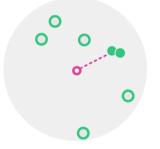
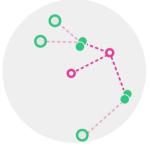
Distributed Freeze Tag: How to efficiently wake up a swarm of robots?

Cyril Gavoille, Nicolas Hanusse, Gabriel Le Bouder, Taïssir Marcé

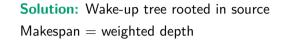
ALGOTEL

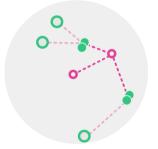
June 6, 2025

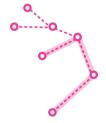



Input: *n* sleeping robots + 1 awake Robots move and wake up the others

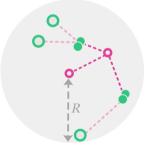
Input: *n* sleeping robots + 1 awake Robots move and wake up the others

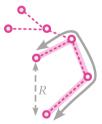



Input: *n* sleeping robots + 1 awake Robots move and wake up the others

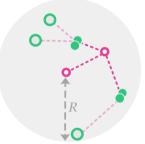

Optimal makespan t^* ?

Input: *n* sleeping robots + 1 awake Robots move and wake up the others




Optimal makespan t^* ?

Input: *n* sleeping robots + 1 awake Robots move and wake up the others


vake Solution: Wake-up tree rooted in source thers Makespan = weighted depth

Optimal makespan t^* ? **•** $t^* \geq \text{radius } R$

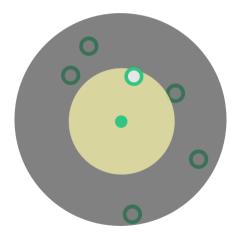
Input: *n* sleeping robots + 1 awake Robots move and wake up the others

Optimal makespan t^* ? **•** $t^* \geq \text{radius } R$

Thm.[Z. Abel, H. Akitaya, J. Yu, 2017]

Finding t^* is NP-hard

Input: *n* sleeping robots + 1 awake Robots move and wake up the others

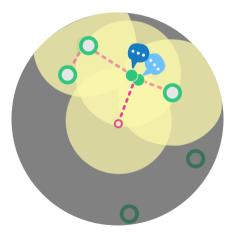

Thm.[Z. Abel, H. Akitaya, J. Yu, 2017]

Finding t^* is NP-hard

Thm.[Bonichon, Gavoille, Hanusse, Odak, CCCG '24]

Wake-up tree with depth at most 5R can be computed in time O(n).

Optimal makespan t^* ? **•** $t^* \geq \text{radius } R$

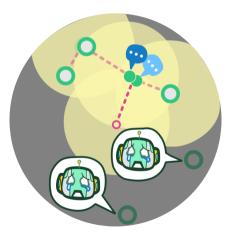


Distributed model

"What if robots ignore others' positions?"

- Detection at bounded distance

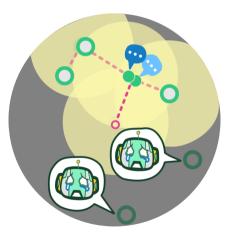
- No distant communication



Distributed model

"What if robots ignore others' positions?"

- Detection at bounded distance


- No distant communication

Distributed model

"What if robots ignore others' positions?"

- Detection at bounded distance : robots may need to explore beyond unit distance
- No distant communication

Distributed model

"What if robots ignore others' positions?"

- Detection at bounded distance : robots may need to explore beyond unit distance
- No distant communication
- Detecting termination requires knowledge on the set of robots (e.g. R or n)

Hypothesis and contribution

ℓ-disk graph

There is an edge $(A, B) \iff |AB| \le \ell$

Connectivity threshold

 $l^* \equiv$ Smallest l > 0 such that the l-disk graph is connected.

Hypothesis and contribution

Algorithms input

An upper bound ℓ on ℓ^* An upper bound R on the radius R^* .

ℓ-disk graph

There is an edge $(A, B) \iff |AB| \le \ell$

Connectivity threshold

 $l^* \equiv$ Smallest l > 0 such that the l-disk graph is connected.

Hypothesis and contribution

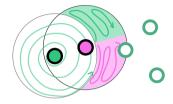
ℓ-disk graph

There is an edge $(A, B) \iff |AB| \le \ell$

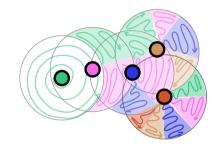
Connectivity threshold

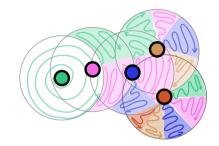
 $l^* \equiv$ Smallest l > 0 such that the l-disk graph is connected.

Algorithms input


An upper bound l on l^* An upper bound R on the radius R^* .

Theorem [Gavoille, Hanusse, Le Bouder, M.]


Given n, R and ℓ it takes $\Theta(R + \ell^2 \log (R/\ell))$ time to awake robots


1 robots explores an ℓ -disk in time $O(\ell^2)$

2 robots explores an ℓ -disk in time $O(\ell + \ell^2/2)$

 ℓ robots explores an ℓ -disk in time $O(\ell + \ell^2/\ell) = O(\ell)$. (No more speed up beyond ℓ)

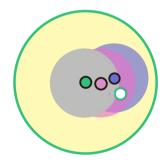
 ℓ robots explores an ℓ -disk in time $O(\ell + \ell^2/\ell) = O(\ell)$. (No more speed up beyond ℓ)

Efficient for waking up a team of ℓ robots

$$\sum_{i=1}^{\ell} (\ell + \ell^2/i) = O(\ell^2 \log \ell)$$

Depth-First Sampling

Goal: Whenever you get a large team ($\approx O(l)$ robots), grow to 4l using sampling to cover surface.



