complexes are a
natural way to generalize graphs to higher dimensions.

For complexes K and L, a vertex map φ : K → L carries vertices of K to
vertices of L. If in addition φ carries simplexes of K to simplexes of L then it is
called a simplicial map. A carrier map Φ : K → 2K takes each simplex σ ∈ K
to a subcomplex Φ(σ) ⊆ L such that for σ, τ ∈ K, Φ(σ ∩ τ) ⊆ Φ(σ) ∩ Φ(τ).
A simplicial map φ : K → L is carried by a carrier map Φ : K → 2L if for every
simplex σ ∈ K, φ(σ) ⊆ Φ(σ). Let Δn be a simplex whose vertices are labeled with
(n + 1) distinct process names. If Φ is a carrier map, and σ a simplex of Φ(Δn),
then the carrier of σ in Δn is the smallest face τ of Δn such that σ ∈ Φ(τ).

Although complexes are defined in a purely combinatorial way, they can also
be realized as topological spaces. Following Munkres [19], a geometric n-simplex
is the convex hull of a set of n + 1 affinely-independent points in a Euclidean
space of appropriate dimension. A geometric complex is a collection of geometric
simplexes closed under containment such that every pair of distinct simplexes
has disjoint interiors. The point-set occupied by a simplex σ or complex K is
denoted |σ| or |K|, and is called its polyhedron.

A subdivision of a simplex σ is a complex Sub(σ) such that |Sub(σ)| = |σ|.
Figure 1 illustrates several useful subdivisions: the barycentric subdivision Bary K

Fig. 1. Barycentric and standard chromatic subdivisions

430 V. Saraph et al.

and the standard chromatic subdivision Ch(K). A subdivision is a special case of a
carrier map. A simplicial map φ from one subdivision of Δn to another is carrier-
preserving if for every simplex σ in the first subdivision, σ and φ(σ) have the same
carriers.

Formally, a task is defined by a triple (I,O, Γ), where I and O are the
task’s input and output complexes, and Γ : I → 2O is a carrier map. An initial
configuration where each process Pi is assigned input value vi is represented as
an n-simplex σ = (s0, . . . , sn) ∈ I, where each vertex si is labeled with Pi and
vi. Similarly, a legal final configuration where each process Pi halts with output
value wi is represented as n-simplex τ = (t0, . . . , tn) ∈ O, where each vertex ti
is labeled with Pi and wi. For each σ ∈ I, Γ (σ) ⊆ O is the set of legal final
configurations when the processes that appear in σ participate in the task.

When labeling vertices with process names, we sometimes refer to coloring
those vertices. A properly-colored simplex is one whose vertices are labeled with
distinct process names, and a chromatic complex is one whose simplexes are
properly colored. A simplicial map φ between chromatic complexes is color-
preserving if for all vertices v ∈ I, v and φ(v) are labeled with the same color.

3 Contributions

Informally, the wait-free ACT states that a task (I,O, Γ) has a wait-free pro-
tocol if and only if there is a subdivision Sub(I) of I and a simplicial map
φ : Sub(I) → O that approximates (technically, is carried by) the task’s
carrier map Γ : I → 2O. The t-resilient ACT stated here replaces that sub-
division with a specific carrier map, denoted ChN

t and defined later, asserting
that task (I,O, Γ) has a t-resilient protocol if and only if there is a simplicial
map φ : ChN

t (I) → O carried by Γ . We also give a continuous version of this
theorem.

One contribution of this paper is to propose a novel way to generalize the well-
known wait-free immediate snapshot (IS) protocol of Borowsky and Gafni [1].
Operationally, an immediate snapshot takes place in two contiguous steps. In
the first step, a process writes its view to a word in memory, possibly concur-
rently with other processes. In the very next step, it takes a snapshot of that
memory, possibly concurrently with other processes. The name comes from the
requirement that the snapshot step take place immediately after the write step.
Combinatorially, the IS protocol is associated with the standard chromatic sub-
division. Recall that simplex Δn has vertices labeled with the (n + 1) distinct
process names. Each process starts on the vertex of Δn labeled with its name, and
the processes converge to their matching vertices on some simplex of Ch(Δn).

It is not immediately obvious how to generalize the IS protocol to be t-
resilient. Here, we propose the delayed snapshot protocol, a three-phase protocol
that runs one round of wait-free IS, followed by a phase where each process
waits for n + 1 − t processes to catch up, and then some processes run a second
round of wait-free IS. For the t-resilient ACT, this protocol (and its associated
complex) play a role analogous to that of IS in the wait-free ACT, suggesting

Asynchronous Computability Theorems for t-Resilient Systems 431

that t-resilient delayed snapshot is the “natural” generalization of the wait-free
immediate snapshot.

A second contribution of this paper is the following topological observation.
As geometric objects, the input complex I and its subdivision Sub(I) have the
same polyhedrons: |I| = |Sub(I)|, often summarized by saying that subdivision
leaves “topology” unchanged. In the t-resilient ACT theorem, by contrast, the
subdivision is replaced by the carrier map ChN

t , where |ChN
t (I)| ⊆ |I|. Applying

ChN
t to I changes the topology by tearing “holes” in the polyhedron |I|. Infor-

mally, creating “holes” in the input complex increases computational power, by
increasing flexibility to wrap around obstructions when constructing a simplicial
map to approximate Γ . In this way, the theorem draws a connection between
computational power (the ability to solve more tasks) and topological structure
(more “holes” means that more tasks have protocols).

A third contribution is new insight into the power of waiting. In a wait-free
protocol, no process can wait for others to take a step, because those others may
have undetectably crashed. In a t-resilient protocol, by contrast, it is safe to wait
for all but t processes to take steps. We provide a proof that any task that has a
t-resilient protocol has a protocol with only a single waiting step: all steps before
and after can be executed wait-free. It was known [12, Chapter 5] that a single
waiting step was sufficient for “colorless” tasks where outputs are independent
of process names, but as far as we know, this property had not been proved for
tasks in general.

4 Delayed Snapshot Protocol

Let C be a simplicial complex with subcomplex A ⊆ C. Define the deletion of A
in C, written dl(A, C), to be the subcomplex of C consisting of all simplexes that
do not intersect A.

Informally, the delayed snapshot complex Cht(Δn) is the subcomplex of the
two-round immediate snapshot complex Ch2(Δn) obtained by removing any sim-
plexes that meet a low-dimensional skeleton of Δn.

Definition 1. The complex dl(Ch2(skeln−t−1(Δn)),Ch2(Δn)), which is denoted
Cht(Δn), is the delayed snapshot complex. It is the subcomplex of Ch2(Δn)
obtained by removing all simplexes of Ch2(Δn) that intersect skeln−t−1(Δn).

Figure 2 shows Ch1(Δ2).
The iterated immediate snapshot protocol consists of a sequence of immediate

snapshot protocols, each executed with a distinct array, where the output of one
round’s immediate snapshot is the input to the next. The corresponding complex
is the subdivision constructed by repeatedly composing the standard chromatic
subdivision.

In the delayed snapshot task (Δn,Cht(Δn),Cht), each process starts on the
vertex of Δn labeled with its name, halts on a vertex of Cht(Δn) labeled with
its name, and all processes converge on a single simplex of Cht(Δn). Protocol 1
shows a delayed snapshot protocol. Processes share two (n + 1)-element arrays,

432 V. Saraph et al.

Fig. 2. Ch1(Δ
2) as a subcomplex of Ch2(Δ2). The grayed-out simplexes are discarded

from Ch2(Δ2) to obtain Ch1(Δ
2).

mem0 and mem1, and a shared variable, done. Each process calls the wait-free
immediate snapshot protocol to store its name in mem0 and take a snapshot of
that array (Lines 6–8). Here, the immediate block’s first line assigns to that
process’s element in mem0 and the second line immediately assigns an atomic
snapshot of mem0 to a local variable, snap0. If the process does not see at least
n+1− t processes in snap0, it waits until done is set to true. Otherwise, it stores
snap0 in mem1, takes an immediate snapshot of mem1, sets done to true, and
then returns (Lines 12–16).

Theorem 1. Protocol 1 is a t-resilient delayed snapshot protocol.

Proof. Since the protocol consists of two successive immediate snapshots on
clean memory, the processes converge to a simplex of Ch2(Δn). To see why each
non-faulty process executing the protocol eventually returns, consider the set of
all non-faulty processes. Because we consider only t-resilient executions, there
must be at least n+1− t such processes. Let P be the last non-faulty process to
complete the first, wait-free immediate snapshot (Lines 6–8). Since P is last, P
must observe the effects of at least n+1−t processes, including itself. Therefore P
does not wait at Line 10 and proceeds to execute the second immediate snapshot
wait-free. Before returning, P signals other waiting processes by setting done to
true. The remaining processes then stop waiting and join the second immediate
snapshot.

Finally, we check that each process chooses a vertex in Cht(Δn). Define
process P as above. Before writing to done, P must have written its view to
mem1. Thus any process blocked at Line 10 will see P ’s view. But this view
includes at least n+1− t processes, so any subsequent process taking a snapshot
of mem1 will see at least n+1− t processes as well. But the vertices of Cht(Δn)
correspond exactly to the local views in which processes see at least n + 1 − t
processes, so each process will choose a vertex in Cht(Δn).

Asynchronous Computability Theorems for t-Resilient Systems 433

1 shared mem0[n+1];
2 shared mem1[n+1];
3 shared done;
4 done := false;
5 protocol DelayedSnapshot(id):
6 immediate
7 mem0[id] := id;
8 snap0 := snapshot(mem0);

9 if |snap0| ≤ n − t then
10 while not done
11 skip

12 immediate
13 mem1[id] := snap0;
14 snap1 := snapshot(mem1);

15 done := true;
16 return snap1 ;

Algorithm 1. Delayed snapshot protocol

5 Protocol Complex Properties

Let ChN
t (I) denote the N -fold composition of Cht(I), for some N > 0. Opera-

tionally, the complex corresponds to a protocol composed from N instances of
delayed snapshot. We call this complex the protocol complex for this protocol. In
this section, we discuss useful combinatorial properties of the delayed snapshot
protocol complex, which are eventually used to prove the main theorems.

Roughly speaking, a pure n-dimensional simplicial complex is shellable if it
can be constructed by “gluing” facets together along their (n − 1)-faces.

Definition 2. Let C be a pure complex of dimension n, and let ψ0, . . . , ψs be an
enumeration of its facets. Then {ψi} is called a shelling order if for all j, the
complex

⋃j
i=0 ψi ∩ ψj+1 is pure of dimension n − 1. A complex with a shelling

order is said to be shellable.

In the proofs to follow, we use the notation 	 : N → C to denote a shelling
order ψ0, . . . , ψs on a simplicial complex C, where 	 is a partial function such
that 	(i) = ψi.

Theorem 2. Ch(Δn) is shellable.

Proof. Following Kozlov [18], a one-round immediate snapshot execution by
processes P0, . . . , Pn is described by an ordered partition S0, . . . , Sm, where the
Si are disjoint sets of processes. Operationally, the processes in S0 all write and
scan concurrently, followed by the processes in S1, and so on.

Let S0, . . . , Sm be the ordered partition whose simplex is σ. Define Flipi(σ):

Flipi(σ) =

{
{Pi} ∪ S1, . . . , Sm if S0 = {Pi}
{Pi} , S0 \ {Pi} , S1, . . . , Sm if |S0| > 1 and Pi ∈ S0

434 V. Saraph et al.

Flipping an execution changes exactly one process’s view, so σ and Flipi(σ) share
an (n − 1) face.

Let Δn = (v0, . . . , vn). Define the extended star of vi to be the union of
St(vi,Ch(Δn)) with Flipi(σ) for each facet σ of St(vi,Ch(Δn)). Lk(vi,Ch(Δn)
is isomorphic to Ch(Δn−1), which is shellable by the induction hypothesis. The
link’s shelling order induces a shelling order on St(vi,Ch(Δn)). The shelling order
for the extended star is constructed by appending, in any order, the flipped sim-
plexes to the star’s shelling order. The shelling order for Ch(Δn) is constructed
by concatenating the shelling orders for the extended stars, and eliminating
duplicates.

Every facet of Ch(Δn) is included in this order because every execution
S0, . . . , Sm is either a facet of some St(vi,Ch(Δn)) (if S0 is a singleton) or one
flip away from some star.

For σ ∈ Ch(Δn), define Chσ(σ) = Ch2(σ) ∩ Cht(σ), the restriction of Cht to σ.
Chσ(σ) is Ch(σ) without the simplexes that intersect certain vertices.

Theorem 3. Chσ(σ) is shellable.

Proof. Let the missing vertices be {vi : i ∈ I}, for some index set I. The shelling
order is the concatenation of the shelling orders for the extended stars of all the
vertices not in I.

Theorem 4. Cht(Δn) is shellable.

Proof. We inductively construct a shelling order on Cht(Δn) by concatenat-
ing the shelling orders for each Chσ(σ). Let 	 be the shelling order on Ch(Δn)
constructed in Theorem 2. Enumerate the facets σ ∈ Ch(Δn) as σi = 	(i). Induc-
tively assume Chσi

(σi) is attached, and let Ci denote the complex constructed so
far, with shelling order 	i. Let α be any ordering on the vertices of σi+1 such that
every vertex v already contained in Ci precedes every vertex w not contained in
Ci. Let 	α,σi+1 be the shelling order constructed earlier for Chσi+1(σi+1), with
vertices ordered by α. Append 	α,σi+1 to 	i to obtain a shelling order 	i+1 on
Ci+1 = Ci ∪ Chσi

(σi).

Definition 3. Let Sk denote the k-dimensional sphere. A complex K is k-
connected if, for all 0 ≤ m ≤ k, any continuous map f : Sm → |K| can
be extended to a continuous F : Dm+1 → |K|, where the sphere Sm is the
boundary of the disk Dm+1.

One way to think about this property is that any map f of the k-sphere that
cannot be “filled in” represents a k-dimensional “hole” in the complex. Indeed,
Sk itself is m-connected for m < k, but not k-connected.

Let K be a complex, and σ a simplex in K. The link of σ in K, written
Lk(σ,K), is the smallest subcomplex of K consisting of simplexes τ disjoint from
σ such that σ∪τ is a simplex. One can think of the link of σ as a small subcomplex
that encompasses σ but does not contain it.

Asynchronous Computability Theorems for t-Resilient Systems 435

Definition 4. A pure n-dimensional complex K is link-connected if for all σ ∈
K, Lk(σ,K) is (n − dim(σ) − 2)-connected.

Informally, link-connectivity ensures that a complex cannot be “pinched” too
thinly. To prove link-connectivity of ChN

t (Δn), we prove the stronger claim that
ChN

t (Δn) is a combinatorial manifold (or simply manifold). A manifold is a pure
simplicial complex in which the link of each vertex is either a topological disk
or a sphere.

Definition 5. Let K be a pure n-dimensional complex. A simplex σ ∈ K is
called regular if Lk(v,K) is an (n − dim(σ) − 1)-sphere when σ is not contained
in the boundary of K, and Lk(v,K) is an (n − dim(σ) − 1)-disk otherwise. The
complex K is a combinatorial manifold if all its vertices are regular.

Lemma 1. Combinatorial manifolds are link-connected.

Proof. It is known that every simplex in a combinatorial manifold K is regular
[10]. In particular, each link in K is sufficiently connected, so K is link-connected.

We can glue together ChN
t (Δn) from copies of ChN−1

t (Δn) according to the
shelling order on Cht(Δn). At each step, we ensure that every attached vertex
remains regular.

Theorem 5. ChN
t (Δn) is link-connected.

To demonstrate the (t − 1)-connectivity of ChN
t (Δn), we use the Nerve

Lemma, a classical result from combinatorial topology.

Definition 6. Let K be a simplicial complex and let {Ki}i∈I be a collection
of subcomplexes covering K, which is to say that

⋃
i∈I Ki = K. Then the nerve

complex N ({Ki}i∈I) is a simplicial complex whose vertices are the Ki and whose
simplexes are collections {Kj}j∈J such that

⋂
j∈J Kj is nonempty.

The nerve complex of a simplicial cover encodes how the components of the
cover intersect with one another. The complex obtained in this way sometimes
shares connectivity properties with the original complex, as described by the
Nerve Lemma below. Kozlov [16] contains an excellent statement and proof of
the Nerve Lemma.

Lemma 2 (Nerve Lemma). Let {Ki}i∈I be a simplicial cover of K, and let
k be some fixed integer. For any nonempty J ⊆ I, define KJ =

⋂
j∈J Kj, and

suppose that KJ is (k − |J | + 1)-connected or empty for all such J . Then K is
k-connected if and only if N ({Ki}i∈I) is k-connected.

The next corollary is a direct consequence of the Nerve Lemma, and will
also prove useful in showing topological connectivity of the t-resilient protocol
complex. A statement of this corollary is found in Herlihy et al. [12].

Corollary 1. If K and L are k-connected complexes such that K ∩ L is (k − 1)-
connected, then K ∪ L is also k-connected.

436 V. Saraph et al.

Similar to the approach for link-connectivity, we can piece together ChN
t (Δn)

from copies of ChN−1
t (Δn) and iteratively apply the above corollary to obtain

the following.

Theorem 6. ChN
t (Δn) is (t − 1)-connected.

6 Single-Round Waiting

We now construct a map from the one-round protocol complex to any N -round
protocol complex. Operationally, this means that any task solvable t-resiliently
can be solved using only one delayed snapshot round, followed by some number of
wait-free immediate snapshot rounds, implying that only one waiting statement
is necessary in any protocol.

If Y ⊆ X are topological spaces, then a retraction [11] from X to Y is a
continuous map f : X → Y such that f restricted to X is the identity.

Define the complex

Baryt(Δ
n) = {σ ∈ Bary(Δn) : ∀v ∈ σ,dim(Car(v,Bary)) ≥ n − t} .

That is, Baryt(Δn) is the induced subcomplex of Bary(Δn) defined by vertices
whose carriers have dimension at least n − t.

Lemma 3. Bary◦
t (I) = |Baryt(I)| − | skeln−t(I)| retracts to |Baryt−1(I)|.

We can iteratively apply Lemma 3 to obtain the following theorem.

Theorem 7. There is a map f : |Cht(I)| → |Baryt(I)| that is continuous
and carrier-preserving.

We use topological connectivity of ChN
t (I) to map Baryt(I) into the former.

Theorem 8. There is a map f : |Baryt(I)| → |ChN
t (I)| that is continuous

and carrier-preserving.

We make use of the following theorem, based on an algorithm of Borowsky
and Gafni [2].

Theorem 9. Let I and O be chromatic complexes, Γ : I → 2O a carrier
map such that Γ (σ) is link-connected for each σ ∈ I, and f : |I| → |O| a
continuous map carried by Γ . Then there exists a chromatic, carrier-preserving
simplicial map φ : ChN (I) → O, for some sufficiently large N , also carried
by Γ .

As a technical aside, Theorem 9 is a color-preserving analog of the classical
simplicial approximation theorem [19], which states that any continuous map
from complex’s polyhedron to another’s can be approximated by a simplicial map
from a sufficiently subdivided complex to the other. Here, the link-connectivity
condition on ChN

t (Δn) is necessary to ensure that the map φ can be made color-
preserving.

Asynchronous Computability Theorems for t-Resilient Systems 437

Theorem 10 (Wait Reduction). For any N > 0 there is a chromatic,
carrier-preserving, simplicial map φ : ChM (Cht(I)) → ChN

t (I) for some suf-
ficiently large M .

Proof. Existence of a continuous, carrier-preserving f : |Cht(I)| → |ChN
t (I)|

follows from Theorems 7 and 8, and the claim follows from Theorem 9.

It follows that there is a t-resilient read-write protocol that simulates N
rounds of delayed snapshots with only a single delayed snapshot, followed by
some number of wait-free immediate snapshots.

7 t-ACT Theorems

We state two alternative versions of the t-resilient asynchronous computabil-
ity theorem: a discrete version, which characterizes solvability in terms of the
existence of a chromatic simplicial map, and an equivalent continuous version,
which provides the same characterization in terms of the existence of a contin-
uous function.

7.1 Discrete t-ACT

Theorem 11 (Discrete t-ACT). A task (I,O, Γ) has a t-resilient read-write
protocol if and only if there exists a color-preserving, carrier-preserving, simpli-
cial map φ : ChN

t (I) → O for some natural number N .

Proof. Given such a map, consider the following protocol. Each process with
input vertex v runs N rounds delayed snapshot rounds, choosing a vertex w
in ChN

t (I). Now decide x = φ(w). This protocol satisfies the task specification
because φ is carried by Γ .

In the other direction, we sketch an argument that any t-resilient protocol
can be put into normal form as an equivalent sequence of t-resilient delayed
snapshots, each operating on its own region of memory.

It is known that any wait-free read-write protocol can be expressed in normal
form as a layered immediate snapshot protocol [12, Chapter 14]: the execution
occurs as a sequence of (asynchronous) layers (rounds). Each layer has its own
(n + 1)-element array, where process Pi writes its current state to the ith array
element, takes an immediate snapshot of that array, and the value returned by
that snapshot becomes Pi’s new state. After the last such layer, Pi applies a
decision map to its final state to choose an output value.

In a t-resilient model, we can guarantee that each layer’s immediate snapshot
returns states written by at least n + 1 − t distinct processes by waiting until
enough processes have finished the prior layer (as in Line 10 of Algorithm 1).
We call such a layer a barrier layer.

