Introduction
@000

Distributed Freeze-Tag: How to efficiently wake up a swarm of

sleeping robots

Cyril Gavoille, Nicolas Hanusse, Gabriel Le Bouder, Taissir Marcé
PODC '25 — Huatulco

June 19, 2025

universite
*BORDEAUX LC'BRI

1/12

Introduction
[e] le]e}

Context: Energy Saving

Sleeping Model

To save energy:
@ Put devices into a sleeping mode,

@ Schedule awakening period.

2/12

Introduction
[e] le]e}

Context: Energy Saving

Sleeping Model

To save energy:

@ Put devices into a sleeping mode,

@ Schedule awakening period.

= Awakening schedule pre-computed

2/12

Introduction
[e] le]e}

Context: Energy Saving

Sleeping Model

To save energy:
@ Put devices into a sleeping mode,

@ Schedule awakening period.

= Awakening schedule pre-computed

Long-Time Sleeping

Devices are put into sleep for an unknown
duration: until one event requires them to be
activated.

2/12

Introduction
[e] le]e}

Context: Energy Saving

Sleeping Model

To save energy:
@ Put devices into a sleeping mode,

@ Schedule awakening period.

= Awakening schedule pre-computed

Long-Time Sleeping

Devices are put into sleep for an unknown
duration: until one event requires them to be
activated.

= Devices must be manually awaken

2/12

Introduction
[e]e] e}

The Freeze-Tag Problem [Arkin et al. SODA '02]

Input:

@ n sleeping robots in the plane

ra r-
r 3

rn

re s

3/12

Introduction
[e]e] e}

The Freeze-Tag Problem [Arkin et al. SODA '02]

Input:
@ n sleeping robots in the plane

@ robot s, initially awake

ra r-
r 3

re s

3/12

Introduction
[e]e] e}

The Freeze-Tag Problem [Arkin et al. SODA '02]

Input:
@ n sleeping robots in the plane

@ robot s, initially awake

ra r-
r 3

s
-=—=3n

re s

— awake robots can move and
wake up sleeping robots

3/12

Introduction
[e]e] e}

The Freeze-Tag Problem [Arkin et al. SODA '02]

Input:
@ n sleeping robots in the plane

@ robot s, initially awake

ra r

1

re s

— awake robots can move and
wake up sleeping robots

3/12

Introduction
[e]e] e}

The Freeze-Tag Problem [Arkin et al. SODA '02]

Input:
@ n sleeping robots in the plane

@ robot s, initially awake

ra <— — _ n r2 r

i e o

\

—_—

re s

— awake robots can move and
wake up sleeping robots

3/12

Introduction
[e]e] e}

The Freeze-Tag Problem [Arkin et al. SODA '02]

Input:
@ n sleeping robots in the plane

@ robot s, initially awake

rn r>
<__<__“/'r3

ra <- - _

\

—_—

re I's

— awake robots can move and
wake up sleeping robots

3/12

Introduction
[e]e] e}

The Freeze-Tag Problem [Arkin et al. SODA '02]

Input:
@ n sleeping robots in the plane

@ robot s, initially awake

n
ra <— — _ r r

T T - ¥

\

—_—
]
,
,
,
7/
,
,

s .
e «—-—-—--1I5

— awake robots can move and
wake up sleeping robots

3/12

Introduction
[e]e] e}

The Freeze-Tag Problem [Arkin et al. SODA '02]

Input:
@ n sleeping robots in the plane

@ robot s, initially awake

ra r-
r 3

re s

— awake robots can move and
wake up sleeping robots

Output:

@ A wake-up tree t rooted at s

< - _ _ r
N

»
©-~n
:
/
/
,

s
s

s
e <« —-——-—--15

3/12

Introduction
[e]e] e}

The Freeze-Tag Problem [Arkin et al. SODA '02]

Input:
@ n sleeping robots in the plane

@ robot s, initially awake

ra r-
r 3

re s

— awake robots can move and
wake up sleeping robots

Output:

@ A wake-up tree t rooted at s

< - _ _ r
N

»
©-~n
:
/
/
,

s
s

s
e <« —-——-—--15

— Optimization problem:
Performance = weighted depth of t
= makespan (as small as possible)

3/12

Introduction
[e]e]e] }

Bounds for the centralized FTP

[Abel, Akitiya, Yu, FWCG '17]
Finding optimal wake-up tree t* is NP-hard.

ra s

r2

e s

4/12

Introduction
[e]e]e] }

Bounds for the centralized FTP

[Abel, Akitiya, Yu, FWCG '17]
Finding optimal wake-up tree t* is NP-hard.

