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Abstract

The Freeze Tag Problem consists in waking up a swarm of robots
starting with one initially awake robot. Whereas there is a wide lit-
erature of the centralized setting, where the location of the robots is
known in advance, we focus in the distributed version where the loca-
tion of the robots P are unknown, and where awake robots only detect
other robots up to distance 1. Assuming that moving at distance δ
takes a time δ, we show that waking up of the whole swarm takes
O(ρ+ℓ2 log(ρ/ℓ)), where ρ stands for the largest distance from the ini-
tial robot to any point of P, and the ℓ is the connectivity threshold of
P. Moreover, the result is complemented by a matching lower bound
in both parameters ρ and ℓ. We also provide other distributed algo-
rithms, complemented with lower bounds, whenever each robot has a
bounded amount of energy.

1 Introduction

In order to save energy in distributed systems, the paradigm of sleeping
models and algorithms has received a recent attention. Nodes or robots are,
by default, inactive or on standby: the energy consumption is negligible and
these periods can be used to harvest energy. A robot becomes active only if
it is required.

The Freeze Tag Problem (FTP) consists in waking up a swarm of n
inactive (or sleeping) robots as fast as possible assuming that one robot is
initially active. To be woke up, a sleeping robot has to be reached by an
awake robot, that are able to move in the plane. Once a robot becomes
active, it can help wake up other robots.

FTP has been introduced in a centralized setting, where the n locations
of the sleeping robots are known by the initial awake robot s. In this article,
we propose a distributed version of the FTP: (1) the locations of the sleeping
robots are not known in advance; (2) using a local snapshot, active robots
only have a distance-1 visibility; and (3) robots need to be co-located to
communicate. Note that due to the visibility constraint, it may be required
to explore further than radius 1 to locate sleeping robots.
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In order to get the most sustainable solution in a long-life perspective,
we aim at minimizing the energy consumption. In particular, since moving is
identified as an energy intensive task, the goal is to minimize the makespan,
that is the time to wake up every robot, assuming unitary speed of the
robots, i.e., moving at distance δ takes δ unit of time. It is also assumed
that robots use discrete snapshots only, since continuous snapshots may by
not energy friendly. We observe that since in our distributed model, robots
do not know in general the locations of other robots, robot s has to move at
least Ω(D2) to discover and reach the closest other robot if it is located at
distance D from s. Obviously, it can reach it with time O(D2) by following
the trajectory of a spiral starting from s for instance.

1.1 State of the art

Any solution to the FTP can be seen as a rooted tree spanning the a set of
n+ 1 robot’s positions, called the wake-up tree. The root node corresponds
to the position of s, has one child, and the n node are other robots have at
most two children each. Each edge has a length, representing the distance
in the metric space between its endpoints. The makespan of the solution is
nothing else than the (weighted) depth is the wake-up tree, and in particular
a solution with optimal makespan has a wake-up tree with minimum depth.

Freeze Tag. Even for simple case, an optimal solution of the FTP can
not be computed in polynomial time. Arkin et al. [ABF+06] showed that,
even on star metrics, FTP is NP-hard. Moreover, they proved that getting
an 5/3-approximation is NP-hard for general metrics on weighted graphs.
However, in [ABG+03], the authors give a polynomial time algorithm to get
an O(1) for general graphs, assuming one sleeping robot per node.

In this paper, we focus on the geometric setting, where robot movements
have no restrictions and where the position set P lie on the Euclidean plane.
Even in this setting, the problem remains NP-hard [AAJ17]. It has been
shown by Yazdi et al. [YBMK15] that a wake-up tree of makespan of at
most 10.07ρ can be (sequentially) computed in time O(n), where ρ is the
largest distance from s to any point of P. The constant 10.1, aka the wake-
up constant of the Euclidean plane, has been later on improved by Bonichon
et al. [BCGH24] to 7.07. More generally, they proved that the wake-up
constant for any norm is no more than 9.48, and that a corresponding wake-
up tree can be computed in time O(n). Very recently, the upper bound
dropped to independently to 5.06 by [ABMS25] and to 4.63 [BGHO24]. It
is known that 1 + 2

√
2 ≈ 3.83 is a lower bound on the wake-up constant of

the plane [BCGH24].
A first step toward the computation of a wake-up tree without a global

knowledge of the robot’s positions is the on-line setting [HNP06, BW20]. In
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this case, each robot only appears at a specified time that is not known in
advance. In [BW20], the authors propose a solution with a competitive ratio
of 1 +

√
2 w.r.t. to the optimal partial wake-up tree.

Collaborative Exploration. Obviously, any collaborative exploration
problem requires to have a team of active robots. Conversely, the distributed
FTP (dFTP for short), requires to explore some area to discover sleeping
robots and thus is naturally connected to exploration of the plane with one
or more robots. The survey of Das [Das19] contains many references such
exploring problems in unknown graphs. In dFTP, we start with one active
robot, and after few steps, we can have k active robots. So, the task of dis-
covering new robots can indeed be seen as a collaborative exploration task.
The question of improving exploration with the use of k > 1 robots is chal-
lenging and widely open. For instance, it has been shown by Fraigniaud et
al. [FGKP06] that unweighted trees of diameter D, distributed exploration
can be done in O(D+ n/ log k) unitary moves, even if robots are allowed to
let some information at the nodes, whereas we could hope a speed-up of k
with O(D + n/k) unitary moves. However, if the underlying graph is a two
dimensional sub-grid of n vertices, a grid with rectangular holes, Ortlof and
Schindelhauer [OS12] show how to get an optimal speedup of factor k.

Discovering a robot at distance D with k co-located robots in the plane
can be done within Θ(D+D2/k) unitary moves per robot using either parallel
spiral trajectories [FHG+16], or by partitionning into a square of width D
into k rectangles of width D/k and height D. This problem, aka Treasure
Hunt Problem or Cow-Path Problem, has been widely studied for k = 1 or
with imprecise geometry [BDPP20]. Interestingly, the authors of [FKLS12]
have showed that the knowledge of an approximation of k is required to
get a time the bound Θ(D + D2/k). The question of the knowledge of k
arises whenever the k robots do not start the exploration together (as in the
dFTP), or whenever the communication ability of the robots is limited.

Energy Consumption. Some recent works deal with the problem of dis-
tributed tasks with some energy constraints or minimizing the energy con-
sumption. In the sleeping model [CGP20], nodes or robots are either sleeping
or are active. If a robot is sleeping, its consumption is assumed to be negligi-
ble. The state of each robot in synchronized rounds is given by a centralized
schedule. Distributed tasks have been considered in the sleeping model like
coloring or MIS computations.

Energy Constrained Exploration Problems are perhaps more related to
our problem. For instance, in the Piece-Meal Graph Exploration, robots
have a given budget for the energy and needs to refuel at a home base before
exploring unknown parts of the graph. Note that a solution of the treasure
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hunt in a grid graph can be used for the plane. In [DKK06], the authors show
that n-node and m-edge unweighted graphs of radius R can be explored by
k = 1 agent with an energy budget B = (1 + α) ·R in O(m+ n/α) unitary
moves. For k > 1, [DKS06, DDU24] deal with the Energy Constrained
Depth First Search while minimizing the number k of robots with an energy
budget O(R) per robot to explore a tree of radius R. Other distributed
algorithms for energy constrained agents has been considered in [BCD+20].
They show how to provide a feasible movement schedule for mobile agents for
the Delivery Problem, where each agent has limited energy which constrains
the distance it can move. Hence multiple agents need to collaborate to move
and deliver the package, each agent handing over the package to the next
agent to carry it forward. However, the positions of the agents are assumed
to be known and the computation is centralized.

However, all these results related to collaborative exploration and energy
consumption are not directly related to our setting, and essentially because
we are face to the fact that, by definition of the problem, the number of
active robots collaborating keeps on evolving, from 1 to n+ 1.

