
Distributed Freeze Tag: a Sustainable Solution to Discover and
Wake-up a Robot Swarm

Cyril Gavoille

LaBRI, Université de Bordeaux, CNRS

Bordeaux, France

gavoille@labri.fr

Nicolas Hanusse

LaBRI, Université de Bordeaux, CNRS

Bordeaux, France

hanusse@labri.fr

Gabriel Le Bouder

LaBRI, Université de Bordeaux, CNRS

Bordeaux, France

gabriel.le-bouder@labri.fr

Taïssir Marcé

LaBRI, Université de Bordeaux, CNRS

Bordeaux, France

taissir.marce@labri.fr

Abstract

The Freeze-Tag Problem consists in waking up a swarm of robots

starting with one initially awake robot. While there exists a wide

literature on the centralized setting, where the locations of the

robots are known in advance, we focus on the distributed version

where the locations of the robots, P, are unknown, and where

awake robots only detect other robots up to distance 1. Assuming

that moving at distance 𝛿 takes a time 𝛿 , we show that waking up

the whole swarm takes 𝑂 (𝜌 + ℓ2 log(𝜌/ℓ)), where 𝜌 is the largest

distance from the initial robot to any point of P, and ℓ is the con-

nectivity threshold of P. Moreover, the result is complemented by

a matching lower bound. We also provide other distributed algo-

rithms, complemented with lower bounds, whenever each robot

has a bounded amount of energy.
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1 Introduction

In order to save energy in distributed systems, the paradigms of

sleeping models and algorithms have recently received attention.

Nodes or robots are, by default, inactive or on standby: the energy
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consumption is negligible and these periods can be used to harvest

energy. A robot becomes active only when it is required.

The Freeze-Tag Problem (FTP) consists in waking up a swarm of

𝑛 inactive (or sleeping) robots as fast as possible, assuming that one

robot is initially active, the source 𝑠 . To be woken up, a sleeping

robot has to be reached by one of the awake robots, which can

move in the plane. Once a robot becomes active, it can help wake

up other robots.

The FTP has been introduced in a centralized setting, where the

𝑛 locations of the sleeping robots are known by the initially awake

robot 𝑠 . In this article, we propose a distributed version of the FTP:

(1) the locations of the sleeping robots are not known in advance;

(2) using a local snapshot, active robots only have a distance-1

visibility; and (3) robots need to be co-located to communicate.

Note that due to the visibility constraint, it may be required to

explore further than radius 1 to locate sleeping robots.

In order to get themost sustainable solution in a long-life perspec-

tive, we aim at minimizing the energy consumption. In particular,

since moving is identified as an energy intensive task, the goal is to

minimize the makespan, that is the time to wake up every robot, as-

suming unitary speed of the robots, i.e., moving at distance 𝛿 takes

𝛿 unit of time. It is also assumed that robots use discrete snapshots

only, since continuous snapshots may not be energy friendly.

1.1 State of the Art

Any solution to the FTP can be seen as a rooted tree spanning the

set of the 𝑛 + 1 robots’ positions, called the wake-up tree [3]. The

root corresponds to the position of 𝑠 , has one child, and each of

the 𝑛 other nodes has at most two children. An edge from node

𝑝 to its child 𝑝′ is weighted by the distance between 𝑝 and 𝑝′,
and corresponds to the path taken by a robot positioned at 𝑝 to

awake a robot at 𝑝′. The makespan of a solution corresponds to the

(weighted) depth of the wake-up tree. In particular, a solution with

optimal makespan has a wake-up tree with minimum depth.

Freeze Tag. Even in simple cases, an optimal solution to the FTP

cannot be computed in polynomial time. Arkin et al. [3] showed

that, even on star metrics, FTP is NP-hard. Moreover, they proved

that getting an 5/3-approximation is NP-hard for general metrics

on weighted graphs. However, in [4], the authors give a polyno-

mial time algorithm to compute an𝑂 (1)-approximation for general

graphs, assuming one sleeping robot per node.
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In this paper, we focus on the geometric setting, where robot

movements have no restrictions and where the position set P lies

on the Euclidean plane. Even in this setting, the problem remains

NP-hard [1]. It has been shown by Yazdi et al. [22] that a wake-up

tree of makespan of at most 10.07𝜌 can be (sequentially) computed

in time 𝑂 (𝑛), where 𝜌 is the largest distance from 𝑠 to any point

of P. The constant 10.1, aka the wake-up constant of the Euclidean
plane, was later improved by Bonichon et al. [5] to 7.07. More

generally, they proved that the wake-up constant for any norm is

no more than 9.48, and that a corresponding wake-up tree can be

computed in time 𝑂 (𝑛). Very recently, the upper bound dropped

independently to 5.06 [2] and to 4.63 [6]. It is known that 1+ 2
√
2 ≈

3.83 is a lower bound on the wake-up constant of the plane [5].

A first step toward the computation of a wake-up tree without a

global knowledge of the robot’s positions is the online setting [8, 20].

In this case, each robot only appears at a specified time that is not

known in advance. In [8], the authors propose a solution with a

competitive ratio of 1 +
√
2 w.r.t. to the optimal partial wake-up

tree.

Collaborative Exploration. Obviously, any collaborative explo-

ration problem requires a team of active robots. Conversely, the

distributed FTP (dFTP for short), requires exploring some area to

discover sleeping robots and thus is naturally connected to ex-

ploration of the plane with one or more robots. The survey of

Das [11] contains many references to such exploring problems

in unknown graphs. In the dFTP, we start with one active robot,

and after few steps, we can have 𝑘 active robots. So, the task of

discovering new robots can indeed be seen as a collaborative explo-

ration task. The question of improving exploration with the use of

𝑘 > 1 robots is challenging and widely open. For instance, it has

been shown by Fraigniaud et al. [17] that in unweighted trees of

diameter 𝐷 , distributed exploration can be done in 𝑂 (𝐷 + 𝑛/log𝑘)
unitary moves, even if robots are allowed to share some information

through Read/Writes operations on nodes, whereas we could hope

for a speed-up of 𝑘 with 𝑂 (𝐷 + 𝑛/𝑘) unitary moves. However, if

the underlying graph is a two dimensional sub-grid of 𝑛 vertices,

a grid with rectangular holes, Ortlof and Schindelhauer [21] show

how to get an optimal speedup of factor 𝑘 .

Discovering a robot at distance 𝐷 with 𝑘 co-located robots in the

plane can be done within Θ(𝐷 + 𝐷2/𝑘) unitary moves per robot

using either parallel spiral trajectories [18], or by partitioning a

square of width 𝐷 into 𝑘 rectangles of width 𝐷/𝑘 and height 𝐷 .

This problem, aka Treasure Hunt Problem or Cow-Path Problem,

has been widely studied for 𝑘 = 1 or with imprecise geometry [7].

Interestingly, the authors of [15] have shown that the knowledge

of an approximation of 𝑘 is required to get the bound Θ(𝐷 +𝐷2/𝑘).
The question of the knowledge of 𝑘 arises whenever the 𝑘 robots

do not start the exploration together (as in the dFTP), or whenever

the communication ability of the robots is limited.

Energy Consumption. Some recent works deal with the problem

of distributed tasks with energy constraints, or aim at minimizing

the energy consumption. In the sleepingmodel [10], nodes or robots

are either sleeping or active. If a robot is sleeping, its consumption

is assumed to be negligible. The state of each robot in synchronized

rounds is given by a centralized schedule. Distributed tasks such as

coloring or MIS computations have been considered in the sleeping

model.

Energy Constrained Exploration Problems are perhaps more

related to our problem. For instance, in the Piece-Meal Graph Ex-

ploration, robots have a given budget for the energy and need to

refuel at a home base before exploring unknown parts of the graph.

Note that a solution of the treasure hunt in a grid graph can be

used in the plane. In [13], the authors show that 𝑛-node and𝑚-edge

unweighted graphs of radius 𝑅 can be explored by 𝑘 = 1 agent with

an energy budget 𝐵 = (1 + 𝛼) · 𝑅 in 𝑂 (𝑚 + 𝑛/𝛼) unitary moves.

For 𝑘 > 1, [12, 14] deal with the Energy Constrained Depth First

Search while minimizing the number 𝑘 of robots requiered, each

with an energy budget 𝑂 (𝑅), to explore a tree of radius 𝑅. Other

distributed algorithms for energy constrained agents have been

considered in [9]. The authors show how to provide a feasible move-

ment schedule for mobile agents for the Delivery Problem in which

each agent has limited energy, which constrains the distance it

can travel. Hence, multiple agents need to collaborate to move and

deliver the package, each agent handing over the package to the

next agent to carry it forward. However, the positions of the agents

are assumed to be known and the computation is centralized.

However, all these results related to collaborative exploration

and energy consumption are not directly related to our setting,

essentially because we must face the fact that, by definition of

the problem, the number of active robots collaborating keeps on

increasing, from 1 to 𝑛 + 1.