Given a t-resilient protocol expressed as a sequence of barrier layers, we
can add a wait-free layer between each pair of barrier layers without reducing
the protocol’s computational power (informally, the decision map can just ignore
the new snapshots). A sequence of 2L layers that alternates wait-free and barrier
layers is a sequence of L delayed snapshot layers.

438 V. Saraph et al.

We could choose to replace ChN
t (I) in the discrete t-ACT with the complex

ChM (Cht(I)), using the wait reduction theorem. Though we do not do this for
the discrete t-ACT, we will do so for continuous t-ACT in the next section.

7.2 Continuous t-ACT

While the discrete t-ACT provides a clean characterization of t-resilient solv-
ability, there is an even more succinct statement replacing simplicial maps with
continuous functions. The main difference is that we lose any notion of process
names, since there is no clear continuous analog of chromatic simplicial maps.
To address this, we give an alternative to the discrete t-ACT, subject to a link-
connectivity condition on the output complex.

Theorem 12 (Continuous t-ACT). Let T = (I,O, Γ) be an (n + 1)-process
task such that Γ (σ) is link-connected for all σ ∈ I. Then there is a t-resilient
read-write protocol for T if and only if there is a continuous, carrier-preserving
f : |Cht(I)| → |O|.
Proof. First suppose we have a t-resilient protocol for task T . The discrete t-ACT
ensures there is a chromatic, carrier-preserving, simplicial map φ : ChN

t (I) → O.
We apply Theorem 10 to turn φ into a chromatic, carrier-preserving, simplicial
map φ′ : ChM (Cht(I)) → O. Then let f = |φ′|, the geometric realization of φ′.
Recalling that ChM does not change the topology of simplicial complexes, we
get a continuous, carrier preserving f : |Cht(I)| → |O|.

In the other direction, given a continuous, carrier-preserving f : |Cht(I)| →
|O|, there is a chromatic, carrier-preserving simplicial map φ : ChM (Cht(I)) →
O. Operationally, this provides us a t-resilient protocol for solving T , in which
each process executes one round of delayed snapshot, followed by M rounds of
immediate snapshots, halting on a vertex v in ChM (Cht(I)). The process decides
φ(v), which is correct because φ is carrier-preserving.

Fig. 3. Test-and-set and Fetch-and-increment tasks

Asynchronous Computability Theorems for t-Resilient Systems 439

8 Applications

Here are some applications of the t-resilient ACT.

Lemma 4. If K and L are chromatic complexes, K is link-connected, and φ :
K → L is color-preserving, then the subcomplex φ(K) ⊆ L is also link-connected.

In the following two tasks, processes have only their names as inputs. In
the test-and-set task, exactly one participating process decides 0, and the rest
decide 1. Figure 3 shows this task’s output complex O. If there were a t-
resilient test-and-set protocol, there would be a color-preserving simplicial map
φ : Chn

t (Δn) → O. It is not hard to see that the image of Chn
t (Δn) must be all

of O. But Chn
t (Δn) is link-connected, while O is not, contradicting Lemma 4.

In the fetch-and-increment task, if k processes participate, they decide dis-
tinct integers between 0 and k − 1. Figure 3 shows this task’s output complex
O. By the same argument, there can be no a color-preserving simplicial map
φ : Chn

t (Δn) → O because O is not link-connected.
In the k-set agreement task, each process has a private input, each process

decides some process’s input, and no more than k distinct inputs can be decided.
We can use the t-resilient ACT to see that there is a t-resilient (t + 1)-set agree-
ment protocol. Without loss of generality, assume each process’s input is its own
name, so the task’s input complex is the simplex Δn. Simply assign each vertex
v in Cht(Δ) the least process name in v’s carrier.

We can also use the t-resilient ACT to see that there is no t-resilient t-
set agreement protocol. Omitting details, start by “coloring” each vertex of
Cht(Δ) with its decision value. We can extend this coloring from Cht(Δn) to
all of Ch2(Δn) simply by assigning each additional vertex a decision value from
its carrier. The result is called a Sperner coloring, and the classical Sperner’s
Lemma [12, Chapter 4] states that at least one n-simplex in Ch2(Δn) has all
n + 1 colors. Going back from Ch2(Δn) to Cht(Δn) requires discarding at most
n − t vertices from any simplex, leaving at least t + 1 colors on some simplex
of Cht(Δn). This simplex corresponds to an execution where (t + 1) distinct
values are chosen, violating the t-set agreement condition. It is straightforward
to extend this construction to any ChN

t (Δ) by considering the N -fold relative
subdivision [19] of Cht(Δn) in Ch2(Δn).

9 Related Work

The original ACT [14,15] applied only to wait-free read-write memory. Some
prior approaches used simulation [4] to reduce certain t-resilient “colorless” pro-
tocols to wait-free “colorless” protocols. Herlihy and Rajsbaum [13] derived task
solvability conditions for colorless tasks which, roughly speaking, can be defined
independently of process identities. The t-resilient model is a special case of
adversarial shared-memory models [5].

We use the immediate snapshot (IS) protocol of Borowsky and Gafni [3],
later extended by Raynal and Stainer [20] extended to encompass failure detec-
tors. Kozlov [17] was the first to prove that the standard chromatic subdivision

440 V. Saraph et al.

produced by immediate snapshot is, in fact, a subdivision. Gafni et al. [9] give
a general theorem for task solvability for a class of computational models, but
they do not give an explicit characterization of the protocol execution complex
for t-resilient computations In this paper, by contrast, we give an explicit con-
struction for all complexes, as well as an explicit and novel protocol for t-resilient
delayed snapshot.

Another approach is to reduce the problem of constructing t-resilient proto-
cols to that of constructing wait-free protocols. Gafni and Kuznetsov [7,8] make
progress in this direction, considering a more general failure model that permits
irregular failure patterns, but a weaker notion of protocol correctness, called
“weak solvability”. They provide a way to transform a task T to another task T ′

such that if T is weakly solvable in the general model, then T ′ is weakly wait-free
solvable.

10 Remarks

This paper proposes a novel generalization of the ACT to t-resilient read-write
memory. The generalized theorem is expressed in two equivalent ways: in terms
of the existence of a simplicial map between simplicial complexes, and also in
terms of the existence of a continuous map between polyhedrons of simplicial
complexes. The algorithmic construction introduces a novel t-resilient delayed
snapshot protocol, generalizing the wait-free immediate snapshot protocol of
Borowsky and Gafni.

References

1. Borowsky, E., Gafni, E.: Immediate atomic snapshots and fast renaming, August
1993

2. Borowsky, E.: Capturing the power of resiliency and set consensus in distributed
systems. Ph.D. thesis, University of California, Los Angeles (1995)

3. Borowsky, E., Gafni, E.: A simple algorithmically reasoned characterization of
wait-free computations. In: Proceedings of the 16th Annual ACM Symposium on
Principles of Distributed Computing, pp. 189–198, August 1997

4. Borowsky, E., Gafni, E., Lynch, N.A., Rajsbaum, S.: The BG distributed simulation
algorithm. Distrib. Comput. 14(3), 127–146 (2001)

5. Delporte-Gallet, C., Fauconnier, H., Guerraoui, R., Tielmann, A.: The disagree-
ment power of an adversary. In: Keidar, I. (ed.) DISC 2009. LNCS, vol. 5805, pp.
8–21. Springer, Heidelberg (2009)

6. Fischer, M., Lynch, N.A., Paterson, M.S.: Impossibility of distributed commit with
one faulty process. J. ACM 32(2), 374–382 (1985)

7. Gafni, E., Kuznetsov, P.: On l-resilience, hitting sets, and colorless tasks. In: Pro-
ceedings of the 29th ACM SIGACT-SIGOPS Symposium on Principles of Distrib-
uted Computing, PODC 2010, pp. 81–82. ACM, New York (2010)

8. Gafni, E., Kuznetsov, P.: Turning adversaries into friends: simplified, made con-
structive, and extended. In: Lu, C., Masuzawa, T., Mosbah, M. (eds.) OPODIS
2010. LNCS, vol. 6490, pp. 380–394. Springer, Heidelberg (2010)

Asynchronous Computability Theorems for t-Resilient Systems 441

9. Gafni, E., Kuznetsov, P., Manolescu, C.: A generalized asynchronous computability
theorem. In: ACM Symposium on Principles of Distributed Computing, PODC
2014, Paris, France, pp. 222–231, 15–18 July 2014

10. Glaser, L.C.: Geometrical Combinatorial Topology, vol. 1. Van Nostrand Reinhold,
New York (1970)

11. Hatcher, A.: Algebraic Topology. Cambridge University Press, Cambridge (2002)
12. Herlihy, M., Kozlov, D., Rajsbaum, S.: Distributed Computing Through Combi-

natorial Topology. Elsevier, Boston (2013)
13. Herlihy, M., Rajsbaum, S.: The topology of distributed adversaries. Distrib. Com-

put. 26(3), 173–192 (2013)
14. Herlihy, M., Shavit, N.: The topological structure of asynchronous computability.

J. ACM 46(6), 858–923 (1999)
15. Herlihy, M.P., Shavit, N.: The asynchronous computability theorem for t-resilient

tasks. In: Symposium on Theory of Computing (STOC), pp. 111–120. ACM, May
1993

16. Kozlov, D.: Combinatorial Algebraic Topology. Springer, Heidelberg (2008)
17. Kozlov, D.N.: Chromatic subdivision of a simplicial complex. Homology, Homotopy

Appl. 1(14), 1–13 (2012)
18. Kozlov, D.N.: Combinatorial topology of the standard chromatic subdivision and

weak symmetry breaking for 6 processes. CoRR, abs/1506.03944 (2015)
19. Munkres, J.R.: Elements of Algebraic Topology. Addison Wesley, Reading (1984)
20. Raynal, M., Stainer, J.: Increasing the power of the iterated immediate snapshot

model with failure detectors. In: Even, G., Halldórsson, M.M. (eds.) SIROCCO
2012. LNCS, vol. 7355, pp. 231–242. Springer, Heidelberg (2012)

Upper Bounds for Boundless Tagging
with Bounded Objects

Zahra Aghazadeh(B) and Philipp Woelfel

Department of Computer Science, University of Calgary, Calgary, Canada
{zaghazad,woelfel}@ucalgary.ca

Abstract. A fundamental technique used in the design of shared mem-
ory algorithms is tagging, where registers or other shared objects get
augmented with additional values, called tags. In this paper, we provide
a framework for tagging, and prove upper bounds for the complexity of
this problem. We define new types that allow processes to generate tags
infinitely often, store them to or retrieve them from other objects, use
them safely, and release them when they are not needed any more. We
present asymptotically optimally time efficient implementations of those
types from objects of bounded size. In particular, our tags need only
objects of logarithmic size, and operations on them can be performed in
constant step complexity. In addition to the straightforward applications
that use tags directly, our implementations can also be used for memory
reclamation in a number of algorithms, such as those based on single
compare-and-swap universal or read-copy-update.

1 Introduction

A standard technique in shared memory algorithms is tagging, where registers or
other shared objects get augmented with additional values, called tags. Such tags
can serve multiple purposes: One is to allow processes to distinguish multiple
writes of the same value. This can, for example, be used to avoid the ABA
problem. (The ABA problem occurs when two subsequent reads of the same
register return the same value, even though at some point between those reads
the value was different.)

In many algorithms, processes proceed in rounds. When a process writes to
shared objects, it can augment its written data values with a tag, that consists of
the process’s current round number and possibly its process ID. Other processes
can then use the tags read from shared objects to distinguish whether the corre-
sponding data values were written by a process in the same or in different rounds.
Each time a process starts a new round, it needs to find a new unique tag that it
can use throughout its round as an identifier of that round. In some applications
(e.g., [21,26]), it is important that tags are ordered (e.g., later rounds should

This research was undertaken, in part, thanks to funding from the Canada Research
Chairs program and from the Discovery Grants program of the Natural Sciences and
Engineering Research Council of Canada (NSERC).

c© Springer-Verlag Berlin Heidelberg 2016
C. Gavoille and D. Ilcinkas (Eds.): DISC 2016, LNCS 9888, pp. 442–457, 2016.
DOI: 10.1007/978-3-662-53426-7 32

Upper Bounds for Boundless Tagging with Bounded Objects 443

have higher tags than earlier ones); in others, the only requirement is that tags
are unique. (e.g., [3,7,13]).

A standard technique for tagging is as follows: To generate a new tag a process
p increments a local variable c, and then uses (p, c) as the tag. But in many algo-
rithms this leads to an unbounded number of tags, and thus shared base objects
need to be able to store values of unbounded size. The problem of bounding tags
is a special case of the bounded timestamp problem. But timestamps provide
more functionality than sometimes needed: In addition to uniqueness, they also
satisfy a temporal order relation. This functionality is costly: In all known algo-
rithms (e.g. [10–12,15,19]), operations to maintain timestamps for n processes
have step complexity at least Ω(n). Moreover, any timestamp system requires 2n

timestamps [18], and thus they must be stored in objects of size at least n bits.
This limits the number of processes that can participate in algorithms relying
on timestamp systems, especially if the tags (or timestamps) need to be stored
in the same object together with the data they are augmenting.

We investigate the natural question, whether tagging is easier, if no order
relation is required. There is evidence that this is the case: Several applications
that use tagging rely on ad-hoc techniques to recycle tags with only constant step
complexity overhead. Examples are implementations of LL/SC objects [6,20] or
FIFO queues [25] from CAS objects and registers, transformations that augment
objects with concurrent Write() or reset() operations [2,3], and a construction of
ABA-detecting registers [4]. But a systematic study of the complexity of tagging
was missing. We fill this gap.

We define new types that maintain a finite pool of tags. A process can effi-
ciently find a free tag from that pool and communicate it to other processes by
storing it in a shared object. Other processes can obtain references to tags by
reading them from shared objects, and later release those reference via a ded-
icated method. The main safety property provided by our abstraction is that
whenever a process obtains a new tag from the pool, then immediately before
that the tag was free, i.e., no process had a reference to it. New tags can be
taken from the pool infinitely many times, as long as the algorithm that uses
this abstraction guarantees that the number of tags to which processes have
references to, is bounded (by some parameter τ).

Often, tags need to augment other data that is written to objects. Our
abstraction provides methods through which data/tag pairs can be stored into
and retrieved from objects. We present two variants of our types; they mainly
differ in what operations can be used to store or retrieve data/tag pairs. In
the first type, called taggable registers, these operations are reads and writes;
the second type, called taggable LL/SC, supports load-linked/store-conditional
(LL/SC) operations. We present implementations from atomic base objects,
which correspond to the operations that can be used to communicate data/tag
pairs: Our taggable registers are implemented from registers only, and taggable
LL/SC objects from LL/SC objects and registers. Each of those implementations
is wait-free, all operations have constant step complexity, shared base objects
have bounded size (typically it is logarithmic in the number of processes), and the

444 Z. Aghazadeh and P. Woelfel

number of base objects used is bounded (typically polynomially in the number
of processes).

Considering tags as memory addresses, our taggable objects can be directly
used for memory reclamation in a number of algorithms, and allow certain oper-
ations to be wait-free, where other memory reclamation techniques guarantee
only lock-freedom. Popular techniques for memory reclamation are Michael’s
Hazard Pointers (HP) [23], and Herlihy et al.’s Pass-the-Buck (PB) [16]. Naively
applying those techniques to data structures based on compare-and-swap univer-
sal [5,9,24] or read-copy-update [22], usually requires that even non-modifying
operations are at most lock-free, even though without memory reclamation, those
operations could be wait-free. Using our taggable objects for memory reclama-
tion, wait-freedom of such read-only operations can be preserved, and in fact,
only a constant step complexity overhead is added. Other algorithms that use
ad-hoc memory reclamation have trivial wait-free solutions using our taggable
objects [2,3,14].

The core reason why other memory reclamation techniques do not achieve
wait-freedom even for certain non-modifying operations, is that retrieving the
reference of a memory block and protecting it are separated into two distinct
operations. Suppose a process wants to access a memory block (e.g., the top
element of a stack) after having read its address from a shared object (e.g., a
pointer to the top of the stack). Then the process must first make an attempt
to protect that node from being released (e.g., by setting a hazard pointer), and
then check whether it succeeded doing so by testing if the node is still part of the
data structure (e.g., it is still pointed to by the stack pointer). If that test fails,
the memory block may have already been released, and thus cannot be safely
accessed anymore. Then the process’s attempt to make progress failed. This
is different with our taggable object implementations: Retrieving a tag from a
taggable register or taggable LL/SC object automatically protects the tag from
being released, and is achieved through a wait-free operation with constant step
complexity.

For this purpose, our abstraction works best, if only a fixed node needs to be
protected, such as the root of a tree, or the top element of a stack. In the case of
general linked data structures, where any node may have to be protected (e.g. a
linked list), our taggable objects do not achieve better progress conditions than
other memory reclamation techniques. (See also Sect. 2.2.)

Memory reclamation techniques such as HP or PB often rely on the operating
system to provide methods for allocation and deallocation of memory blocks.
The time and space complexity of those allocation methods, or their progress
guarantees, are not part of the analysis. Some schemes, such as DEBRA [8], also
manage pools of memory blocks, and provide (de-)allocation methods. However,
these schemes usually use lock-free linked list, and therefore are not wait-free.
Our taggable object implementation manages its own pool of tags, and does
not rely on any external methods for memory allocation. Consequently, unlike
memory reclamation solutions such as HP or PB, progress is not dependent on
the progress of the system’s memory allocation layer.

Upper Bounds for Boundless Tagging with Bounded Objects 445

A disadvantage of our implementations may be that a sufficiently large pool
of shared objects needs to be preallocated. It is not hard to accommodate our
implementations so that the pool of tags is dynamically resized, if the system
provides methods for memory allocation and deallocation; but this is beyond the
scope of this paper. Moreover, one could conceive a system, where essentially all
available memory addresses are tags; our results show that in such a system
memory allocation and reclamation is possible with only constant time over-
head. Even though the space of our implementations is polynomial (in several
parameters, including the number of processes), it may be too high for practical
use. But the main goal of this research is not to provide a finished practical sys-
tem. Instead we aim to devise a new abstraction and demonstrate its usefulness
for a variety of applications (see Sect. 2.1 for selected examples). We show that
the abstraction has a time efficient, polynomial space implementation, and can
yield wait-freedom, where other techniques cannot.

2 Taggable Objects

Throughout, n denotes the number of processes in the system. The types we
introduce are called taggable register array (TRA) and taggable LL/SC array
(TLSA). Each is instantiated by two parameters, m and τ, and maintains an
array R[0 . . . m − 1] of size m. The parameter τ is, roughly, a bound on the
number of tags that can be simultaneously referenced by processes; a formal
definition will be provided below. To specify the values of the parameters m
and τ, we will sometimes write (m, τ)-TRA and (m, τ)-TLSA. The tags come
from the domain T = {0, . . . ,Δ(m,n, τ) − 1}, where Δ is a some function.
(In our implementations, Δ is a polynomial, albeit with large constant degrees;
see Sect. 2.3.) The components of the array R behave essentially as registers
(for TRA) and as LL/SC objects (for TLSA), respectively, but they provide
additional functionality.

In the following, we provide a sequential specification of the types TLSA
and TRA. Our implementation described in Sect. 3 is linearizable. Both types
support the operations GetFree() and Release(). Operation GetFree() returns a
free tag g from pool T , and as a result g is in use. Method Release(g) takes as
parameter a tag g that is in use, and as a result g ceases to be in use. (But even
when a tag has been released, it may not be free because other processes may
still need access to it, as explained below.)

Once a tag is put in use through a GetFree() method, processes can augment
data values with them, and communicate the resulting data/tag pairs via the
shared objects of array R. In case of type TRA, this is done with the operations
Write() and Read(). Specifically, Write()i, (x, g) writes the pair (x, g) consisting
of a tag g and a data value x to R[i], and Read()i returns the pair stored in
R[i]. Similarly, in case of type TLSA, tags can be stored in and retrieved from
R using operations LL() and SC() that behave like the corresponding operations
on LL/SC objects: Operation LL(i) returns the current pair stored in R[i], and
SC(i, (x, g)) attempts to write the pair (x, g) to R[i], and returns a Boolean

446 Z. Aghazadeh and P. Woelfel

value indicating whether the write succeeded or not (if it does not succeed,
R[i] remains unchanged). Operation SC(i, (x, g)) by p succeeds if and only if p
previously executed LL(i), and since then no other successful SC(i, ·) operation
was performed.

As a result of an LL() or a Read() that returns a pair (x, g), a process has
tag g protected, and can from then on safely use that tag. (The meaning of safe
is explained later.) Once a process needs no access to g anymore, it can call
Unprotect(g). Since multiple LL() or Read() operations may return the same tag,
a tag may be protected multiple times. If p executed k LL() or Read() operations
that returned tag g, and � Unprotect(g) operations, then p protects g exactly k−�
times. A process must not call Unprotect(g) unless it protects g at least once, so
k − � cannot become negative. We say a process protects a tag to indicate that
the process protects it at least once.

