Distributed Freeze-Tag: How to efficiently wake up a swarm of sleeping robots

Cyril Gavoille, Nicolas Hanusse, Gabriel Le Bouder, Taïssir Marcé

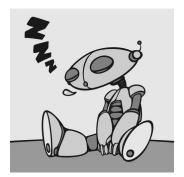
PODC '25 – Huatulco

June 19, 2025

Sleeping Model

To save energy:

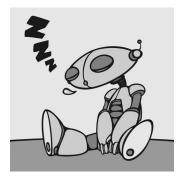
- Put devices into a sleeping mode,
- Schedule awakening period.



Sleeping Model

To save energy:

- Put devices into a sleeping mode,
- Schedule awakening period.
- \Rightarrow Awakening schedule pre-computed



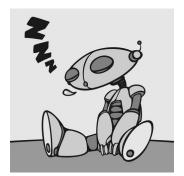
Sleeping Model

To save energy:

- Put devices into a sleeping mode,
- Schedule awakening period.
- \Rightarrow Awakening schedule pre-computed

Long-Time Sleeping

Devices are put into sleep for an unknown duration: until one event requires them to be activated.



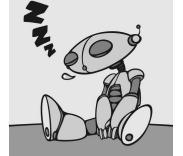
Sleeping Model

To save energy:

- Put devices into a sleeping mode,
- Schedule awakening period.
- \Rightarrow Awakening schedule pre-computed

Long-Time Sleeping

Devices are put into sleep for an unknown duration: until one event requires them to be activated.



 \Rightarrow Devices must be manually awaken

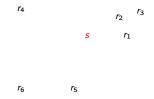
Input:

• *n* sleeping robots in the plane

r₆ r₅

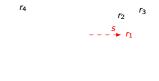
Input:

- *n* sleeping robots in the plane
- robot s, initially awake



Input:

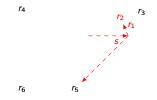
- *n* sleeping robots in the plane
- robot s, initially awake



r₆ r₅

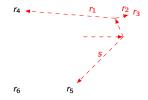
Input:

- *n* sleeping robots in the plane
- robot s, initially awake



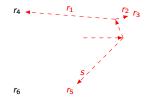
Input:

- n sleeping robots in the plane
- robot s, initially awake



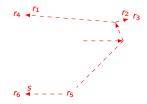
Input:

- n sleeping robots in the plane
- robot s, initially awake



Input:

- n sleeping robots in the plane
- robot s, initially awake



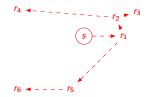
Input:

- *n* sleeping robots in the plane
- robot s, initially awake

 \rightarrow awake robots can move and wake up sleeping robots

Output:

• A wake-up tree t rooted at s



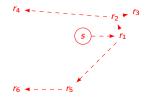
Input:

- *n* sleeping robots in the plane
- robot s, initially awake

 \rightarrow awake robots can move and wake up sleeping robots

Output:

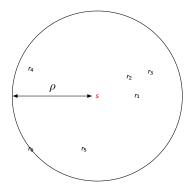
• A wake-up tree t rooted at s



[Abel, Akitiya, Yu, FWCG '17]

Finding optimal wake-up tree t^* is NP-hard.

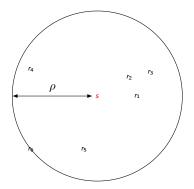
r₆ r₅



[Abel, Akitiya, Yu, FWCG '17]

Finding optimal wake-up tree t^* is NP-hard.

Remark: depth of t^* is at least ρ .



[Abel, Akitiya, Yu, FWCG '17]

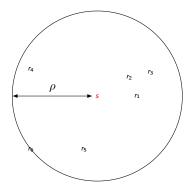
Finding optimal wake-up tree t^* is NP-hard.

Remark: depth of t^* is at least ρ .

[Bonichon, Gavoille, Hanusse, Odak, CCCG '24]

Wake-up tree with depth at most 4.63ρ can be computed in time O(n).

 \Rightarrow linear approximation of the optimal: \checkmark



[Abel, Akitiya, Yu, FWCG '17]

Finding optimal wake-up tree t^* is NP-hard.

Remark: depth of t^* is at least ρ .

[Bonichon, Gavoille, Hanusse, Odak, CCCG '24]

Wake-up tree with depth at most 4.63ρ can be computed in time O(n).

 \Rightarrow linear approximation of the optimal: \checkmark

Conjecture [B. Casteigts, G. H. DISC '24]

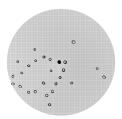
Worst case: 4 robots, positioned in a square. Depth of t^* is $(1 + 2\sqrt{2})\rho \simeq 3.83\rho$.