1.2 The Model

Computational Model. We consider a swarm of robots in the Euclidian
plane. Robots are all initially asleep, except one which we call the source
and denote s, initially located at position p0 = (0, 0). The set of all robots
is denoted by R = {s, r1, . . . , rn}, robots ri being the initially asleep robots.
We denote by pi the initial position of robot ri, and by P the set of all initial
positions of initially asleep robots, i.e., P = {p1, . . . , pn}. Robots are en-
dowed with a visible light indicating their status (sleeping or awake), which
can be observed by any active robot close enough (in its distance-1 vicin-
ity). Sleeping robots are computationally inactive. They can neither move,
observe, nor do any type of computation. Awake robots are aware of the
absolute coordinate system, a same global clock and are able to locate and
distinguish sleeping and awake robots in their vicinity, by using a function
look. They can also share variables of their memory with co-localated robots,
and can operate computations based on the information they gathered pre-
viously. Finally, they can move in the plane, based on the computation they
operated. Robots move at speed 1, which means it takes a time δ for a robot
to move between any two points at Euclidean distance δ. Thus the behaviour
of a robot can be described in the standard Look-Compute-Move Model (see
[FPS19]).For synchronization purpose, robots can also wait for any duration
of time at a fixed position. When an awake robot and a sleeping robot are
co-located, the awake one can wake the other one up, and possibly share
with it some information as previously said.

An algorithm A aiming to solve the dFTP is executed in parallel by all
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the awake robots. The execution of A terminates when all active robots have
terminated their computation and moves. The execution is valid if, when it
terminates, all the initially asleep robots have been awakened. The makespan
of an execution is the duration between the beginning of the algorithm and its
termination, which basically counts the duration of the moving and waiting
actions of robots.

Robots have a local unlimited memory. Typically, they can store the
positions of some robots and their status (sleeping/awake) at the time they
see them in their vicinity. Note that robots can give themselves a globally
unique identifier as soon as they are awakened, by storing their initial po-
sition. We will also consider the variant of the model where the robots are
not free to move as long as they want, but are rather limited by some energy
budget B. In this variant, a robot can move for a total distance at most B.

Spread of P. Our results are highly linked to the distribution of P. Typ-
ically, if the distance between every pair of robots is much larger than 1, a
robot may have the inaccurate belief that it is alone1 which complicates a lot
the resolution of the problem. To formally present our results as in Table 1,
let us introduce some parameters related to P ⊂ R2.

Given a real δ ⩾ 0, and X ⊂ R2, the δ-disk graph of X is the edge-
weighted geometric graph whose vertex set is X , two points u, v ∈ X being
connected by an edge if and only if u and v are at (Euclidean) distance at
most δ, and the weight of the edge corresponds to the distance between their
endpoints.

Let (P, s) be an n-point set P ⊂ R2 with a source s /∈ P. The radius of
(P, s), denoted by ρ∗, is the largest distance from s to any point of P. The
connectivity-threshold of (P, s), denoted by ℓ∗, is the least radius δ such that
the δ-disk graph of P ∪ {s} is connected. Given ℓ > 0, the ℓ-eccentricity of
(P, s), denoted by ξℓ, is the – finite or infinite – minimum weighted-depth of
a spanning tree of the ℓ-disk graph of P ∪ {s} rooted at s.

Problem Definition. Note that if ρ∗ ⩽ 1, every robot is seen by the source
s and can be waken up in time O(1) with energy budget O(1) by solving the
centralized version in s, e.g., as done in [BCGH24]. We shall suppose that
s starts with some information about the connectivity-threshold, the radius,
and the number of asleep robots in P that it is supposed to wake up. More
precisely, a tuple of values (ℓ, ρ, n) is given to s at its start. Indeed, without
any information, it is not difficult to see that s cannot terminate (and thus
cannot solve the dFTP), being unable to distinguished (for instance) the
case where n = 0 (s is alone) from n > 0, without moving for eternity. An
algorithm with input (ℓ, ρ, n) and solving dFTP should terminate on any n-

1The co-located robot that activated it excepted.
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point set (P, s) such that ℓ∗ ⩽ ℓ and ρ∗ ⩽ ρ. Also note that we always have
ℓ∗ ⩽ ρ∗ ⩽ nℓ∗, as proven in Proposition 1. And, so a tuple (ℓ, ρ, n) is said
admissible if ℓ ⩽ ρ ⩽ nℓ. Also, for the sake of simplicity, we suppose that
parameters ℓ and ρ are positive integers. This hypothesis does not actually
change the problem (in term of asymptotic complexity of the makespan),
since (ℓ, ρ, n) is admissible if and only if (⌈ℓ⌉ , ⌈ρ⌉ , n) is.

The dFTP is formally defined as follows:

Definition 1 (dFTP). A distributed algorithm A solves the dFTP if, for
any admissible tuple (ℓ, ρ, n), and for any n-point set P with source s such
that ρ∗ ⩽ ρ and ℓ∗ ⩽ ℓ, the execution of A on P at source s, given (ℓ, ρ, n),
eventually wakes up all the robots and terminates. Moreover, it solves the
dFTP with energy budget B if the previous holds, assuming that the total
movement lengths of each robot does not exceed B.

1.3 Contributions

Our contributions are summarizes in Table 1. We present three algorithms,
called ASeparator , AGrid and AWave .

The first algorithm ASeparator solves dFTP, with no limits on the energy
budget, and has makespan O(ρ+ ℓ2 log(ρ/ℓ)). This result is complemented
by a matching lower bound.

The two other algorithms consider the dFTP with energy budget B. We
first show that no algorithm can solve the limited energy budget variant if
B < cℓ2, for some constant c > 0. Then, for B ∈ Θ(ℓ2), i.e., as little energy
as possible to solve the dFTP, AGrid achieves a makespan of O(ξℓ · ℓ). Using
slightly more energy, namely B ∈ Θ(ℓ2 log ℓ), AWave has a significantly lower
makespan, which matches a second lower bound we introduce.

Energy Algorithm Makespan Lower Bound

unconstrained ASeparator O(ρ+ ℓ2 log (ρ/ℓ)) - Th. 1 Ω(ρ+ ℓ2 log (ρ/ℓ)) - Th. 2
< π(ℓ2 − 1)/2 - - unfeasible - Th. 3

Θ(ℓ2) AGrid O(ξℓ · ℓ) - Th. 4
Ω(ξℓ + ℓ2 log (ξℓ/ℓ)) - Th. 6

Θ(ℓ2 log ℓ) AWave O(ξℓ + ℓ2 log(ξℓ/ℓ)) - Th. 5

Table 1: Complexity of the makespan for the dFTP given (ℓ, ρ, n).

Roadmap. In Section 2 we present the main building blocks of our al-
gorithm. These are high-level procedures we use to describe ASeparator in
Section 3. In Section 4 ASeparator will also be used as a building block for
algorithms with constrained energy AGrid and AWave . Due to space lim-
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itations, the majority of the descriptions of our algorithms and proofs is
provided in a separate appendix.

2 Building Blocks

The main parts of our algorithms are based on exploring regions, computing
and realizing wake-up trees, and organizing teams of robots to explore regions
in parallel. The recruitment of a team is based on a sampling of point sets.
To avoid exploring large empty regions, we use geometric separators.

2.1 Exploration (Explore)

One central task robots are led to realize is the exploration of a given region,
in order to collect the positions of all the sleeping robots in that region. For
the sake of simplicity, we only consider rectangular regions, whose orientation
is parallel to the axis. Note that it can be used to explore any shape inscribed
in a rectangle. We present in Section 6.1 a simple method for exploring a
given rectangle with a single robot, using function look, which can be adapted
to a team of robots. In this extension, every robot explores a sub-rectangle
before moving to a meeting point where they can share their variables.

Lemma 1 (Explore). There exists a procedure Explore such that, for any
rectangle S of dimensions w×h, for any two positions p, p′ ∈ S, the execution
of Explore(S, p′) at time t, by a team of k robots T = {r1, . . . , rk} initially
co-located at position p guarantees:

• it terminates at time t′ with (t′ − t) ∈ O(wh/k + w + h); and

• at time t′, robots of T have gathered the initial positions of all robots
of S that are asleep at t′.

2.2 Realization of a Central Wake-up-Tree

In [YBMK15, BCGH24] the authors show that, knowing the initial positions
of robots, it is possible to compute a wake-up tree in linear time, whose
makespan is an approximation of the optimal. Yet, in the distributed set-
ting, some specific problems may arise. Indeed, two awake robots ri and rj
may compute independently two wake-up trees on different but not disjoint
subsets Xi and Xj of P. If pk, the position of rk, belongs to Xi∩Xj , then ri
and rj are said in conflict. Both need to use rk for their wake-up trees and
only the first robot to reach rk is able to do it (since rk will then move). The
second one only find out that rk has left its initial position pk when itself or
one of its descendent arrives close to pk. In this situation the consistency of
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the wake-up tree is broken, and a new wake-up tree has to be computed for
the sub-tree rooted at rk. Since this situation can be repeated an arbitrarily
large number of times for a set Y = Xi∩Xj , there is no evidence that rj can
wake up Xj \ Y in a time proportional to the diameter of Xj \ Y . To deal
with that issue, we ensure in our algorithms that wake-up trees are com-
puted in separate regions of the plane, and that at most one robot computes
a wake-up tree in a given region. This is formalized in Lemma 2, detailed
in Section 6.2.