Remark: depth of t* is at least p.

4/12

Introduction
[e]e]e] }

Bounds for the centralized FTP

[Abel, Akitiya, Yu, FWCG '17]
Finding optimal wake-up tree t* is NP-hard.

Remark: depth of t* is at least p.

[Bonichon, Gavoille, Hanusse, Odak, CCCG '24]

Wake-up tree with depth at most 4.63p can be
computed in time O(n).

= linear approximation of the optimal: v~

4/12

Introduction
[e]e]e] }

Bounds for the centralized FTP

[Abel, Akitiya, Yu, FWCG '17]
Finding optimal wake-up tree t* is NP-hard.

Remark: depth of t* is at least p.

[Bonichon, Gavoille, Hanusse, Odak, CCCG '24]

Wake-up tree with depth at most 4.63p can be
computed in time O(n).

= linear approximation of the optimal: v~

Conjecture [B. Casteigts, G. H. DISC '24]

Worst case: 4 robots, positioned in a square.
Depth of t* is (1 +2v/2)p ~ 3.83p.

Proven for n ¢ [8,280], and for convex
positioned robots.

4/12

Distributed Freeze-Tag Problem
000

Distributed Freeze-Tag

Distributed Setting

Framework: no global knowledge & no global computation.

5/12

Distributed Freeze-Tag Problem
000

Distributed Freeze-Tag

Distributed Setting

Framework: no global knowledge & no global computation.

@ n initially sleeping robots, source s

CELEG
°
i o 9 &
° ° o
°
%4 ° o
do: o

5/12

Distributed Freeze-Tag Problem
000

Distributed Freeze-Tag

Distributed Setting

Framework: no global knowledge & no global computation.

@ n initially sleeping robots, source s

@ No central knowledge: positions of
sleeping robots are unknown

5/12

Distributed Freeze-Tag Problem
000

Distributed Freeze-Tag

Distributed Setting

Framework: no global knowledge & no global computation.

n initially sleeping robots, source s

No central knowledge: positions of
sleeping robots are unknown

@ Detection (snapshot) with constant radius

@ No distant communication

5/12

Distributed Freeze-Tag Problem
000

Distributed Freeze-Tag

Distributed Setting

Framework: no global knowledge & no global computation.

n initially sleeping robots, source s

No central knowledge: positions of
sleeping robots are unknown

@ Detection (snapshot) with constant radius

@ No distant communication

Robots can progressively wake-up the
entire swarm

5/12

Distributed Freeze-Tag Problem
000

Distributed Freeze-Tag

Distributed Setting

Framework: no global knowledge & no global computation.

n initially sleeping robots, source s

No central knowledge: positions of
sleeping robots are unknown

@ Detection (snapshot) with constant radius

@ No distant communication

Robots can progressively wake-up the
entire swarm

5/12

Distributed Freeze-Tag Problem
000

Distributed Freeze-Tag

Distributed Setting

Framework: no global knowledge & no global computation.

n initially sleeping robots, source s

No central knowledge: positions of
sleeping robots are unknown

4 @ Detection (snapshot) with constant radius

o @ No distant communication

Robots can progressively wake-up the
entire swarm or can they ?

5/12

Distributed Freeze-Tag Problem

@00

Distributed Freeze-Tag

Distributed Setting

Framework: no global knowledge & no global computation.

n initially sleeping robots, source s

No central knowledge: positions of
sleeping robots are unknown

Detection (snapshot) with constant radius
No distant communication

Robots can progressively wake-up the
entire swarm or can they ?

Robots may need to explore further than
the unit-disk graph.