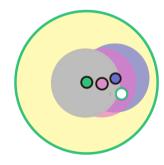
Depth-First Sampling

Goal: Whenever you get a large team ($\approx O(l)$ robots), grow to 4l using sampling to cover surface.

Sampling Method

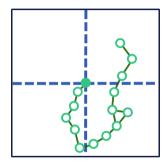
- Exploration at distance 2l
- Recruited robots are at distance $> {\it l}$ apart

Depth-First Sampling


Goal: Whenever you get a large team ($\approx O(\ell)$ robots), grow to 4ℓ using sampling to cover surface.

Sampling Method

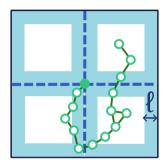
- Exploration at distance $2\ell \Rightarrow O(\ell^2/\ell)$
- Recruited robots are at distance $> \ell$ apart


Lemma

DFSampling stops within time $O(R + l^2)$ and either a team of 4l robots were recruited, or the whole area is covered by recruited robots.

Geometric Separator

Goal: As soon as you get a large team ($\approx 4\ell$ robots), **Divide** the surface and conquer!



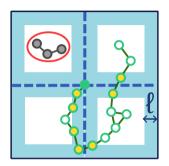
Geometric Separator

Goal: As soon as you get a large team ($\approx 4\ell$ robots), **Divide** the surface and conquer!

Partionning method

Four l-team explore four **Geometric** Separators of width $l \Rightarrow O(R)$.

Geometric Separator

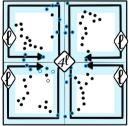

Goal: As soon as you get a large team ($\approx 4\ell$ robots), **Divide** the surface and conquer!

Partionning method

Four l-team explore four **Geometric** Separators of width $l \Rightarrow O(R)$.

Cool trick

Detects if a large area is empty (since ℓ -disk graph is connected)

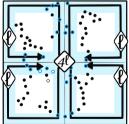

Initialization: Recruits $O(\ell)$ robots $O(R + \ell^2 \log \ell)$

Initialization: Recruits $O(\ell)$ robots $O(R + \ell^2 \log \ell)$

Partition:

 ℓ -teams explores

separators.

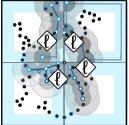

 $O(R_i)$ with $R_i = R/2^i$

Initialization: Recruits $O(\ell)$ robots $O(R + \ell^2 \log \ell)$

Partition:

 ℓ -teams explores

separators.

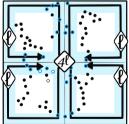


 $O(R_i)$ with $R_i = R/2^i$

Recruitment:

 ℓ -teams recruits until 4ℓ

robots are awaken.

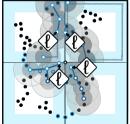

With sampling $O(R + l^2)$

Initialization: Recruits $O(\ell)$ robots $O(R + \ell^2 \log \ell)$

Partition:

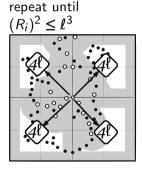
 ℓ -teams explores

separators.



 $O(R_i)$ with $R_i = R/2^i$

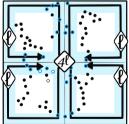
Recruitment:


 ℓ -teams recruits until 4ℓ

robots are awaken.

With sampling $O(R + l^2)$

Iteration:

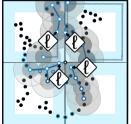


Initialization: Recruits $O(\ell)$ robots $O(R + \ell^2 \log \ell)$

Partition:

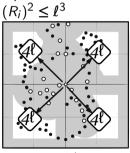
 ℓ -teams explores

separators.



 $O(R_i)$ with $R_i = R/2^i$

Recruitment:


 ℓ -teams recruits until 4ℓ

robots are awaken.

With sampling $O(R + \ell^2)$

Iteration: repeat until

 $O(\log R/\ell^{3/2})$ iterations

 $\checkmark\ensuremath{\mathsf{Optimal}}$ approximation algorithm for the Distributed Freeze-Tag

 $\checkmark\ensuremath{\mathsf{Optimal}}$ approximation algorithm for the Distributed Freeze-Tag

Related results DFTP with bounded energy per robots: nearly optimal [Gavoille, Hanusse, Le Bouder, M - PODC'25]

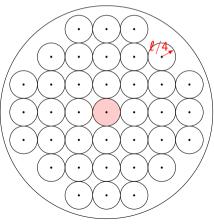
 $\checkmark\ensuremath{\mathsf{Optimal}}$ approximation algorithm for the Distributed Freeze-Tag

Related results DFTP with bounded energy per robots: nearly optimal [Gavoille, Hanusse, Le Bouder, M - PODC'25]

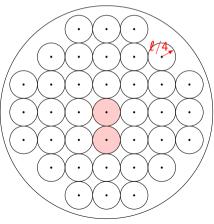
Further works

- Several sources and/or different spatio-temporal reference
- Under asynchronous assumptions

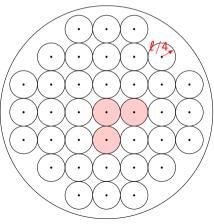
 $\checkmark\ensuremath{\mathsf{Optimal}}$ approximation algorithm for the Distributed Freeze-Tag

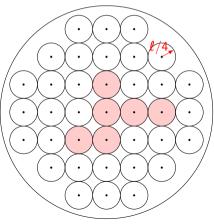

Related results DFTP with bounded energy per robots: nearly optimal [Gavoille, Hanusse, Le Bouder, M - PODC'25]

Further works


- Several sources and/or different spatio-temporal reference
- Under asynchronous assumptions

Thanks!


Goal


Goal

Goal

Goal