Lemma 2 (Distributed Makespan). Given a square region S of width R and
a robot r positioned in the center of S, knowing both S and a set of sleeping
robots RS whose initial positions are in S, if no robots other than {r} ∪ RS

takes action in S, then r can wake-up all robots of RS in time 5R.

More generally, if robots do not know the positions of sleeping robots in
S, it is possible for a robot to discover them before computing a wake-up
tree. This process will be used in AGrid , and is presented in the following
Corollary, detailed in Section 6.3.

Corollary 1 (Explore and Wake up). Given a square region S of width R
containing at least one awake robot, if no awake robot goes through the border
S, it is possible to wake-up all sleeping robots of S in time R2+(10+

√
2)R.

2.3 Geometric separators

One central tool we use is geometric separators. Given a square S of width
R centered at position p, the interior of S, including S, is noted S in and the
remaining region of the plane is noted Sout . Given a square S with width
R > 2ℓ, we define the separator of S, denoted sep(S), as the region bounded
by S and a square of center p and width R− 2ℓ. We immediately get:

Lemma 3. Let S be a square. Let ℓ be the connectivity threshold of (P, s).
Any path in the ℓ-disk graph of P linking robots r ∈ S in and r′ ∈ Sout
contains at least one robot located in sep(S).

Corollary 2. If P ∩ sep(S) = ∅, either P ⊂ Sin or P ⊂ Sout.

2.4 Distributed ℓ-sampling

To begin, we point out that the time to wake up every robot in a square
region of width R, O(R) (Lemma 2), is often dominated by the time to dis-
cover sleeping robots in this region by a team of k robots, which is O(R2/k)
(Lemma 1). However, knowing an upper bound ℓ on the connectivity thresh-
old can help thanks to ℓ-samplings. More formally, an ℓ-sampling of a region
S is a subset of positions P ′ ⊆ P ∩S that are pairwise at distance at least ℓ.
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We also say that S is covered by P ′, if any robot within S is at distance at
most ℓ from a robot whose position is in P ′. Assuming that the ℓ-sampling
is given and P is covered by P ′, discovering the n robots can be done in
parallel in time O(ℓ2), gathering P ′ at the source s in time R and waking-up
every robot in time O(R) using a centralized wake-up algorithm (Lemma 2).
In total, it takes O(R+ ℓ2). The two main difficulties are how to efficiently
compute in a distributive way an ℓ-sampling, and how large is an ℓ-sampling.

Lemma 4 (ℓ-sampling cardinality). If P ′ is an ℓ-sampling of a square region
of width R, then |P ′| ⩽ 16R2/(πℓ2).

DFSampling is a distributed algorithm computing an ℓ-sampling of a
squared region S. A single robot or a co-located team of robots start from a
same position of P ∩S and aims at finding an ℓ-sampling of size 4ℓ (See Fig-
ure 1b). This sampling represents positions of robots to be later recruited to
become a new team. This sampling is discovered using a specific exploration
algorithm. Since it may happen that exploring from one single position is
not enough to reach a sample of size 4ℓ, the team may use several start-
ing positions for the exploration task, which we call the seeds X ⊂ S. In
Figure 1c, X is the set of points within an ℓ-separator of a sub-square.

Roughly speaking, DFSampling is based on a Depth-First Search in the
2ℓ-disk graph of P ∩ S, starting by the position of seeds from X . Whenever
a point p is discovered, it is added to P ′ only if it is at distance greater than
ℓ from any other points already added to P ′. This is required to guarantee
that P ′ is indeed a ℓ-sampling. A detailed description is in Section 6.5 as
well as the proof of Lemma 5.

Lemma 5 (DFSampling). In a region S of width R containing a set of
seeds X ⊆ P, a team T of robots knowing the awake robots of S can compute
a set of positions P ′ being an ℓ-sampling of P. The computation is done
using DFSampling in time:

O(ℓ2 log(|P ′|)) if |T | = 1 and X = {ps} and R ⩾ 2ρ∗

O(R+ ℓ|P ′|) if |T | = ℓ and X = P ∩ sep(S)

In both cases, either (1) |P ′| = 4ℓ; or (2) |P ′| < 4ℓ and S is covered by P ′.

3 Without energy constraint

Algorithm ASeparator is based on a divide-and-conquer strategy where robots
are organized in teams. As shown by a matching lower bound, the algorithm
has optimal makespan. We describe it with six phases: Initialization, Partition,
Exploration, Recruitment, Reorganization and Termination.

9



s
2ρ

(a) Initialization (b) DFSampling from s
to get a sample of size 4ℓ.

ℓ
4ℓ

ℓ

ℓℓ

(c) Exploration of 4 sep-
arators by teams of ℓ
robots.

Figure 1: First phases of ASeparator ; • sleeping robots; ◦ awake robots;
sleeping seeds; awake seeds.

ℓ

ℓℓ

ℓ

(a) Recruitment:
DFSampling start-
ing from Xi ⊂ sep(Si).

ℓ+ℓ1'

ℓ+ℓ3'

ℓ+ℓ2'

ℓ+ℓ4'

(b) Ti merge at the cen-
ter of S and share their
variables.

4ℓ

4ℓ

4ℓ

4ℓ

(c) Next round: four
team of 4ℓ move to a sub-
square.

Figure 2: Recruitment and Reorganization phases of ASeparator ; recruited
robots; explored area is grayed.

Having first awaken 4ℓ robots in the square of center s and width 2ρ
(Initialization and Recruitment Phase, presented in Figure 1a and 1b). we
divide the square into 4 sub-squares, and send a team of ℓ robots in every
sub-square (Partition Phase). During the Exploration Phase, each team col-
lectively explores the separator of their sub-square and stores seeds in X ,
that are the initial positions of robots (sleeping or already awake) belong-
ing to the separator (Figure 1c). During the Recruitment Phase, each team
wakes up new robots in its sub-square, such that these new robots plus robots
currently exploring whose initial position is in that sub-square, are 4ℓ (Fig-
ure 2a). These 4ℓ robots are recruited to define a new team used in the next
round.

Finally, during phase Reorganization, all 4 teams meet in the center of
the square so robots can team up with robots initially located to the same
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sub-square. Each team thus formed go into its corresponding sub-square,
and repeat the process until all robots have been awakened (Figures 2b, 2c).
Recruitment Phase relies on function DFSampling presented in Section 2.4.
Lemma 5 guarantee that if DFSampling returns a set with less than 4ℓ
positions, then every robot located in the sampled region has been discovered
(but not necessarily awakened). This justifies the Termination phase where
awaken robots wake up the remaining sleeping robots with a centralized
algorithm. Figure 3 presents a more detailed description of ASeparator .

Theorem 1. ASeparator solves the dFTP, given every admissible tuple
(ℓ, ρ, n), with a makespan O(ρ+ ℓ2 log(ρ/ℓ)).

In Section 7 we prove Theorem 1 in two steps: Lemma 9 guarantees that
ASeparator solves the dFTP, and Lemma 8 its makespan. Informally, we have
O(log (ρ/ℓ)) rounds (Lemma 11) and Round k ⩾ 1, takes O(ℓ2 + ρ/2k) time
units (Lemma 10).

We also provide a lower bound on the makespan of any algorithm solving
the dFTP. This is done by building an n-point set P depending on the
considered algorithm. Details of the proof are given in Section 9.1

Theorem 2 (Lower Bound without energy constraint). For every admissible
tuple (ℓ, ρ, n) and algorithm A solving the d-FPT, there exists an n-point set
P and a source s such that ℓ∗ ⩽ ℓ and ρ∗ ⩽ ρ such that the makespan of the
execution of A with source s and inputs (ℓ, ρ, n) on P is Ω(ρ+ ℓ2 log(ρ/ℓ)).

4 With energy constraint

The construction used in the proof of Theorem 2 can be adapted to obtain
Theorem 3. Details are given in Section 9.2.