5/12

Distributed Freeze-Tag Problem
(o] le}

Notations

{-disk graph
{n,n} € E < |nn|</¢

6/12

Distributed Freeze-Tag Problem
(o] le}

Notations

{-disk graph
{n,n} € E < |nn|</¢

Connectivity threshold

Connectivity threshold ¢* =
smallest ¢ > 0 such that the ¢-disk
graph is connected.

Hypothesis: the algorithm is given
an upper bound ¢ on £*.

6/12

Distributed Freeze-Tag Problem
(o] le}

Notations

{-disk graph
{n,n} € E < |nn|</¢

Connectivity threshold

Connectivity threshold ¢* =
smallest ¢ > 0 such that the ¢-disk
graph is connected.

Hypothesis: the algorithm is given
an upper bound ¢ on £*.

Bonus Hypothesis: the algorithm is
given an upper bound p on the
radius p*.

6/12

Distributed Freeze-Tag Problem
(o] le}

Notations

{-disk graph
{n,n} € E < |nn|</¢

Connectivity threshold

Connectivity threshold ¢* =
smallest ¢ > 0 such that the ¢-disk
graph is connected.

Hypothesis: the algorithm is given
an upper bound ¢ on £*.

Bonus Hypothesis: the algorithm is
given an upper bound p on the
radius p*.

Additional notation: & is the
eccentricity of the ¢-disk graph.

6/12

Contribution

Distributed Freeze-Tag Problem

[ele] J

Energy

|

Makespan

|

Lower Bound

unconstrained

O(p + £ log (p/¥))

Q(p + 2 log (p/1))

<w(?-1)/2 - unfeasible
o(£) O(& -) 2
o hoa?) | Ot + Flogleny | & £ 1E /)

Table: Complexity of the makespan for the dFTP given (¢, p, n).

p = radius ¢ = connectivity threshold

&¢ = eccentricity of the ¢-disk graph

7/12

Distributed Freeze-Tag Problem

[ele] J

Contribution

Energy ‘ Makespan ‘ Lower Bound
unconstrained | O(p + ¢* log (p/?)) Q(p + *log(p/r))
< w(f* —-1)/2 - unfeasible

o(¢*) O(& - 0)

O(flog?) O(& + Plog(&:/0))

Q(& + 2 log (£¢/1))

Table: Complexity of the makespan for the dFTP given (¢, p, n).

p = radius £ = connectivity threshold &, = eccentricity of the ¢-disk graph

Comparison with the centralized setting

@ linear in p

e requires additional term O(£? log p/¥)

7/12

Algorithm
[eJele]e]

Recruitment

Goal: Wake-up new robots

8/12

Algorithm
[eJele]e]

Recruitment

Goal: Wake-ttp new robots
Find

o Finding one robot in the ¢-disk requires
exploring

8/12

Algorithm
[eJele]e]

Recruitment

Goal: Wake-tup new robots
Find

o Finding one robot in the ¢-disk requires
exploring a surface of O(¢?).

8/12

Algorithm
[eJele]e]

Recruitment

Goal: Wake-tup new robots
Find

o Finding one robot in the ¢-disk requires
exploring a surface of O(¢?).

o Takes time O(f?) to a single robot... and then
they were 2.

8/12

Algorithm
[eJele]e]

Recruitment

Goal: Wake-tup new robots
Find
o Finding one robot in the ¢-disk requires
exploring a surface of O(¢?).
o Takes time O(f?) to a single robot... and then
they were 2.
o Can be iterated (DFS)

8/12

Algorithm
[eJele]e]

Recruitment

Goal: Wake-ttp new robots
Find

o Finding one robot in the ¢-disk requires
exploring a surface of O(¢?).

o Takes time O(f?) to a single robot... and then
they were 2.

o Can be iterated (DFS)

@ A team of k robots can explore such surface in
time O(¢ + £2/k).

8/12

Algorithm
[eJele]e]

Recruitment

Goal: Wake-ttp new robots
Find

o Finding one robot in the ¢-disk requires
exploring a surface of O(¢?).

o Takes time O(f?) to a single robot... and then
they were 2.

o Can be iterated (DFS)

@ A team of k robots can explore such surface in
time O(¢ + £2/k).

= it takes time S1°, (£ + 2/k) = O(£?log¥) to
wake up a team of size 4¢ starting with 1 robot.