1.2 Model

Computational Model. We consider a swarm of robots in the Eu-

clidean plane. Robots are all initially asleep, except one which we

call the source and denote 𝑠 , initially located at position 𝑝0 = (0, 0).
The set of all robots is denoted by R = {𝑠, 𝑟1, . . . , 𝑟𝑛}, robots 𝑟𝑖
being the initially asleep robots. We denote by 𝑝𝑖 the initial posi-

tion of robot 𝑟𝑖 and by P the set of all initial positions of initially

asleep robots, i.e., P = {𝑝1, . . . , 𝑝𝑛}. Robots are endowed with a

visible light indicating their status (sleeping or awake), which can

be observed by any active robot close enough (in its distance-1

vicinity). Sleeping robots are computationally inactive. They can

neither move, observe, nor do any type of computation. Awake

robots are aware of the absolute coordinate system, a same global

clock and are able to locate and distinguish sleeping and awake

robots in their vicinity, by using a function look. They can also

share variables of their memory with co-located robots, and can

operate computations based on the information they gathered previ-

ously. Finally, they can move in the plane, based on the computation

they performed. Robots move at speed 1, which means it takes a

time 𝛿 for a robot to move between any two points at Euclidean

distance 𝛿 . Thus the behaviour of a robot can be described in the

standard Look-Compute-Move Model (see [16]).For synchroniza-

tion purposes, robots can also wait for any duration of time at a

fixed position. When an awake robot and a sleeping robot are co-

located, the awake one can wake the other one up, and possibly

share with it some information as previously said.

An algorithmA aiming to solve the dFTP is executed in parallel

by all the awake robots. The execution of A terminates when all

active robots have terminated their computation and moves. The
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execution is valid if, when it terminates, all the initially asleep robots

have been awakened. The makespan of an execution is the duration

between the beginning of the algorithm and its termination, which

basically counts the duration of the moving and waiting actions of

robots.

Robots have a local unlimited memory. Typically, they can store

the positions of some robots and their status (sleeping/awake) at

the time they see them in their vicinity. Note that robots can give

themselves a globally unique identifier as soon as they are awak-

ened, by storing their initial position. We will also consider the

variant of the model where the robots are not free to move as long

as they want, but are rather limited by some energy budget 𝐵. In

this variant, a robot can move for a total distance at most 𝐵.

Spread of P. Our results are closely tied to the distribution of

P. Typically, if the distance between every pair of robots is much

larger than 1, a robot may incorrectly believe that it is alone
1
which

significantly complicates the problem. To formally present our

results as in Table 1, let us introduce some parameters related to

P ⊂ R2.
Given a real 𝛿 ⩾ 0, andX ⊂ R2, the 𝛿-disk graph ofX is the edge-

weighted geometric graph with vertex set X, two points 𝑢, 𝑣 ∈ X
being connected by an edge if and only if 𝑢 and 𝑣 are at (Euclidean)

distance at most 𝛿 , and the weight of the edge corresponds to the

distance between their endpoints.

Let (P, 𝑠) be an 𝑛-point set P ⊂ R2 with a source 𝑠 ∉ P. The
radius of (P, 𝑠), denoted by 𝜌∗, is the largest distance from 𝑠 to

any point of P. The connectivity-threshold of (P, 𝑠), denoted by ℓ∗,
is the smallest radius 𝛿 such that the 𝛿-disk graph of P ∪ {𝑠} is
connected. Given ℓ > 0, the ℓ-eccentricity of (P, 𝑠), denoted by 𝜉ℓ ,

is the – finite or infinite – minimum weighted-depth of a spanning

tree of the ℓ-disk graph of P ∪ {𝑠} rooted at 𝑠 .

Problem Definition. We shall suppose that 𝑠 starts with some

information about the connectivity-threshold, the radius, and the

number of sleeping robots in P that it is supposed to wake up.

Formally, a tuple of values (ℓ, 𝜌, 𝑛) is given to 𝑠 at its start. Indeed,

without any information, it is impossible to distinguish (for exam-

ple) the case where 𝑛 = 0 (𝑠 is alone) from the case 𝑛 > 0 without

moving for eternity, and therefore without termination. A dFTP

algorithm with input (ℓ, 𝜌, 𝑛) should terminate on any 𝑛-point set

(P, 𝑠) such that ℓ∗ ⩽ ℓ and 𝜌∗ ⩽ 𝜌 . Note that if 𝜌 ⩽ 1 then every

robot is seen by the source 𝑠 and can be woken up in time 𝑂 (1)
with energy budget 𝑂 (1) by solving the centralized version in 𝑠 ,

e.g., as done in [5]. On the other hand, if ℓ ⩽ 1 then the discovery of

neighbors around robots becomes trivial. Furthermore, as stated in

Lemma 2.6, every (P, 𝑠) satisfies ℓ∗ ⩽ 𝜌∗ ⩽ 𝑛ℓ∗. An input (ℓ, 𝜌, 𝑛)
is said admissible if ℓ ⩽ 𝜌 ⩽ 𝑛ℓ . Note that if (ℓ, 𝜌, 𝑛) is admissible,

then (⌈ℓ⌉ , ⌈𝜌⌉ , 𝑛) is too. For the sake of simplicity, we suppose in

the following that parameters ℓ and 𝜌 are positive integers. The

dFTP is formally defined as follows:

Definition 1.1 (dFTP). A distributed algorithmA solves the dFTP

if, for any admissible tuple (ℓ, 𝜌, 𝑛), and for any 𝑛-point set P with

source 𝑠 such that 𝜌∗ ⩽ 𝜌 and ℓ∗ ⩽ ℓ , the execution of A on P
at source 𝑠 , given (ℓ, 𝜌, 𝑛), eventually wakes up all the robots and

terminates. Moreover, it solves the dFTP with energy budget 𝐵 if

1
Except for the co-located robot that activated it.

the previous holds, assuming that the total movement lengths of

each robot does not exceed 𝐵.

1.3 Contributions

Our contributions are summarized in Table 1. We present three

algorithms, calledASeparator ,AGrid
andAWave . The first algorithm

ASeparator solves the dFTP, with no limits on the energy budget,

and has makespan𝑂 (𝜌 + ℓ2 log(𝜌/ℓ)). This result is complemented

by a matching lower bound.

The two other algorithms consider the dFTP with energy budget

𝐵. We first show that no algorithm can solve the limited energy

budget variant if 𝐵 < 𝑐ℓ2, for some constant 𝑐 > 0. Then, for

𝐵 ∈ Θ(ℓ2), i.e., as little energy as possible to solve the dFTP, A
Grid

achieves amakespan of𝑂 (𝜉ℓ ·ℓ). Using slightly more energy, namely

𝐵 ∈ Θ(ℓ2 log ℓ), AWave has a significantly lower makespan, which

matches a second lower bound we introduce.

Roadmap. In Section 2 we present the main building blocks of

our algorithm. For the sake of readability, one consequent block

is detailed in Section 5. These high-level procedures are used to

present ASeparator in Section 3. In Section 4, we present two al-

gorithms for the constrained energy setting, A
Grid

, and AWave

for which both ASeparator and AGrid
are building blocks. Due to

space limitation, we only provide the proofs of the main results, a

complete version of this work is given in [19].

2 Building Blocks

Our algorithms are based on different routines and geometric no-

tions such as exploring regions, computing and realizing wake-up

trees, organizing teams of robots to explore regions in parallel,

sampling of point sets in regions, and specific geometric separators.

2.1 Exploration (Explore)

One central task robots are led to realize is the exploration of a

given region, in order to collect the positions of all the sleeping

robots in that region. For the sake of simplicity, we only consider

rectangular regions, whose orientation is parallel to the axis.

Lemma 2.1 (Explore). There exists a procedure Explore such

that, for any rectangle S of dimensions𝑤 × ℎ, for any two positions

𝑝, 𝑝′ ∈ S, the execution of Explore(S, 𝑝′) at time 𝑡 , by a team of 𝑘

robots T = {𝑟1, . . . , 𝑟𝑘 } initially co-located at position 𝑝 guarantees:

• it terminates at time 𝑡 ′ with (𝑡 ′ − 𝑡) ∈ 𝑂 (𝑤ℎ/𝑘 +𝑤 + ℎ); and
• at time 𝑡 ′, robots of T terminates at 𝑝′ and have gathered the
initial positions of all robots of S that are asleep at 𝑡 ′.

2.2 Realization of a Central Wake-up-Tree

In [5, 22] the authors show that, knowing the initial positions of

robots, it is possible to compute a wake-up tree in linear time,

whose makespan is an approximation of the optimal. Yet, in the

distributed setting, some specific problems may arise. Indeed, two

awake robots 𝑟𝑖 and 𝑟 𝑗 may compute independently two wake-up

trees on different but not disjoint subsets 𝑋𝑖 and 𝑋 𝑗 of P. If 𝑝𝑘 ,
the position of 𝑟𝑘 , belongs to 𝑋𝑖 ∩ 𝑋 𝑗 , then 𝑟𝑖 and 𝑟 𝑗 are said in

conflict. Both need to use 𝑟𝑘 for their wake-up trees and only the

first robot to reach 𝑟𝑘 is able to do it (since 𝑟𝑘 will then move). The

second one only find out that 𝑟𝑘 has left its initial position 𝑝𝑘 when
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Energy Algorithm Makespan Lower Bound

unconstrained ASeparator 𝑂 (𝜌 + ℓ2 log (𝜌/ℓ)) - Th. 3.1 Ω(𝜌 + ℓ2 log (𝜌/ℓ)) - Th. 3.6
< 𝜋 (ℓ2 − 1)/2 - - unfeasible - Th. 4.1

Θ(ℓ2) A
Grid

𝑂 (𝜉ℓ · ℓ) - Th. 4.2 Ω(𝜉ℓ + ℓ2 log (𝜉ℓ/ℓ)) - Th. 4.4Θ(ℓ2 log ℓ) AWave 𝑂 (𝜉ℓ + ℓ2 log(𝜉ℓ/ℓ)) - Th. 4.3
Table 1: Complexity of the makespan for the dFTP given (ℓ, 𝜌, 𝑛).

itself or one of its descendent arrives close to 𝑝𝑘 . In this situation

the consistency of the wake-up tree is broken, and a new wake-up

tree has to be computed for the sub-tree rooted at 𝑟𝑘 . Since this

situation can be repeated an arbitrarily large number of times for a

set 𝑌 = 𝑋𝑖 ∩𝑋 𝑗 , there is no evidence that 𝑟 𝑗 can wake up𝑋 𝑗 \𝑌 in a

time proportional to the diameter of 𝑋 𝑗 \𝑌 . To deal with that issue,

we ensure in our algorithms that wake-up trees are computed in

separate regions of the plane, and that at most one robot computes

a wake-up tree in a given region. This is formalized in Lemma 2.2.