Theorem 3 (Lower Bound on the energy budget). For every admissible
tuple (ℓ, ρ, n) and algorithm A with energy budget B < π(ℓ2 − 1)/2, there
exists an n-point set P and a source s such that ℓ∗ ⩽ ℓ and ρ∗ ⩽ ρ such that
the execution of A on P does not wake-up any robot.

We use a Breadth First Search based strategy to define AGrid , an al-
gorithm that takes as input the parameter ℓ ⩾ ℓ∗. This algorithm is then
combined with ASeparator to get AWave , which provides a smaller makespan.

To sum up, AGrid works as follows: the plane is partitioned into squares
of width 2ℓ centered at positions {(2kℓ, 2k′ℓ) | (k, k′) ∈ Z2}. We wake-up
the square S containing s in time t(S) = R2 + (10 +

√
2)R (Corollary 1).

Then every square containing a new awake robot try to wake up the 8 ad-
jacent squares of a square ordered in a counter-clockwise order. A precise
description of AGrid is provided in Section 8.1.
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ASeparator

1. Round 0: Initialization and Recruitment
S ← square of width R = 2ρ and centered at the source robot s
T ← {s}
X ← {ps}
T recruits up to 4ℓ− 1 new robots using DFSampling(S,X )
Move T to the center of S

2. Round k ⩾ 1 for a team T in square S:

(i) Termination
If |T | < 4ℓ: do a centralized awakening of sleeping robots
in S and terminate.

(ii) Partition
Partition S (resp. T ) into 4 sub-squares S1,S2,S3,S4 (resp.
4 teams T1, T2, T3, T4 of ℓ robots each).
Each team Ti performs in parallel:

(iii) Exploration
Using 4 times routine Explore, collectively explore
sep(Si).
Save in Xi the set of positions of sep(Si) where a robot
was found asleep, and those where a robot has already
been awakened.

(iv) Recruitment
Ti recruits ℓ′i robots by using DFSampling(Si,Xi)
Move Ti to the center of S.

(v) Reorganization
Wait until the four teams Ti can merge and share their
variables.
Reorganize robots in teams T ′

i of size ℓ′i by square of origin
Si.
For each team T ′

i , do in parallel:

• Move T ′
i to the center of Si

• Go to Round k + 1 with team T ′
i and square Si.

Figure 3: Description of ASeparator

Theorem 4. AGrid solves the dFTP, given every admissible tuple (ℓ, ρ, n),
with an energy budget of O(ℓ2) and with a makespan of O(ℓ · ξℓ).

The next algorithm, AWave , is an adaptation ofAGrid . Roughly speaking,
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there are two changes: (1) the squares are now of width 8ℓ2 log2 ℓ; and (2)
instead of using a simple process to explore and to wake up a square, we use
ASeparator starting from a team of 4ℓ robots for Rounds k ⩾ 1 and from the
source s for Round 0. A precise description of AWave is given in Section 8.2.

Theorem 5. AWave solves the dFTP, given every admissible tuple (ℓ, ρ, n),
with an energy budget of O(ℓ2 log ℓ) and a makespan of O(ξℓ + ℓ2 log ξℓ/ℓ).

We can find a lower bound of Ω(ξ) for a given of range of values for ξ
(See construction in Section 9.3):

Theorem 6 (Lower Bound for energy constrained). For every admissi-
ble tuple (ℓ, ρ, n), for every B > ℓ, and for every ξ ∈ [ρ,min{nℓ −
ρ/3,

⌊
ρ2/(2(B + 1)) + 1

⌋
}], there exists an n-points set P and a source s

of connectivity threshold ℓ, radius ρ, and ℓ-eccentricity ξℓ = ξ such that the
makespan of any algorithm A solving the dFTP for (P, s) given (ℓ, ρ, n) and
energy budget B, is Ω(ξ + ℓ2 log (ξ/ℓ)).

5 Discussion

Although the input of our algorithms is (ℓ, ρ, n), it turns out that only the
knowledge of ℓ as an upper bound of ℓ∗ is required. The number of robots
to awake n is never used.

Only ASeparator requires an upper bound ρ on ρ∗. We can easily get a
constant approximation of ρ∗ as follows: (1) we build a team of 4ℓ robots
using DFSampling in time O(ℓ2 log ℓ) and (2) we run explorations of the
ℓ-separators squares of increasing width ℓ ·2i for i = 1, 2, . . . , k until we have
an empty separator. Then we take ρ = ℓ · 2k and we can prove that it is a
3-approximation of ρ∗. The overcost is O(ℓ2 log ℓ +

∑k
i ℓ2

i) = O(ℓ2 log ℓ +
ℓ2k+1) = O(ℓ2 log ℓ+ρ). Either step (1) does not provide 4ℓ robots meaning
that P is covered and that ρ∗ is deduced from the discovered robots or (2)
we have log ℓ = O(log(ρ∗/ℓ)). To conclude, the total overcost of computing
a constant approximation of ρ∗ from ℓ is of same order than ASeparator .

We presented two algorithms that guarantee an optimal makespan under
the hypothesis of knowing an upper bound on ℓ∗. ASeparator provides an
optimal makespan in Θ(ρ∗ + ℓ2 log(ρ∗/ℓ)) without energy constraints, and
AWave provides an optimal makespan of Θ(ξℓ + ℓ2 log ξℓ/ℓ) with an energy
budget in Θ(ℓ2 log ℓ). Finally, AGrid provides a less efficient makespan (apart
under some specific relations between ℓ, ρ and ξℓ), but requires an optimal
energy budget of Θ(ℓ2).

Some questions remain open: can we get an optimal algorithm with only
Θ(ℓ2) energy?

Moreover, our lower bound with energy constraints holds for a specific
range of ξ, informally between ρ and c · (ρ/ℓ)2 for some constant c, whereas

13



we know that ξ can approach c · ρ2/ℓ: can we obtain a lower bound for a
broader range of value of ξ?

In our algorithms, robots has to communicate using rendez-vous. Is it
possible to achieve efficient solution without face-to-face communication?

6 Building blocks - details

Main notations. Given r ⩾ 0 and p ∈ R2, we denote by Bp(r) the disk
of center p and radius r. Given a real δ ⩾ 0, and X ⊂ R2, the δ-disk graph
of X is the edge-weighted geometric graph whose vertex set is X , two points
u, v ∈ X being connected by an edge if and only if u and v are at (Euclidean)
distance at most δ, and the weight of the edge corresponds to the distance
between their endpoints.

We first emphasize a relationship between the different parameters of the
point sets:

Proposition 1. For every point set P and source s, for any ℓ ⩾ ℓ∗:

0 < ℓ∗ ⩽ ρ∗ ⩽ ξℓ ⩽ n · ℓ∗ .

Thus the input for our algorithm is a tuple (ℓ, ρ, n) such that ℓ ⩽ ρ ⩽ nρ.

Proof. The first three inequalities are straightforward using definition. Note
ℓ = ℓ∗ and ρ = ρ∗. The last one is because: (1) each edge of the ℓ-disk graph
of P ∪ {s} has length at most ℓ; and (2) a path from s to any point of P in
every tree spanning n = |P |+ 1 points contains at most |P | edges.

6.1 Explore

We now detail how a team of k robots can explore efficiently a square.

Lemma 1 (Explore). There exists a procedure Explore such that, for any
rectangle S of dimensions w×h, for any two positions p, p′ ∈ S, the execution
of Explore(S, p′) at time t, by a team of k robots T = {r1, . . . , rk} initially
co-located at position p guarantees:

• it terminates at time t′ with (t′ − t) ∈ O(wh/k + w + h); and

• at time t′, robots of T have gathered the initial positions of all robots
of S that are asleep at t′.

Proof. Let us start by describing a Single exploration, that is the path trav-
eled by a single robot r to explore a rectangular region of width w and height
h. Starting from a corner, keep on zigzaging rows by rows separated by

√
2
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and every move of length
√
2, do a snapshot to discover up to radius 1, as

shown in Figure 4a. Note that the algorithm may require an initial move
and a final move, to go from p to the origin of the path, and to go from
the endpoint of the path to p′, both moves being bounded by w + h. The
sum of the length of vertical paths is at most h′, and the length of each
horizontal path is at most w. Furthermore, the number of horizontal path
is ⌈h/

√
2⌉, which means that the sum of the length of the horizontal paths

is at most w⌈h/
√
2⌉ ∈ O(w × h + w). By summing all three parts, we end

up with a complexity of explore_single in O(w× h+w+ h). The validity of
the procedure explore_single comes with the fact that any disk of radius 1
contains the square with identical center and width

√
2.