The goal of these methods is that access to tags is always safe, in the sense
that no process is poised to use a tag g, when a GetFree() method returns g.
To make this precise, we distinguish between free and occupied tags. A tag g is
occupied, if

– it is in use (i.e., a GetFree() returned g and was not followed by a Release(g));
– some process protects it (i.e., p executed more LL() or Read() calls that

returned g, than it executed Unprotect(g) calls); or
– a pair (·, g) is stored in some element of array R.

A tag g is called free, if it is not occupied. The safety property guaranteed by
types TLSA and TRA is that whenever a GetFree() method returns a tag, that
tag is free.

Safety can, of course, only be ensured if processes access tags properly. In
particular, when a process calls SC(·, (·, g))), it must protect tag g, when it calls
Release(g), g must be in use, and when it calls SC(·, (·, g))), g must be occupied.
Moreover, in order to not run out of free tags, the algorithm using our taggable
objects must ensure that there are never more than τ tags in use or protected.
Processes can achieve that by releasing and unprotecting sufficiently many tags.
For example, in the applications presented below, we choose τ = n and τ = 2n,
because at any point each process protects only one and two tags, respectively,
and the algorithm ensures that the total number of protected and in use tags is
bounded by n and 2n, respectively.

Note that Release(g) is the counterpart of GetFree(), and Unprotect(g) the
counterpart of Read() or LL(). But if a process begins to protect a tag g as a
result of a Read() or LL() method, it needs to call Unprotect(g) itself, while any
process can call Release(g) for an in-use tag g, no matter which process received
t from a GetFree() call. This property will allow us later to design an extension
of this type that can replace other memory reclamation techniques, such as HP
or PB, for list based data structures.

To illustrate the usefulness of our abstraction, we describe some simple
applications.

Upper Bounds for Boundless Tagging with Bounded Objects 447

2.1 Example Applications

Round-Based Algorithms. In a recent mutual exclusion algorithm [13],
processes make multiple attempts to enter the critical section. In each such
attempt, a process p increments a round number, c, and when it writes to some
objects, it writes pairs of the form (x, c). The only purpose of writing round
numbers is that if some other process reads different pairs, say (x, c) and (x′, c′)
written by p, then it can decide by comparing c and c′, whether those pairs
were written by p in the same or in different rounds. The temporal order rela-
tion between rounds is irrelevant. Since there is no bound on the number of
attempts a process makes, correctness can only be ensured by unbounded regis-
ters to store the round numbers; therefore, the authors describe an ad-hoc way
of recycling round numbers in that particular algorithm. With our abstraction,
this becomes trivial: We can use an (m, τ)-TRA object, where m is the number
of registers that need to store round numbers in the algorithm, and τ = O(n).
At the beginning of a round, a process calls GetFree(), and uses the returned
tag, g, as its round number. During the round, it uses the methods Write() and
Read() provided by the TRA object whenever it wants to write or read a value
from a register that may store a round number (tag). At an appropriate point
after reading a tag, it unprotects the tag with Unprotect(), and at the end of the
round it releases its own round number by calling Release(g).

Pointer Swinging. Many shared memory algorithms are based on the following
template: There is a pointer, X, that points to a block of objects that store the
current state of the data structure. A process may modify the data structure as
follows: First it allocates a new block B of objects. Then it reads the current
state, computes the new state and writes the new state to B. Finally, the process
tries to change X so that it points to B.

A simple universal construction, called single compare-and-swap universal
(SCU) [5] is based on this technique. Many lock-free data structures [9,24], and
McKenny and Slingwine’s read-copy-update (RCU) mechanism employed by the
Linux kernel use similar pointer swinging techniques [22]. Other examples are
the implementation of a CAS object from name consensus and registers [14], and
a construction to augment a wide class of objects with wait-free reset or write
operations [2,3].

Under the assumption that memory is unbounded, the algorithms mentioned
above are trivial. But implementations in bounded space are very difficult, and
it is not surprising that a significant amount of the technical work in [2,3,14] is
devoted to ad-hoc memory reclamation.

Our taggable array types provide an abstraction that allows an elegant
solution to the memory reclamation problem encountered in those algorithms:
For X we use either a (1, 2n)-TRA or a (1, 2n)-TLSA object. Each tag g ∈
{0, . . . ,Δ(1, n, 2n) − 1} is associated with a block B[g] of registers, and X sim-
ply stores a tag that is an index of the current block. To “allocate” a new block,
a process can simply call GetFree() to obtain an index g′ of an unused block.
After successfully updating X to g′, the process can call Release(g′) to indicate
that it is not using block B[g′] anymore. The semantics of the taggable object

448 Z. Aghazadeh and P. Woelfel

then guarantess that no GetFree() returns an index to an occupied block, i.e.,
one that a process may be about to change.

Fig. 1. SCU with Bounded Memory and Wait-Free Read.

To illustrate this, we present in Fig. 1 pseudocode for a universal construction
based on SCU with bounded memory, and a wait-free read method. Operation
update(x) updates the object based on parameter x and returns its previous
value, and operation Read() returns the object’s value. Note that memory recla-
mation for SCU can also easily be achieved with techniques such as HP or PB,
but then read-only operations are lock-free instead of wait-free, and memory
allocation must be provided by the system.

Another example is that of a stack implementation with a wait-free peek()
operation. Michael [23] applied his HP technique to the IBM Free-List algorithm
[17]. We can replace Hazard Pointers by using a TLSA object S to store the
address of the top element of the stack. As a result, an S.LL() operation does
not only return a reference to that top element, it also protects it. This way, it
is straight-forward to obtain a wait-free peek() operation.

2.2 Extended Specification

With the specification described above, our taggable objects cannot easily be
used for memory reclamation in linked data structures, unlike HP or PB. Con-
sider for example a linked list implementation. A natural way of using our primi-
tives would be to associate a tag with every node that may be used in the list. But
in order to protect the next pointer of a node, the node itself would have to be a
component of the taggable array R[0 . . . m−1]. Therefore, each tag (which corre-
sponds to an address of a node) would have to be in the domain {0, . . . ,m − 1}.
But for our implementation, the size of the tag domain, Δ(m,n, τ), is always
larger than m.

Upper Bounds for Boundless Tagging with Bounded Objects 449

It is easy to extend our types, so that our objects can be used in a similar
way as HP and PB for linked data structures. To do that, we allow that tags
that are in use can be communicated to other processes not only through the
taggable array R, but also through other objects in the system. However, it is
then not possible to read and protect a tag in one operation; instead, similar
as in HP and PB, a process can attempt to protect a tag, but must afterwards
ensure that the tag has not yet been released by some other process (typically
by checking that it is still part of the data structure).

To facilitate this, we add a method Protect(g) to the TRA or TLSA specifi-
cation, which takes as argument a tag g and returns nothing. A process can call
Protect(g) for a tag g at any point. The Protect(g) call by process p increases
the number of times p has tag g protected, provided that at the point of the
Protect(g)call the tag is occupied (recall that this a sequential specification).
Otherwise, p must call Unprotect(g) immediately, before executing any other
operation on the TRA or TLSA object. These primitives can be used in much
the same way as, e.g., Hazard Pointers: After a process p obtained the address
g of a node (which corresponds to a tag) in a linked data structure (e.g., it read
it from the next pointer of a linked list), p tries to protect that node by call-
ing Protect(g). Then p checks if the node is still in the data structure. If not, p
must immediately call Unprotect(g). Otherwise, the node is protected from being
reclaimed, so it can be safely accessed until p calls Unprotect(g).

2.3 Main Result

We present implementations of taggable register and taggable LL/SC arrays
with constant step complexity, using only a bounded number of bounded size
base objects.

Theorem 1. Let M(m,n, τ) be a sufficiently large polynomial. There are lin-
earizable implementations

– of type (m, τ)-TRA, from M = M(m,n, τ) registers of size O(log M) bits,
such that each operation has constant step complexity; and

– of type (m, τ)-TLSA from M = M(m,n, τ) registers and LL/SC objects of size
O(log M) bits, such that each operation has constant step complexity.

In both implementations, the tag domain is {0, . . . ,Δ(m,n, τ) − 1}, where Δ is
a polynomial function.

We obtain the following upper bounds: M(m,n, τ) = O(mn5 + n3 τ) and
Δ(m,n, τ) = O(m2n6 + n2 τ2 +mn4 τ). We believe that it is possible to reduce
these values, but doing so would make the algorithms more complicated. Note
that an LL/SC object can be implemented from a single compare-and-swap
(CAS) object and from O(n) registers, in such a way that each LL() and each
SC() operation has constant step complexity [6,20].

In the following, we describe the implementation of the TLSA object. Full
correctness proofs and our implementation of TRA will be made available in the
full version.

450 Z. Aghazadeh and P. Woelfel

3 TLSA Implementation

In this section, we present our TLSA Implementation from registers and LL/SC
objects, as depicted in Fig. 2. To simplify the algorithm, we use ABA-detecting
registers [4]. An ABA-detecting register provides the operation DWrite(x), which
writes value x to the object, and operation DRead(), which returns the current
value of the object and a Boolean flag. The flag is true, if and only if the process
executed an earlier DRead() operation, and a DWrite() was performed after that.
An ABA-detecting register with constant step complexity can be implemented
from O(n) registers [4].

3.1 Managing Tags

Let T = {0, . . . ,Δ(n,m, τ)−1} be the domain of tags. Tags are organized in β ·n
blocks b0, . . . , bβn−1, where β = mn(2n+5)+ τ +2n+1, and each block contains
δ = 2n β +n tags. Each block is owned by exactly one of the n processes, and
each process owns β blocks. Block bi contains tags i · δ, . . . , i · (δ +1) − 1 and is
owned by process �i/ β�.

The algorithm ensures that when a process returns the first free tag of some
block bi in a GetFree() method, then not only that tag is free, but in fact all tags
in that block are. During its next δ GetFree() method calls the process returns
only tags from block bi, and with every such method call it executes a constant
amount of work to identify a new block that contains only free tags.

To protect tags in a specific block from being freed, a process p uses two
ABA-detecting register arrays, Empp and Usep, each of size βn. In a GetFree()
method that returns tag g ∈ bi, process p increments the value of Usep[i], and
in a Release(g) method it decrements it. Therefore, the algorithm maintains
(roughly) the invariant that

∑n−1
p=0 Usep[i] is the total number of tags in block

bi that are in use. The value of Empp[i] gets incremented and decremented by
process p via methods Protect() and Unprotect(), respectively. We say a tag g
is employed k times by process p, if that process called Unprotect(g) � times for
some value � ≥ 0, and Protect(g) k + � times. Note that Protect() and Unprotect
are not only used as external methods, but as sub-routines for other methods. For
example, a process calls Protect(g) during a LL() method, in order to protect tag
g from being freed, while the process is trying to decide if that LL() can return g.

Our algorithm maintains the invariant that if E(i) :=
∑n−1

p=0 (Empp[i] +
Usep[i]) = 0, then all tags in block bi are free. Hence, in a GetFree() method,
in order to find a block bi that contains only free tags, a process p needs to
find an index i such that it owns bi and E(i) = 0. Process p can check if
E(i) = 0 using O(n) steps as follows: It reads the ABA-detecting registers
Emp0[i],Use0[i], . . . ,Empn−1[i],Usen−1[i], and computes the sum of their val-
ues. If the sum is 0, it reads these ABA-detecting registers again, and uses the
flags returned by DRead() operations to ensure that none of the register values
has changed; essentially this is a double collect as in the standard snapshot imple-
mentation [1]. If no register changed, then there was a point at which E(i) = 0,

Upper Bounds for Boundless Tagging with Bounded Objects 451

Fig. 2. Implementation of an (m, τ)-TLSA

452 Z. Aghazadeh and P. Woelfel

and thus at that point all tags in bi were free. The algorithm ensures that if a
tag g is free, then no process calls Protect(g). Hence, once the value of E(i) is 0,
it does not change until a GetFree() method returns a tag from bi. Therefore, if
p detects that E(i) had value 0 at some point t, then all tags in bi are still free
unless p returned a tag from bi in a GetFree() method after t.

Note that up to here, each process p only needs to increment or decrement
“its own” registers Empp[i] or Usep[i]. Therefore, we need no concurrent counter
implementations.

A problem is that even when E(i) = 0, each individual register Useq[i] can
be positive or negative, even though

∑n−1
q=0 Useq[i] ≥ 0. (Process q may have

decremented the value of Useq[i] when releasing a tag from bi, while a different
process p originally obtained that tag from a GetFree() operation during which
it incremented Usep[i].) In order to avoid that the values of those registers grow
very large over time, p can reset all registers Useq[i], q ∈ {0, . . . , n − 1}, to 0,
during n DWrite() operations. The fact that E(i) = 0 guarantees that no other
process concurrently accesses any of those registers, while they are being reset.
To summarize, for each block bi, in O(n) steps, process p can check if E(i) = 0,
and if yes, reset all registers Useq[i], q ∈ {0, . . . , n − 1}.

Our implementation guarantees that among the β blocks owned by process p,
there is always at least one block bi with E(i) = 0. Hence, to find such a block,
process p can test each of its β blocks with the procedure described above. As
a result it takes O(n β) steps to find a free block and reset the corresponding
employment counters. We distribute this work over O(n β) of p’s GetFree() opera-
tions, during each of which a constant number of the required steps get executed.
A sufficiently large block size of δ = 2n β +n guarantees that p finds a new block
with E(i) = 0 before it runs out of tags in its current block.

In the following, we describe the implementation in detail. Methods Protect()
and Unprotect() simply increment or decrement a single writer component of
array Empp. In method Release(g), process p decrements Usep[i], where bi is the
block containing tag g, using a DRead() followed by a DWrite(). Recall that no
other process writes to Usep[i], while p executes Release(g).

The GetFree() Operation. We use a local variable tagp (with global scope)
to keep track of the last tag p obtained from a GetFree() operation. In line 45,
process p increments that variable, so that its value is now the next free tag in the
block that p is currently using. The rest of the method is devoted to performing
a constant number of steps of the work required for finding a new free block,
i.e., a block bi for which E(i) = 0. Variable j keeps track of the block that p
is currently checking whether it is free. More precisely, the block being checked
has index i = p β +j. Variable ρ mod n indicates the process whose variables
Empρ mod n[i] and Useρ mod n[i] are being summed up. Over time, each of those
variables needs to be read twice to perform a double collect on all these registers,
and, if bi is identified as a free block, then the variables Use0[i], . . . ,Usen−1[i]
need to be reset. Therefore, ρ takes values in {0, . . . , 3n − 1}.

In lines 46–47, p uses DRead() to read Empρ mod n[p β +j] and
Useρ mod n[p β +j]. If ρ < n, then this is the first time p reads those variables

Upper Bounds for Boundless Tagging with Bounded Objects 453

during the current “double collect”, so it sums up the returned values in line
48. If n ≤ ρ < 2n, then this is the second time that p is reading those variable
during the current double collect, so it adds the flags returned from the DRead
operations to the sum in line 49 (recall that each flag is 0 if the corresponding
value has not changed since the previous read, and otherwise it is 1). After that
p increments ρ modulo 3n in line 50.

If ρ = 2n after the increment, then p has completed its double collect. If
sum �= 0, then E(i) > 0 (where i = p β +j), and so the process prepares for
moving on to a new block to check in its subsequent GetFree() calls. To that
end, p increments j mod β, and resets ρ and sum in lines 52–53. Otherwise,
sum = 0, and the process identified a free block bi. In this case, during this and
the next n − 1 GetFree() calls, 2n ≤ ρ < 3n; in line 55 of those calls, p resets
Use0[i], . . . ,Usen−1[i]. If ρ = 0, then p has made 3n GetFree() calls that dealt
with block bi, where i = p β +j, and thus it identified bi as free and reset all
Use variables of that block. Hence, the GetFree() method can return the first
tag, (p β +j) · δ, from block bi. Therefore, p sets tagp to that value in line 57.
In line 58 process p then increments j modulo β so that it begins the search for
another free block in its next GetFree() call. In either case, in lines 59–60 process
p increments the value of Usep[�tagp/ δ�] to indicate that the tag it returns is
now in use; the GetFree() operation linearizes with the write to Usep[�tagp/ δ�].

3.2 Load and Store

For the ease of description, we assume in the following that m = 1 (i.e., array R
contains only one element), and we ignore the data values that are augmented
by tags when storing or loading them from R[0]. We write LL() instead of LL(0),
SC(g) instead of SC(0, (·, g)), and R instead of R[0].

To execute an LL() operation on the TLSA object, a process q must perform
two tasks: It has to identify a tag g that is stored in R at some point during
the LL() operation (that point will be the linearization point), and it has to
employ g, i.e., call Protect(g) (which increments Empq[i], where bi is the block
containing g). The difficulty is that q must do all this while E(i) > 0, because
otherwise the process q that owns block bi may in the meantime begin using tags
from that block for its GetFree() operations. In particular, if such a GetFree()
returns g, the safety condition of TLSA would be violated.

We deal with this in the following way: Each time a process p executes an
SC(g) operation on the TLSA object, it chooses a different process q (in a round
robin fashion), and tries to provide tag g as a hint that q can use in an LL()
operation in case the tag it found on R is not “safe” to use. The hint will be
stored in the component H[q] of a shared hint array H[0..n−1] of LL/SC objects
(each component of H stores either (⊥,⊥) or a pair consisting of a tag and a
process ID). Process p also uses a local reserved queue, rsrvQp, which always
stores 2n+4 such pairs or ⊥ elements. (For m > 1, there will be m hint arrays Hi

and queues rsrvQp[i], 0 ≤ i < m, one for each component of R. Moreover, in the
pseudocode, instead of pairs, these objects store triples, each containing a data
value in addition to a tag and process ID.) Queue rsrvQp is used to keep track

454 Z. Aghazadeh and P. Woelfel

of the last n + 2 hints that have been provided by p to other processes, as well
as the last n+2 tags that have been successfully stored in R. A tag g is inserted
into the queue by calling helper method updateQ(g). The algorithm maintains
the invariant that all tags in rsrvQp are employed, so updateQ(g) is only called
after a tag g has been employed. In addition to enqueuing g into p’s reserved
queue, the method also dequeues an element from that queue, and unemploys
it. I.e., this method ensures that the reserved queue always has the same length.
Method updateQ() will be called at least once and at most twice during each
successful SC() call, and not at all during an unsuccessful one. Therefore, once
a tag has been employed by process p and added to p’s reserved queue rsrvQp,
it will remain employed throughout p’s next n + 1 successful SC() calls.

The SC()Operation. At the beginning of an SC(g) operation by p on the TLSA
object, process p first checks its local variable flagp, and if that is set, it returns
false immediately (line 14). The reason for that will be explained later, when
we describe method LL(). Next, p employs g by calling Protect(g) in line 15.
Then, in line 16, process p loads H[q], where q is the process to which p may
provide a hint in this SC() operation. (Recall that q changes in a round robin
fashion with each of p’s SC() calls, see line 26.) Then an attempt is made to
store g into R using an R.SC(g) operation (line 17). The point when this happen
will be the linearization point of p’s SC() operation on the TLSA object. If that
attempt to store g in R fails, then p unemploys g again by calling Unprotect(g)
and returns false to indicate that its SC() on the TLSA object failed (lines 18–
19). Otherwise, updateQ(g) is called in line 20, and thus g remains employed
throughout p’s next n + 1 successful SC() operations. Then p makes an attempt
to provide g as a hint to process q, if H[q] does not already contain a hint. To
do that, the value g gets stored into H[q] if and only if H[q] = (⊥,⊥) when
p loaded it earlier, and H[q] has not changed since then (lines 21–22). If H[q]
already contains a hint g′ previously provided by p, then p calls Protect(g′)
followed by updateQ(g′) to ensure that the hint remains employed for another
n + 1 successful SC() operations by p (23–25). Finally, p increments q modulo n
and returns true (lines 26–27).

The LL() Operation. Now consider process p’s LL() operation on the TLSA
object. First, p resets flagp in line 28; we postpone an explanation to the end
of this section. In lines 29–31, process p resets H[p] by repeating H[p].LL() and
H[p].SC(⊥,⊥) operations, until an H[p].SC(⊥,⊥) succeeds. (Any other process
will only change the value of H[p] when its value is (⊥,⊥), so p needs at most
two attempts to reset H[p].) Then p executes an LL() operation on R to obtain
a tentative tag g, and employs that tag by calling Protect(g) (lines 32–33). After
that p reads H[p] in line 34. If H[p] = (⊥,⊥), then no process provided a hint to
p since p reset H[p] at the beginning of its ongoing LL() operation. In particular,
this is true for the process q that stored tag g in R prior to p’s R.LL(). This
implies that q has executed at most n−1 complete and successful SC() methods
since then, because in n consecutive successful SC() methods q attempts to
provide a hint to every process. Since tag g remains employed throughout n + 1
successful SC() methods by q, following the one in which q stored it into R, tag

Upper Bounds for Boundless Tagging with Bounded Objects 455

g is still employed by q when p reads (⊥,⊥) from H[p]; specifically, it has been
continuously employed starting from the point when p read g from R until p
employed it itself prior to reading H[p]. As a result, p can safely use tag g and
return it from its LL() method in line 42. In this case, the linearization point of
the LL() method is when q loads g from R in line 32.