Lemma 2.2 (Distributed Makespan). Given a square region S
of width 𝑅 and a robot 𝑟 positioned in the center of S, knowing both
S and a set of sleeping robots R𝑆 whose initial positions are in S, if
no robots other than {𝑟 } ∪ R𝑆 takes action in S, then 𝑟 can wake-up

all robots of R𝑆 in time 5𝑅.

More generally, if robots do not know the positions of sleeping

robots in S, it is possible for a robot to discover them before com-

puting a wake-up tree. This process will be used in A
Grid

, and is

presented in the following Corollary.

Corollary 2.3 (Explore and Wake up). Given a square region

S of width 𝑅 containing at least one awake robot, if no awake robot

goes through the border S, it is possible to wake-up all sleeping robots
of S in time 𝑅2 + (10 +

√
2)𝑅.

2.3 Geometric Separators

One central tool we use is geometric separators. Given ℓ ⩾ ℓ∗ and
a square S of width 𝑅 centered at position 𝑝 , the interior of S,
including S, is noted Sin and the remaining region of the plane is

noted Sout . We define the separator of S, denoted sep(S), as the
region bounded by S on the one hand, and a square of center 𝑝 and

width max(0, 𝑅 − 2ℓ), on the other hand. We immediately get:

Lemma 2.4 (Separators). Let S be a square, and consider ℓ ⩾ ℓ∗.
Any path in the ℓ-disk graph of P connecting robots 𝑟 ∈ Sin and

𝑟 ′ ∈ Sout contains at least one robot located in sep(S).
In particular, if P ∩ sep(S) = ∅, either P ⊂ S𝑖𝑛 or P ⊂ S𝑜𝑢𝑡 .

2.4 Distributed ℓ-Sampling

To begin, we point out that the time to wake up every robot in a

square region of width 𝑅, 𝑂 (𝑅) (Lemma 2.2), is often dominated

by the time to discover sleeping robots in this region by a team

of 𝑘 robots, which is 𝑂 (𝑅2/𝑘) (Lemma 2.1). However, knowing an

upper bound ℓ on the connectivity threshold can help, thanks to

two independent notions: ℓ-coverings and ℓ-samplings. We say that

S is covered by a set of positions P′ if any robot within S is at

distance at most ℓ from a robot whose position is in P′. Given an

set P′ covering P, such that robots positioned in P′ are awake, it
is possible to discover all the remaining sleeping robots in parallel,

by having each robot exploring the ℓ-disk around its initial position.

This takes time 𝑂 (𝑅 + ℓ2) if we do not suppose that robots are

located at their initial position. After that, all robots can gather at

the source 𝑠 in time 𝑅 and wake-up every robot in time𝑂 (𝑅) using
a centralized wake-up algorithm (Lemma 2.2). Yet, an ℓ-covering

set can be arbitrary large, and therefore may be excessively long to

compute.

For that reason, we won’t consider any ℓ-covering set, but one

which is also an ℓ-sampling: an ℓ-sampling of a region S is a subset

of positions P′ ⊆ P ∩ S that are pairwise at distance at least ℓ . The

two main questions are now: how large can an ℓ-sampling be, and

how to efficiently compute one in a distributive way. Lemma 2.5

answers the first question. We then present algorithmDFSampling,

which solves the second question, as proven in Lemma 5.1.

Lemma 2.5 (ℓ-sampling cardinality). If P′ is an ℓ-sampling of

a square region of width 𝑅, then |P′ | ⩽ 16𝑅2/(𝜋ℓ2).

DFSampling is a distributed algorithm computing an ℓ-sampling

of a squared region S. A single robot or a co-located team of robots

starts from a position of P ∩ S and aims at finding an ℓ-sampling

of size 4ℓ (See Figure 1b). This sampling represents positions of

robots to be later recruited to become a new team. This sampling

is discovered using a specific exploration algorithm. Since it may

happen that exploring from one single position is not enough to

reach a sample of size 4ℓ , the teammay use several starting positions

for the exploration task, which we call the seedsX ⊂ S. In Figure 1c,
X is the set of points within an ℓ-separator of a sub-square.

Roughly speaking,DFSampling is based on a Depth-First Search

in the 2ℓ-disk graph of P∩S, starting by the position of seeds from

X. Whenever a point 𝑝 is discovered, it is added to P′ only if it is

at distance greater than ℓ from any other points already added to

P′. This is required to guarantee that P′ is indeed a ℓ-sampling. A

detailed description is given in Section 5.

2.5 Generic Relations

We now present relationships between the parameters of point sets,

which will be usefull in establishing our upper and lower bounds.

Lemma 2.6. For every point set P, source 𝑠 , and ℓ ⩾ ℓ∗:

0 < ℓ∗ ⩽ 𝜌∗ ⩽ 𝜉ℓ ⩽ 𝜉ℓ∗ ⩽ 𝑛 · ℓ∗ .

Lemma 2.7. For any 𝑟 ⩾ ℓ ⩾ 1 we have:

𝑂 (𝑟 + ℓ2 (logmin{ℓ, 𝑟/ℓ} + log 𝑟

ℓ3/2
)) ⊆ 𝑂 (𝑟 + ℓ2 log(𝑟/ℓ)) .

Lemma 2.8. Let us consider a point set (P, 𝑠). For any ℓ ⩾ ℓ∗, we

have 𝜉ℓ ∈ [𝜌∗, 12𝜌
∗2

ℓ ], and for any position 𝑝 ∈ P, there exists a path
from 𝑠 to 𝑝 in the ℓ-disk graph which is at most 1 + 2𝜉ℓ

ℓ -hops long.
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3 Without Energy Constraint

3.1 Algorithm ASeparator

s
2ρ

(a) Initialization. (b) DFSampling

from 𝑠 to get a

sample of size 4ℓ .

ℓ
4ℓ

ℓ

ℓℓ

(c) Exploration of 4

separators by teams

of ℓ robots.

Figure 1: First phases ofASeparator ; • sleeping robots; ◦ awake

robots; sleeping seeds; awake seeds.

ℓ

ℓℓ

ℓ

(a) Recruitment:
DFSampling

starting from

X𝑖 ⊂ sep(S𝑖 ) .

ℓ+ℓ1'

ℓ+ℓ3'

ℓ+ℓ2'

ℓ+ℓ4'

(b) T𝑖 merge at

the center of S and

share their variables.

4ℓ

4ℓ

4ℓ

4ℓ

(c) Next round: four

team of 4ℓ move to a

sub-square.

Figure 2: Recruitment and Reorganization phases of

ASeparator ; recruited robots; explored area is grayed.

Algorithm ASeparator is based on a divide-and-conquer strategy

where robots are organized in teams. As shown by a matching

lower bound, the algorithm has optimal makespan. We describe it

with six phases: Initialization, Partition, Exploration, Recruitment,
Reorganization and Termination.

Having first awaken 4ℓ robots in the square of center 𝑠 and width

2𝜌 (Initialization Phase presented in Figure 1a and 1b). we divide

the square into 4 sub-squares, and send a team of ℓ robots in every

sub-square (Partition Phase). During the Exploration Phase, each

team collectively explores the separator of their sub-square and

stores seeds in X, that are the initial positions of robots (sleeping
or already awake) belonging to the separator (Figure 1c). During

the Recruitment Phase, each team wakes up new robots in its sub-

square, such that these new robots plus robots currently exploring

whose initial position is in that sub-square, are 4ℓ (Figure 2a). These

4ℓ robots are recruited to define a new team used in the next round.

Finally, during phase Reorganization, all 4 teams meet in the

center of the square so robots can team up with robots initially

located to the same sub-square. Each team thus formed go into its

corresponding sub-square, and repeat the process until all robots

have been awakened (Figures 2b, 2c). Recruitment Phase relies on
function DFSampling presented in Section 2.4. Lemma 5.1 guaran-

tees that if DFSampling returns a set with less than 4ℓ positions,

then every robot located in the sampled region has been discovered

(but not necessarily awakened). This justifies the Termination phase
where awaken robots wake up the remaining sleeping robots with a

centralized algorithm. Figure 3 presents a more detailed description

of ASeparator .

ASeparator

(1) Round 0: Initialization and Recruitment
S ← square of width 𝑅 = 2𝜌 and centered at the source

robot 𝑠 .