For a collaborative exploration with k robots, the procedure separates
the targeted rectangle into k rectangles, each one being explored by a single
robots as shown in Figure 4b. Sub-rectangles are of equal dimensions w′ = w
and h′ = h

k The analysis conducted for the single exploration leads to a
complexity of O(w×h

k + w + h) for this procedure. Since all robots can
compute an upper bound on the time complexity for all robots, they can all
reach the endpoint p′ at the same moment t′ and share the information they
gathered in their own rectangles.

r

w

h

√
2

1

(a) Scheme of the Single exploration
procedure presented in the proof of
Lemma 1.

r1

r2

ri

rk

h

h/k

w

(b) Scheme of the construction of
Lemma 1 applied to the collaborative
exploration of a disk.

Figure 4: Depiction of the exploration process.
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6.2 Realization of a wake-up tree.

In this section we explain how to apply some results about Centralized Freeze
Tag Problem to awake robots in a distributed setting.

Once an awake robot r0 has learned the positions of sleeping robots in
region of the plane of radius R, it can compute an arbitrary wake-up tree
r0 of weighted depth O(R) [BCGH24]. This step is called the centralized
awakening of the region by r0. It remains to actually wake up robots. r0 has
to awake its first child in the wake-up tree and transmit the rest of the tree
so the newly awake robot can help. More generally, each new awake robot
participate to the propagation of the wake-up tree. The procedure starts by
having r0 moving to its child r1 in Wr (Algorithm 1, line 6). When r0 and
r1 are co-located, r0 wakes up r1 (line 7) and shares the wake-up tree W
(line 8). When a robot ri wakes up a robot rj , both use a simple procedure
to update in parallel what remains of the wake-up tree:

• If the subtree of Wi rooted in rj is empty, ie rj is a leaf, none of ri or
rj has anything left to do (line 1 and 9).

• If rj has a unique child in Wi, rj updates its local wake-up tree Wj ←
Wi \ {ri} so Wj is rooted in rj (line 2) and ri is done (line 10). rj
wakes up its unique child in Wj and recursively propagate Wj .

• If rj has two children, Wi is separated into two sub-trees: ri keeps
the right-hand sub-tree (line 11) while rj keeps the left-hand sub-tree
(line 3). Both robots update their memory accordingly and moves
to the unique child of their respective wake-up trees to continue the
propagation.

Algorithm 1: Propagate Wake-Up Tree - Code for a robot r

input: W
1 if |W| = 0 then stop;
2 else if |W| = 1 then W← child(W);
3 else if |W| = 2 then W← child1(W);
4 while W do
5 dest← root(W);
6 move(dest);
7 wake_up(dest,W);
8 exchange(W);
9 if |W| = 0 then stop;

10 else if |W| = 1 then stop;
11 else if |W| = 2 then W← child2(W) ;
12 end
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Lemma 2 (Distributed Makespan). Given a square region S of width R and
a robot r positioned in the center of S, knowing both S and a set of sleeping
robots RS whose initial positions are in S, if no robots other than {r} ∪ RS

takes action in S, then r can wake-up all robots of RS in time 5R.

Proof. In [BCGH24], authors show that if a set of sleeping robot is contained
within a disk of radius R′ around an awake robot, one can compute a wake-
up tree with makespan 5

√
2R′. The proof follow by considering the disk of

center pr and radius R√
2
. S is entirely contains in that disk. By assumption r

known the positions of sleeping robots RS within S. Therefore r can awake
S by computing an propagating a wake-up tree with makespan R√

2

√
2 = 5R.

The correctness is due to the assumption that no robots other than r ∪ RS

awake robots in S, which avoid any risk of conflicts.

6.3 Local Synchronization

Let us prove Corollary 1 whenever several awake robots located in the same
square aim at waking up sleeping robots of the square. We assume that these
awake robots start their action at the same time:

Corollary 1 (Explore and Wake up). Given a square region S of width R
containing at least one awake robot, if no awake robot goes through the border
S, it is possible to wake-up all sleeping robots of S in time R2+(10+

√
2)R.

Proof. Every awake robots move to the lower-left corner of S in at most√
2R. One of them explores S in time R2 + 5R (Lemma 1) and move to the

center of S. Among all awake robots of S, only that one does take action.
Lemma 2 apply: it can awake every sleeping robots in time 5R.

6.4 ℓ-sampling and Eccentricity

As discussed in Section 2.4, computing an ℓ-sampling of a set of positions P
is an efficient way to discover P, and thus to wake up robots. In this section
we show some relationships between the values ℓ, ρ and ξℓ.

Lemma 4 (ℓ-sampling cardinality). If P ′ is an ℓ-sampling of a square region
of width R, then |P ′| ⩽ 16R2/(πℓ2).

Proof. For any pi, pj ∈ P ′, Bpi(ℓ/2) ∩ Bpj (ℓ/2) = ∅. The area of each
ball is πℓ2/4. Although pi’s are located within S, it may happen that only
a fraction of Bpi(ℓ/2) is contained within S. This fraction is at least 1/4

whenever pi is located at a corner of S. Since
⋃|P ′|

i=1(Bpi ∩ S) ⊂ S, we have
|P ′|πℓ2/16 ⩽ R2.
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Lemma 6. Let us consider a point set (P, s). For any ℓ ⩾ ℓ∗, we have
ξℓ ∈ [ρ∗, 12ρ

∗2

ℓ ], and for any position p ∈ P, there exists a path from s to p

in the ℓ-disk graph which is at most 1 + 2ξℓ
ℓ -hops long.

Proof. The lower bound ξℓ ⩾ ρ∗ is straightforward.
Let s, p1, . . . , pk = p be a shortest path from s to p in the ℓ-disk graph

of (P, s), which is minimal in terms of hops. By definition, ∀1 ⩽ i ⩽ k −
2, |pipi+2| > ℓ, otherwise pi and pi+2 are connected in the ℓ-disk graph, and
therefore there exists another shortest path, smaller by one hop. Therefore,
dℓ(s, p) is at least ℓ times the number of hops from p2i to p2i+2: dℓ(s, p) ⩾
ℓ ⌊k/2⌋ ⩾ ℓk−1

2 . Since dℓ(s, p) ⩽ ξℓ we conclude k ⩽ 1 + 2ξℓ/ℓ

Note also that we can apply Lemma 4 to the set of robots of even index
in that path. Therefore we obtain ⌊k/2⌋ ⩽ 16ρ2

πℓ2
and thus k ⩽ 1 + 32ρ2

πℓ2
<

36ρ2

πℓ2
< 12ρ2/ℓ2. Furthermore, we have dℓ(s, p) ⩽ kℓ, which imply that

dℓ(s, p) ⩽ 12ρ∗2/ℓ. Since this is true for any p, and ξℓ = maxp∈P dℓ(s, p) we
deduce ξℓ(G) ⩽ 12ρ∗2/ℓ.

6.5 Description and proof of Distributed ℓ-sampling

We describe more formally the algorithm DFSampling. In a region S a
team T compute an ℓ-sampling of S, starting from a given set of seeds X . If
robots have been awakened previously in S, we denote by A the set of their
initial positions. A is assumed known by T . The output is a set of points
P ′ that is a ℓ-sampling of S. In practice, we use DFSampling to recruit a
team T ′ of at most 4ℓ robots identified by their positions P ′.

Let us start by defining a function Sort(X ) to order positions of seeds
X = {Xi} whenever X > 1. Seeds are ordered with respect to a projection
on the borders of S in the clockwise order around the center of square S.
More precisely, a seed Xi is projected to the closest point of the border of S
breaking tie by choosing the first projected point in the clockwise order.

1. P ′ = ∅. Positions X = [X1, X2, . . . , Xj ] are ordered with Sort(X ).
Set i = 1. Add Xi to P ′.

2. Team T moves to Xi and performs a Depth First Search traversal of the
2ℓ-disk graph G induced by P ∩S. A neighbor p′ of a current position
p is either known if p′ ∈ A or is found using Explore(Bp(2ℓ), p). The
team explores as far as possible along each branch before backtracking
and stop if |P ′| = 4ℓ. A stack keeps track of the positions of P ′

discovered so far along a specified branch which helps in backtracking
of the graph. We have one condition to move to p′: a position p′ is
added to P ′ if its distance to any point of P ′ is greater than ℓ. If the
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robot located at p′ is sleeping, it is awakened by the team T and added
to T .