Now suppose that H[p] contains a pair (g′, p′) �= (⊥,⊥) when p loads it in
line 34. Then it is ensured that, during a successful SC(g′), process p′ must have
executed an H[p].LL() and a subsequent H[p].SC(g′, p′) operation since p reset
H[p] in line 31 of its LL() operation on the TLSA object. During that SC(g′),
p′ successfully stored g′ into R (line 17), and this must have happened after p
reset H[p] in line 31, and before it read (g′, p′) from it in line 34. Thus, p’s LL()
operation can return tag g′, and its linearization point will be immediately after
g′ got stored into R by p′ (which happened at the linearization point of the
SC(g′) by p′). Moreover, the SC() method ensures that g′ remains employed as
long as the pair (g′, p′) remains in H[p], and only p can reset that LL/SC object
itself. Hence, p can now simply call Protect(g′) in line 38 and be sure that g′ has
continuously been employed since the linearization point of its LL() operation on
the TLSA object. Since p’s LL() will not return tag g, it also calls Unprotect(g)
in line 37.

But here is the catch: the linearization point of p’s LL() operation may lie
before p executed R.LL(). Inbetween that linearization point and p’s R.LL()
operation in line 32, a successful SC() operation of some other process, r, may
have linearized. If following its LL() of the TLSA object, p executes SC() on
that object, then that SC() may succeed because, the R.SC() operation in line
17 succeeds (because p has a “valid link” to R). But the semantics of the TLSA
object dictates that this SC() must fail, because of r executed a successful SC()
between the linearization point of p’s LL() and p’s following SC(). To deal with
this case, process p loads R one more time after it has decided to use hint g′

(line 39). If the value of R is not equal to g′, then p sets the local flag flagp
(lines 40–41), which will force its next SC() operation to fail immediately (line
14). (Note that the fact that R does not contain g′ implies that a successful SC()
must have linearized since the linearization point of p’s ongoing LL().) If the
value of R is equal to g′, then p does not set the flag, but now the linearization
point of its LL() is the point of p’s last load of R (line 39), when the value is g′.

4 Conclusion

We presented the first study on the complexity of tagging, and showed that tags
can be bounded with only constant time overhead. Using our taggable objects for
memory reclamation, can in some cases lead to wait-free read-only operations,
where other memory reclamation techniques yield only lock-freedom. We see it
as an important contribution of this paper to present the right abstraction, and
provide building blocks that can be easily reused. We hope that this simplifies
future attempts to prove upper bounds on algorithmic problems, as researchers
can simply use the primitives presented here, and do not have to find ad-hoc

456 Z. Aghazadeh and P. Woelfel

solutions for bounding tags. The space complexity of our implementations may
be too high for practical use. We hope that future research can reduce the space
overhead and may eventually lead to practical solutions.

Acknowledgements. We thank Lisa Higham for valueable discussions related to our
abstraction, and Hagit Attiya for helpful literature pointers.

References

1. Afek, Y., Attiya, H., Dolev, D., Gafni, E., Merritt, M., Shavit, N.: Atomic snapshots
of shared memory. J. ACM 40(4), 873–890 (1993)

2. Aghazadeh, Z., Golab, W., Woelfel, P.: Making objects writable. In: Proceeding of
33rd PODC, pp. 385–395 (2014)

3. Aghazadeh, Z., Woelfel, P.: Space- and time-efficient long-lived test-and-set objects.
In: Aguilera, M.K., Querzoni, L., Shapiro, M. (eds.) OPODIS 2014. LNCS, vol.
8878, pp. 404–419. Springer, Heidelberg (2014)

4. Aghazadeh, Z., Woelfel, P.: On the time and space complexity of ABA prevention
and detection. In: Proceeding of 34th PODC, pp. 193–202 (2015)

5. Alistarh, D., Censor-Hillel, K., Shavit, N.: Are lock-free concurrent algorithms
practically wait-free? In: Proceeding of 46th ACM STOC, pp. 714–723 (2014)

6. Anderson, J.H., Moir, M.: Universal constructions for multi-object operations. In
Proceeding of 14th PODC, pp. 184–193 (1995)

7. Attiya, H., Rachman, O.: Atomic snapshots in o(n log n) operations. SIAM J.
Comp. 27(2), 319–340 (1998)

8. Brown, T.A.: Reclaiming memory for lock-free data structures: there has to be a
better way. In: Proceeding of 34th PODC, pp. 261–270 (2015)

9. Clements, A.T., Kaashoek, M.F., Zeldovich, N.: Scalable address spaces using RCU
balanced trees. In: Proceeding of 17th ASPLOS, pp. 199–210 (2012)

10. Dolev, D., Shavit, N.: Bounded concurrent time-stamping. SIAMJC 26(2), 418–455
(1997)

11. Dwork, C., Herlihy, M., Waarts, O.: Bounded round numbers. In: Proceeding of
12th PODC, pp. 53–64 (1993)

12. Dwork, C., Waarts, O.: Simple and efficient bounded concurrent timestamping or
bounded concurrent timestamp systems are comprehensible! In: Proceeding of 24th
ACM STOC, pp. 655–666 (1992)

13. Giakkoupis, G., Woelfel, P.: Randomized mutual exclusion with constant amortized
RMR complexity on the DSM. In: Proceeding of 55th FOCS, pp. 504–513 (2014)

14. Golab, W., Hadzilacos, V., Hendler, D., Woelfel, P.: RMR-efficient implementations
of comparison primitives using read and write operations. Distr. Comp. 25(2), 109–
162 (2012)

15. Haldar, S., Vitányi, P.M.B.: Bounded concurrent timestamp systems using vector
clocks. J. ACM 49(1), 101–126 (2002)

16. Herlihy, M., Luchangco, V., Martin, P.A., Moir, M.: Nonblocking memory manage-
ment support for dynamic-sized data structures. ACM Trans. Comp. Syst. 23(2),
146–196 (2005)

17. IBM. IBM system/370 extended architecture, principles of operation. Technical
report, 1983. Publication No. SA22-7085

18. Israeli, A., Li, M.: Bounded time-stamps. In: Proceeding of 28th FOCS, pp. 371–
382 (1987)

Upper Bounds for Boundless Tagging with Bounded Objects 457

19. Israeli, A., Pinhasov, M.: A concurrent time-stamp scheme which is linear in time
and space. In: Proceeding of 6th WDAG, pp. 95–109 (1992)

20. Jayanti, P., Petrovic, S.: Efficient and practical constructions of LL/SC variables.
In: Proceeding of 22nd PODC, pp. 285–294 (2003)

21. Lamport, L.: A new solution of Dijkstra’s concurrent programming problem. Com-
mun. ACM 17(8), 453–455 (1974)

22. McKenney, P.E., Slingwine, J.D.: Read-copy update: using execution history to
solveconcurrency problems. In: Proceeding of 10th PDCS, pp. 509–518 (1998)

23. Michael, M.: Hazard pointers: safe memory reclamation for lock-free objects. IEEE
Trans. Parallel Distrib. Syst. 15(6), 491–504 (2004)

24. Michael, M., Scott, M.L.: Simple, fast, and practical non-blocking and blocking
concurrent queue algorithms. In: Proceeding of 15th PODC, pp. 267–275 (1996)

25. P. Tsigas and Y. Zhang. A simple, fast and scalable non-blocking concurrent FIFO
queue for shared memory multiprocessor systems. In Proc. of 13th SPAA, pp.
134–143, 2001

26. Vitányi, P., Awerbuch, B.: Atomic shared register access by asynchronous hardware
(detailed abstract). In: Proceeding of 27th FOCS, pp. 233–243 (1986)

Brief Announcements

Brief Announcement:
Local Distributed Verification

Alkida Balliu1,2(B), Gianlorenzo D’Angelo2, Pierre Fraigniaud1,
and Dennis Olivetti1,2

1 CNRS and University Paris Diderot, Paris, France
2 Gran Sasso Science Institute, L’aquila, Italy

alkida.balliu@gssi.infn.it

Abstract. It is known that the hierarchy induced by local decision in
networks where the certificates may depend on the actual identities of the
nodes collapses at the first level [Korman et al., 2010]. We show that, if
the certificates cannot depend on the actual identities of the nodes, then
the hierarchy also collapses, but at the second level, while the first and
second levels are different.

1 The Framework

Following the guidelines of [3], we define a configuration as a pair (G, �) where
G = (V,E) is a connected simple graph, and � : V (G) → {0, 1}∗ is a function
assigning a label �(u) to every node u ∈ V . A distributed language L is a Turing-
decidable set of configurations. Note that the membership of a configuration to
a distributed language is independent of the identity that may be assigned to
the nodes. The class LD is the set of all distributed languages that are locally
decidable [3]. That is, LD is the class of all distributed languages L for which there
exists a local algorithm A (i.e., an algorithm A running in a constant number of
rounds in the LOCAL model [6, 8]) satisfying that, for every configuration (G, �),
we have (G, �) ∈ L ⇐⇒ A accepts (G, �), where one says that A accepts if it
accepts at all nodes. More formally, given a graph G, let ID(G) denote the set
of all possible identity assignments to the nodes of G (with distinct non-negative
integers). Then LD is the class of all distributed languages L for which there
exists a local algorithm A satisfying the following: for every configuration (G, �),

(G, �) ∈ L ⇒ ∀id ∈ ID(G),∀u ∈ V (G),A(G, x, id, u) = accept
(G, �) /∈ L ⇒ ∀id ∈ ID(G),∃u ∈ V (G),A(G, x, id, u) = reject

where A(G, x, id, u) is the output of Algorithm A at node u running on the
instance (G, �) with identity-assignment id.

A. Balliu, P. Fraigniaud and D. Olivetti—Received additional supports from the
ANR project DISPLEXITY.
P. Fraigniaud—Additional supports from the INRIA project GANG.

c© Springer-Verlag Berlin Heidelberg 2016
C. Gavoille and D. Ilcinkas (Eds.): DISC 2016, LNCS 9888, pp. 461–464, 2016.
DOI: 10.1007/978-3-662-53426-7

462 A. Balliu et al.

The class NLD [3] is the non-deterministic version of LD, i.e., the class of all
distributed languages L for which there exists a local algorithm A verifying L,
i.e., satisfying that, for every configuration (G, �),

(G, �) ∈ L ⇒ ∃c ∈ C(G),∀id ∈ ID(G),∀u ∈ V (G),A(G, x, c, id, u) = accepts
(G, �) /∈ L ⇒ ∀c ∈ C(G),∀id ∈ ID(G),∃u ∈ V (G),A(G, x, c, id, u) = rejects

where C(G) is the class of all functions c : V (G) → {0, 1}∗, assigning a certificate
c(u) to each node u. Note that the certificates c may depend on both the network
and the labeling of the nodes, but should be set independently of the actual
identity assignment to the nodes of the network. In the following, for the sake
of simplifying the notations, we shall omit specifying the domain sets C(G) and
ID(G) unless they are not clear from the context.

It follows from the above that NLD is a class of distributed languages that
can be locally verified, in the sense that, on legal instances, certificates can
be assigned to nodes by a prover so that a verifier A accepts, and, on illegal
instances, the verifier A rejects (i.e., at least one node rejects) systematically,
and cannot be fooled by any fake certificate.

In [2], NLD was proved to be exactly the class of distributed languages that
are closed under lift. Hence, NLD does not contain all distributed languages.
In contrast, LCP (for locally checkable proofs), defined in [4], is the class of all
distributed languages L for which there exists a local algorithm A verifying L
in the following sense: for every configuration (G, �),

(G, �) ∈ L ⇒ ∀id ∈ ID(G),∃c ∈ C(G),∀u ∈ V (G),A(G, x, c, id, u) = accepts,
(G, �) /∈ L ⇒ ∀id ∈ ID(G),∀c ∈ C(G),∃u ∈ V (G),A(G, x, c, id, u) = rejects.

Note that, in LCP, the certificates can depend on the identity assignment to
the nodes. It is known that LCP contains all distributed languages, since every
distributed language has a proof-labeling scheme [5].

2 Our Contributions

Following up the approach recently applied to distributed graph automata in [7],
we observe that the class LD and NLD are in fact the basic levels of a “local
hierarchy” defined as follows. Let Σ0 = Π0 = LD, and, for k ≥ 1, let Σk be the
class of all distributed languages L for which there exists a local algorithm A
satisfying that, for every configuration (G, �),

(G, �) ∈ L ⇐⇒ ∃c1,∀c2, . . . , Qck,A accepts (G, �) with certificates c1, c2, . . . , ck

where the quantifiers alternate, and Q is the universal quantifier if k is even, and
the existential one if k is odd. The class Πk is defined similarly, by starting with
a universal quantifier, instead of an existential one. The certificates c1, c2, . . . , ck
should not depend on the identity assignment to the nodes. Hence, NLD = Σ1,
and, for instance, Π2 is the class of all distributed languages L for which there

Local Distributed Verification 463

exists a Π2-algorithm, that is, a local algorithm A satisfying the following: for
every configuration (G, �),

(G, �) ∈ L ⇒ ∀c1,∃c2,∀id,∀u ∈ V (G),A(G, x, c1, c2, id, u) = accept;
(G, �) /∈ L ⇒ ∃c1,∀c2,∀id,∃u ∈ V (G),A(G, x, c1, c2, id, u) = reject.

Our main results are the following.

Theorem 1. LD ⊂ Π1 ⊂ NLD = Σ2 ⊂ Π2 = All, where all inclusions are strict.

That is, Π1 ⊃ Π0, while Σ2 = Σ1, and the whole local hierarchy collapses
to the second level, at Π2. We complete our description of the local hierarchy
by a collection of separation and completeness results regarding the different
classes and co-classes in the hierarchy. In particular, we revisit the completeness
results in [3], and show that the notion of reduction introduced in this latter
paper is too strong, and may allow a language outside NLD to be reduced to a
language in NLD. We introduce a more restricted form of local reduction, called
label-preserving, which does not have this undesirable property, and we establish
the following.

Theorem 2. NLD and Π2 have complete distributed languages for local label-
preserving reductions.

Finally, Fig. 1 summarizes all our separation results.

LD co-LD

Π1 co-Π1

NLD = Σ2 co-NLD

All = Π2

diamkand or

tree

alts amos
iter iter

exts
miss

miss↑ miss↑

Fig. 1. Relations between the different decision classes of the local hierarchy.

A extended version of this brief announcement can be found in [1].

References

1. Balliu, A., D’Angelo, G., Fraigniaud, P., Olivetti, D.: Local Distributed Verification.
Technical report arXiv:1605.03892 (2016)

2. Fraigniaud, P., Halldórsson, M.M., Korman, A.: On the impact of identifiers
on local decision. In: Aguilera, M.K., Querzoni, L., Shapiro, M. (eds.) OPODIS
2014. LNCS, vol. 8878, pp. 224–238. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-35476-2 16

http://arxiv.org/abs/1605.03892
http://dx.doi.org/10.1007/978-3-642-35476-2_16
http://dx.doi.org/10.1007/978-3-642-35476-2_16

464 A. Balliu et al.

3. Fraigniaud, P., Korman, A., Peleg, D.: Towards a complexity theory for local dis-
tributed computing. J. ACM 60(5), 35 (2013)

4. Göös, M., Suomela, J.: Locally checkable proofs. In: PODC, pp. 159–168 (2011)
5. Korman, A., Kutten, S., Peleg, D.: Proof labeling schemes. Distrib. Comput. 22(4),

215–233 (2010)
6. Peleg, D., Computing, D.: A locality-sensitive approach. SIAM (2000)
7. Reiter, F.: Distributed graph automata. In: LICS, pp. 192–201 (2015)
8. Suomela, J.: Survey of local algorithms. ACM Comput. Surv. 45(2), 24 (2013)

Brief Announcement: A Step Optimal
Implementation of Large Single-Writer Registers

Tian Ze Chen(B) and Yuanhao Wei(B)

Department of Computer Science, University of Toronto, Toronto, Canada
{tianze.chen,yuanhao.wei}@mail.utoronto.ca

A register is a fundamental object that supports Read and Write operations.
Implementing large �-bit registers from small k-bit registers in a wait-free manner
is a classic problem in distributed computing. We consider this problem for
single-writer atomic registers shared by n readers. This problem arises naturally
in practice when �-bits need to be written atomically on a system that provides
only k-bit registers.

The space complexity of an implementation is the number of shared k-bit
registers that it uses and the step complexity is the number of shared register
operations. Note that Ω(�/k) steps are required for Read operations [3]. Also,
any implementation requires Ω(�/k) space, since 2� different values might need
to be represented.

Peterson [4] presented an �-bit single-writer register implementation using
Θ(n�/k) space in 1983. Peterson’s implementation uses Θ(�/k) steps for Read,
Θ(n�/k) steps for Write, and works for all k ≥ 1.

In 1991, Vidyasankar [5] showed that atomic �-bit registers can be imple-
mented from two regular �-bit registers and one atomic binary register. Write
performs 2 regular writes and 2 atomic writes. Read performs at most 2 regular
reads and 1 atomic read.

Later, Chaudhuri and Welch [3] presented an implementation of regular �-bit
registers from regular binary registers with step complexity Θ(�) for both Read
and Write, using Θ(2�) space.

Chaudhuri, Kosa and Welch [2] presented an atomic �-bit register implemen-
tation from atomic binary registers in which each Write operation performs
only one step. However, the step complexity of Read and the space complexity
are both Θ(4�).

Recently, Aghazadeh, Golab and Woelfel [1] implemented an �-bit multi-
writer register shared by n processes from k-bit multi-writer registers with
step complexity Θ(�/k) for both Read and Write. Their implementation uses
Θ(n2�/k) registers and requires that k ∈ Ω(log n).

Observations. Using Chaudhuri and Welch’s implementation for the regular
�-bit registers in Vidyasankar’s algorithm gives an implementation of an atomic
�-bit register from regular binary registers and one atomic binary register with
Θ(�) step complexity and Θ(2�) space complexity. We call this the CWV imple-
mentation.

c© Springer-Verlag Berlin Heidelberg 2016
C. Gavoille and D. Ilcinkas (Eds.): DISC 2016, LNCS 9888, pp. 465–467, 2016.
DOI: 10.1007/978-3-662-53426-7

466 T. Ze Chen and Y. Wei

Aghazadeh et al.’s implementation can be modified to implement an �-bit
single-writer register from k-bit single-writer registers with Θ(�/k) step com-
plexity and Θ(n�/k) space complexity, provided that k ∈ Ω(log n).

Main Contributions. In this paper, we present an implementation of atomic
�-bit single-writer registers from atomic k-bit single-writer registers with Θ(�/k)
step complexity that works for all k ≥ 1. Our implementation uses O(n�/k)
registers, which is the same as Peterson’s implementation and the single-writer
variant of Aghazadeh et al.’s implementation.

We prove the following result, which shows that our implementation is step
optimal.

Theorem 1. Any regular �-bit single-writer register implementation from atomic
k-bit single-writer registers with O(�/k) step complexity for Read requires Ω(�/k)
step complexity for Write.

Our register implementation is the composition of a tree based implementa-
tion and a buffer based implementation. Although our tree based implementation
can be replaced by the CWV implementation, we will present it briefly because
it is interesting.

We begin by describing Chaudhuri and Welch’s regular register implemen-
tation. They use a complete binary tree where each leaf represents a different
register value and each internal node stores a switch, a shared binary regis-
ter that selects between its two children. Their regular register read operation,
RegRead, traverses down the tree, following the switches, until it reaches a
leaf and returns the value of that leaf. Their regular register write operation,
RegWrite, starts at the leaf with the value it wishes to write and traverses up
the tree, changing each switch on the path to point to that leaf. Note that leaves
are not represented in shared memory.

To make their implementation atomic, we first use atomic registers, rather
than regular registers, for the switches at height 1. If α is the value of the leaf
that is currently reachable from the root by following switches and β is the value
of the leaf that is its sibling, then a RegWrite of β would be atomic, since it

changes only the switch at their parent. Consider a tree with
(

2�

2

)
height 1

nodes such that every pair of values are siblings in the tree. To atomically write
the value β to a register containing the value α, the writer first changes the
switches to point to a leaf with value α whose sibling has value β. Then the
writer changes their parent’s switch to point to the leaf with value β. Write
operations are linearized when this switch changes. Read performs the same
steps as RegRead.

Using a 2k-ary tree, we can generalise this implementation to use k-bit reg-
isters rather than binary registers. The resulting step complexity is Θ(�/k) and
the space complexity is Θ(4�/k). The same generalization can be applied to the
CWV algorithm.

Our tree based implementation can be modified to implement an �-bit counter
that supports a single incrementer and any number of readers. Since the value

A Step Optimal Implementation 467

can only be incremented, we only need each pair of consecutive values (modulo
2�) to be siblings in the tree. Hence the space complexity can be reduced to
Θ(2�/k) and the step complexity remains the same. Our counter is a factor of
two faster than the CWV implementation and has the same asymptotic space
complexity.

Our buffer based implementation uses this counter as well as known tech-
niques, such as announcement arrays, round robin helping, and handshake
objects, to implement an atomic �-bit register with Θ(�/k+(log n)/k) step com-
plexity and Θ(n�/k + n(log n)/k) space complexity.

A buffer is an array of ��/k� k-bit registers used to represent an �-bit value.
As in Peterson’s implementation, our buffer-based implementation uses an array
of buffers G, and a pointer V to the currently active buffer in G. However, in our
implementation, G contains 4n buffers, instead of 2, and V is implemented using
a �log2 4n�-bit single-incrementer counter. Like Aghazadeh, Golab and Woelfel’s
implementation, our implementation uses round robin helping, except that it
uses handshaking and completion bits to coordinate the helping.