T ← {𝑠} ; X ← {𝑝𝑠 }.
T recruits up to 4ℓ − 1 new robots using

DFSampling(S,X).
Move T to the center of S .

(2) Round 𝑘 ⩾ 1 for a team T in square S:
(i) Termination

If |T | < 4ℓ : do a centralized awakening of sleeping

robots in S and terminate.

(ii) Partition
Partition S (resp. T ) into 4 sub-squares S1,S2,S3,S4
(resp. 4 teams T1,T2,T3,T4 of ℓ robots each).
Each team T𝑖 performs in parallel:

(iii) Exploration
Using 4 times Explore, collectively explore sep(S𝑖 ).
Save in X𝑖 the set of positions of sep(S𝑖 ) where a
robot was found asleep, and those where a robot has

already been awakened.

(iv) Recruitment
T𝑖 recruits ℓ′𝑖 robots by using DFSampling(S𝑖 ,X𝑖 ).
Move T𝑖 to the center of S.

(v) Reorganization
Wait until the four teams T𝑖 can merge and share their

variables.

Reorganize robots in teams T ′
𝑖
of size ℓ′

𝑖
by square of

origin S𝑖 .
For each team T ′

𝑖
, do in parallel:

• Move T ′
𝑖
to the center of S𝑖 .

• Go to Round 𝑘 + 1 with team T ′
𝑖
and square S𝑖 .

Figure 3: Description of ASeparator .

Theorem 3.1. ASeparator solves the dFTP, given every admissible

tuple (ℓ, 𝜌, 𝑛), with a makespan 𝑂 (𝜌 + ℓ2 log(𝜌/ℓ)).

3.2 Proof of Theorem 3.1

Let us first introduce some definitions. For 𝑘 ⩾ 1, we denote by

T (𝑘 ) and S (𝑘 ) a team executing DFSampling at Round 𝑘 , and a

region in which it is executed. Note that for a given 𝑘 > 1, several

squares are treated in parallel so neither S (𝑘 ) nor T (𝑘 ) are unique.
We denote by 𝑅 (𝑘 ) = 2𝜌

2
𝑘−1 the width of S (𝑘 ) . Round 𝑘 ⩾ 1 is a

terminating Round for team T (𝑘 ) in region S (𝑘 ) if |T (𝑘 ) | < 4ℓ ,

otherwise it is a partitioning Round.
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Lemma 3.2 (Number of Rounds). The number of rounds before

ASeparator terminates is 1 if 𝜌∗ ⩽ ℓ3/2
8
, and 𝑂 (log 𝜌

ℓ3/2
) otherwise.

Proof. Set 𝑅 = 2𝜌∗. If 𝑅 ⩽ ℓ3/2
4

then according to Lemma 2.5,

any ℓ-sampling has size at most
16𝑅2

4𝜋ℓ2
⩽ 4ℓ/𝜋 < 4𝑙 , and algorithm

ASeparator stops in Round 1. Let us now prove the generic bound.

Let us express a condition on 𝑘 such that all the executions of

DFSampling in regions S (𝑘 ) of width 𝑅 (𝑘 ) = 2𝜌

2
𝑘−1 output an ℓ-

sampling T ′(𝑘 ) with size less than 4ℓ . This implies that ASeparator

ends at the beginning of Round 𝑘 + 1, during the Termination phase.

By Lemma 2.5, |T ′(𝑘 ) | ⩽
16( 2𝜌

2
𝑘−1 )2

𝜋ℓ2
=

256𝜌2

2
2𝑘𝜋ℓ2

. It is therefore

sufficient to have
256𝜌2

2
2𝑘𝜋ℓ2

< 4ℓ , which is equivalent to 2
2𝑘 >

64𝜌2

𝜋ℓ3
,

and finally to 𝑘 > log(8𝜌/
√
𝜋ℓ3/2) ∈ Θ(log 𝜌/ℓ3/2). □

Lemma 3.3 (Duration of Rounds). For 𝑘 ⩾ 1, the duration of

Round 𝑘 is in 𝑂 (𝑅 (𝑘 ) + ℓ2).

Proof. We show that:

• a terminating Round has a duration 𝑂 (𝑅 (𝑘 ) );
• a partitioning Round has a duration 𝑂 (𝑅 (𝑘 ) + ℓ2).

Let us first suppose that Round 𝑘 is a terminating Round for T (𝑘 )
inS (𝑘 ) , i.e., |T (𝑘 ) | < 4ℓ . Round 𝑘 consists in the execution of a cen-

tralized algorithm to wake up sleeping robots in S (𝑘 ) . The smallest

disk containing S (𝑘 ) is of radius (1/
√
2)𝑅 (𝑘 ) . By Lemma 2.2, one

robot of T (𝑘 ) can wake up any set of known robots sleeping in this

disk with a makespan in 𝑂 (𝑅 (𝑘 ) ).
We now suppose that Round 𝑘 is a partitioning Round for T (𝑘 )

inS (𝑘 ) , i.e., |T (𝑘 ) | ⩾ 4ℓ . It consists of having four teams of ℓ robots

exploring and recruitingwithin sub-squares ofS (𝑘 ) ofwidth𝑅 (𝑘+1) .
The separator of a sub-square can be decomposed into 4 rectangles

of dimension ℓ × 𝑅 (𝑘+1) . By Corollary 2.1 a team of ℓ robots can

explore each rectangle in𝑂 ( ℓ×𝑅 (𝑘+1)ℓ + ℓ + 𝑅 (𝑘+1) ) = 𝑂 (𝑅 (𝑘+1) + ℓ).
The recruitment is done byDFSampling from a set of positionsX in

sep(S (𝑘 ) ). From Lemma 5.1 the ℓ-sampling ofS (𝑘+1) with a team of

ℓ robot is done in time𝑂 (𝑅 (𝑘+1) ) + ℓ2). Recall that 𝑅 (𝑘+1) = 1

2
𝑅 (𝑘 ) ,

we get that the duration of a partitioning Round 𝑘 is 𝑂 (𝑅 (𝑘 ) + ℓ2).
□

Lemma 3.4 (Validity of ASeparator ). For every admissible tuple

(ℓ, 𝜌, 𝑛) and for any 𝑛-point set P and source 𝑠 such that ℓ∗ ⩽ ℓ and

𝜌∗ ⩽ 𝜌 , the execution of ASeparator with source 𝑠 and inputs (ℓ, 𝜌, 𝑛)
on P eventually wakes up all robots.

Proof. Consider an execution of ASeparator on P. According to

Lemma 3.2 an execution terminates after a finite number of Rounds.

We show that when the execution terminates, any robot 𝑟 ∈ R
initially located at 𝑝 ∈ P is awakened. Let us consider 𝑟 ∈ R and

the largest 𝑘 such that at Round 𝑘 there is a square S (𝑘 ) containing
𝑝 . Let us prove that 𝑟 is awake at the end of Round 𝑘 .

Let us first prove by contradiction that Round 𝑘 is a terminating

Round for T (𝑘 ) on S (𝑘 ) . If not, i.e., it is a partitioning Round, then
for 𝑖 ∈ [1, 4] there is an execution of Round 𝑘 + 1 by T ′

𝑖
(𝑘+1) ≠ ∅

on sub-square S (𝑘 )
𝑖

. Since robots are assigned to teams T ′
𝑖
based

on their initial position, if T ′
𝑖
is empty then P ∩ sep(S (𝑘 )

𝑖
) = ∅, by

Lemma 2.4, S (𝑘 )
𝑖

is empty and does not contain 𝑝 . Hence if Round

𝑘 is a partitioning Round then there is an execution of Round 𝑘 + 1
on a region S (𝑘+1) containing 𝑝 , which breaks the assumption of 𝑘

being maximal.

If Round 𝑘 is terminating, by definition ofASeparator , team T (𝑘 )
contains less than 4ℓ robots. It implies that during the recruitment

phase of Round 𝑘 − 1, DFSampling in S (𝑘 ) has stopped before

constituting a team of 4ℓ robots. Lemma 5.1 guarantees that S (𝑘 )
is covered by T𝑘

i.e., each position of P ∩ S (𝑘 ) is known by T (𝑘 )
at the beginning of Round 𝑘 . Therefore 𝑟 must be awakened when

T (𝑘 ) operates a centralized awakening of sleeping robots of S (𝑘 ) .
□

Lemma 3.5 (Makespan ofASeparator ). For every admissible tuple

(ℓ, 𝜌, 𝑛) and for any 𝑛-point set P and source 𝑠 such that ℓ∗ ⩽ ℓ and

𝜌∗ ⩽ 𝜌 , the execution of ASeparator with source 𝑠 and inputs (ℓ, 𝜌, 𝑛)
on P terminates in time 𝑂 (𝜌 + ℓ2 log(𝜌/ℓ))

Proof. Since ASeparator is decomposed into rounds, the proof

is done by bounding the duration of a Round 𝑘 , denoted 𝑡𝑘 , and the

number of rounds until ASeparator terminates.

The duration of Round 0 is the duration of recruiting a team T
of size up to 4ℓ within a square of width 2𝜌∗. The recruitment is

done by computing a ℓ-sampling of the square with DFSampling.

According to Lemma 2.5 there is at most 32𝜌∗2/(𝜋ℓ2) points in a

ℓ-sampling of a square of width 2𝜌∗, therefore |T | = min(4ℓ, 32𝜌
∗2

𝜋ℓ2
).