Proven for $n \notin [8, 280]$, and for convex positioned robots.

Distributed Setting

Distributed Setting

Framework: no global knowledge & no global computation.

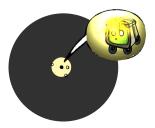


• *n* initially sleeping robots, source *s*

Distributed Setting

- *n* initially sleeping robots, source *s*
- No central knowledge: positions of sleeping robots are unknown

Distributed Setting



- *n* initially sleeping robots, source *s*
- No central knowledge: positions of sleeping robots are unknown
- Detection (snapshot) with constant radius
- No distant communication

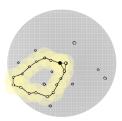
Distributed Setting

- *n* initially sleeping robots, source *s*
- No central knowledge: positions of sleeping robots are unknown
- Detection (snapshot) with constant radius
- No distant communication
- Robots can progressively wake-up the entire swarm

Distributed Setting

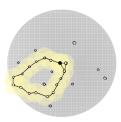
- *n* initially sleeping robots, source *s*
- No central knowledge: positions of sleeping robots are unknown
- Detection (snapshot) with constant radius
- No distant communication
- Robots can progressively wake-up the entire swarm

Distributed Setting



- *n* initially sleeping robots, source *s*
- No central knowledge: positions of sleeping robots are unknown
- Detection (snapshot) with constant radius
- No distant communication
- Robots can progressively wake-up the entire swarm or can they ?

Distributed Setting



- *n* initially sleeping robots, source *s*
- No central knowledge: positions of sleeping robots are unknown
- Detection (snapshot) with constant radius
- No distant communication
- Robots can progressively wake-up the entire swarm or can they ?
- Robots may need to explore further than the unit-disk graph.

ℓ -disk graph

$$\{r_1,r_2\}\in E\iff |r_1r_2|\leq \ell$$

ℓ -disk graph

$$\{r_1,r_2\}\in E\iff |r_1r_2|\leq \ell$$

Connectivity threshold

Connectivity threshold $\ell^* \equiv$ smallest $\ell > 0$ such that the ℓ -disk graph is connected.

Hypothesis: the algorithm is given an upper bound ℓ on ℓ^* .

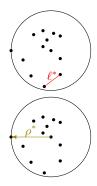
$\ell\text{-disk graph}$

$$\{r_1,r_2\}\in E\iff |r_1r_2|\leq \ell$$

Connectivity threshold

Connectivity threshold $\ell^* \equiv$ smallest $\ell > 0$ such that the ℓ -disk graph is connected.

Hypothesis: the algorithm is given an upper bound ℓ on ℓ^* . Bonus Hypothesis: the algorithm is given an upper bound ρ on the radius ρ^* .



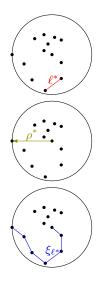
$\ell\text{-disk graph}$

$$\{r_1,r_2\}\in E\iff |r_1r_2|\leq \ell$$

Connectivity threshold

Connectivity threshold $\ell^* \equiv$ smallest $\ell > 0$ such that the ℓ -disk graph is connected.

Hypothesis: the algorithm is given an upper bound ℓ on ℓ^* . Bonus Hypothesis: the algorithm is given an upper bound ρ on the radius ρ^* . Additional notation: ξ_{ℓ} is the eccentricity of the ℓ -disk graph.



Contribution

Energy	Makespan	Lower Bound
unconstrained	$O(ho+\ell^2\log{(ho/\ell)})$	$\Omega(ho+\ell^2\log{(ho/\ell)})$
$<\pi(\ell^2-1)/2$	-	unfeasible
$\Theta(\ell^2)$	$O(\xi_\ell \cdot \ell)$	$\Omega(\xi_\ell+\ell^2\log{(\xi_\ell/\ell)})$
$\Theta(\ell^2 \log \ell)$	$O(\xi_\ell + \ell^2 \log(\xi_\ell/\ell))$	$\Delta L(\zeta_{\ell} + \varepsilon \log (\zeta_{\ell} / \varepsilon))$

Table: Complexity of the makespan for the dFTP given (ℓ, ρ, n) .