At a high level, a reader announces the index of the element in G that it
wants to read in a single-reader single-writer array. The writer helps the reader
by writing that element, as well as the most recent value it wrote to two single-
reader buffers. Each of these arrays is accompanied by a completion bit. The
completion bit is set when the write to the array is finished to indicate that it
is safe to read from the array.

When � ≤ (log2 n)/2, both our tree based implementation and the CWV
implementation have Θ(�/k) step complexity and O(n/4k) space complexity.
When � > (log2 n)/2, our buffer based implementation has Θ(�/k) step complex-
ity and uses Θ(n�/k) registers. Combining the algorithms based on the value of
� yields the following theorem.

Theorem 2. There is an implementation of an atomic �-bit single-writer reg-
ister from atomic k-bit single-writer registers with Θ(�/k) step complexity and
O(n�/k) space complexity.

References

1. Aghazadeh, Z., Golab, W., Woelfel, P.: Making objects writable. In: Proceedings of
the 2014 ACM symposium on Principles of Distributed Computing, pp. 385–395.
ACM (2014)

2. Chaudhuri, S., Kosa, M.J., Welch, J.L.: One-write algorithms for multivalued regular
and atomic registers. Acta Inf. 37(3), 161–192 (2000)

3. Chaudhuri, S., Welch, J.L.: Bounds on the costs of multivalued register implemen-
tations. SIAM J. Comput. 23(2), 335–354 (1994)

4. Peterson, G.L.: Concurrent reading while writing. ACM Trans. Program. Lang. Syst.
5(1), 46–55 (1983)

5. Vidyasankar, K.: A very simple construction of 1-writer multireader multivalued
atomic variable. Inf. Process. Lett. 37(6), 323–326 (1991)

Brief Announcement: Deterministic MST
Sparsification in the Congested Clique

Janne H. Korhonen(B)

School of Computer Science, Reykjav́ık University, Reykjavik, Iceland
janne.h.korhonen@gmail.com

Abstract. We give a simple deterministic constant-round algorithm in
the congested clique model for reducing the number of edges in a graph
to n1+ε while preserving the minimum spanning forest, where ε > 0 is
any constant. This implies that in the congested clique model, it is suffi-
cient to improve MST and other connectivity algorithms on graphs with
slightly superlinear number of edges to obtain a general improvement.
As a byproduct, we also obtain an alternative proof showing that MST
can be computed deterministically in O(log log n) rounds.

1 Introduction

MST in the Congested Clique. The congested clique [5] is a specialisation of the
standard CONGEST model of distributed computing; in the congested clique,
each of the n nodes of the network can send a different message of O(log n) bits to
each other node each synchronous communication round. The congested clique
model has attracted considerable interest recently, as the fully connected commu-
nication topology allows for much faster algorithms than the general CONGEST
model.

Minimum spanning tree is perhaps the most studied problem in the congested
clique model, and a good example of the power of the model. The Lotker et al. [5]
paper introducing the congested clique model gave an O(log log n)-round deter-
ministic MST algorithm. Subsequently, even faster randomised algorithms have
been discovered: the O(log log log n)-round algorithm by Hegeman et al. [2], and
the recent O(log∗ n)-round algorithm by Ghaffari and Parter [1].

MST Sparsification. Both of the above fast randomised MST algorithms are
based on fast randomised graph connectivity algorithms. To solve MST, they
use a reduction of Hegeman et al. [2] from MST to graph connectivity; this
works by (1) reducing general MST into two instances of MST on graphs with
O(n3/2) edges using a randomised sampling technique of Karger et al. [3], and
(2) reducing MST on sparse graphs to multiple independent instances of graph
connectivity.

In this work, we take a closer look at the sparsification step of the Hegeman
et al. [2] reduction. Specifically, we show that it is possible to obtain much
stronger sparsification for connectivity problems in constant rounds without
using randomness:
c© Springer-Verlag Berlin Heidelberg 2016
C. Gavoille and D. Ilcinkas (Eds.): DISC 2016, LNCS 9888, pp. 468–470, 2016.
DOI: 10.1007/978-3-662-53426-7

Deterministic MST Sparsification in the Congested Clique 469

Theorem 1. Given a weighted graph G = (V,E) and an integer k, we can
compute in O(k) rounds an edge subset E′ ⊆ E with |E′| = O

(
n1+1/2k)

such
that E′ contains one minimum spanning forest of G.

In particular, Theorem 1 implies that graphs with slightly superlinear num-
ber of edges are the hardest case for connectivity problems in the congested
clique, as graphs with linear number of edges can be learned by all nodes in con-
stant rounds using the routing protocol of Lenzen [4]. Alas, our sparsification
technique alone fails to improve upon the state-of-the-art even for deterministic
MST algorithms, though applying Theorem 1 with k = log log n does give an
alternative deterministic O(log log n) algorithm for MST in the congested clique.

2 Deterministic MST Sparsification

Let S = {S1, S2, . . . , S�} be a partition of V . For integers i, j with 1 ≤ i ≤ j ≤ �,
we define

ES
ij =

{{u, v} ∈ E : u ∈ Si and v ∈ Sj

}
,

and denote by GS
ij the subgraph of G with vertex set Si ∪ Sj and edge set ES

ij .

Definition 1. For 0 < ε ≤ 1, graph G = (V,E) and partition S =
{S1, S2, . . . , S�} of V , we say that (G,S) is ε-sparse if � = nε, each S ∈ S has
size at most n1−ε and for each i, j with 1 ≤ i ≤ j ≤ �, we have

∣
∣ES

ij

∣
∣ ≤ 2n1−ε.

If (G,S) is ε-sparse, then G can have at most 2n1+ε edges. Moreover, we will
now show that we can amplify this notion of sparseness from ε to ε/2 in constant
rounds. Observing that for any graph G = (V,E) and S =

{{v} : v ∈ V
}
, we

have that (G,S) is 1-sparse, we can start from arbitrary graph and apply this
sparsification k times to obtain sparsity 1/2k, yielding Theorem 1.

For convenience, let us assume that the all edge weights in the input graph in
distinct, which also implies that the minimum spanning forest is unique. If this
is not the case, we can break ties arbitrarily to obtain total ordering of weights.
Recall that each node in V receives its incident edges in G as input.

Lemma 1. Given a graph G = (V,E) with distinct edge weights and unique
MSF F ⊆ E, and a globally known partition S such that (G,S) is ε-sparse, we
can compute a subgraph G′ = (V,E′) of G and a globally known partition T such
that (G′, T) is ε/2-sparse and F ⊆ E′ in constant number of rounds.

Proof. To obtain the partition T = {T1, T2, . . . , Tnε/2}, we construct each set Ti

by taking the union of nε/2 sets Sj . Clearly sets Ti constructed this way have
size n1−ε/2, and this partition can be constructed by the nodes locally. Since
(G,S) is ε-sparse, we now have that

∣
∣ET

ij

∣
∣ =

∑

x : Sx⊆Ti

∑

y : Sy⊆Tj

∣
∣ES

xy

∣
∣ ≤ (nε/2)22n1−ε = 2n.

470 J.H. Korhonen

We assign arbitrarily each pair (i, j) with 1 ≤ i ≤ j ≤ nε/2 as a label for distinct
node v ∈ V . The number of such pairs (i, j) is at most (nε/2)2 = nε ≤ n, so this
is always possible, though some nodes may be left without labels. The algorithm
now proceeds as follows:

1. Distribute information about the edges so that node with label (i, j) knows
the full edge set ET

ij . Since
∣
∣ET

ij

∣
∣ ≤ 2n, this can be done in constant rounds

using the routing protocol of Lenzen [4].
2. Each node with label (i, j) locally computes a minimum spanning forest

F T
ij for the subgraph GT

ij using information obtained in previous step. Since
|Ti ∪ Tj | ≤ 2n1−ε/2, we also have

∣
∣F T

ij

∣
∣ ≤ 2n1−ε/2.

3. Redistribute information about the sets F T
ij so that each node knows which

of its incident edges are in one of the sets F T
ij . Again, this takes constant

rounds.

Taking E′ =
⋃

(i,j) F T
ij , we have that (G′, T) is ε/2-sparse. To see that E′ also

contains all edges of F , recall the fact that an edge e ∈ E is in MSF F if
and only if it is the minimum-weight edge crossing some cut (V1, V2), assuming
distinct edge weights (see, e.g. Karger et al. [3]). If edge e ∈ ET

ij is in F , then it
is minimum-weight edge crossing a cut (V1, V2) in G, and thus also minimum-
weight edge crossing the corresponding cut in GT

ij , implying e ∈ F T
ij . ��

Acknowledgements. We thank Magnús M. Halldórsson, Juho Hirvonen, Tuomo
Lempiäinen, Christopher Purcell, Joel Rybicki and Jukka Suomela for discussions,
and Mohsen Ghaffari for sharing a preprint of [1]. This work was supported by grant
152679-051 from the Icelandic Research Fund.

References

1. Ghaffari, M., Parter, M.: MST in log-star rounds of congested clique. In: Proceedings
of the 35th ACM Symposium on Principles of Distributed Computing (PODC 2016)
(2016)

2. Hegeman, J.W., Pandurangan, G., Pemmaraju, S.V., Sardeshmukh, V.B., Scquiz-
zato, M.: Toward optimal bounds in the congested clique: graph connectivity and
MST. In: Proceedings of the 34th ACM Symposium on Principles of Distributed
Computing (PODC 2015), pp. 91–100 (2015)

3. Karger, D.R., Klein, P.N., Tarjan, R.E.: A randomized linear-time algorithm to find
minimum spanning trees. J. ACM 42(2), 321–328 (1995)

4. Lenzen, C.: Optimal deterministic routing and sorting on the congested clique. In:
Proceedings of the 32nd ACM Symposium on Principles of Distributed Computing
(PODC 2013), pp. 42–50 (2013)

5. Lotker, Z., Patt-Shamir, B., Pavlov, E., Peleg, D.: Minimum-weight spanning tree
construction in O(log log n) communication rounds. SIAM J. Comput. 35(1), 120–
131 (2005)

Brief Announcement: Symmetricity
in 3D-space — Characterizing Formable
Patterns by Synchronous Mobile Robots

Yukiko Yamauchi(B), Taichi Uehara, and Masafumi Yamashita

Graduate School of ISEE, Kyushu University, Fukuoka, Japan
yamauchi@inf.kyushu-u.ac.jp

Mobile Robot System. We consider distributed coordination of autonomous
mobile robots moving in the three-dimensional space (3D-space). Each robot
is an anonymous point and executes a common algorithm. It has neither any
access to the global coordinate system nor any explicit communication medium.
Its unit action is a Look-Compute-Move cycle, where it observes the positions of
other robots (Look phase), computes the next position and the route to reach
there by a common algorithm (Compute phase), and moves to the computed
next position (Move phase). In a Look phase, each robot observes the positions
of other robots in its local coordinate system, i.e., x-y-z Cartesian coordinate sys-
tem. The origin of the local coordinate system is the current position of the robot,
and the directions of the axes and the unit distance are arbitrary. We assume
that all coordinate systems are right-handed. Hence each local coordinate sys-
tem is obtained by a translation, a rotation, a uniform scaling, or a combination
of them on the global coordinate system. In a Compute phase, if the input to
the common algorithm is the observation obtained in the preceding Look phase,
the algorithm is called oblivious, otherwise non-oblivious. In a Move phase, if all
robots reach their next positions, the movement is called rigid. Non-rigid move-
ment allows the robots to stop en route; each robot moves at least an unknown
minimum moving distance δ, but after that it may stop at any point on the route.
There are three types of synchrony among the robots: We consider discrete time
t = 0, 1, 2, · · · . In the fully-synchronous (FSYNC) model, at each time instant,
the robots execute a Look-Compute-Move cycle synchronously with each of the
Look phase, Compute phase, and the Move phase completely synchronized. In
the semi-synchronous (SSYNC) model, a non-empty subset of the robots execute
a Look-Compute-Move cycle at each time instant, with each of the three phases
completely synchronized. In the asynchronous (ASYNC) model, we do not put
any assumption on the execution of the Look-Compute-Move cycles except that
the length of each cycle is finite.

Pattern Formation Problem. The pattern formation problem requires the robots
to form a given target pattern from an initial configuration.

Y. Yamauchi — This work was supported by a Grant-in-Aid for Scientific Research
on Innovative Areas “Molecular Robotics” (No. 24104003 and 15H00821) of
MEXT, Japan, and JSPS KAKENHI Grant Numbers JP15H02666, JP15K11987,
JP15K15938.

c© Springer-Verlag Berlin Heidelberg 2016
C. Gavoille and D. Ilcinkas (Eds.): DISC 2016, LNCS 9888, pp. 471–473, 2016.
DOI: 10.1007/978-3-662-53426-7

472 Y. Yamauchi et al.

Let R = {r1, r2, . . . , rn} be the set of anonymous robots. We use ri just for
description. We denote the position of robot ri (in the global coordinate system
Z0) at time t by pi(t). The configuration of the robots at time t is a set of
points P (t) = {p1(t), p2(t), . . . , pn(t)}. We assume that any initial configuration
P (0) contains no multiplicity. An execution of an algorithm ψ from an initial
configuration P (0) is a sequence of configurations P (0), P (1), P (2), · · · . Note
that there exist many executions depending on the local coordinate systems of
the robots in P (0), asynchrony, and non-rigid movement. A target pattern F is a
set of positions of n points observed in Z0. The pattern formation problem allows
uniform scaling, translation, rotation, and their combinations on F . We say an
algorithm ψ forms F from an initial configuration P (0) if for any execution
P (0), P (1), P (2), · · · , there exists t ≥ 0 such that for any t′ ≥ t, P (t′) = P (t)
and P (t) � F . When there exists an algorithm that forms F from P , we say F
is formable from P . Our goal is to characterize the formable patterns and reveal
the formation power of the robots.

In the two-dimensional space (2D-space), the set of formable patterns are
characterized by using the notion of symmetricity. For a given set of points P ,
consider a decomposition of P into regular m-gons centered at the center c(P)
of the smallest enclosing circle of P . The symmetricity ρ(P) of P is the max-
imum of such m, except that ρ(P) = 1 when c(P) ∈ P . It has been shown
that irrespective of obliviousness and asynchrony, the robots can form a target
pattern F from an initial configuration P if and only if ρ(P)|ρ(F) [1–3]. The
impossibility is shown by the worst case, where both the positions of the robots
and their local coordinate systems are symmetric. Because the observations of
the robots forming a regular ρ(P)-gon are the same, their next positions form
a regular ρ(P)-gon again. Then the robots can never break their symmetric-
ity ρ(P). This result immediately holds for the oblivious FSYNC robots with
rigid movement, and this fact determines the limit of the formation power of
the non-oblivious ASYNC (thus SSYNC) robots with non-rigid movement since
these models allow initial empty memory content, the FSYNC schedule, and
rigid movement. Regarding the formable patterns, existing papers show oblivi-
ous pattern formation algorithms for each of the FSYNC, SSYNC, and ASYNC
models with non-rigid movement [1–3].

On the other hand, the definition of symmetricity is based on the following
simple symmetry breaking algorithm: When c(P) ∈ P in an initial configuration
P , the robot on c(P) can translate P to an asymmetric configuration by just
leaving its current position.

Our Results. Symmetricity in 2D-space is essentially the order of the cyclic group
that acts on a given set of points. We extend the notion of symmetricity in 2D-
space to 3D-space by using the rotation groups. In 3D-space, there are five kinds
of rotation groups, the cyclic groups, the dihedral groups, the tetrahedral group,
the octahedral group, and the icosahedral group. Each of the rotation groups
is recognized as the set of rotation operations on a regular pyramid, a regular
prism, a regular tetrahedron, a regular octahedron, and a regular icosahedron,
respectively. Specifically, each rotation group is defined as a set of rotation axes

Symmetricity in 3D-space 473

and their arrangement. When a rotation axis admits rotations by 2π/k, 4π/k, · · · ,
and 2π, we call the axis k-fold rotation axis. Let S = {Ck,D�, T,O, I | k =
1, 2, · · · , � = 2, 3, · · · }, where Ck (k = 1, 2, · · ·) is a cyclic group with a single
k-fold rotation axes, and D� (� = 2, 3, · · ·) is a dihedral group with a single
�-fold rotation axis (principal axis) and � 2-fold rotation axes perpendicular to
the principal axes. C1 consists of only the identity element. Then we define the
rotation group and the symmetricity of a set of points in 3D-space.

Definition 1. Let P be a set of n points in 3D-space. The rotation group γ(P)
of P is the rotation group in S that acts on P and none of its proper supergroup
in S acts on P .

Clearly γ(P) is uniquely determined for any set of points P . If a rotation
axis of γ(P) contains some point of P , we say the rotation axis is occupied.

For two groups G,H ∈ S, an embedding of G to H is an embedding of each
rotation axis of G to one of the rotation axes of H so that any k-fold axis of G
overlaps a k′-fold axis of H satisfying k|k′ with keeping the arrangement of the
rotation axes of G.

Definition 2. Let P be a set of n points in 3D-space. The symmetricity �(P) of
P is the set of rotation groups G ∈ S that acts on P (thus G � γ(P)) and there
exists an embedding of G to unoccupied rotation axes of γ(P). If all rotation
axes of γ(P) are occupied, �(P) consists of C1.

Then we show the following theorem that characterizes the set of formable
patterns for FSYNC robots in 3D-space.

Theorem 1. Regardless of obliviousness, FSYNC robots can form a target pat-
tern F from an initial configuration P if and only if �(P) ⊆ �(F).

The necessity is clear from the existence of a symmetric initial configuration
with symmetric local coordinate systems for each G ∈ �(P). For the solvable
instances, we designed an oblivious pattern formation algorithm that consists
of a symmetry breaking phase, an embedding phase, and a perfect matching
phase. The symmetry breaking phase is essentially the same as the symmetry
breaking in 2D-space; the robots on rotation axes leave their current positions.
We can show that the rotation group of any resulting configuration is in the
symmetricity of an initial configuration. Because of the condition of Theorem 1,
the robots can agree on a perfect matching between the current configuration
and an embedded target pattern, and complete the pattern formation.

References

1. Fujinaga, N., Yamauchi, Y., Ono, H., Kijima, S., Yamashita, M.: Pattern formation
by oblivious asynchronous mobile robots. SIAM J. Comput. 44(3), 740–785 (2015)

2. Suzuki, I., Yamashita, M.: Distributed anonymous mobile robots: formation of
geometric patterns. SIAM J. Comput. 28(4), 1347–1363 (1999)

3. Yamashita, M., Suzuki, I.: Characterizing geometric patterns formable by oblivious
anonymous mobile robots. Theor. Comput. Sci. 411, 2433–2453 (2010)

Brief Announcement: Mending the Big-Data
Missing Information

Hadassa Daltrophe(B), Shlomi Dolev, and Zvi Lotker

Ben-Gurion University of the Negev, 84105 Beer-sheva, Israel
{hd,dolev}@cs.bgu.ac.il, zvilo@cse.bgu.ac.il

Introduction, Model and Motivation. One of the main challenges that
arise while handling big-data is not only the large volume, but also the high-
dimensions of the data. Moreover, part of the information at the different dimen-
sions may be missing. Assuming that the true (unknown) data is d-dimensional
points, we suggest representing the given data point (which contains lack infor-
mation at different dimensions) as a k-affine subspace embedded in the Euclidean
d dimensional space R

d. A data object that is incomplete in one or more features
corresponds to an affine subspace (called flat, for short) in R

d, whose dimension,
k, is the number of missing features.

This representation yields algebraic objects, which help us to better under-
stand the data, as well as study its properties. A central property of the data is
clustering. Clustering refers to the process of partitioning a set of objects into
subsets, consisting of similar objects. Finding a good clustering is a challenging
problem. Due to its wide range of applications, the clustering problem has been
investigated for decades, and continues to be actively studied not only in theoret-
ical computer science, but in other disciplines, such as statistics, data mining and
machine learning. A motivation for cluster analysis of high-dimensional data, as
well as an overview on some applications where high-dimensional data occurs,
is given in [3].

Our underlying assumption is that the original data-points, the real entities,
can be divided into different groups according to their distance in R

d. Formally,
the data set satisfy the following assumptions: (i) There are m clusters. (ii)
Each cluster is modeled as a ball in R

d. (iii) All k-flats which belong in the same
cluster are intersected with the ball of the cluster. (iv) Each k-flat that belong to
a cluster is selected uniformly among all k-flats that intersect the ball’s cluster.
A data set that satisfies these assumptions will be called separable data.

The distance between a flat and a point (the center of the ball) is well-
defined, hence, the classic clustering problems, such as k-means or k-centers
(see [2] Chap. 8), can be defined on a set of flats. The clustering problem when
the data is k-flats is to find the center of the balls that minimizes the sum of the
distance between the k-flats and the center of their groups, which is the nearest
center among all centers. However, Lee & Schulman [4] argues that the running
time of an approximation algorithm, with any approximation ratio, cannot be
polynomial in even one of m (the number of clusters) and k (the dimension
of the flats), unless P = NP . We overcome this obstacle by approaching the
problem differently. Using a probabilistic assumption based on the distribution
of the data, we achieve a poly-logarithmic algorithm, which we use to identify the
c© Springer-Verlag Berlin Heidelberg 2016
C. Gavoille and D. Ilcinkas (Eds.): DISC 2016, LNCS 9888, pp. 474–476, 2016.
DOI: 10.1007/978-3-662-53426-7

Mending the Big-Data Missing Information 475

flats’ groups. Moreover, the presented probability arguments can help us in better
understanding the geometric distribution of high dimensional data objects, which
is of major interest and importance in the scope of big-data research.