Lemma 5.1 guarantees that the time of DFSampling depends of the

size of the output team. Hence the duration of Round 0 is:

𝑡0 ∈ 𝑂 (ℓ2 log(min{ℓ, 𝜌∗/ℓ})) ⊆ 𝑂 (ℓ2 log(min{ℓ, 𝜌/ℓ})) . (1)

A terminating round only takes time 𝑂 (𝑅 (𝑘 ) ) ⊆ 𝑂 (𝜌) to move

toward the center of the sub-square and wake-up remaining sleep-

ing robots discovered in the DFSampling execution. Let us fo-

cus on partitioning rounds. We showed in Lemma 3.3 that for

𝑘 ⩾ 1, 𝑡𝑘 ∈ 𝑂 (𝑅 (𝑘 ) + ℓ2).
Let 𝑘𝑚𝑎𝑥 be the maximum number of Rounds. According to

Lemma 3.2, 𝑘𝑚𝑎𝑥 ∈ 𝑂 (log 𝜌

ℓ3/2
). Let us now estimate the total dura-

tion of the rounds posterior to 0:

𝑘𝑚𝑎𝑥∑︁
𝑘=1

𝑡𝑘 ∈
𝑘𝑚𝑎𝑥∑︁
𝑘=1

𝑂 (𝑅 (𝑘 ) + ℓ2) ⊆ 𝑘𝑚𝑎𝑥𝑂 (ℓ2) +
𝑘𝑚𝑎𝑥∑︁
𝑘=1

𝑂 ( 2𝜌

2
𝑘−1 )

∈ 𝑂 (𝜌) +𝑂 (log 𝜌/ℓ3/2)𝑂 (ℓ2) ⊆ 𝑂 (𝜌 + ℓ2 log 𝜌/ℓ3/2) .

Finally, using Lemma 2.7, we obtain:

𝑇ASeparator
=

𝑘𝑚𝑎𝑥∑︁
𝑘=0

𝑡𝑘 = 𝑡0 +
𝑘𝑚𝑎𝑥∑︁
𝑘=1

𝑡𝑘

∈ 𝑂 (ℓ2 log(min{ℓ, 𝜌/ℓ})) +𝑂 (𝜌 + ℓ2 log 𝜌/ℓ3/2)
∈ 𝑂 (𝜌 + ℓ2 log(𝜌/ℓ)) .

□

3.3 Lower Bound Without Energy Constraint

We now provide a lower bound on the makespan of any algorithm

solving the dFTP.
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Theorem 3.6 (Lower Bound without energy constraint).

For every admissible tuple (ℓ, 𝜌, 𝑛) and algorithmA solving the dFTP,

there exists an 𝑛-point set P and a source 𝑠 such that ℓ∗ ⩽ ℓ and

𝜌∗ ⩽ 𝜌 such that the makespan of the execution of A with source 𝑠

and inputs (ℓ, 𝜌, 𝑛) on P is Ω(𝜌 + ℓ2 log(𝜌/ℓ)).

The rest of this section constitutes the proof of Theorem 3.6.

Given 𝑟 ⩾ 0 and 𝑝 ∈ R2, we denote by 𝐵𝑝 (𝑟 ) the disk of center 𝑝

and radius 𝑟 .

Let us consider an algorithm A solving the dFTP, and an admis-

sible tuple (ℓ, 𝜌, 𝑛). To prove our lower bound, we first define some

disjoint regions 𝐷𝑐 of 𝐵0,0 (𝜌) as pictured in Figure 4a. Each region

has area Θ(ℓ2), and according to Lemma 3.7, there are Θ(𝜌2/ℓ2)
such regions. The general idea is to place one sleeping robot in each

region, depending on the behavior of A, in a way that guarantees

that awake robots have to visit the entire region before they find

the sleeping robot in it. We state in Lemma 3.8 that the set of points

we propose is ℓ-connected, which makes the construction valid.

Centers and Connectivity. We define C = {(𝑥,𝑦) ∈ ( ℓ
2
Z)2 |√︁

𝑥2 + 𝑦2 ⩽ 𝜌 − ℓ
4
} the vertices of the ℓ

2
-grid, restricted to the disk

of center (0, 0) and radius 𝜌− ℓ
4
. We say that two elements (𝑥,𝑦) and

(𝑥 ′, 𝑦′) in C are adjacent if 𝑥 ′ = 𝑥∧𝑦′ = 𝑦± ℓ
2
or 𝑥 ′ = 𝑥± ℓ

2
∧𝑦′ = 𝑦.

A subset 𝐶 ⊆ C is connected if for any 𝑐, 𝑐′ ∈ 𝐶 , there exists a path
of adjacent elements of 𝐶 with extremities 𝑐 and 𝑐′. We also define

C∗ = C \ {(0, 0)} and𝑚 = min(𝑛, |C∗ |). Note that, since (ℓ, 𝜌, 𝑛) is
admissible, and according to Lemma 3.7, we have𝑚 ⩾ 𝜌/ℓ . We are

now going to prove a lower bound of Ω(ℓ2 log𝑚) ⊆ Ω(ℓ2 log 𝜌/ℓ).

Lemma 3.7. |C| ⩾ 1 + 𝜌2/ℓ2.

We denote by C𝑚 some subset of C∗ with 𝑚 elements such

that C𝑚 ∪ {(0, 0)} is connected, and contains at least the elements

{(0, ℓ
2
), (0, 2 ℓ

2
), . . . , (0, ⌊𝜌/ℓ⌋ ℓ

2
)}. Note that this is always feasible

because, on the one hand, 𝑚 ⩾ ⌊𝜌/ℓ⌋, and on the other hand,

⌊𝜌/ℓ⌋ ℓ
2
⩽ 𝜌/2 ⩽ 𝜌 − ℓ

4
, so all these points are actually in C∗.

Lemma 3.8. For any adjacent points 𝑐, 𝑐′ ∈ C𝑚 , for any two points

(𝑝, 𝑝′) ∈ 𝐷𝑐 × 𝐷𝑐′ , we have |𝑝𝑝′ | ⩽ ℓ .

Disks, ℓ-connectivity. For any 𝑐 = (𝑥,𝑦) ∈ C𝑚 , let us define

the disk of center 𝑐 by 𝐷𝑐 = 𝐵𝑐 (ℓ/4), of area 𝜋ℓ2

16
. Let us also

define D𝑚 = ∪𝑐∈C𝑚𝐷𝑐 and D∗ = ∪𝑐∈C∗𝐷𝑐 . Note that different

disks in D𝑚 are pairwise disjoints (except one single point), that

D𝑚 ⊂ 𝐵 (0,0) (𝜌), and that the area of D𝑚 is |C𝑚 | 𝜋ℓ
2

16
.

Construction of the Set P(A). Let us first suppose that 𝑛 ⩽ |C∗ |.
The construction of the set of initial positions P(A) depends on the
considered algorithm A. The process consists in placing exactly

one robot per disk 𝐷𝑐 ∈ D𝑚 , at position 𝑝𝑐 . This construction

guarantees that the instance (P, 𝑠) is consistent with the tuple

(ℓ, 𝜌, 𝑛). In particular, the set is actually ℓ-connected according to

Lemma 3.8 and because C𝑚 is connected. Given one disk 𝐷𝑐 ∈ D𝑚 ,

the exact localisation 𝑝𝑐 is defined as the last position of 𝑆𝑐 to be

explored by the previously awakened robots, under the execution

of the algorithm. In other words, the algorithm must integrally

explore 𝑆𝑐 before it discovers the new robot in it. If 𝑛 > |C∗ |, then
the construction is similar for the first |C∗ | − 1 positions. The initial
localization of the remaining robots can be in any arbitrary small

ℓ/4

(a) Scheme of the general con-

struction of Theorem 3.6.

D∗ colored in red.

3𝜌

4

3𝜌

4

√
2

⩾
𝜌

2

ℓ/2

(b) Scheme of the proof of

Lemma 3.7.

S drawn in blue.

Figure 4: Proof of the Lower Bound.

disk of radius 𝜀 included in some area of D𝑚 that has not been

discovered yet.

Proof of the Lower Bound Ω(ℓ2 log𝑚). We denote by RA (𝑡) the
set of awake robots at time 𝑡 , and given the set of initial positions

P = P(A), we denote byDP (𝑡) ⊆ D𝑚 the set of points ofD𝑚 that

have been discovered at time 𝑡 or before. More formally, DP (𝑡)
is the set of points 𝑝 ∈ D𝑚 such that ∃𝑡 ′ ⩽ 𝑡, ∃𝑟 ∈ RA (𝑡 ′) :
|𝑝𝑟 (𝑡 ′)𝑝 | ⩽ 1.