8/12

Algorithm

[e] lele]e}

Geometric Separators

Starting with a team of size 4/

Divide and Conquer . i | S
(Recursively) divide the surface assigned to a given :::. It :: P
team, using geometric separators of width £. = '. 2 —
o Geometric separator ~ cut of the ¢-disk graph .* v T '-_:' {
.

9/12

Algorithm

[e] lele]e}

Geometric Separators

Starting with a team of size 4/

Divide and Conquer . i | S
(Recursively) divide the surface assigned to a given :::. It :: P
team, using geometric separators of width £.] 7 *
o Geometric separator ~ cut of the ¢-disk graph .* v '-_:' {
o Detects if a large area is empty (since £ > £*) -,°. e T .:.
.

9/12

Algorithm

[e] lele]e}

Geometric Separators

Starting with a team of size 4/

Divide and Conquer . i | S
(Recursively) divide the surface assigned to a given :::. It :: P
team, using geometric separators of width £.] 7 *

o Geometric separator ~ cut of the ¢-disk graph .* v T '-_:' {

o Detects if a large area is empty (since £ > £*) -,°. e :

o Breaks the ¢-disk graph = o(&) possible - e -

9/12

Algorithm
(o] lele]e]

Geometric Separators

Starting with a team of size 4/

Divide and Conquer . i S
(Recursively) divide the surface assigned to a given :.-:. It :: P
team, using geometric separators of width £.) 2 *

o Geometric separator ~ cut of the ¢-disk graph .* v T '-...' {

o Detects if a large area is empty (since £ > £*) -,°. e :

o Breaks the ¢-disk graph = o(&) possible - e -

Rebuild teams: ¢ — 4/

@ Recruiting 3¢ additional robots in its square
can lead to a "big" increase of the distance to
the sleeping robots round after round.

9/12

Algorithm
(o] lele]e]

Geometric Separators

Starting with a team of size 4/

Divide and Conquer . 1l S
(Recursively) divide the surface assigned to a given :.-:. It :: P
team, using geometric separators of width £.) 2 *

o Geometric separator ~ cut of the ¢-disk graph .* v T '-...' {

o Detects if a large area is empty (since £ > £*) -,°. e :

o Breaks the ¢-disk graph = o(&) possible - e -

Rebuild teams: ¢ — 4/

@ Recruiting 3¢ additional robots in its square
can lead to a "big" increase of the distance to
the sleeping robots round after round.

o Instead, each team makes sure that 4/ robots
have been awaken in its region.

9/12

Algorithm
[e]e] Tele]

Algorithm

1 - Recruit a team of 4/ robots and position it in the center of the region

10/12

Algorithm

[e]e] lele}

Algorithm

1 - Recruit a team of 4/ robots and position it in the center of the region

2 - Constitute 4
teams of size ¢ and
explore the
separator of the
sub-square.

10/12

Algorithm

[e]e] lele}

Algorithm

1 - Recruit a team of 4/ robots and position it in the center of the region

2 - Constitute 4 3 - Each team

teams of size £ and recruits new robots

explore the until 4¢ robots

separator of the initially positioned

sub-square. in the sub-square
are awaken.

10/12

Algorithm

[e]e] lele}

Algorithm

1 - Recruit a team

of 44 robots and position it in the center of the region

2 - Constitute 4
teams of size ¢ and
explore the
separator of the
sub-square.

3 - Each team
recruits new robots
until 4/ robots
initially positioned
in the sub-square
are awaken.

4 - All 4 teams
meet in the center
of the original
region.

10/12

Algorithm

Algorithm

[e]e] lele}

1 - Recruit a team

of 44 robots and position it in the center of the region

2 - Constitute 4
teams of size ¢ and
explore the
separator of the
sub-square.

3 - Each team 4 - All 4 teams
recruits new robots meet in the center
until 4¢ robots of the original
initially positioned region.

in the sub-square

are awaken.

5 - Every robot
goes to its origin
region

10/12

Algorithm

Algorithm

[e]e] lele}

1 - Recruit a team

of 44 robots and position it in the center of the region

2 - Constitute 4
teams of size ¢ and
explore the
separator of the
sub-square.