 $\rho \equiv \text{radius}$ $\ell \equiv \text{connectivity threshold}$ $\xi_{\ell} \equiv \text{eccentricity of the } \ell\text{-disk graph}$

Contribution

Energy	Makespan	Lower Bound
unconstrained	$O(ho+\ell^2\log{(ho/\ell)})$	$\Omega(ho+\ell^2\log{(ho/\ell)})$
$<\pi(\ell^2-1)/2$	-	unfeasible
$\Theta(\ell^2)$	$O(\xi_\ell \cdot \ell)$	$\Omega(\xi_\ell+\ell^2\log{(\xi_\ell/\ell)})$
$\Theta(\ell^2 \log \ell)$	$O(\xi_\ell + \ell^2 \log(\xi_\ell/\ell))$	$(\zeta_{\ell} + \varepsilon) \log (\zeta_{\ell} / \varepsilon)$

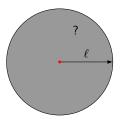
Table: Complexity of the makespan for the dFTP given (ℓ, ρ, n) .

 $\rho \equiv \text{radius}$ $\ell \equiv \text{connectivity threshold}$ $\xi_{\ell} \equiv \text{eccentricity of the } \ell\text{-disk graph}$

Comparison with the centralized setting

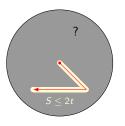
- linear in ρ
- requires additional term $O(\ell^2 \log \rho / \ell)$

Goal: Wake-up new robots



<u>Goal:</u> Wake-up new robots Find

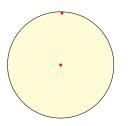
Finding one robot in the *l*-disk requires exploring



<u>Goal:</u> Wake-up new robots Find

> Finding one robot in the ℓ-disk requires exploring a surface of O(ℓ²).

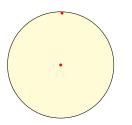
<u>Goal:</u> Wake-up new robots Find



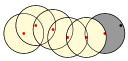
- Finding one robot in the ℓ-disk requires exploring a surface of O(ℓ²).
- Takes time $O(\ell^2)$ to a single robot... and then they were 2.

Recruitment

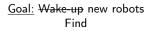
<u>Goal:</u> Wake-up new robots Find

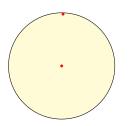


- Finding one robot in the ℓ-disk requires exploring a surface of O(ℓ²).
- Takes time $O(\ell^2)$ to a single robot... and then they were 2.
- Can be iterated (DFS)

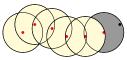


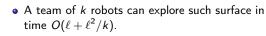
Recruitment

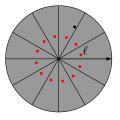




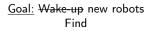
- Finding one robot in the ℓ-disk requires exploring a surface of O(ℓ²).
- Takes time $O(\ell^2)$ to a single robot... and then they were 2.
- Can be iterated (DFS)

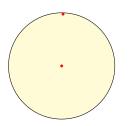




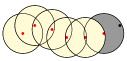


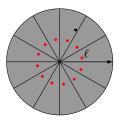
Recruitment





- Finding one robot in the ℓ-disk requires exploring a surface of O(ℓ²).
- Takes time $O(\ell^2)$ to a single robot... and then they were 2.
- Can be iterated (DFS)





• A team of k robots can explore such surface in time $O(\ell + \ell^2/k)$.

First Team

 \Rightarrow it takes time $\sum_{k=1}^{4\ell} (\ell + \ell^2/k) = O(\ell^2 \log \ell)$ to wake up a team of size 4ℓ starting with 1 robot.

Introduction

Distributed Freeze-Tag Problem

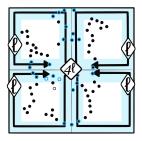
Geometric Separators

Starting with a team of size 4ℓ

Divide and Conquer

(Recursively) divide the surface assigned to a given team, using geometric separators of width ℓ .

 $\bullet\,$ Geometric separator $\sim\,$ cut of the $\ell\text{-disk}$ graph



Introduction

Distributed Freeze-Tag Problem

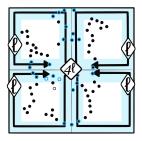
Geometric Separators

Starting with a team of size 4ℓ

Divide and Conquer

(Recursively) divide the surface assigned to a given team, using geometric separators of width ℓ .

- $\bullet\,$ Geometric separator $\sim\,$ cut of the $\ell\text{-disk}$ graph
- Detects if a large area is empty (since $\ell \geq \ell^*$)



Introduction

Distributed Freeze-Tag Problem

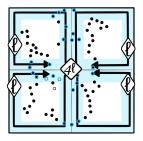
Geometric Separators

Starting with a team of size 4ℓ

Divide and Conquer

(Recursively) divide the surface assigned to a given team, using geometric separators of width ℓ .