3. If |P ′| < 4ℓ and i < j then i← the index of the next seed of Xi′ such
that BXi′ (ℓ) is not covered and repeat Step 2;

4. return P ′

We are now ready to prove the corresponding lemma:

Lemma 5 (DFSampling). In a region S of width R containing a set of
seeds X ⊆ P, a team T of robots knowing the awake robots of S can compute
a set of positions P ′ being an ℓ-sampling of P. The computation is done
using DFSampling in time:

O(ℓ2 log(|P ′|)) if |T | = 1 and X = {ps} and R ⩾ 2ρ∗

O(R+ ℓ|P ′|) if |T | = ℓ and X = P ∩ sep(S)

In both cases, either (1) |P ′| = 4ℓ; or (2) |P ′| < 4ℓ and S is covered by P ′.

Proof. By construction, any p′ added to P ′ is at distance greater than ℓ from
any other point of P ′. Inductively, any pair of positions in P ′ has a pairwise
distance greater than ℓ. Thus the output of DFSampling is an ℓ-sampling
of S. Let us now analyze the time required to obtain that ℓ-sampling.

The Depth First Search traversal uses three operations: find neighbors,
move to a neighbor and backtrack if no new neighbor is added.

In the following T stands for the current team of robots. As soon as the
robot team wakes up a sleeping robot, it is added to T so the team size can
increase. Let us start with seed X1. The time to find the list of potential
neighbors in the 2ℓ-disk graph is the time to explore Bp(2ℓ). From Lemma
1, it takes a time in O(ℓ2/|T |). Thus exploring and moving to a neighbor
takes O(ℓ2/|T |+ ℓ).

Let us first consider the case where the initial team |T | = 1 and X =
A = ps. Assume that at some point, k robots were awakened and added to
T . This happens as soon as there is a sleeping robot on a position p′ that is
added to P ′. The time to find and wake up these k robots is upper bounded
by

∑k
i=1O(ℓ2/i) ∈ O(ℓ2 log k).

Let us focus on the time dedicated to moves. For recruiting k ⩾ 2
robots, T either have to move forward to a neighbor at a distance at most
2ℓ, or backtrack to branch from a neighbor of a previously added robot. The
amount of moves required to backtrack is at most 2kℓ units since the tree
corresponding to the Depth First Search traversal has k edges of length at
most 2ℓ. In total, the total time of backtracking is less than 2kℓ ⩽ 8ℓ2 ∈
O(ℓ2) since k ⩽ 4ℓ. In total, it takes O(ℓ2 log k) for this first case.
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The second case is whenever we start with a team of size ℓ and a set of
seeds X = P ∩ sep(S). The exploration is now done collaboratively with ℓ
robots. By Lemma 1, for any position p′ ∈ P ′ the exploration phase takes
O(ℓ) . As in the first case, the different moves take O(kℓ). Thus the total
time of exploration for the recruitment of k robots takes O(kℓ).

The second change is that the Depth First Search traversal starting from
seed X1 can stop before reaching 4ℓ robots. In this case the search goes
on starting from the next seed. We have to add the time corresponding to
the moves from one seed to another. Note that T starts a branch from at
most 4ℓ positions Xi1 , . . . , Xi4ℓ of X . Assume that T recruit k seeds among
these 4ℓ positions. We rely on the fact that X ⊆ sep(S) and the ordering
computed by Sort(X ) to bound the total duration of theses intermediates
moves.

Let Yi be the projected point of Xi on the border of S. By definition
of the ordering Sort(X ), the distance between two consecutive seeds Xij

and Xij+1 is at most |XijYij |+ |Yij , Yij+1 |+ |Xij+1Yij+1 | ⩽ 2ℓ+ d1(Yij , Yij+1)
where d1(p, p

′) is the distance in the L1-norm for p, p′ ∈ R2. Thus the
length of

∑k−1
j=1 |XijXij+1 | ⩽

∑k−1
j=1 d1(Yij , Yij+1) + 2ℓ ⩽ 4R + 2kℓ since∑k−1

j=1 d1(Yij , Yij+1) is at most the perimeter of the square. To conclude,
it takes O(R+ kℓ).

We now focus on the properties (1) and (2). Assume that DFSampling
ends. We show by contradiction that if |P ′| < 4ℓ then S is covered by P ′:
∀p ∈ P ∩ S,∃p′ ∈ P ′ such that p ∈ Bp′(2ℓ).

Assume that there exists a point p0 ∈ P ∩ S that is not covered by P ′.
Since the connectivity threshold is less than ℓ, the ℓ-disk graph G of P is
connected and any pair of points in P are linked by a path in G. In particular,
there must exist a seed px ∈ X such that there is a path b = (p0, p1, ..., px)
in G entirely contains in S:

⋃x
i=1, pi ⊂ S. It is trivial if P is fully contained

in S i.e., when R ⩾ 2ρ∗.
Else, if there is in P at least one point q outside of S and X = P∩sep(S).

From Lemma 3 any path from p0 ∈ Sin to q ∈ Sout contains at least one
position px ∈ sep(S) ∩ X . Consider a path b from p0 to px. By assumption,
p0 is not covered by P ′. Let pi be the first position on the path such that
pi is not covered by P ′ and pi+1 is covered. By construction of P ′ if pi+1

is covered there is a position p′i+1 ∈ P ′ contains the close neighborhood of
pi+1 in G i.e., |pi+1p

′
i+1| ⩽ ℓ or pi+1 = p′i+1. This implies that Bp′i+1

(2ℓ)

covered by P ′. Since |pipi+1| ⩽ ℓ and |pi+1p
′
i+1| ⩽ ℓ we get |pip′i+1| ⩽ 2ℓ

which conflicts with the assumption that pi is not covered.
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7 Proofs of ASeparator

We first prove the following lemma, which will be useful in the proofs of the
makespan of ASeparator and AWave .

Lemma 7. For any r ⩾ ℓ ⩾ 1 we have: O(r+ℓ2(logmin{ℓ, r/ℓ}+log r
ℓ3/2

)) ⊆
O(r + ℓ2 log(r/ℓ))

Proof. r/ℓ3/2 ⩽ r/ℓ and we have two cases:

1. ℓ ⩾ r/ℓ ⩾ r/ℓ3/2 implying log(min{ℓ, r/ℓ}+ log r
ℓ3/2

) ⩽ 2 log r/ℓ.

2. 1 ⩽ ℓ ⩽ r/ℓ ⩽ r/ℓ1/2.

In this second case, log ℓ + log r/ℓ = log(1 + ℓ) + log(1 + r/ℓ3/2) ⩽ log(1 +
ℓ + r/ℓ3/2 + r/ℓ1/2) ⩽ log(4r/ℓ1/2). We also have log(r/ℓ1/2) = log ℓ1/2 +
log r/ℓ ⩽ log ℓ + log r/ℓ ⩽ 2 log r/ℓ. Thus log(min{ℓ, r/ℓ} + log r

ℓ3/2
) ⩽

log 4 + 2 log(r/ℓ) ∈ O(log(r/ℓ)).

Makespan ASeparator

Lemma 8 (Makespan of ASeparator ). For every admissible tuple (ℓ, ρ, n) and
for any n-point set P and source s such that ℓ∗ ⩽ ℓ and ρ∗ ⩽ ρ, the execution
of ASeparator with source s and inputs (ℓ, ρ, n) on P terminates in time O(ρ+
ℓ2 log(ρ/ℓ))

Proof. Since ASeparator is decomposed into rounds, the proof is done by
bounding the duration of a Round k, denoted tk, and the number of rounds
until ASeparator terminates.