We denote by ∥DP (𝑡)∥ the area of DP (𝑡). Finally, let us define,
∀𝑖 ∈ [0,𝑚], 𝑡𝑖 = inf{𝑡 ⩾ 0 | ∥DP (𝑡)∥ ⩾ 𝑖𝜋ℓ2/16}. By construction

of P(A) we have ∀𝑖,∀𝑡 < 𝑡𝑖 , |RA (𝑡𝑖 ) | ⩽ 𝑖 . Since robots have a field

of view of radius 1, they discover an area of amplitude 2 along an

unitary move, which means that an awake robot exploring during

𝑡 ′ units of time can discover an area of at most 2𝑡 ′. Therefore
we have ∀𝑖,∀𝑡 ⩾ 𝑡𝑖 , ∥DP (𝑡)∥ − ∥DP (𝑡𝑖 )∥ ⩽ 2(𝑡 − 𝑡𝑖 ) |RA (𝑡) |.
Furthermore, ∥DP (𝑡𝑖+1)∥ − ∥DP (𝑡𝑖 )∥ = 𝜋ℓ2

16
. By having 𝑡 tend to

𝑡𝑖+1 by inferior values, we obtain:∀𝑖 ⩾ 0, ∥DP (𝑡𝑖+1)∥−∥DP (𝑡𝑖 )∥ ⩽
2(𝑡𝑖+1 − 𝑡𝑖 ) × (𝑖 + 1).

Therefore by adding this telescopic sum, we obtain:

𝑡𝑚 ⩾
𝜋ℓ2

32

𝑚∑︁
𝑖=1

𝑖 ⩾
𝜋ℓ2

32

ln(𝑚 + 1) ∈ Ω(ℓ2 log𝑚)

Conclusion. Since𝑛 ⩾
𝜌
ℓ and |C∗ | ⩾ 𝜌2/ℓ2, and𝑚 = min(𝑛, |C∗ |),

we have obtained a lower bound of Ω(ℓ2 log 𝜌
ℓ ). Furthermore, by

construction of C𝑚 , and by definition of P, robots have explore all
points of 𝐷 (0,⌊𝜌/ℓ ⌋ ℓ

2
) , which means that there exists a path from

(0, 0) to a point at distance 1 of (0, ⌊𝜌/ℓ⌋ ℓ
2
). Such a path has a

length at least ⌊𝜌/ℓ⌋ ℓ
2
− 1 ⩾ 𝜌

2ℓ
ℓ
2
− 1 ⩾ 𝜌/4 − 1 ∈ Ω(𝜌). We there-

fore have shown that the makespan of A on that set of point is

Ω(𝜌 + ℓ2 log 𝜌
ℓ ).

4 With Energy Constraint

The construction used in the proof of Theorem 3.6 can be adapted

to obtain Theorem 4.1.

Theorem 4.1 (Lower Bound on the energy budget). For ev-

ery admissible tuple (ℓ, 𝜌, 𝑛) and algorithm A with energy budget

𝐵 < 𝜋 (ℓ2 − 1)/2, there exists an𝑛-point setP and a source 𝑠 such that
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ℓ∗ ⩽ ℓ and 𝜌∗ ⩽ 𝜌 and the execution of A on P does not wake-up

any robot.

4.1 Energy-Optimal Algorithm

We use a Breadth First Search based strategy to define A
Grid

, an

algorithm that takes as input the parameter ℓ ⩾ ℓ∗. Basically,A
Grid

works as follows: the plane is partitioned into squares of width 2ℓ

centered at positions {(2𝑘ℓ, 2𝑘′ℓ) | (𝑘, 𝑘′) ∈ Z2}. We wake-up the

squareS containing 𝑠 in time 𝑡 (S) = 𝑅2+ (10+
√
2)𝑅 (Corollary 2.3).

Then every square containing a new awake robot tries to wake up

the 8 adjacent squares of the square ordered in a counter-clockwise

order. Figure 5 presents a detailed presentation of A
Grid

.

Let 𝑡 (ℓ) be an upper bound on the time required for the explo-

ration and centralized awakening of a square region of width 2ℓ by

one robot. By Corollary 2.3, 𝑡 (ℓ) ∈ 𝑂 (ℓ2).

A
Grid

• Round 0 - Initialization:

S ← square of width 𝑅 = 2ℓ , centered at the source 𝑠

Explore and wake-up S
• Round 𝑘 ⩾ 1 starting at time 𝑡𝑘 = 𝑡 (ℓ) + 8(𝑘 − 1) (𝑡 (ℓ) +√

2𝑅):
For every robot 𝑟 awakened in Round 𝑘 − 1 do in parallel:

S ← the square containing 𝑟

For 𝑖 ∈ [1..8] do
(1) move to the lower-left corner of the 𝑖-th adjacent

squares S𝑖 of S
(2) Wait until time 𝑡𝑘 + (𝑡 (ℓ) +

√
2𝑅)𝑖

(3) Explore and Wake-up S𝑖

Figure 5: Description of A
Grid

.

Theorem 4.2. A
Grid

solves the dFTP, given every admissible tuple

(ℓ, 𝜌, 𝑛), with an energy budget of 𝑂 (ℓ2) and with a makespan of

𝑂 (ℓ · 𝜉ℓ ).

Proof. The duration of Round 0 is 𝑡 (ℓ). Then, in Round 𝑘 ⩾ 1,

we have to wake-up at most 8 squares in time 8𝑡 (ℓ). Since every
square are adjacent, it takes at most

√
2𝑅 to go the next adjacent

square to wake-up. In total, every round takes 𝑂 (ℓ2). Every robot

awakened in Round 𝑘 participates to Round 𝑘 + 1 but stops do at
the end of Round 𝑘 + 1. Thus it only has to use 𝑂 (ℓ2) energy.

Let us now upper bound the number of rounds to wake up some

robot of P (which proves that A
Grid

solves the dFTP). Given any

robot 𝑟 located at position 𝑝 , let us consider a shortest path from 𝑠 to

𝑟 in the ℓ-disk graph of (P, 𝑠) minimizing the number of hops and

the sequence of squares 𝑆 = 𝑠1, . . . , 𝑠𝑘 crossed by this path. Since

the path can cross several times a same square and every robot of

a given square are awakened in the same round, the number of

rounds required to wake up the sequence of squares is smaller or

equal to the number of hops of the shortest path. From Lemma 2.8,

we know that there exists a path of at most 2𝜉ℓ/ℓ hops implying

the same upper bound for the number of rounds. Since every round

takes a time 𝑂 (ℓ2), the makespan is 𝑂 (ℓ · 𝜉ℓ ). Furthermore since

every awakened robot in Round 𝑘 only moves in Round 𝑘 and 𝑘 + 1
and stops, robots only need 𝑂 (ℓ2) energy. □

4.2 Makespan-Optimal Algorithm

The next algorithm, AWave , is an adaptation of A
Grid

. Roughly

speaking, there are two changes: (1) the squares are now of width

8ℓ2 log
2
ℓ ; and (2) instead of using a simple process to explore and

wake up a square, we use ASeparator starting from a team of 4ℓ

robots for Rounds 𝑘 ⩾ 1 and from the source 𝑠 for Round 0. Algo-

rithm AWave is detailed in Figure 6.

Let 𝑡 (𝑅) be an upper bound on the time required for ASeparator

to wake up all robots of a square of width 𝑅 starting from a team

of size 4ℓ . By Theorem 3.1, 𝑡 (𝑅) ∈ Θ(𝑅 + ℓ2 log ℓ).

AWave

• Round 0 - Initialization:

ℓ ← max{ℓ, 4}
S ← square of width 𝑅 = 8ℓ2 log

2
ℓ , centered at the

source 𝑠

Wake-up S using ASeparator

If there is no robot in sep(S), AWave stops

• Round 𝑘 ⩾ 1 starting at time 𝑡𝑘 = 𝑡 (𝑅) + 8(𝑘 − 1) (𝑡 (𝑅) +√
2𝑅), for every 𝑟 awakened in Round 𝑘 − 1:
S(𝑟 ) ← square containing 𝑟

Move 𝑟 to the lower-left corner of S(𝑟 ) to build team T𝑟
For every team T𝑟 such that |T𝑟 | ⩾ 4ℓ do in parallel:

For 𝑖 ∈ [1..8] do
(1) move to the lower-left corner of the 𝑖-th adjacent

squares S𝑖 of S(𝑟 )
(2) Wait until time 𝑡𝑘 + (𝑡 (𝑅) +

√
2𝑅)𝑖

(3) Wake-up S𝑖 using ASeparator within S𝑖 with T𝑟 in

Round 𝑘

Figure 6: Description of AWave .

Theorem 4.3. AWave solves the dFTP, given every admissible tuple

(ℓ, 𝜌, 𝑛), with an energy budget of 𝑂 (ℓ2 log ℓ) and a makespan of

𝑂 (𝜉ℓ + ℓ2 log 𝜉ℓ/ℓ).

Proof. We first prove that ASeparator solves the dFTP with en-

ergy budget 𝑂 (ℓ2 log ℓ) and a makespan of 𝑂 (𝜉ℓ + ℓ2 log ℓ), and
explain in a second time how we obtain the announced makespan.

Firstly, note that 𝑡 (𝑅) ∈ Θ(ℓ2 log ℓ).
To begin, every round takes a time at most 𝑂 (𝑅) = 𝑂 (ℓ2 log ℓ).

The only robots that participates in Round 𝑘 has been awakened

only in Round 𝑘 + 1, it means that the energy budget required per

robot is 𝑂 (ℓ2 log ℓ).
At Round 0,ASeparator wakes up every robot of the initial square

S. If there is a robot within sep(S), it means that S contains at

least

⌊
𝑅/2−ℓ

ℓ

⌋
⩾ 𝑅

2ℓ − 2 = 4ℓ log
2
ℓ − 2 ⩾ 4ℓ robots since ℓ ⩾ 4.