- $\bullet\,$ Geometric separator $\sim\,$ cut of the $\ell\text{-disk}$ graph
- Detects if a large area is empty (since $\ell \geq \ell^*$)
- Breaks the ℓ -disk graph $\Rightarrow o(\xi)$ possible



Distributed Freeze-Tag Problem

Algorithm

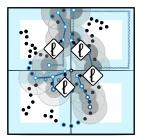
Geometric Separators

Starting with a team of size 4ℓ

Divide and Conquer

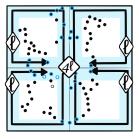
(Recursively) divide the surface assigned to a given team, using *geometric separators* of width ℓ .

- $\bullet\,$ Geometric separator $\sim\,$ cut of the $\ell\text{-disk}$ graph
- Detects if a large area is empty (since $\ell \geq \ell^*$)
- Breaks the ℓ -disk graph $\Rightarrow o(\xi)$ possible



Rebuild teams: $\ell \to 4\ell$

• Recruiting 3*l* additional robots in its square can lead to a "big" increase of the distance to the sleeping robots round after round.



Distributed Freeze-Tag Problem

Algorithm

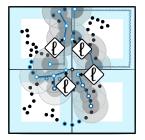
Geometric Separators

Starting with a team of size 4ℓ

Divide and Conquer

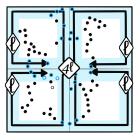
(Recursively) divide the surface assigned to a given team, using *geometric separators* of width ℓ .

- $\bullet\,$ Geometric separator $\sim\,$ cut of the $\ell\text{-disk}$ graph
- Detects if a large area is empty (since $\ell \geq \ell^*$)
- Breaks the ℓ -disk graph $\Rightarrow o(\xi)$ possible

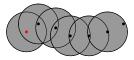


Rebuild teams: $\ell \to 4\ell$

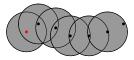
- Recruiting 3*l* additional robots in its square can lead to a "big" increase of the distance to the sleeping robots round after round.
- Instead, each team makes sure that 4ℓ robots have been awaken in its region.

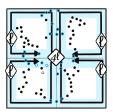


1 - Recruit a team of 4ℓ robots and position it in the center of the region



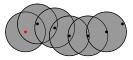
1 - Recruit a team of 4ℓ robots and position it in the center of the region

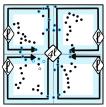




2 - Constitute 4 teams of size ℓ and explore the separator of the sub-square.

1 - Recruit a team of 4ℓ robots and position it in the center of the region

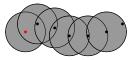


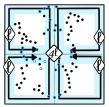


2 - Constitute 4 teams of size ℓ and explore the separator of the sub-square.

3 - Each team recruits new robots until 4 ℓ robots initially positioned in the sub-square are awaken.

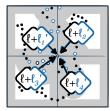
1 - Recruit a team of 4ℓ robots and position it in the center of the region





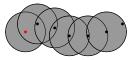
2 - Constitute 4 teams of size ℓ and explore the separator of the sub-square.

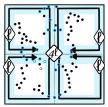
3 - Each team recruits new robots until 4ℓ robots initially positioned in the sub-square are awaken.



4 - All 4 teams meet in the center of the original region.

1 - Recruit a team of 4ℓ robots and position it in the center of the region

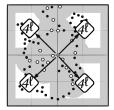




2 - Constitute 4 teams of size ℓ and explore the separator of the sub-square.

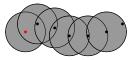
3 - Each team recruits new robots until 4ℓ robots initially positioned in the sub-square are awaken.

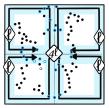
4 - All 4 teams meet in the center of the original region.



5 - Every robot goes to its origin region

1 - Recruit a team of 4ℓ robots and position it in the center of the region





2 - Constitute 4 teams of size ℓ and explore the separator of the sub-square.

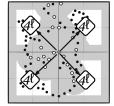
3 - Each team recruits new robots until 4ℓ robots initially positioned in the sub-square are awaken.

4 - All 4 teams

of the original

region.

meet in the center



5 - Every robot goes to its origin region and GOTO 2.