The duration of Round 0 is the duration of recruiting a team T of size up
to 4ℓ within a square of width 2ρ∗. The recruitment is done by computing a
ℓ-sampling of the square with DFSampling. From Lemma 4 there is at most
32ρ∗2/(πℓ2) points in a ℓ-sampling of a square of width 2ρ∗, therefore |T | =
min(4ℓ, 32ρ∗2/(πℓ2)). Lemma 5 guarantee that the time of DFSampling
depends of the size of the output team. Hence the duration of Round 0 is:

t0 ∈ O(ℓ2 log(min{ℓ, ρ∗/ℓ})) ⊆ O(ℓ2 log(min{ℓ, ρ/ℓ})). (1)

For k ⩾ 1, we denote by S(k) and T (k) a square region and a team
given as inputs at Round k. Let R(k) be the width of S(k). Note that for
a given k > 1, several squares are treated in parallel so neither S(k) nor
T (k) are unique. Given k, R(k) = 2ρ

2k−1 since at each round, the square
S(k) is partitioned into four squares implying that R(k+1) is the half of R(k),
starting with R(1) = 2ρ.
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Round k ⩾ 1 with input S(k) and T (k) is a terminating Round if it begins
with |T (k)| < 4ℓ, otherwise it is a partitioning Round. A terminating round
only takes time O(R(k)) ⊆ O(ρ) to move toward the center of the sub-square
and wake-up remaining sleeping robots discovered in the DFSampling ex-
ecution.

Let us focus on partitioning rounds. We show in Lemma 10 that for
k ⩾ 1, tk = O(R(k) + ℓ2).

Let kmax be the maximum number of Rounds. From Lemma 11, kmax =
O(log ρ

ℓ3/2
). The proof follows by summing the duration of Rounds from

k = 0 to kmax

TASeparator
=

kmax∑
k=0

tk = t0 +

kmax∑
k=1

tk (2)

∈ O(ℓ2 log(min{ℓ, ρ/ℓ})) +
kmax∑
k=1

O(R(k) + ℓ2) (3)

∈ O(ℓ2 log(min{ℓ, ρ/ℓ})) +
kmax∑
k=1

O(
2ρ

2k−1
) + kmaxO(ℓ2) (4)

∈ O(ℓ2 log(min{ℓ, ρ/ℓ})) +O(ρ) +O(log
ρ

ℓ3/2
)O(ℓ2) (5)

∈ O(ρ+ ℓ2(logmin{ℓ, ρ/ℓ}+ log
ρ

ℓ3/2
)) (6)

∈ O(ρ+ ℓ2 log(ρ/ℓ)) (7)

The last line comes from Lemma 7.

Lemma 9. For every admissible tuple (ℓ, ρ, n) and for any n-point set P
and source s such that ℓ∗ ⩽ ℓ and ρ∗ ⩽ ρ, the execution of ASeparator with
source s and inputs (ℓ, ρ, n) on P eventually wakes up all robots.

Proof. Consider an execution of ASeparator on P. From Lemma 11 an exe-
cution terminates after a finite number of Rounds. We show that when the
execution terminates, any robot r ∈ R initially located at p ∈ P is awak-
ened. Let k be the largest k such that at Round k there is a input square
Sk containing p.

Either r is awakened and then r ∈ T k, or it is asleep. In this case, we
show that r must be awakened at the end of Round k.

Firstly, Round k on Sk and T k must be a terminating Round. If it is not
the case, i.e., it is a partitioning Round, then for {i ∈ [1, 4] | T ′

i ̸= ∅} sub-
square Ski is an input of Round k + 1. Since robots are assigned to teams
T ′
i based on their initial position, if T ′

i is empty then P ∩ sep(Ski ) = ∅,
by Corollary 2, Ski is empty and does not contain p. Hence if Round k is
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a partitioning Round then at Round k + 1 there must be an input Sk+1

containing p, which breaks the assumption of k being maximal.
If Round k is terminating, by definition of ASeparator , the input team T k

contains less than 4ℓ robots. It implies that during the recruitment phase of
Round k− 1, DFSampling in Sk has stopped before constituting a team of
4ℓ robots. Lemma 5 guarantee that Sk is covered by T k i.e., each position
of P ∩ Sk is known by T k at the beginning of Round k. Therefore r must
be awakened when T k operates a centralized awakening of sleeping robots
of Sk.

Duration of Rounds

Lemma 10 (Duration of Rounds). For k ⩾ 1, the duration of Round k is
in O(R(k) + ℓ2), R(k) being the width of sub-squares.

Proof. We show that:

• a terminating Round has a duration O(R(k))

• a partitioning Round has a duration O(R(k) + ℓ2)

Let us begin with the termination case, that is an input S(k) and |T (k)| <
4ℓ. The Round k consists of using a centralized algorithm to wake up sleeping
robots in S(k). Recall that T (k) is recruited during the recruit phase of Round
k − 1 by sampling S(k). Since |T (k)| < 4ℓ Lemma 5 guarantees that S(k)
is covered by the subset of T (k−1) sampling S(k). At the end of Round
k − 1 the knowledge of each subset of T (k−1) is shared, thus sleeping robots
of P ∩ S(k−1) are known. The smallest disk containing S(k) is of radius
(1/
√
2)R(k). By Lemma 2, one robot of T (k) can wake up any set of robots

sleeping in this disk with a makespan at most O(R(k)).
Let us now consider a partitioning Round k with a non-terminating input

S(k) and |T (k)| ⩾ 4ℓ. It consists of having four teams of ℓ robots exploring
and recruiting within sub-squares of S(k) of width R(k+1). The separator of a
sub-square can be decomposed into 4 rectangles of dimension ℓ×R(k+1). By
Corollary 1 a team of ℓ robots can explore each rectangle in O( ℓ×R(k+1)

ℓ +ℓ+

R(k+1)) = O(R(k+1) + ℓ). The recruitment is done by DFSampling from a
set of positions X in sep(S(k)). From Lemma 5 the ℓ-sampling of S(k+1) with
a team of ℓ robot is done in time O(R(k+1))+ℓ2). Recall that R(k+1) = 1

2R
(k),

we get that the duration of a partitioning Round k is O(R(k) + ℓ2)

Number of Rounds

Lemma 11 (Number of Rounds). The number of rounds of ASeparator is 1

for ρ∗ ⩽ ℓ3/2

8 and log(1 +
√
8/πρ/ℓ3/2) ∈ O(log ρ

ℓ3/2
) otherwise. Both values

are in O(log ρ
ℓ3/2

).
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Proof. We have two cases depending on ρ∗, being large or small with respect
to ℓ. Set R = 2ρ∗.

If R ⩽ ℓ3/2

4 , from Lemma 4, any ℓ-sampling has size at most 16R2

4πℓ2
⩽

4ℓ/π < 4l. Algorithm ASeparator stops in Round 1.

From now, we assume that R > ℓ3/2

4 . Let us compute the smallest k

such that every execution of DFSampling to S(k) of width R(k) outputs a
ℓ-sampling T ′(k) strictly smaller to 4ℓ. In this case, ASeparator ends at the
beginning of Round k + 1 during the termination phase.

From Lemma 4, we have

|T (k)| ⩽ 16(R(k))2

πℓ2
(8)

Recall that R(k) =
2ρ

2k−1
(9)

We get R(k) ⩽
ℓ3/2

4
=

256ρ2

22k
πℓ2 < 4ℓ (10)

if 22k >
8ρ2

πℓ3
(11)

k > log(
√
8/πρ/ℓ3/2). (12)

8 Proofs of AGrid and AWave

8.1 Algorithm AGrid

We now describe in detail Algorithm AGrid :
Let t(ℓ) be an upper bound on the time required for the exploration

and centralized awakening of a square region of width 2ℓ by one robot. By
Corollary 1, t(ℓ) ∈ O(ℓ2).

• Round 0 - Initialization:
S ← square of width R = 2ℓ and centered at the source robot s
Explore and wake-up S

• Round k ⩾ 1 starting at time tk = t(ℓ) + 8(k − 1)(t(ℓ) +
√
2R):

For every robot r awakened in Round k − 1 do in parallel:
S ← the square containing r
For i ∈ [1..8] do

1. move to the lower-left corner of the i-th adjacent squares Si of S
2. Wait until time tk + (t(ℓ) +

√
2R)i
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3. Explore and Wake-up Si

Let us remind the result on the makespan of AGrid :

Theorem 4. AGrid solves the dFTP, given every admissible tuple (ℓ, ρ, n),
with an energy budget of O(ℓ2) and with a makespan of O(ℓ · ξℓ).

Proof. The duration of Round 0 is t(ℓ) ∈ O(ℓ2). Then, in Round k ⩾ 1,
we have to wake-up at most 8 squares in time 8t(ℓ). Since every square
are adjacent, it takes at most

√
2R to go the next adjacent square to wake-

up. In total, every round takes O(ℓ2). Every robot awakened in Round k
participates to Round k + 1 but stops do at the end of Round k + 1. Thus
it only has to use O(ℓ2) amount of energy.