Thus, S has enough robots to apply ASeparator in every adjacent

squares at Round 1, and every robot within the 8 adjacent squares

are awakened during Round 1.
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Let us now prove that all robots are awakened by the algorithm

by providing an upper bound on the number of rounds to wake up

a robot 𝑟 located outside the 9 central squares. Let 𝐺 be the ℓ-disk

graph of P and let 𝑃 = 𝑠, 𝑟1, 𝑟2 . . . , 𝑟 be a shortest path in 𝐺 from 𝑠

to 𝑟 , and let 𝑠, 𝑟1, 𝑟2, . . . , 𝑟 𝑗 ′ be the maximal subpath of 𝑃 of awake

robots at the end of Round 𝑘 . We now consider a robot 𝑟 𝑗 with

𝑗 < 𝑗 ′ such that 𝑅 − 3ℓ < 𝑑ℓ (𝑟 𝑗 , 𝑟 𝑗 ′ ) ⩽ 𝑅 − 2ℓ . Such a robot exists

since by definition of 𝑠 , 𝑑ℓ (𝑠, 𝑟 ) > 𝑅.

First, let us show that the subpath 𝑃 ′ = 𝑟 𝑗 , 𝑟 𝑗+1, . . . , 𝑟 𝑗 ′ is con-
tained within S(𝑟 𝑗 ′ ) and at most 2 squares simultaneously adjacent

to S(𝑟 𝑗 ′ ) and S(𝑟 𝑗 ′+1). Let S be a square, adjacent to S(𝑟 𝑗 ′ ) but
not adjacent to S(𝑟 𝑗 ′+1). The Euclidean distance between 𝑟 𝑗 ′ and S
is greater than 𝑅 − ℓ since 𝑟 𝑗 ′ is at distance at most ℓ from S(𝑟 𝑗 ′+1).
Thus 𝑃 ′ cannot cross S. Moreover, it is impossible that 𝑃 ′ crosses
two adjacent squares of S(𝑟 𝑗 ′ ), S and S′, such that S and S′ are
not adjacent because 𝑃 ′ has a length strictly smaller then 𝑅. This

guarantees the announced property on 𝑃 ′.
Secondly, let us show that S(𝑟 𝑗 ′+1) is awakened at Round 𝑘 + 1.

To have this guarantee, we need to have at least 4ℓ awakened at

Round 𝑘 in an adjacent square. Since 𝑃 ′ is contained within at

most 3 adjacent squares of S(𝑟 𝑗 ′+1), the most populated adjacent

square contains at least

⌊
𝑅−2ℓ
ℓ

⌋
/3 =

⌊
𝑅
ℓ

⌋
/3 − 2/3 ⩾ (𝑅/ℓ − 1)/3 −

2/3 = 𝑅/(3ℓ) − 1 awake robots. If 𝑅 = 8ℓ2 log ℓ and ℓ ⩾ 4, then

𝑅/(3ℓ) − 1 ⩾ 16ℓ/3 − 1 ⩾ 4ℓ .

Now, take the maximal subpath 𝑃 ′′ of 𝑃 of length smaller than

𝑅 − 2ℓ but starting from 𝑟 𝑗 ′+1. We can show similarly as before

that this path is either within 3 adjacent squares awakened in the

worst case in Rounds 𝑘 + 1, 𝑘 + 2 and 𝑘 + 3 or that this path ends in

already awakened square. In any case, within 3 rounds, the length

of the maximal subpath of 𝑃 of awake robots at the end of Round

𝑘 + 3 has increased of at least 𝑅 − 3ℓ > 5ℓ2 log ℓ units. Thus the

number of rounds to wake up the robots of highest eccentricity

takes 𝑂 (𝜉ℓ/ℓ2 log ℓ) rounds. The makespan is then bounded by

𝑂 (𝜉ℓ ).
Finally, let us be more precise on the bound on the makespan. We

first consider the case where 𝜉ℓ ⩽ ℓ∗3/2/16 ⩽ ℓ3/2/16. We immedi-

ately have 𝜉ℓ < 𝑅/2 and thereforeAWave terminates at Round 0. But

since 𝜉ℓ ⩽ ℓ3/2/16, we have by Lemma 2.6, 𝜌∗ ⩽ ℓ3/2/16 and so, by

Lemma 3.2,ASeparator terminates at Round 0. In that case, as stated

by Equation 1 in the proof of Lemma 3.5, the makespan ofAWave is

𝑡0 ∈ 𝑂 (ℓ2 log(min{ℓ, 𝜌∗/ℓ})). Since by Lemma 2.6, 𝜌∗/ℓ ⩽ 𝜉ℓ/ℓ and
by Lemma 2.8, 𝜉ℓ/ℓ ⩽ 12𝜌∗2/ℓ2, we obtain an overall complexity

of AWave is in 𝑂 (ℓ2 log(min{ℓ, 𝜉ℓ/ℓ})).
Otherwise we have 𝜉ℓ ⩾ ℓ3/2/16 and equivalently, the relations

𝜉ℓ/ℓ ⩾
√
ℓ/16 and min{

√
ℓ/16, 𝜉ℓ/ℓ} =

√
ℓ/16.

Hence 𝑂 (ℓ2 log ℓ) = 𝑂 (ℓ2 log(min{ℓ, 𝜉ℓ/ℓ})). This guarantees an
overall complexity in 𝑂 (𝜉ℓ + ℓ2 logmin{ℓ, 𝜉ℓ/ℓ}) for AWave .

To summarize, we have obtained thatAWave has an overall com-

plexity in𝑂 (𝜉ℓ + ℓ2 log(min{ℓ, 𝜉ℓ/ℓ})). By Lemma 2.7, we conclude

that AWave has a makespan in 𝑂 (𝜉ℓ + ℓ2 log 𝜉ℓ/ℓ). □

4.3 Lower Bound with Energy Constraint

We present a lower bound for a given of range of values for 𝜉 .

Theorem 4.4 (Lower Bound for energy constrained). For

every admissible tuple (ℓ, 𝜌, 𝑛), for every 𝐵 > ℓ , and for every 𝜉 ∈
[𝜌,min{𝑛ℓ − 𝜌/3,

⌊
𝜌2/(2(𝐵 + 1)) + 1

⌋
}], there exists an 𝑛-points

set P and a source 𝑠 of connectivity threshold ℓ , radius 𝜌 , and ℓ-

eccentricity 𝜉ℓ = 𝜉 such that the makespan of any algorithm A
solving the dFTP for (P, 𝑠) given (ℓ, 𝜌, 𝑛) and energy budget 𝐵, is

Ω(𝜉 + ℓ2 log (𝜉/ℓ)).

5 Details on the Distributed ℓ-Sampling

We describe more formally the algorithm DFSampling. In a region

S a team T computes an ℓ-sampling of S, starting from a given

set of seeds X. If robots have been awakened previously in S, we
denote by 𝐴 the set of their initial positions. 𝐴 is assumed to be

known by T . The output is a set of points P′ that is a ℓ-sampling

of S. In practice, we use DFSampling to recruit a team T ′ of at
most 4ℓ robots identified by their positions P′.

Let us start by defining a function Sort(X) to order positions

of seeds X = {𝑋𝑖 } whenever X > 1. Seeds are ordered with respect

to a projection on the borders of S in the clockwise order around

the center of square S. More precisely, a seed 𝑋𝑖 is projected to the

closest point of the border of S breaking tie by choosing the first

projected point in the clockwise order.

DFSampling

(1) P′ = ∅. Positions X = [𝑋1, 𝑋2, . . . , 𝑋 𝑗 ] are ordered with

Sort(X). Set 𝑖 = 1.

(2) While |P′ | < 4ℓ and 𝑖 <= 𝑗 , adds 𝑋𝑖 to P′. T performs

a DFS traversal of the 2ℓ-disk graph induced by P ∩ S,
starting by 𝑋𝑖 :

(a) When a position 𝑝 is added to P′, T moves to 𝑝 and

does Explore(𝐵2ℓ (𝑝), 𝑝). If a sleeping robot was found
at 𝑝 , it is awakened and added to T beforehand.

(b) Neighbors of 𝑝 are known either from 𝐴 or from ex-

ploration of 𝐵2ℓ (𝑝). A position 𝑝′ ∈ 𝐵2ℓ (𝑝) is added to
P′ if its distance to any point of P′ is greater than ℓ .

(c) A stack keeps track of the neighbors of positions in P′.
T explores as far as possible along each branch and

backtracks when no such 𝑝′ was found around 𝑝 .

(d) 𝑖 ← the index of the next seed of 𝑋𝑖′ such that 𝐵𝑋𝑖′ (ℓ)
is not covered. Go to Step 2;

(3) Return P′

Figure 7: Description of DFSampling.

We are now ready to prove the corresponding lemma:

Lemma 5.1 (DFSampling). In a region S of width 𝑅 containing a

set of seeds X ⊆ P, a team T of robots knowing the awake robots of

S can compute a set of positions P′ being an ℓ-sampling of P. The
computation is done using DFSampling in time:

𝑂 (ℓ2 log( |P′ |)) if |T | = 1 and X = {𝑝𝑠 } and 𝑅 ⩾ 2𝜌∗

𝑂 (𝑅 + ℓ |P′ |) if |T | = ℓ and X = P ∩ sep(S)
In both cases, either (1) |P′ | = 4ℓ ; or (2) |P′ | < 4ℓ and S is covered

by P′.