Our Contributions. We face the challenge of mending the missing information
at different dimensions by representing the objects as affine subspaces. In par-
ticular, we work within the framework of flats in R

d, where the missing features
correspond to the (intrinsic) dimension of the flat. This representation is accu-
rate and flexible, in the sense that it saves all the features of the origin data; it
also allows for algebraic calculation over the objects.

We study the pairwise distance between the flats, and based on our proba-
bilistic and geometrical results, we developed a polylogarithmic algorithm that
achieves clustering of the flats with high probability.

The main result of the study is summarized in the following theorem, while
the precise definition and the detailed proof are presented in the full paper [1].

Theorem 1. Given the separable data set P of n affine subspaces of dimension k
in R

d, for any ε > 0 and for sufficiently large d (depending on ε), with probability
1 − ε, we can cluster P using their pair-wise distance projection in poly(n, k, d)
time.

Remarks:

– In addition to proving good performance for high dimensions as required in
the scope of big-data, we also show that the algorithm works well for low
dimensions. We addressed this issue through empirical studies.

– Using sampling, we achieve a poly-logarithmic running time. Namely, instead
of running the algorithms with the whole n flats set, we apply the algorithm
with a sample of log n flats that were picked uniformly at random. The reason
we can use sampling is due to our assumption about the distribution of the
data.

Algorithm. Given the set P of n k-flats in R
d, our goal is to cluster the flats

according to the unknown set of balls, namely, to separate P into m groups
such that every group Pi ∈ P contains n/m flats that intersect the same unit
ball Bd

ci . We suggest the following procedure for the clustering process. The first
step is to find the distance and the midpoint between every pair of flats in P.
Next, we filter the irrelevant midpoints using their corresponding distances such
that midpoints with a distance greater than two are dropped and those with
a distance ≤ 2 are grouped together. We justify this step by the observation
that when two flats Pi and Pj arise from the same cluster then the probability
that the distance between them is less than 2 is P (dist(Pi, Pj) ≤ 2) = 1. More-
over, when Pi and Pj arise from different clusters we show that for any ε > 0,
lim
d→∞

Pr (dist(Pi, Pj) ≥ 2 (Δ − ε)) = 1. In the final step of the algorithm we check

which group contains O(n/m) flats and output those groups. We argue that these
simple steps provide the expected clustering procedure with high probability.

Our suggested algorithm is executed in a distributed fashion. Given a set of
processors, such that each one of them has an access to the whole set of flats,

476 H. Daltrophe et al.

every processor randomly picks a pair of flats and calculate their midpoints. If
the distance between the pair is less than two, the processor saves the midpoint in
shared memory. The processors continue this procedure until enough midpoints
were collected as defined by the given threshold.

Conclusion. The analysis of incomplete data is one of the major challenges in
the scope of big-data. Typically, data objects are represented by points in R

d,
we suggest that the incomplete data is corresponding to affine subspaces. With
this motivation we study the problem of clustering k-flats, where two objects are
similar when the Euclidean distance between them is small. The study presented
a simple clustering algorithm for k-flats in R

d, as well as studied the probability
of pair-wise intersection of these objects.

The key idea of our algorithm is to formulate the pairs of flats as midpoints,
which preserves distance features. This way, the geometric location of midpoints
that arise from the same cluster, identify the center of the cluster with high
probability. When the dimension d is big enough, the corresponding distance
of flats that arise from different clusters approach the mean distance of the
cluster’s center. Using this, we can eliminate the irrelevant midpoints with high
probability.

In addition, using experimental results, we support our claim that the algo-
rithm works well in low dimensions as well. Finally, we achieve a polylogarithmic
running time using a distributed algorithm that involves sampling.

References

1. Daltrophe, H., Dolev, S., Lotker, Z.: Mending the big-data missing information.
CoRR, abs/1405.2512 (2016)

2. Hopcroft, J., Kannan, R.: Foundations of data science1 (2014)
3. Kriegel, H.P., Kröger, P., Zimek, A.: Clustering high-dimensional data: a survey

on subspace clustering, pattern-based clustering, and correlation clustering. ACM
Trans. Knowl. Discov. Data 3(1), 1:1–1:58 (2009)

4. Lee, E., Schulman, L.J.: Clustering affine subspaces: hardness and algorithms. In:
Proceedings of the Twenty-Fourth Annual ACM-SIAM Symposium on Discrete
Algorithms, pp. 810–827. SIAM (2013)

Brief Announcement: Set-Consensus Collections
are Decidable

Carole Delporte-Gallet1(B), Hugues Fauconnier1, Eli Gafni2,
and Petr Kuznetsov3

1 IRIF, Université Paris Diderot, Paris, France
cd@liafa.univ-paris-diderot.fr
2 UCLA, Los Angeles, CA, USA

3 Télécom ParisTech, Paris, France

Abstract. A natural way to measure the power of a distributed com-
puting model is to characterize the set of tasks that can be solved in it. In
general, however, the question of whether a given task can be solved in a
given model of computation is undecidable, even if we only consider the
wait-free shared-memory model. In this paper, we address this question
for a restricted class of models and tasks. We show that the question of
whether a collection C of (j, �)-set consensus tasks, for various � (the
number of processes that can invoke the task) and j (the number of
distinct outputs the task returns), can be used by n processes to solve
wait-free k-set consensus is decidable. Moreover, we provide a simple
O(n2) decision algorithm, based on a dynamic programming solution
to the Knapsack problem. We then present an adaptive wait-free set-
consensus algorithm that, for each set of participants, achieves the best
level of agreement that is possible to achieve using C. Overall, this gives
us a complete characterization of a model equipped with a collection of
set-consensus tasks through its set-consensus power. Therefore, the ques-
tion of determining the relative power of models defined by set-consensus
collections is decidable and, moreover, has an efficient solution.

1 Motivation

A plethora of models of computation were proposed for distributed environments.
The models vary in timing assumptions they make, types of failures they assume,
and communication primitives they employ. It is hard to say a priori whether
one model provides more power to programmer than the other. A natural way
to measure this power is to characterize the set of distributed tasks that a model
allows for solving. In general, however, the question of whether a given task can
be solved in the popular wait-free model, i.e., tolerating asynchrony and failures
of an arbitrary subset of processes, is undecidable [7].

In this paper, we address this question for a restricted class of models and
tasks. We consider models in which n completely asynchronous processes com-
municate through shared-memory but in addition can access set-consensus tasks.
A (j, �)-set-consensus task solves set-consensus among � processes, i.e., the task
c© Springer-Verlag Berlin Heidelberg 2016
C. Gavoille and D. Ilcinkas (Eds.): DISC 2016, LNCS 9888, pp. 477–479, 2016.
DOI: 10.1007/978-3-662-53426-7

478 C. Delporte-Gallet et al.

can be accessed by up to � processes with propose operations that take natural
values as inputs and return natural values as outputs, so that the set of out-
puts is a subset of inputs of size at most j. Set consensus is a generalization
of consensus, and as well as consensus [8] exhibits the property of universaliyy :
� processes can use (j, �)-set consensus and read-write registers to implement j
state machines, ensuring that at least one of them makes progress [6]. In this
paper, we explore what level of agreement, and thus “degree of universality”,
can be achieved using combinations of a collection of set-consensus tasks.

The special case when only one type of set consensus can be used in the imple-
mentation was resolved in [3, 4]: (j, �)-set consensus can be used to implement
(k, n)-set consensus if and only if k ≥ j�n/��. Indeed, by splitting n processes
into groups of size � we trivially solve j�n/��-set consensus.

Characterizing a general model in which processes communicate via an arbi-
trary collection C of possibly different set-consensus tasks is less trivial. For
example, let C be {(1, 2), (2, 5)}, i.e., every 2 processes in our system can solve
consensus and every 5 can solve 2-set consensus. What is the best level of agree-
ment we can achieve using C in a system of 9 processes? One can easily see that
4-set consensus can be solved: the first two pairs of processes solve consensus
and the remaining 5 invoke 2-set consensus, which would give at most 4 different
outputs. One can also let the groups of the first 5 and the remaining 4 each solve
2-set consensus. (In general, any two set-consensus tasks (j1, �1) and (j2, �2) can
be used to solve (j1 + j2, �1 + �2).) But could we do (3, 9)-set consensus with C?

2 Results

We propose a simple way to characterize the power of a set-consensus collection.
By convention, let (j0, �0) be (1, 1), and note that (1, 1)-set consensus is trivially
solvable.

Theorem 1. We show that a collection C = {(j0, �0), (j1, �1), . . . , (jm, �m)}
solves (k, n)-set consensus if and only if there exist x0, x1, . . . , xm ∈ N, such
that

∑
i �ixi ≥ n and

∑
i jixi ≤ k.

Thus, determining the power of C is equivalent to solving a variation of
the Knapsack optimization problem, where each ji serves as the “weight” of an
element in C, i.e., how much disagreement it may incur, and each �i serves as its
“value”, i.e., how many processes it is able to synchronize. We describe a simple
O(n2) algorithm for computing the power of C in solving set consensus among
n processes using the dynamic programming approach [1].

The sufficiency of the condition is immediate. The necessity of the condition
is much less trivial to derive. It required a carefully crafted simulation algorithm,
showing that if a collection not satisfying the condition solves (k, n)-set consen-
sus, then k + 1 processes can solve k-set consensus, contradicting the classical
wait-free set-consensus impossibility result [2, 9, 10].

Coming back to the collection C = {(1, 2), (2, 5)}, our characterization
implies that 4-set consensus is the best level of set consensus that can be achieved

Set-Consensus Collections are Decidable 479

by 9 processes with C. Observe, however, that if only 2 processes participate,
then they can use C to solve consensus, i.e., to achieve the “perfect” agreement.

A natural question is whether we could adapt to the participation level and
ensure the best possible level of agreement in any case?

Theorem 2. Let C be s set-consensus collection, n be an integer. There exist
an optimally adaptative algorithm for C
Intuitively, for the currently observed participation, our algorithm employs the
best algorithm and, in case the participating set grows, seamlessly relaxes the
agreement guarantees by switching to a possibly less precise algorithm assuming
the larger set of participants.

Our results thus imply that the question of whether one model defined by
a set-consensus collection implements another model defined by a set-consensus
collection is decidable and, moreover, it has an efficient solution.

3 Conclusion

We conjecture that the ability of any “reasonable” shared-memory system to
solve set consensus, captured by its j-set-consensus numbers, characterizes pre-
cisely its computing power, e.g., with respect to solving tasks or implementing
deterministic objects.

A preliminary version of the full paper is in [5].

References

1. Andonov, R., Poirriez, V., Rajopadhye, S.V.: Unbounded knapsack problem:
dynamic programming revisited. Eur. J. Oper. Res. 123(2), 394–407 (2000)

2. Borowsky, E., Gafni, E.: Generalized FLP impossibility result for t-resilient asyn-
chronous computations. In: STOC, pp. 91–100. ACM Press, May 1993

3. Borowsky, E., Gafni, E.: The implication of the borowsky-gafni simulation on the
set-consensus hierarchy. Technical report, UCLA, 1993. http://fmdb.cs.ucla.edu/
Treports/930021.pdf

4. Chaudhuri, S., Reiners, P.: Understanding the set consensus partial order using
the Borowsky-Gafni simulation. In: Babaoğlu, Ö., Marzullo, K. (eds.) WDAG
1996. LNCS, vol. 1151, pp. 362–379. Springer, Heidelberg (1996). doi:10.1007/
3-540-61769-8 23

5. Delporte-Gallet, C., Fauconnier, H., Gafni, E., Kuznetsov, P.: Set-consensus col-
lections are decidable. Technical report, ArXiv (2016)

6. Gafni, E., Guerraoui, R.: Generalized universality. In: Katoen, J.-P., König, B.
(eds.) CONCUR 2011. LNCS, vol. 6901, pp. 17–27. Springer, Heidelberg (2011).
doi:10.1007/978-3-642-23217-6 2

7. Gafni, E., Koutsoupias, E.: Three-processor tasks are undecidable. SIAM J. Com-
put. 28(3), 970–983 (1999)

8. Herlihy, M.: Wait-free synchronization. ACM Trans. Prog. Lang. Syst. 13(1), 123–
149 (1991)

9. Herlihy, M., Shavit, N.: The topological structure of asynchronous computability.
J. ACM 46(2), 858–923 (1999)

10. Saks, M., Zaharoglou, F.: Wait-free k-set agreement is impossible: the topology of
public knowledge. SIAM J. Comput. 29, 1449–1483 (2000)

http://fmdb.cs.ucla.edu/Treports/930021.pdf
http://fmdb.cs.ucla.edu/Treports/930021.pdf
http://dx.doi.org/10.1007/3-540-61769-8_23
http://dx.doi.org/10.1007/3-540-61769-8_23
http://dx.doi.org/10.1007/978-3-642-23217-6_2

Brief Announcement: A Log∗-Time Local MDS
Approximation Scheme for Bounded

Genus Graphs

Saeed Akhoondian Amiri1(B) and Stefan Schmid2

1 TU Berlin, Berlin, Germany
saeed.amiri@tu-berlin.de

2 Aalborg University, Aalborg, Denmark

Abstract. This paper shows that the results by Czygrinow et al. (DISC
2008) and Amiri et al. (PODC 2016) can be combined to obtain a
O(log∗ n)-time local and deterministic approximation scheme for Min-
imum Dominating Sets on bounded genus graphs.

1 Local MDS Approximation Scheme

It is well-known that fundamental graph problems such as the Minimum Domi-
nating Set (MDS) problem cannot be solved efficiently by distributed algorithms
on general graphs. However, over the last years, researchers have found several
very fast distributed algorithms for sparse families of networks, such as constant-
degree graphs and planar graphs.

This paper presents a deterministic O(log∗ n)-time MDS (1+ε)-factor approx-
imation algorithm for a more general graph family: graphs of constant genus. The
algorithm relies on: (1) a slight modification of the clusting algorithm for planar
graphs presented by Czygrinow et al. [2], and (2) the recent constant approxi-
mation result by Amiri et al. [1] for MDS on graphs of bounded genus. Due to
space constraints, we refer the reader to the prior work for more background.

We suppose familiarity with basic graph theory and graphs on surfaces [4].
We consider simple finite undirected graphs unless stated explicitly otherwise.
We denote the set of all integers by N. For a graph G = (V,E), we write E(G)
resp. V (G) to denote the edge set resp. vertex set of graph G. For a weighted
graph G, we define an edge weight function as w : E(G) → N. For a sub-graph
S ⊆ G, we write W (S) for Σe∈E(S)w(e), and call it the total edge weight of S.
We contract an edge {u, v} by identifying its two ends, creating a new vertex uv,
but keeping all edges (except for parallel edges and loops). Additionally, if the
graph is weighted and {u, x}, {v, x} ∈ E(G), we set the edge weight of {uv, x}
to w(uv, x) := w(u, x) + w(v, x). Let S ⊆ G be a set of vertices, then G[S] is an

Research supported by the European Research Council (ERC) under the European
Union’s Horizon 2020 research and innovation programme (ERC consolidator grant
DISTRUCT, agreement No 648527).

c© Springer-Verlag Berlin Heidelberg 2016
C. Gavoille and D. Ilcinkas (Eds.): DISC 2016, LNCS 9888, pp. 480–483, 2016.
DOI: 10.1007/978-3-662-53426-7

A Log∗-Time Local MDS Approximation Scheme 481

induced subgraph of G on vertices of S. The degeneracy of a graph G is the least
number d for which every induced subgraph of G has vertex degree at most d.

We need the following lemma for the sake of completeness.

Lemma 1. Let G be a class of graphs of genus at most g. Then the degeneracy
of every graph G ∈ G is in O(

√
g).

Proof. We prove the lemma for graphs with orientable genus g; an analogous
argument works for graphs of non-orientable genus g. Let G ∈ G with genus at
most g, and suppose the degeneracy of G is c. We prove that c ∈ O(

√
g). Let

us denote by v, e the number of vertices and edges of G, respectively. By the
Euler formula, we have: e ≤ 3 · v +6g −6 [1]. On the other hand, by definition of
the degeneracy, every vertex in G has degree at least c, so c·v

2 ≤ 3v + 6g − 6 ⇒
c ≤ 12g−12

v + 6 (1). To find the maximum value of c for a fixed genus, we must
minimise v. A complete graph on v vertices has genus at most v2/12 [4], therefore
by plugging it into (1), we obtain that c ≤ √

12g + 6.

Definition 1 (Pseudo-Forest [2]). A pseudo-forest is a directed graph in
which every vertex has an out-degree at most 1.

For a directed graph G, if we ignore the edge directions, we write Ḡ.
Different variations of the first part of the following lemma have already been

proved in the literature. However, to be able to provide exact numbers and for
completeness, we include a proof here. Let G be a graph and let F be a family of
forests such that for all F ∈ F , we have F ⊆ G. We say that F is a forest cover
of G, if for every edge e ∈ E(G), there is a forest F ∈ F such that e ∈ E(F).

Lemma 2. There is a constant c1 such that for an edge weighted graph G of
genus g, we can find, in two communication rounds, a pseudo-forest F such that
F̄ is a spanning sub-graph of G and W (F̄) ≥ W (G)

c1·√g .

Proof. By Lemma 1, the degeneracy of a graph G of genus g is in O(
√

g). The
degeneracy is within factor two of the arboricity [3], and the arboricity equals the
size of at least a forest cover F of G. Therefore, there is a constant c′

1 such that
|F| ≤ c′

1 ·√g. Hence, there is a forest F1 ∈ F such that W (F1) ≥ W (G)/(c′
1 ·√g).

Similarly to the proof of Fact 1 in [2], for a vertex v, we choose an edge {v, u} of
largest weight, and direct it from v to u. If we happen to choose an edge {v, u}
for both vertices u and v, we direct it from v to u, using the larger identifier
as a tie breaker. This algorithm creates a pseudo-forest F . F̄ is a spanning
sub-graph of G and it has a total edge weight of at least half of W (F1), so
W (F̄) ≥ W (G)/(2 · c′

1 · √
g). We set c1 = 2 · c′

1. Note that we found F in two
rounds. �

Lemma 3. There is a local algorithm which takes an 0 < ε < 1 and an edge-
weighted graph G of genus at most g as input, runs in O(log∗ n + 1/ε · √

g)

482 S.A. Amiri and S. Schmid

communication rounds and returns a set of clusters C1, . . . , Cl partitioning G,
such that, each cluster has a constant diameter. Moreover, if we contract each
Ci to a single vertex to obtain a graph H, then W (H) ≤ ε · W (G).

Proof. Let t := 4·c1·√g. By applying the HeavyStars algorithm from [2] on the
pseudo forest provided in the proof of Lemma 2, we obtain stars of weight |E(G)|

t .
We also run the algorithm Clustering provided in [2], but we set the number
of iterations in the algorithm to log(1ε)/ log(t

t−1); the rest of the algorithm is left
unchanged. A similar line of proof for the original algorithm, proves the claim
of the lemma. Just note that log(x

x−1) ≥ 1/x for x > 1. �

Theorem 1. Given a 0 < δ < 1 and a graph G of genus at most g, the Minimum
Dominating Set can be approximated in O(log∗ |G| + g2

√
g) time within a factor

of 1 + δ.

Proof. Suppose OPT is the optimal dominating set of G. By [1], we can find a
dominating set D of G such that for some constant c, we have |D| ≤ c ·g · |OPT |.
This can be done in a constant number of communication rounds. For a vertex
v ∈ G, we denote the neighbours of v in G by N [v] i.e., N [v] = v ∪ {u ∈ V (G) |
{u, v} ∈ E(G)}. Suppose |D| = t.

Let us order the vertices of D arbitrarily, and suppose d1, . . . , dt is such an
ordering. Create a partition (V1, . . . , Vt) of V (G) such that Vi = {v ∈ N [di] |
v ∈ (G − D − ⋃

j<i Vj)} ∪ {di}. We next contract each Vi to a single vertex vi to
obtain a graph H. We assign an edge weight to H, i.e., for all e ∈ E(H), we set
w(e) := 1. It is clear that W (H) = |E(H)|. H has genus at most g and it has
at most 3|D| + 6g − 6 edges (see Lemma 4 of [1]). Set ε = δ/((6 + 12g) · c · g).
When we apply the algorithm in Lemma 3, it finds clusters C1, . . . , Cl such that
the total edge weights between clusters amount to at most ε · |E(H)|. Note that
as ε ∈ Ω(1/g2), the algorithm uses O(log∗ |G| + 1/ε · √

g) = O(log∗ |G| + g2
√

g)
communication rounds.