Non-optimality

First recruitment $\in O(\ell^2 \log \ell)$

Non-optimality

First recruitment $\in O(\ell^2 \log \ell) \in \omega(\ell^2 \log \rho / \ell)$ if $\ell \sim \rho$

Non-optimality

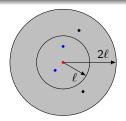
First recruitment
$$\in O(\ell^2 \log \ell) \in \omega(\ell^2 \log \rho / \ell)$$
 if $\ell \sim
ho$

Depth-First Sampling

Non-optimality

First recruitment
$$\in O(\ell^2 \log \ell) \in \omega(\ell^2 \log
ho/\ell)$$
 if $\ell \sim
ho$

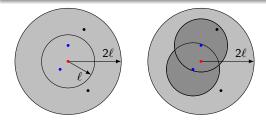
Depth-First Sampling



Non-optimality

First recruitment
$$\in O(\ell^2 \log \ell) \in \omega(\ell^2 \log
ho/\ell)$$
 if $\ell \sim
ho$

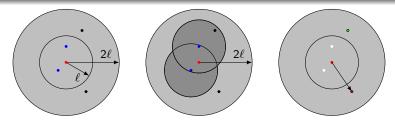
Depth-First Sampling



Non-optimality

First recruitment
$$\in O(\ell^2 \log \ell) \in \omega(\ell^2 \log
ho/\ell)$$
 if $\ell \sim
ho$

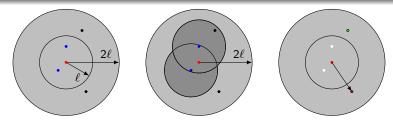
Depth-First Sampling



Non-optimality

First recruitment
$$\in O(\ell^2 \log \ell) \in \omega(\ell^2 \log
ho/\ell)$$
 if $\ell \sim
ho$

Depth-First Sampling



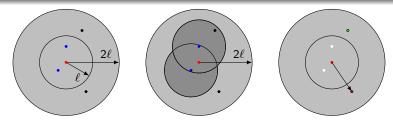
- Two recruited robots are at distance at least ℓ .
- There exists at most $O(
 ho^2/\ell^2)$ such robots

Non-optimality

First recruitment
$$\in O(\ell^2 \log \ell) \in \omega(\ell^2 \log
ho/\ell)$$
 if $\ell \sim
ho$

Depth-First Sampling

To achieve optimality: take advantage of the recruitment process to explore an area as large as possible, with early termination whenever $\ell^3 > \rho^2$.



- Two recruited robots are at distance at least ℓ .
- There exists at most $O(\rho^2/\ell^2)$ such robots

Theorem

The execution of Phase 1 with this procedure takes time $O(
ho+\ell^2\log
ho/\ell)$

Conclusion

Results

Energy	Makespan	Lower Bound
unconstrained	$O(ho+\ell^2\log{(ho/\ell)})$	$\Omega(ho+\ell^2\log{(ho/\ell)})$
$<\pi(\ell^2-1)/2$	-	unfeasible
$\Theta(\ell^2)$	$O(\xi_\ell \cdot \ell)$	$\Omega(\xi_\ell + \ell^2 \log{(\xi_\ell/\ell)})$
$\Theta(\ell^2 \log \ell)$	$O(\xi_\ell + \ell^2 \log(\xi_\ell/\ell))$	

Conclusion

Results

Energy	Makespan	Lower Bound
unconstrained	$O(ho+\ell^2\log{(ho/\ell)})$	$\Omega(ho+\ell^2\log{(ho/\ell)})$
$<\pi(\ell^2-1)/2$	-	unfeasible
$\Theta(\ell^2)$	$O(\xi_\ell \cdot \ell)$	$\Omega(\xi_\ell + \ell^2 \log{(\xi_\ell/\ell)})$
$\Theta(\ell^2 \log \ell)$	$O(\xi_\ell + \ell^2 \log(\xi_\ell/\ell))$	

Further works

- $\bullet\,$ Without the knowledge of $\ell\,$
- Efficient algorithm with $\Theta(\ell^2)$ energy, or more precise lower bound
- Several sources with different spacial and/or temporal reference
- Under asynchronous assumptions
- Minimization of the global energy

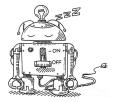
Conclusion

Results

Energy	Makespan	Lower Bound
unconstrained	$O(ho+\ell^2\log{(ho/\ell)})$	$\Omega(ho+\ell^2\log{(ho/\ell)})$
$<\pi(\ell^2-1)/2$	-	unfeasible
$\Theta(\ell^2)$	$O(\xi_\ell \cdot \ell)$	$\Omega(\xi_\ell + \ell^2 \log{(\xi_\ell/\ell)})$
$\Theta(\ell^2 \log \ell)$	$O(\xi_\ell + \ell^2 \log(\xi_\ell/\ell))$	

Further works

- $\bullet\,$ Without the knowledge of $\ell\,$
- Efficient algorithm with $\Theta(\ell^2)$ energy, or more precise lower bound
- Several sources with different spacial and/or temporal reference
- Under asynchronous assumptions
- Minimization of the global energy



Thanks!