Proof. By construction, any 𝑝′ added toP′ is at distance greater
than ℓ from any other point of 𝑃 ′. Inductively, any pair of positions
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in P′ has a pairwise distance greater than ℓ . Thus the output of

DFSampling is an ℓ-sampling of S. Let us now analyze the time

required to obtain that ℓ-sampling.

The Depth First Search traversal uses three operations: find

neighbors, move to a neighbor and backtrack if no new neighbor is

added.

In the following T stands for the current team of robots. As soon

as the robot team wakes up a sleeping robot, it is added to T so

the team size can increase. Let us start with seed 𝑋1. The time to

find the list of potential neighbors in the 2ℓ-disk graph is the time

to explore 𝐵𝑝 (2ℓ). From Lemma 2.1, it takes a time in 𝑂 (ℓ2/|T |).
Thus exploring and moving to a neighbor takes 𝑂 (ℓ2/|T | + ℓ).

Let us first consider the case where the initial team |T | = 1 and

X = 𝐴 = 𝑝𝑠 . Assume that at some point, 𝑘 robots were awakened

and added to T . This happens as soon as there is a sleeping robot

on a position 𝑝′ that is added to P′. The time to find and wake up

these 𝑘 robots is upper bounded by

∑𝑘
𝑖=1𝑂 (ℓ2/𝑖) ∈ 𝑂 (ℓ2 log𝑘).

Let us focus on the time dedicated to moves. For recruiting 𝑘 ⩾ 2

robots, T either have to move forward to a neighbor at a distance

at most 2ℓ , or backtrack to branch from a neighbor of a previously

added robot. The amount of moves required to backtrack is at most

2𝑘ℓ units since the tree corresponding to the Depth First Search

traversal has 𝑘 edges of length at most 2ℓ . In total, the total time of

backtracking is less than 2𝑘ℓ ⩽ 8ℓ2 ∈ 𝑂 (ℓ2) since 𝑘 ⩽ 4ℓ . In total,

it takes 𝑂 (ℓ2 log𝑘) for this first case.
The second case is whenever we start with a team of size ℓ and

a set of seeds X = P ∩ sep(S). The exploration is now done col-

laboratively with ℓ robots. By Lemma 2.1, for any position 𝑝′ ∈ P′
the exploration phase takes 𝑂 (ℓ) . As in the first case, the differ-

ent moves take 𝑂 (𝑘ℓ). Thus the total time of exploration for the

recruitment of 𝑘 robots takes 𝑂 (𝑘ℓ).
The second change is that the Depth First Search traversal start-

ing from seed𝑋1 can stop before reaching 4ℓ robots. In this case the

search goes on starting from the next seed. We have to add the time

corresponding to the moves from one seed to another. Note that T
starts a branch from at most 4ℓ positions 𝑋𝑖1 , . . . , 𝑋𝑖4ℓ ofX. Assume

that T recruit 𝑘 seeds among these 4ℓ positions. We rely on the

fact that X ⊆ sep(S) and the ordering computed by Sort(X) to
bound the total duration of theses intermediates moves.

Let 𝑌𝑖 be the projected point of 𝑋𝑖 on the border of S. By defini-

tion of the ordering Sort(X), the distance between two consecutive
seeds𝑋𝑖 𝑗 and𝑋𝑖 𝑗+1 is at most |𝑋𝑖 𝑗𝑌𝑖 𝑗 |+ |𝑌𝑖 𝑗 , 𝑌𝑖 𝑗+1 |+ |𝑋𝑖 𝑗+1𝑌𝑖 𝑗+1 | which
is at most 2ℓ + 𝑑1 (𝑌𝑖 𝑗 , 𝑌𝑖 𝑗+1 ) where 𝑑1 (𝑝, 𝑝′) is the distance in the

𝐿1-norm for 𝑝, 𝑝′ ∈ R2. Thus the distance travelled in the separa-

tor,

∑𝑘−1
𝑗=1 |𝑋𝑖 𝑗𝑋𝑖 𝑗+1 |, is at most

∑𝑘−1
𝑗=1 2ℓ + 𝑑1 (𝑌𝑖 𝑗 , 𝑌𝑖 𝑗+1 ) ⩽ 4𝑅 + 2𝑘ℓ

since

∑𝑘−1
𝑗=1 𝑑1 (𝑌𝑖 𝑗 , 𝑌𝑖 𝑗+1 ) is at most the perimeter of the square. To

conclude, it takes 𝑂 (𝑅 + 𝑘ℓ).
We now focus on properties (1) and (2). Assume that algorithm

DFSampling ends. We show by contradiction that if |P′ | < 4ℓ then

S is covered by P′: ∀𝑝 ∈ P ∩ S, ∃𝑝′ ∈ P′ such that 𝑝 ∈ 𝐵𝑝′ (2ℓ).
Assume that there exists a point 𝑝0 ∈ P ∩ S that is not covered

by P′. Since the connectivity threshold is less than ℓ , the ℓ-disk

graph 𝐺 of P is connected and any pair of points in P are linked

by a path in 𝐺 . In particular, there must exist a seed 𝑝𝑥 ∈ X such

that there is a path 𝑏 = (𝑝0, 𝑝1, ..., 𝑝𝑥 ) in 𝐺 entirely contains in S:

⋃𝑥
𝑖=1, 𝑝𝑖 ⊂ S. It is trivial if P is fully contained in S i.e., when

𝑅 ⩾ 2𝜌∗.
Otherwise, if there is in P at least one point 𝑞 outside of S and

X = P ∩ sep(S). From Lemma 2.4 any path from 𝑝0 ∈ S𝑖𝑛 to

𝑞 ∈ S𝑜𝑢𝑡 contains at least one position 𝑝𝑥 ∈ sep(S) ∩ X. Consider
a path 𝑏 from 𝑝0 to 𝑝𝑥 . By assumption, 𝑝0 is not covered by P′.
Let 𝑝𝑖 be the first position on the path such that 𝑝𝑖 is not covered

by P′ and 𝑝𝑖+1 is covered. By construction of P′ if 𝑝𝑖+1 is covered
there is a position 𝑝′

𝑖+1 ∈ P
′
contains the close neighborhood

of 𝑝𝑖+1 in 𝐺 i.e., |𝑝𝑖+1𝑝′𝑖+1 | ⩽ ℓ or 𝑝𝑖+1 = 𝑝′
𝑖+1. This implies that

𝐵𝑝′
𝑖+1
(2ℓ) covered by 𝑃 ′. Since |𝑝𝑖𝑝𝑖+1 | ⩽ ℓ and |𝑝𝑖+1𝑝′𝑖+1 | ⩽ ℓ we

get |𝑝𝑖𝑝′𝑖+1 | ⩽ 2ℓ which conflicts with the assumption that 𝑝𝑖 is not

covered. □

6 Discussion

Although the input of our algorithms is (ℓ, 𝜌, 𝑛), it turns out that
only the knowledge of ℓ as an upper bound of ℓ∗ is required. The
number of robots to awake 𝑛 is never used.

Only ASeparator requires an upper bound 𝜌 on 𝜌∗. We can eas-

ily get a constant approximation of 𝜌∗ as follows: (1) we build a

team of 4ℓ robots using DFSampling in time𝑂 (ℓ2 log ℓ) and (2) we
run explorations of the ℓ-separators squares of increasing width

ℓ · 2𝑖 for 𝑖 = 1, 2, . . . , 𝑘 until we have an empty separator. Then

we take 𝜌 = ℓ · 2𝑘 which is a 2-approximation of 𝜌∗. The overcost
is 𝑂 (ℓ2 log ℓ + ∑𝑘

𝑖 ℓ2
𝑖 ) = 𝑂 (ℓ2 log ℓ + ℓ2𝑘+1) = 𝑂 (ℓ2 log ℓ + 𝜌). Ei-

ther step (1) does not provide 4ℓ robots meaning that P is covered

and that 𝜌∗ is deduced from the discovered robots or (2) we have

log ℓ = 𝑂 (log(𝜌∗/ℓ)). To conclude, the total overcost of comput-

ing a constant approximation of 𝜌∗ from ℓ is of same order than

ASeparator .

We presented two algorithms that guarantee an optimalmakespan

under the hypothesis of knowing an upper bound on ℓ∗.ASeparator

provides an optimal makespan in Θ(𝜌∗ + ℓ2 log(𝜌∗/ℓ)) without
energy constraints, and AWave provides an optimal makespan of

Θ(𝜉ℓ + ℓ2 log 𝜉ℓ/ℓ) with an energy budget in Θ(ℓ2 log ℓ). Finally,
A

Grid
provides a less efficient makespan (apart under some spe-

cific relations between ℓ, 𝜌 and 𝜉ℓ ), but requires an optimal energy

budget of Θ(ℓ2).
Some questions remain open: can we get an optimal algorithm

with only Θ(ℓ2) energy?
Moreover, our lower bound with energy constraints holds for a

specific range of 𝜉 , informally between 𝜌 and 𝑐 · (𝜌/ℓ)2 for some

constant 𝑐 , whereas we know that 𝜉 can approach 𝑐 · 𝜌2/ℓ : can we

obtain a lower bound for a broader range of value of 𝜉?

In our algorithms, robots communicate using rendez-vous. Is it

possible to achieve efficient solution without communication?
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