For a cluster Cj , suppose V (Cj) = {vj1 , . . . , vjk}, and let Uj be an induced
subgraph of G on vertices of a subgraph X =

⋃
i=1,...,k Vji , i.e. Uj := G[X]. We

find the optimum dominating set Si in each Uj . Moreover, we know that each Ci

had a constant diameter therefore, each Uj will have a constant diameter. Hence,
finding an optimum dominating set within each Ui can be done in a constant
number of communication rounds. Now take a dominating set S =

⋃
Si. First

of all, it is clear that S is a dominating set of G. To prove the upper bound, let
D∗ be a set of vertices of D which have a neighbour in other clusters, i.e., D∗ =
{w ∈ D | if w ∈ Ui then ∃j �= i and ∃x ∈ Uj such that {w, x} ∈ E(G)}. By the
Clustering algorithm and the above counting, we have |D∗| ≤ 2ε|E(H)| ≤
2ε(3|D|+6g − 6) ≤ 2ε · c · g · (3|D|+6g) ≤ δ|OPT |. On the other hand, we know
that |S| ≤ |OPT ∪ D∗| ≤ (1 + δ)|OPT |. �

References

1. Amiri, S.A., Schmid, S., Siebertz, S.: A local constant factor mds approximation for
bounded genus graphs. In: Proceedings of the ACM PODC (2016)

A Log∗-Time Local MDS Approximation Scheme 483

2. Czygrinow, Andrzej, Hańćkowiak, Michal, Wawrzyniak, Wojciech: Fast distributed
approximations in planar graphs. In: Moses, Yoram (ed.) DISC 2015. LNCS, vol.
9363, pp. 78–92. Springer, Heidelberg (2008). doi:10.1007/978-3-540-87779-0 6

3. Dean, A.M., Hutchinson, J.P., Scheinerman, E.R.: On the thickness and arboricity
of a graph. J. Comb. Theor. Ser. B 52(1), 147–151 (1991)

4. Mohar, B., Thomassen, C.: Graphs on Surfaces. Johns Hopkins University Press
(2001)

http://dx.doi.org/10.1007/978-3-540-87779-0_6

Brief Announcement: On the Space Complexity
of Conflict Detector Objects

Claire Capdevielle(B), Colette Johnen, and Alessia Milani

Universite Bordeaux, LaBRI, UMR 5800, 33400 Talence, France
ccapdevi@labri.fr

A conflict detector is a one-shot shared-memory object introduced by Aspnes
and Ellen in [1]. It supports a single operation, check(v), with input v from a set
of values and returns a boolean response. It has the following two properties: (i)
in any execution that contains a check(v) operation and a check(v′) operation
with v �= v′, at least one of these two operations returns true (to indicate a
conflict); (ii) in any execution in which all check operations have the same input
value, they all return false. The conflict detector was introduced to prove tight
bounds on the individual step complexity of wait-free adopt-commit objects
implemented using multi-writer registers. Adopt-commit objects can be used to
implement round-based protocols for set-agreement and consensus [3]. Aspnes
and Ellen show that we can implement an adopt-commit object using a conflict
detector plus a constant number of registers and vice versa. They also show that
the individual step complexity of adopt-commit objects and conflict detectors
differ by a small additive constant.

In this paper we study the space and solo-write complexity of conflict detec-
tors (and then of adopt-commit objects), answering a question left open in [1].
The solo-write complexity is the maximal number of writes performed in a solo
execution of a single check operation, taken over all possible input values. The
space complexity is the number of registers an algorithm uses.

Our Results. We prove a Θ(min(
√

n, log m/ log log m)) bound on the space and
solo-write complexity of a wait-free conflict-detector implemented using multi-
writer registers for n anonymous processes and where m is the size of the input
values set. Processes are anonymous meaning that they have no identifiers and
thus they execute the same program. In particular, on the negative side, the
following lower bound holds.

Theorem 1. Any n-process anonymous wait-free conflict detector algorithm
must have space complexity Ω(min(

√
n, log m/ log log m)) and solo-write com-

plexity Ω(min(
√

n, log m/ log log m)). Moreover, if the algorithm is input-
oblivious (the sequence of registers written in a solo execution does not depend
on the input value), then the bounds become Ω(

√
n).

Theorem 1 easily derives from the bounds we present in a previous work [2].
In particular, we proved the same bounds on the space complexity and the

Partially supported by the ANR project DISPLEXITY (ANR-11-BS02-014). This
study has been carried out in the frame of the Investments for the future Programme
IdEx (ANR-10-IDEX-03-02).

c© Springer-Verlag Berlin Heidelberg 2016
C. Gavoille and D. Ilcinkas (Eds.): DISC 2016, LNCS 9888, pp. 484–486, 2016.
DOI: 10.1007/978-3-662-53426-7

On the Space Complexity of Conflict Detector Objects 485

solo individual write complexity to implement a consensus object considering
algorithms that in absence of contention only operate on registers. To implement
the corresponding asymptotically optimal consensus algorithm (presented in [2])
we proposed a new abstraction, called value-splitter, which is similar to a conflict
detector. A value-splitter supports a single operation, split(v) taking a parameter
v in a domain of values V and returning a boolean response, and ensures that,
for all v, v′ ∈ V , and in every execution: (i) if split(v) and split(v′) return true,
then v = v′; (ii) If a split(v) operation completes before any other split operation
is invoked, then it returns true. A conflict detector trivially implements a value
splitter. Then, Theorem 1 derives from the fact that the space and the solo write
complexity of the consensus algorithm presented in [2] is constant if we do not
count the space and solo write complexity of the value-splitter implementation.

On the positive side we present an algorithm that implements a wait-free
anonymous conflict detector using O(

√
n) atomic registers (Algorithm 1). Our

algorithm improves the input-oblivious conflict detector presented in [1] which
uses a linear number of registers. Also together with the non input-oblivious m-
values conflict detector presented in [1] (whose space and solo write complexity is
in O(log m/ log log m)) contributes to prove that the lower bound is tight. Despite
the Ω(n) bound on the space complexity of obstruction-free consensus recently
proved in [4], our result is still interesting since it dismantles the difficulty to
implement consensus proving the cost to detect the existence of different input
values. Also, the tight bounds on the solo-write complexity improve the results
in [1] proving that many of these steps are writes.

Theorem 2. Algorithm 1 implements a wait-free input-oblivious conflict detec-
tor for n anonymous processes with solo-write and space complexities in O(

√
n).

Shared variables:
Array of registers R[0 . . . b − 1] with b2 − 4 > 4n and b ≥ 4. Initially ⊥
Procedure: check(v)

1 i ← 0;
2 next writing ← 0;
3 while next writing < b do
4 i ← 0;
5 res ← Read(R[i]);
6 while i < b ∧ res �= ⊥ do
7 if res �= v then return true;
8 i++;
9 if i �= b then res ← Read(R[i]);

10 end
11 if i < b ∧ i = next writing then
12 Write(R[i], v);
13 next writing ← i+ 1;

14 else next writing ← i ;

15 end
16 return false;

Algorithm 1: Input-oblivious conflict-detector

486 C. Capdevielle et al.

In the following we describe the main ideas of the Algorithm 1. A process p
stores in a local variable next writing the index of the register it is expected to
write next. Then, the write is applied only if both the following conditions are
satisfied: after reading all the registers p does not detect a value different from its
input value and the value of next writing corresponds to the index of the first
register whose read by p returned the initial value ⊥. If p reads its own input
value from a register it has not yet written, there is another process q executing
a check operation with the same input value v and q is more advanced in the
computation than p. In this case p has to increment its variable next writing
in order to move to write to the next register q is expected to write (line 14).
Since a process writes registers in increasing order, this jump by p facilitates the
detection of conflicting values. In fact, future steps by p will not cover values
different from v that some other process may write in registers previously written
by q.

References

1. Aspnes, J., Ellen, F.: Tight bounds for adopt-commit objects. Theory Comput.
Syst. 55(3), 451–474 (2014)

2. Capdevielle, C., Johnen, C., Kuznetsov, P., Milani, A.: On the uncontended com-
plexity of anonymous agreement. In: OPODIS (2015, to appear)

3. Gafni, E.: Round-by-round fault detectors: unifying synchrony and asynchrony. In:
PODC, 1998, 143–152 (1998)

4. Zhu, L.: A tight space bound for consensus. In: STOC 2016, pp. 345–350 (2016)

Brief Announcement: Public Vs. Private
Randomness in Simultaneous Multi-party

Communication Complexity

Orr Fischer, Rotem Oshman, and Uri Zwick(B)

Blavatnik School of Computer Science, Tel-Aviv University, Tel Aviv, Israel
zwick@tau.ac.il

1 Introduction

In his seminal 1979 paper introducing the notion of two-party communication
complexity, Yao [3] mentions “one situation that deserves special attention”: two
players receive private inputs and send randomized messages to a third player
who then produces the output. Yao asked what is the communication complexity
of the Equality function Eqn in this model: the two players receive vectors x, y ∈
{0, 1}n and the goal is to determine whether x = y. Only private randomness is
allowed. (With public randomness, Eqn can be solved in O(1) bits).

Seventeen years later, Yao’s question was answered: Newman and Sezegy
[2] showed that Eqn requires Θ(

√
n) bits to solve simultaneously using private

randomness. Moreover, Babai and Kimmel [1] showed that for any function f ,
if the deterministic simultaneous complexity of f is D(f), then the private-coin
simultaneous communication complexity of f is Ω(

√
D(f)), so in this sense

private randomness is of only limited use for simultaneous protocols.
In this note we study multi-player simultaneous communication complexity.

We consider the number-in-hand model, where each player receives a private
input. We show that the effect of private randomness in the multiple player case is
essentially the same as it is for two players. We first extend the Ω(

√
D(f)) lower

bound of [1] to the multi-player setting, and show that for any k-player function
f , the private-coin simultaneous communication complexity of f is Ω(

√
D(f)).

We then show, perhaps surprisingly, that the extended lower bound is still tight
in some cases.

Consider the function AllEqk,n, which generalizes Eqn to k players: each
player i receives a vector xi ∈ {0, 1}n, and the goal is to determine whether
all players received the same input. It is easy to see that the deterministic
communication complexity of AllEqk,n is Ω(nk) (not just for simultaneous
protocols), and each player must send n bits to the referee in the worst case.
We thus obtain a lower bound of Ω(

√
nk) for the private-coin simultaneous

complexity of AllEqk,n. We show that this lower bound is almost tight by
giving a simple simultaneous private-coin protocol for AllEqk,n where each
players sends only O(

√
n/k + log(min {n, k})) bits to the referee, for a total of

O(
√

nk + k log min {k, n}) bits. This matches the lower bound of Ω(
√

nk) when
k = O(n/ log2 n). We also show that AllEqk,n requires Ω(k log n) bits, so in
fact our upper bound for AllEqk,n is tight.
c© Springer-Verlag Berlin Heidelberg 2016
C. Gavoille and D. Ilcinkas (Eds.): DISC 2016, LNCS 9888, pp. 487–489, 2016.
DOI: 10.1007/978-3-662-53426-7

488 O. Fischer et al.

2 Lower Bound

Let Rε(f) denote the private-coin randomized simultaneous communication com-
plexity of f , i.e., the total number of bits sent in the worst-case by any simulta-
neous protocol for f with error probability at most ε.

For a k-player function f , let dimi(f) be the number of distinct inputs that
the i-th player has. (Two inputs xi, x

′
i are indistinct if for every joint input x−i

of all the other players, f(xi, x−i) = f(x′
i, x−i).) Generalizing an observation

of [1], it is easy to see that to compute f , the i-th player must send at least
log dimi(f) bits in the worst case, and thus D(f) =

∑k
i=1�log dimi(f)�.

Babai and Kimmel [1] prove that for any 2-player private-coin protocol Π
with constant error ε < 1/2 we have CC1(Π) · CC2(Π) ≥ Ω(log dim1(f) +
log dim2(f)), where CCi is the number of bits sent by player i. Using this prop-
erty we show by a reduction from 2-party to k-party that for any k-player private-
coin protocol Π that computes some function f with constant error ε < 1/2,
and for each i ∈ [k], CCi(Π) ·

(∑
j �=i CCj(Π)

)
= Ω(log dimi(f)). Summing up

we have:

Theorem 1. For any k-player function f and ε > 0, Rε(f) = Ω(
√

D(f)).

Similarly, for any k-player function f and constant error probability ε < 1/2 we
have R∞

ε (f) = Ω(
√

D∞(f)/k), where D∞, R∞
ε denote the maximum number of

bits sent by a single player. (This does not follow immediately from Theorem 1
because we compare maximum to maximum.)

3 Tight Upper Bound for AllEq

To show that our lower bound is tight, we give a protocol for AllEqk,n where
each player sends O(

√
n/k + log (min(n, k))) bits, for a total of O(

√
nk +

k log (min(n, k))) = O(
√

D(AllEqk,n)) bits. We show in the full paper that
Rε(AllEq) = Ω(k log n), so the protocol is optimal.

Intuitively, the “hard” cases for AllEqk,n are those where any two inputs
that differ only on a small number of coordinates. To overcome this difficulty,
each player encodes its input using a predetermined error correcting code which
blows up the size by only a constant factor and ensures that the relative Ham-
ming distance of the encodings of any two differing inputs is at least some con-
stant δ ∈ (0, 1). Each player then partitions its encoded input into roughly k
blocks.

If xi �= xj , the encoded inputs differ in a constant fraction of the blocks; if
players i, j choose the same random block, there is constant probability that they
would differ in this block. We face two problems: first, we do not have shared
randomness, so players cannot choose the same random block; and second, the
size of each block is roughly O(n/k) bits, so how can we check if the players
agree on the block or not?

Public Vs. Private Randomness 489

To overcome the first difficulty, we observe that if AllEq(x1, . . . , xn) = 0,
then some player i received a minority input xi: at most k/2 other players have
the same input. The probability that one of the k/2 disagreeing players sends
the same block player i sent is at least:

1 −
(

1 − 1
#blocks

)k/2

≥ 1 −
(

1 − 1
k

)k/2

≥ 1 −
(
e−1/k

)k/2

= 1 − e−1/2.

Given that player j with xj �= xi sent the same block as player i, with constant
probability the block sent is one they disagree on. In this case the referee should
be able to detect the difference. But, we cannot afford to have each player send
an entire block, and therefore use a “succinct representation” for blocks, which
still catches a difference with good probability. The representation we use is
simply the 2-player Eq protocol from [1], applied to a block instead of the entire
input. Each player sends roughly O(

√
n/k) bits representing its selected block,

as well as the index of that block (O(log k) bits). If two players that disagree on
a block both send it, which occurs with constant probability, the referee detects
the difference with constant probability. Thus the overall error probability is
constant. As the protocol of [1] has one-sided error, so does our protocol.

References

1. Babai, L., Kimmel, P.G.: Randomized simultaneous messages: solution of a problem
of Yao in communication complexity. In: Proceedings of CCC 1997, pp. 239–246
(1997)

2. Newman, I., Szegedy, M.: Public vs. private coin flips in one round communication
games. In: Proceedings of 28th STOC, pp. 561–570 (1996)

3. Yao, A.C-C.: Some complexity questions related to distributive computing (prelim-
inary report). In: Proceedings of 11th STOC, pp. 209–213 (1979)

Brief Announcement: Beeping a Maximal
Independent Set Fast

Stephan Holzer(B) and Nancy Lynch

Massachusetts Institute of Technology (MIT), Cambridge, USA
holzer@mit.edu, lynch@csail.mit.edu

Abstract. We adapt a recent algorithm by Ghaffari for computing a
Maximal Independent Set in the Local, so that it works in the signifi-
cantly weaker Beep network model. For networks with maximum degree
Δ, our algorithm terminates locally within time O((log Δ + log(1/ε)) ·
log(1/ε)), with probability at least 1− ε. Moreover, the algorithm termi-

nates globally within time O(log2 Δ)+2O(
√

log logn) with high probability
in n, the number of nodes in the network. The key idea of the modifica-
tion is to replace explicit messages about transmission probabilities with
estimates based on the number of received messages.

1 Introduction

Computing a Maximal Independent Set (MIS) is a widely studied problem in
distributed computing theory. One of the weakest models of communication in
which this problem has been studied is the Beep model, e.g., [13]. For that
model, we obtain:

Theorem 1 (Global termination complexity). Our algorithm computes an
MIS within O(log2 Δ) + 2O(

√
log log n) rounds w.h.p., where n is the number of

nodes in the network and Δ ≤ n is the maximum degree of any node.

This improves over the state-of-the-art algorithm [3] for a large range of values of
the parameter Δ. We obtain this bound by translating Ghaffari’s algorithm [2]
for the Local model into the Beep model. We adapt the proof of Theorem 1.2
of [2], which infers a global bound from a local bound stated in Theorem 1.1
of [2]. In particular we state a local bound in Theorem 2 and use Theorem 2 to
replace Theorem 1.1 of [2] in the proof of Theorem 1.2 of [2]. We argue that this
replacement works also for the Beep model.

Theorem 2 (Local termination complexity). In our algorithm, for each
node v, the probability that v decides whether it is in the MIS within O((log Δ+
log(1/ε)) · log(1/ε)) rounds is at least 1 − ε.

S. Holzer and N. Lynch—Supported by: AFOSR Contract Number FA9550-13-1-
0042, NSF Award 0939370-CCF, NSF Award CCF-1217506, and NSF Award CCF-
AF-1461559.

c© Springer-Verlag Berlin Heidelberg 2016
C. Gavoille and D. Ilcinkas (Eds.): DISC 2016, LNCS 9888, pp. 490–493, 2016.
DOI: 10.1007/978-3-662-53426-7

Beeping a Maximal Independent Set Fast 491

Note that this local bound is only a factor of O(log(1/ε)) larger than the
O(log Δ + log(1/ε)) bound for the algorithm in the Local model [2]. The key
idea in the proof and algorithm of Theorem 2 is that, instead of maintaining full
information about its neighbors’ states, a node keeps a single binary estimate
for the aggregate state of its entire neighborhood.

2 Models and Definitions

Local and Beep Models: In both models, the network is abstracted as an
undirected graph G = (V,E) where |V | = n. All nodes wake up simultaneously.
Communication occurs in synchronous rounds. In the Local model (e.g., [2]),
each node knows its graph neighbors. Nodes communicate reliably, where in
each round nodes can exchange an arbitrary amount of information with their
immediate graph neighbors. On the other hand, in the Beep model (e.g., [1,
3]), nodes do not know their neighbors. Nodes communicate reliably and a node
can choose to either beep or listen. If a node v listens in slot1 t it can only
distinguish between silence (no neighbor beeps in slot t) or the presence of one
or more beeps (at least one neighbor beeps in in slot t).

Graph-related Definitions: A set of vertices I ⊆ V is an independent set of G if
no two nodes in I are neighbors in G. An independent set I ⊆ V is a maximal
independent set (MIS) of G if, for all v ∈ V \I, the set I∪{v} is not independent.
An event occurs with high probability (w.h.p.), if it occurs with probability at
least 1 − n−c for some constant c ≥ 1.

3 Algorithms

The MIS algorithm of [2] runs for R:=β(log Δ+log(2/ε)) = O(log Δ+log(1/ε))
rounds, where β = 1300. In each round t, each node v has a desire-level pt(v)
for joining the MIS, which initially is set to p0(v) = 1/2. Ghaffari [2] calls
the total sum of the desire-levels of neighbors of v its effective-degree dt(v), i.e.,
dt(v) =

∑
u∈N(v) pt(u). The desire-levels change over time depending on whether

or not dt(v) ≥ 2. In each round, node v gets marked with probability pt(v). If
v is marked, and no neighbor of v is marked, v joins the MIS and gets removed
along with its neighbors. Using the power of the Local model, in each round t,
nodes exchange exact values of pt(u) with all their neighbors.

In implementing this algorithm in the Beep model, we do not require that
a node v learn the exact values of pt(u) for all neighbors u in order to compute
dt(v). Instead, we allow node v to decide, based on how many beeps v receives
within a certain number of rounds, whether dt(v) is more likely to be larger
than 1 or smaller than 3. To make this decision, we define an interval to consist
of I := 1000(ln(1500) + ln(2/ε)) consecutive slots. We use one interval in the
Beep model to emulate each round of the algorithm [2] in the Local model.

1 To disambiguate, we refer to the rounds of the Beep model as slots.

492 S. Holzer and N. Lynch

During part of an interval, the algorithm computes the ratio of the number of
beeps received (bt(v)) to the total number of slots in which v listened during the
interval (ct(v)). Node v decides to update its desire-level:

pt+1(v) =
{

pt(v)/2, if bt(v)/ct(v) > 5
6

min{2pt(v), 1/2}, if bt(v)/ct(v) ≤ 5
6

Thus, we replace the condition dt(v) ≥ 2 in the algorithm of [2] by the condition
bt(v)/ct(v) > 5

6 .

4 Local Analysis of our MIS Algorithm

We demonstrate that for each node v, the accuracy of deciding whether v’s
effective degree is high or low is good enough to translate the algorithm of [2]
into the Beep model, i.e., our algorithm does not require v to learn exact desire-
values of its neighbors. We say node v is a good node in an interval t, if at the
end of the interval the following three conditions are satisfied: (i) ct(v) > I/3,
and (ii) if bt(v)/ct(v) > 5

6 , then dt(v) ≥ 1, and (iii) if bt(u)/ct(v) ≤ 5
6 , then

dt(v) ≤ 3.

Lemma 1 A good node v always (i) draws correct conclusions about whether its
effective degree is high or low, and (ii) adjusts its desire-values in the same way
as in the algorithm of [2].