3 - Each team 4 - All 4 teams
recruits new robots meet in the center
until 4¢ robots of the original
initially positioned region.

in the sub-square

are awaken.

5 - Every robot
goes to its origin
region

and GOTO 2.

10/12

Algorithm
000e0

Details on the Recruitment

Non-optimality

First recruitment € O(¢? log ¢)

11/12

Algorithm
000e0

Details on the Recruitment

Non-optimality

First recruitment € O(£? log£) € w(f*logp/L) if £~ p

11/12

Algorithm
000e0

Details on the Recruitment

Non-optimality
First recruitment € O(£? log£) € w(f*logp/L) if £~ p

Depth-First Sampling

To achieve optimality: take advantage of the recruitment process to explore an
area as large as possible, with early termination whenever 3 > p2.

11/12

Algorithm
000e0

Details on the Recruitment

Non-optimality
First recruitment € O(¢%log¥) € w(#logp/f) if £ ~ p

Depth-First Sampling

To achieve optimality: take advantage of the recruitment process to explore an
area as large as possible, with early termination whenever 3 > p2.

11/12

Algorithm
000e0

Details on the Recruitment

Non-optimality
First recruitment € O(£? log£) € w(f*logp/L) if £~ p

Depth-First Sampling

To achieve optimality: take advantage of the recruitment process to explore an
area as large as possible, with early termination whenever 3 > p2.

11/12

Algorithm
000e0

Details on the Recruitment

Non-optimality
First recruitment € O(¢%log¥) € w(#logp/f) if £ ~ p

Depth-First Sampling

To achieve optimality: take advantage of the recruitment process to explore an
area as large as possible, with early termination whenever 3 > p2.

11/12

Algorithm
000e0

Details on the Recruitment

Non-optimality
First recruitment € O(¢%log¥) € w(#logp/f) if £ ~ p

Depth-First Sampling

To achieve optimality: take advantage of the recruitment process to explore an
area as large as possible, with early termination whenever 3 > p2.

@ Two recruited robots are at distance at least /.
o There exists at most O(p?/£?) such robots

11/12

Algorithm
000e0

Details on the Recruitment

Non-optimality
First recruitment € O(¢%log¥) € w(#logp/f) if £ ~ p

Depth-First Sampling

To achieve optimality: take advantage of the recruitment process to explore an
area as large as possible, with early termination whenever 3 > p2.

“

@ Two recruited robots are at distance at least /.
o There exists at most O(p?/£?) such robots

The execution of Phase 1 with this procedure takes time O(p + £2 log p/£)

11/12

Conclusion

Algorithm

[e]ele]e] }

Energy

Makespan

Lower Bound

unconstrained

O(p + £ log (/1))

Q(p + 2 log (p/1))

< m(f? —1)/2

unfeasible

o(#?)

O(&e - 1)

O(£%log?)

O(& + £* log(&:/1))

Q(& + 2 log (£¢/¢))

12/12

Conclusion

Algorithm

[e]ele]e] }

Energy ‘ Makespan ‘ Lower Bound
unconstrained | O(p + £*log (p/)) Q(p + 2 log (p/2))
<m(?—1)/2 - unfeasible

o) O(&e - 4) 2

S(Closl) | O + Flog(e/n) | 278 &/0)

Without the knowledge of ¢

Efficient algorithm with ©(¢?) energy, or more
precise lower bound

Several sources with different spacial and/or
temporal reference

Under asynchronous assumptions

Minimization of the global energy

12/12

Algorithm

[e]ele]e] }

Conclusion

Energy ‘ Makespan ‘ Lower Bound
unconstrained | O(p + £*log (p/)) Q(p + 2 log (p/2))
<m(?—1)/2 - unfeasible

o) O(&e - 4) 2

S(Closl) | O + Flog(e/n) | 278 &/0)

Without the knowledge of ¢

Efficient algorithm with ©(¢?) energy, or more
precise lower bound

Several sources with different spacial and/or
temporal reference

Under asynchronous assumptions Thanks!

@ Minimization of the global energy

12/12

	Introduction
	Distributed Freeze-Tag Problem
	Algorithm