Lemma 1 allows us to modify the analysis of [2] to obtain statements about good
nodes. To argue that this applies to large parts of the graphs, we show that most
nodes are good:

Lemma 2 For any interval, the probability that a node v is good is at least
1 − 2e−I/1000.

To prove Lemma [2], we use a Chernoff Bound to bound the probability that
bt(v)/ct(v) reflects whether the effective degree is high or low based on the
condition bt(v)/ct(v) > 5

6 rather than dt(v) ≥ 2.
We define two kinds of golden intervals for a node v, by analogy with the

definition of golden rounds in [2]: Interval t is a golden interval of type-1, if
bt(v)/ct(v) ≤ 5

6 and pt(v) = 1/2. Interval t is a golden interval of type-2, if
bt(v)/ct(v) > 5

6 and at least dt(v)/10 of dt(v) is contributed by neighbors u with
dt(u) ≤ 3. Using Lemmas 1 and 2 we show:

Lemma 3 In each type-1 (resp., type-2) golden interval, with probability at least
1/1000, v joins the MIS (resp., one of v’s neighbors joins the MIS). If R/13
intervals are golden, then the probability that v has not decided whether it is in
the MIS during the first R intervals is at most ε/2.

Lemma 4 By the end of interval R, with probability at least 1 − 1500e−I/1000,
either v has joined, or has a neighbor in, the (computed) MIS, or at least one of
its golden interval counts reached R/13.

We prove Lemma 4 by adapting ideas of [2]. Theorem 2 follows from combining
Lemmas 3 and 4.

Beeping a Maximal Independent Set Fast 493

References

1. Afek, Y., Alon, N., Bar-Joseph, Z., Cornejo, A., Haeupler, B., Kuhn, F.: Beeping a
maximal independent set. Distrib. Comput. 26(4), 195–208 (2013)

2. Ghaari, M.: An improved distributed algorithm for maximal independent set. In:
Proceedings of the 2015 ACM-SIAM Symposium on Discrete Algorithms, pp. 270–
277 (2016)

3. Scott, A., Jeavons, P., Xu, L.: Feedback from nature: an optimal distributed algo-
rithm for maximal independent set selection. In: Proceedings of the 2013 ACM
Symposium on Principles of Distributed Computing, pp. 147–156 (2013)

Author Index

Abboud, Amir 29
Aghazadeh, Zahra 442
Akhoondian Amiri, Saeed 480
Aspnes, James 371
Attiya, Hagit 257
Augustine, John 399
Avin, Chen 243, 399

Balliu, Alkida 461
Ben-Baruch, Ohad 257
Ben-David, Naama 298
Bouzid, Zohir 173

Capdevielle, Claire 484
Casteigts, Arnaud 16
Censor-Hillel, Keren 29, 43, 129
Černý, Pavol 114
Chan, David Yu Cheng 298
Chen, Tian Ze 465
Cicerone, Serafino 85
Courtieu, Pierre 187

D’Angelo, Gianlorenzo 461
Daltrophe, Hadassa 474
Delporte-Gallet, Carole 477
Di Stefano, Gabriele 85
Dolev, Shlomi 474

Fauconnier, Hugues 477
Fischer, Eldar 43
Fischer, Orr 487
Foster, Nate 114
Fraigniaud, Pierre 342, 461

Gafni, Eli 428, 477
Gawrychowski, Paweł 230
Ghaffari, Mohsen 357
Göös, Mika 201
Guerraoui, Rachid 143

Hadzilacos, Vassos 298
Haeupler, Bernhard 158
Hans, Sandeep 269

Hassan, Ahmed 269
Hefetz, Dan 99
Hendler, Danny 257
Herlihy, Maurice 428
Hirvonen, Juho 201
Holzer, Stephan 490
Huang, Chien-Chung 385

Imbs, Damien 215
Izraelevitz, Joseph 313
Izumi, Taisuke 158

Jagnik, Nilesh 114
Jard, Claude 284
Jayanti, Prasad 385
Johnen, Colette 484

Kavitha, Telikepalli 129
Khoury, Seri 29
Korhonen, Janne H. 468
Kosowski, Adrian 230
Kuhn, Fabian 99
Kuznetsov, Petr 477

Lamprou, Ioannis 1
Le Gall, François 57
Levi, Reut 201
Liaee, Mehraneh 399
Lotker, Zvi 474
Loukas, Andreas 243
Lynch, Nancy 490

Martin, Russell 1
Maus, Yannic 99
McClurg, Jedidiah 114
Medina, Moti 201
Mendes, Hammurabi 313
Métivier, Yves 16
Milani, Alessia 484
Miller, Avery 328
Mostéfaoui, Achour 284

Navarra, Alfredo 85
Newport, Calvin 357

Olivetti, Dennis 461
Oshman, Rotem 487

Pacut, Maciej 243
Palmieri, Roberto 269
Pandurangan, Gopal 399
Patt-Shamir, Boaz 328
Paz, Ami 129
Peluso, Sebastiano 269
Perrin, Matthieu 284
Petrolia, Matoula 284

Rajaraman, Rajmohan 399
Rapaport, Ivan 342
Ravindran, Binoy 269
Raynal, Michel 215
Rieg, Lionel 187
Robson, John Michael 16
Ruppert, Eric 371

Salo, Ville 342
Saraph, Vikram 428
Scheideler, Christian 71
Schewe, Sven 1
Schmid, Stefan 243, 480
Schwartzman, Gregory 43
Scott, Michael L. 313
Setzer, Alexander 71
Stainer, Julien 215

Steger, Angelika 99
Strothmann, Thim 71
Su, Lili 414
Suomela, Jukka 201

Tixeuil, Sébastien 187
Todinca, Ioan 342
Toueg, Sam 298
Travers, Corentin 173

Uehara, Taichi 471
Urbain, Xavier 187
Uznański, Przemysław 230

Vaidya, Nitin H. 414
Vasudev, Yadu 43

Wang, Jingjing 143
Wei, Yuanhao 465
Woelfel, Philipp 442

Yamashita, Masafumi 471
Yamauchi, Yukiko 471
Yehudayoff, Amir 129

Zemmari, Akka 16
Zuzic, Goran 158
Zwick, Uri 487

496 Author Index

	Preface
	Organization
	The 2016 Edsger W. Dijkstra Prize in Distributed Computing
	The 2016 Doctoral Dissertation Award in Distributed Computing
	Invited Lectures
	Verification of Population Protocols
	Personal Information Management Systems and Knowledge Integration
	Matching and Covering in Streaming Graphs
	Contents
	Fast Two-Robot Disk Evacuation with Wireless Communication
	1 Introduction
	1.1 Related Work
	1.2 Our Results

	2 Problem Definition and Strategy Space
	3 Upper Bounds
	3.1 The Half-Chord Strategy
	3.2 The Half-Chord Strategy for 1 S 2
	3.3 The Both-to-the-Same-Point Strategy
	3.4 The Fast-Chord Strategy

	4 Lower Bounds
	4.1 Fast Explores
	4.2 Both Explore
	4.3 An Improvement for Both Explore

	5 Comparison and Future Work
	References

	Deterministic Leader Election in O(D+logn) Time with Messages of Size O(1)
	1 Introduction
	1.1 Contributions

	2 Model and Definitions
	2.1 The Network
	2.2 Further Definitions

	3 A Spreading Algorithm
	3.1 Preamble
	3.2 The Algorithm S

	4 A Spanning Tree Algorithm
	5 Termination Detection of Algorithm ST
	6 Conclusion
	References

	Near-Linear Lower Bounds for Distributed Distance Computations, Even in Sparse Networks
	1 Introduction
	1.1 Additional Related Work
	1.2 Model and Basic Definitions

	2 Computing the Diameter
	2.1 Exact Diameter
	2.2 (32-)-approximation to the Diameter

	3 Discussion
	References

	Fast Distributed Algorithms for Testing Graph Properties
	1 Introduction
	1.1 Our Contributions
	1.2 Related Work
	1.3 Historical Overview

	2 Distributed Emulation of Sequential Tests in the Dense Model
	3 Distributed Test for Triangle-Freeness
	4 Distributed Bipartiteness Test for Bounded Degree Graphs
	5 Distributed Test for Cycle-Freeness
	6 Lower Bounds
	7 Discussion
	References

	Further Algebraic Algorithms in the Congested Clique Model and Applications to Graph-Theoretic Problems
	1 Introduction
	2 Preliminaries
	3 Matrix Multiplication in the Congested Clique Model
	4 Deterministic Computation of Determinant and Inverse Matrix
	References

	Towards a Universal Approach for Monotonic Searchability in Self-stabilizing Overlay Networks
	1 Introduction
	1.1 Model
	1.2 Problem Statement
	1.3 Our Contribution

	2 Related Work
	3 Primitives for Topology Maintenance
	4 Primitives for Monotonic Searchability
	4.1 Universality of the New Primitives

	5 The Generic Search Protocol
	6 Conclusion and Outlook
	References

	Asynchronous Embedded Pattern Formation Without Orientation
	1 Introduction
	2 Definitions and Impossibility Results
	3 The Algorithm for EPF
	3.1 Formal Details
	3.2 Extended Example

	4 Conclusion
	References

	Polynomial Lower Bound for Distributed Graph Coloring in a Weak LOCAL Model
	1 Introduction
	2 Model and Problem Statement
	3 Neighborhood Graphs to Prove Lower Bounds
	3.1 Neighborhood Graphs in the SET-LOCAL Model

	4 Lower Bound Proof
	4.1 One-Round Lower Bound in the LOCAL Model
	4.2 Recursive Structure of the Neighborhood Graph
	4.3 Graph Homomorphisms
	4.4 Proof of Theorem 1

	References

	Optimal Consistent Network Updates in Polynomial Time
	1 Introduction
	2 Overview
	3 Network Model
	4 OrderUpdate Algorithm
	4.1 Necessary Conditions for Updating a Node
	4.2 Careful Sequences
	4.3 Completeness of the OrderUpdate Algorithm

	5 Optimal OrderUpdate Algorithm
	5.1 Condition for Waits
	5.2 Algorithm for Optimal Consistent Order Updates

	6 Discussion
	7 Related Work
	8 Conclusion
	References

	Distributed Construction of Purely Additive Spanners
	1 Introduction
	1.1 The Challenge
	1.2 Our Contribution
	1.3 Related Work

	2 Preliminaries
	3 Building Spanners
	3.1 A (+2)-Sourcewise Spanner

	4 Lower Bounds
	4.1 A Communication Complexity Problem
	4.2 A Lower Bound for Constructing a (+2)-Pairwise Spanner

	5 Discussion
	References

	Optimal Fair Computation
	1 Introduction
	2 Model and Definitions
	2.1 The Parties
	2.2 Fair Computation

	3 Lower Bound
	4 An Optimal Protocol
	4.1 Preliminaries
	4.2 Protocol Description

	5 Related Work
	5.1 Optimistic Fair Computation
	5.2 Optimistic Fair Exchange
	5.3 Optimal Optimistic Schemes
	5.4 The Shortest Permutation Sequence

	References

	Near-Optimal Low-Congestion Shortcuts on Bounded Parameter Graphs
	1 Introduction
	1.1 Low-Congestion Shortcuts

	2 Related Work
	3 Preliminaries
	3.1 CONGEST Model
	3.2 Tree-Restricted Shortcuts
	3.3 Construction and Application of Tree-Restricted Shortcuts

	4 Summary of Technical Results
	5 Pathwidth Bounded Graphs
	6 Treewidth Bounded Graphs
	7 Lower Bound for Pathwidth Bounded Graphs
	8 Genus Bounded Graphs
	8.1 Graph Extension
	8.2 Optimal Shortcut for Genus-g Graphs
	8.3 Lower Bounds for Genus Bounded Graphs

	References

	Anonymity-Preserving Failure Detectors
	1 Introduction
	2 Computational Model
	3 Anonymity-Preserving Failure Detectors
	4 A C-based Consensus Protocol
	5 C Is Necessary to Solve Consensus
	6 Conclusion
	References

	Certified Universal Gathering in for Oblivious Mobile Robots
	1 Introduction
	2 A Formal Model to Prove Robot Protocols
	3 Case Study: A Universal Gathering for Mobile Oblivious Robots
	3.1 Setting and Protocol
	3.2 Formal Description, and Key Points to Prove Correctness

	4 Discussion and Perspectives
	References

	Non-local Probes Do Not Help with Many Graph Problems
	1 Introduction
	1.1 Trivial: From Message-Passing to Probe-Query
	1.2 Impossible: From Probe-Query to Message-Passing
	1.3 Our Contribution: Remote Probes Are of Little Use
	1.4 Related Work
	1.5 Overview

	2 Preliminaries
	2.1 LOCAL: Message-Passing Algorithms
	2.2 ParallelDecTree: Parallel Decision Trees
	2.3 CentLOCAL: Centralised Local Algorithms
	2.4 NICE Graph Problems

	3 Simulating Probes in the LOCAL Model
	4 Centralised Local Model and Parallel Decision Trees
	4.1 Query-Order-Oblivious vs. Stateless CentLOCAL Algorithms
	4.2 CentLOCAL vs. LOCAL

	5 Localizing Stateless CentLocal Algorithms
	5.1 Preliminaries
	5.2 Proof of Theorem 3

	References

	Are Byzantine Failures Really Different from Crash Failures?
	1 Introduction
	2 Computation Models and Tasks
	3 Structure of the Simulation Algorithms
	4 BG in the Byzantine Message-Passing Model
	4.1 Safe Agreement in BAMPn,t[t<n/3]: Definition
	4.2 Safe Agreement in BAMPn,t[t<n/3]: Algorithm
	4.3 Simulation Algorithm in BAMPn,t[t<n/3]

	5 Implications of the Simulation
	References

	Sublinear-Space Distance Labeling Using Hubs
	1 Introduction
	1.1 Related Work
	1.2 Our Results and Organization of the Paper

	2 Preliminaries
	3 Exact Distance Labeling in Sparse Graphs
	3.1 Graphs of Bounded Maximum Degree
	3.2 Graphs of Bounded Average Degree

	4 2-Additive Distance Labeling in General Graphs
	References

	Online Balanced Repartitioning
	1 Introduction
	2 Related Work
	3 Online Rematching
	4 Lower Bounds for Online Balanced Repartitioning
	5 CREP Algorithm: An O(k logk) Upper Bound
	6 Conclusion
	References

	Lower Bound on the Step Complexity of Anonymous Binary Consensus
	1 Introduction
	2 Model of Computation
	3 Lower Bound Proof
	4 Discussion
	References

	Opacity vs TMS2: Expectations and Reality
	1 Introduction
	2 Preliminaries
	3 The Cost of Reverse-Commit Anti-Dependency
	4 TL2-RCAD: a TM implementation that allows RC-anti-dependency
	5 Evaluation
	6 Related Work
	7 Conclusion
	References

	On Composition and Implementation of Sequential Consistency
	1 Introduction
	2 Sequential Consistency and Composability
	2.1 Definitions
	2.2 From Linearizability to Sequential Consistency
	2.3 Round-Based Computations

	3 Implementation of a Sequentially Consistent Memory
	3.1 Computation Model
	3.2 Single-Writer/Multi-Reader Registers and Snapshot Memory
	3.3 The Proposed Algorithm
	3.4 Complexity

	4 Conclusion
	References

	k-Abortable Objects: Progress Under High Contention
	1 Introduction
	2 Model Sketch
	3 Relation to k-Lock Freedom
	4 k-Abortable Universal Construction
	4.1 Details of the Algorithm
	4.2 Correctness Proof Sketch
	4.3 Running Time

	5 Lower Bound
	6 Concluding Remarks
	References

	Linearizability of Persistent Memory Objects Under a Full-System-Crash Failure Model
	1 Introduction
	2 Abstract Models
	3 Concrete Models
	3.1 Basic Memory Model
	3.2 Extensions for Persistence
	3.3 Liveness

	4 Implementations
	4.1 Persist Points
	4.2 Practical Applications

	5 Conclusion
	References

	Buffer Size for Routing Limited-Rate Adversarial Traffic
	1 Introduction
	1.1 More Related Work

	2 Model
	3 The Forward-If-Empty Algorithm
	3.1 Algorithm
	3.2 Analysis
	3.3 Existential Optimality

	4 Local Downhill Algorithms
	4.1 Local vs. Centralized Algorithms
	4.2 Downhill vs. Greedy

	5 Conclusion
	References

	Distributed Testing of Excluded Subgraphs
	1 Introduction
	1.1 Our Results
	1.2 Related Work

	2 Detecting Small Graphs Using a DFS Approach
	3 Limits of the DFS Approach
	4 Detecting Small Graphs Using a BFS Approach
	5 Limits of the BFS Approach
	6 Conclusion and Further Work
	References

	How to Discreetly Spread a Rumor in a Crowd
	1 Introduction
	2 Related Work
	3 Preliminaries
	4 Model and Problem
	5 Rumor Spreading with Respect to Graph Properties
	5.1 Optimal Rumor Spreading for a Given Vertex Expansion
	5.2 Optimal Rumor Spreading for a Given Graph Conductance

	6 PUSH-PULL with b=0
	7 PUSH-PULL with b=1
	References

	Depth of a Random Binary Search Tree with Concurrent Insertions
	1 Introduction
	2 Related Work
	3 Problem Statement
	4 An Upper Bound on Expected Average Depth
	4.1 A Matching Lower Bound

	5 A Lower Bound on Expected Height
	6 Conclusion
	A Background on Martingales
	References

	Priority Mutual Exclusion: Specification and Algorithm
	1 Introduction
	2 Specification of Priority Mutual Exclusion
	2.1 Priority Entry
	2.2 Wait-Free Progress for Dominator

	3 Stronger Version of Priority Mutual Exclusion
	4 Discussion of Previous Research
	4.1 Algorithms of Markatos and Craig
	4.2 A Second Algorithm of Markatos
	4.3 Johnson and Harathi's Algorithm
	4.4 Jayanti's Algorithm

	5 The Auxiliary Lock object
	5.1 Specification of a Lock Object
	5.2 Implementing the Lock Object

	6 The Algorithm
	6.1 Proof of Mutual Exclusion and Livelock Freedom

	References

	Information Spreading in Dynamic Networks Under Oblivious Adversaries
	1 Introduction
	1.1 Our Contributions

	2 An (n1.5) Lower Bound for Rand-Diff
	2.1 Lower Bound Under an Invasive Adversary
	2.2 Lower Bound Under an Oblivious Adversary
	2.3 Lower Bound for Symmetric Knowledge-Based Algorithms

	3 Analysis of Rand-Diff Under a Paths-Respecting Adversary
	3.1 The Paths-Respecting Model
	3.2 Near-Uniform Length Paths and at Most One Inactive Edge per Path
	3.3 Removing Restriction on Path Lengths and Inactive Edges per Path

	4 Centralized k-gossip in min{nk, ((n+k)n)} rounds
	4.1 Random Load Balancing and Greedy Token Exchange
	4.2 n-broadcast
	4.3 n-gossip

	5 Concluding Remarks
	References

	Non-Bayesian Learning in the Presence of Byzantine Agents
	1 Introduction
	2 Problem Formulation
	3 Byzantine Consensus
	3.1 Algorithm Byz-Iter [25]
	3.2 Correctness of Algorithm Byz-Iter
	3.3 Matrix Representation [25]

	4 Byzantine Fault-Tolerant Non-Bayesian Learning
	4.1 Identifiability
	4.2 Convergence Results

	5 Conclusion
	References

	Asynchronous Computability Theorems for t-Resilient Systems
	1 Introduction
	2 Elements of Combinatorial Topology
	3 Contributions
	4 Delayed Snapshot Protocol
	5 Protocol Complex Properties
	6 Single-Round Waiting
	7 t-ACT Theorems
	7.1 Discrete t-ACT
	7.2 Continuous t-ACT

	8 Applications
	9 Related Work
	10 Remarks
	References

	Upper Bounds for Boundless Tagging with Bounded Objects
	1 Introduction
	2 Taggable Objects
	2.1 Example Applications
	2.2 Extended Specification
	2.3 Main Result

	3 TLSA Implementation
	3.1 Managing Tags
	3.2 Load and Store

	4 Conclusion
	References

	Brief Announcements
	Brief Announcement:Local Distributed Verification
	1 The Framework
	2 Our Contributions
	References

	Brief Announcement: A Step Optimal Implementation of Large Single-Writer Registers
	References

	Brief Announcement: Deterministic MST Sparsification in the Congested Clique
	1 Introduction
	2 Deterministic MST Sparsification
	References

	Brief Announcement: Symmetricity in 3D-space --- Characterizing Formable Patterns by Synchronous Mobile Robots
	References

	Brief Announcement: Mending the Big-Data Missing Information
	References

	Brief Announcement: Set-Consensus Collections are Decidable
	1 Motivation
	2 Results
	3 Conclusion
	References

	Brief Announcement: A Log*-Time Local MDS Approximation Scheme for Bounded Genus Graphs
	1 Local MDS Approximation Scheme
	References

	Brief Announcement: On the Space Complexity of Conflict Detector Objects
	References

	Brief Announcement: Public Vs. Private Randomness in Simultaneous Multi-party Communication Complexity
	1 Introduction
	2 Lower Bound
	3 Tight Upper Bound for AllEq
	References

	Brief Announcement: Beeping a Maximal Independent Set Fast
	1 Introduction
	2 Models and Definitions
	3 Algorithms
	4 Local Analysis of our MIS Algorithm
	References

	Author Index