Let us now upper bound the number of rounds. Given any robot r
located at position p, let us consider a shortest path from s to r in the ℓ-disk
graph of (P, s) minimizing the number of hops and the sequence of squares
S = s1, . . . , sk crossed by this path. Since the path can cross several times
a same square and every robot of a given square are awakened in the same
round, the number of rounds required to wake up the sequence of squares is
smaller or equal to the number of hops of the shortest path. From Lemma 6,
we know that there exists a path of at most 2ξℓ/ℓ hops implying the same
upper bound for the number of rounds. Since every round takes a time
O(ℓ2), the makespan is O(ℓ · ξℓ). Furthermore since every awakened robot in
Round k only move in Round k and k + 1 and stop, robots only need O(ℓ2)
energy.

8.2 Algorithm AWave

We now describe in detail Algorithm AWave :
Let t(R) be an upper bound on the time required for ASeparator to wake

up all robots of a square of width R starting from a team of size 4ℓ. By
Theorem 1, t(R) ∈ Θ(R+ ℓ2 log ℓ).

• Round 0 - Initialization:
ℓ← max{ℓ, 4}
S ← square of width R = 8ℓ2 log2 ℓ and centered at the source robot s
Wake-up S using ASeparator

If there is no robot in sep(S), AWave stops

• Round k ⩾ 1 starting at time tk = t(R) + 8(k − 1)(t(R) +
√
2R), for

every r awakened in Round k − 1:
S(r)← square containing r
Move r to the lower-left corner of S(r) to build a team Tr
For every team Tr such that |Tr| ⩾ 4ℓ do in parallel:
For i ∈ [1..8] do
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1. move to the lower-left corner of the i-th adjacent squares Si of
S(r)

2. Wait until time tk + (t(R) +
√
2R)i

3. Wake-up Si using ASeparator within Si with Tr in Round k

Let us prove Theorem 5

Theorem 5. AWave solves the dFTP, given every admissible tuple (ℓ, ρ, n),
with an energy budget of O(ℓ2 log ℓ) and a makespan of O(ξℓ + ℓ2 log ξℓ/ℓ).

Proof. We first prove that ASeparator solves the dFTP with energy bud-
get O(ℓ2 log ℓ) and a makespan of O(ξℓ + ℓ2 log ℓ), and explain in a sec-
ond time how we obtain the announced makespan. Firstly, note that
t(R) ∈ Θ(ℓ2 log ℓ).

To begin, every round takes a time at most O(R) = O(ℓ2 log ℓ). The only
robots that participates in Round k has been awakened only in Round k+1,
it means that the energy budget required per robot is O(ℓ2 log ℓ).

At Round 0, ASeparator wakes up every robot of the initial square S. If
there is a robot within sep(S), it means that S contains at least

⌊
R/2−ℓ

ℓ

⌋
⩾

R
2ℓ − 2 = 4ℓ log2 ℓ − 2 ⩾ 4ℓ robots since ℓ ⩾ 4. Thus, S has enough robots
to apply ASeparator in every adjacent squares at Round 1, and every robot
within the 8 adjacent squares are awakened during Round 1.

Let us now prove that all robots are awakened by the algorithm by pro-
viding an upper bound on the number of rounds to wake up a robot r lo-
cated outside the 9 central squares. Let G be the ℓ-disk graph of P and let
P = s, r1, r2 . . . , r be a shortest path in G from s to r, and let s, r1, r2, . . . , rj′
be the maximal subpath of P of awake robots at the end of Round k. We
now consider a robot rj with j < j′ such that R− 3ℓ < dℓ(rj , rj′) ⩽ R− 2ℓ.
Such a robot exists since by definition of s, dℓ(s, r) > R.

First, let us show that the subpath P ′ = rj , rj+1, . . . , rj′ is contained
within S(rj′) and at most 2 squares simultaneously adjacent to S(rj′) and
S(rj′+1). Let S be a square, adjacent to S(rj′) but not adjacent to S(rj′+1).
The Euclidean distance between rj′ and S is greater than R − ℓ since rj′ is
at distance at most ℓ from S(rj′+1). Thus P ′ cannot cross S. Moreover, it
is impossible that P ′ crosses two adjacent squares of S(rj′), S and S ′, such
that S and S ′ are not adjacent because P ′ has a length strictly smaller then
R. This guarantees the announced property on P ′.

Secondly, let us show that S(rj′+1) is awakened at Round k + 1. To
have this guarantee, we need to have at least 4ℓ awakened at Round k in an
adjacent square. Since P ′ is contained within at most 3 adjacent squares of
S(rj′+1), the most populated adjacent square contains at least

⌊
R−2ℓ

ℓ

⌋
/3 =⌊

R
ℓ

⌋
/3−2/3 ⩾ (R/ℓ−1)/3−2/3 = R/(3ℓ)−1 awake robots. If R = 8ℓ2 log ℓ

and ℓ ⩾ 4, R/(3ℓ)− 1 ⩾ 16ℓ/3− 1 ⩾ 4ℓ.
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Now, take the maximal subpath P ′′ of P of length smaller than R−2ℓ but
starting from rj′+1. We can show similarly as before that this path is either
within 3 adjacent squares awakened in the worst case in Rounds k+1, k+2
and k + 3 or that this path ends in already awakened square. In any case,
within 3 rounds, the length of the maximal subpath of P of awake robots
at the end of Round k + 3 has increased of at least R− 3ℓ > 5ℓ2 log ℓ units.
Thus the number of rounds to wake up the robots of highest eccentricity
takes O(ξℓ/ℓ

2 log ℓ) rounds. The makespan is then bounded by O(ξℓ).
Finally, let us be more precise on the bound on the makespan. We

first consider the case where ξℓ ⩽ ℓ∗3/2/16 ⩽ ℓ3/2/16. We immediately
have ξℓ < R/2 and therefore AWave terminates at Round 0. But since
ξℓ ⩽ ℓ3/2/16, we have by Proposition 1, ρ∗ ⩽ ℓ3/2/16 and so, by Lemma 11,
ASeparator terminates at Round 0. In that case, the makespan of AWave is
therefore t0 ∈ O(ℓ2 log(min{ℓ, ρ∗/ℓ})) as stated in Equation 1. Since by
Proposition 1 and Lemma 6, ρ∗/ℓ ⩽ ξℓ/ℓ ⩽ ρ∗2/(12ℓ2), we obtain an overall
complexity of AWave is in O(ℓ2 log(min{ℓ, ξℓ/ℓ})).

Otherwise, we have ξℓ ⩾ ℓ3/2/16, which means that ξℓ/ℓ ⩾
√
ℓ/16

and thus that min{
√
ℓ/16, ξℓ/ℓ} =

√
ℓ/16. Therefore, O(ℓ2 log ℓ) =

O(ℓ2 log(min{ℓ, ξℓ/ℓ})). This guarantee an overall complexity in O(ξℓ +
ℓ2 logmin{ℓ, ξℓ/ℓ}) for AWave .

To summarize, we have an overall complexity in O(ξℓ +
ℓ2 log(min{ℓ, ξℓ/ℓ})) ⊆ O(ξℓ + ℓ2 log(min{ℓ, ξℓ/ℓ}) + ξℓ/ℓ

3/2). By Lemma 7,
we conclude that AWave has a makespan in O(ξℓ + ℓ2 log ξℓ/ℓ).

9 Lower bounds - details

9.1 Without energy constraint

Let us recall and prove Theorem 2:

Theorem 2 (Lower Bound without energy constraint). For every admissible
tuple (ℓ, ρ, n) and algorithm A solving the d-FPT, there exists an n-point set
P and a source s such that ℓ∗ ⩽ ℓ and ρ∗ ⩽ ρ such that the makespan of the
execution of A with source s and inputs (ℓ, ρ, n) on P is Ω(ρ+ ℓ2 log(ρ/ℓ)).

Let us consider an algorithmA solving the dFTP, and an admissible tuple
(ℓ, ρ, n). To prove our lower bound, we first define some disjoint regions Dc

of B0,0(ρ) as pictured in Figure 5a. Each region has area Θ(ℓ2), and we
prove in Lemma 12 that there are Θ(ρ2/ℓ2) such regions. The general idea
is to place one sleeping robot in each region, depending on the behavior of
A, in a way that guarantees that awake robots have to visit the entire region
before they find the sleeping robot in it. We prove in Lemma 13 that the set
of points we propose is ℓ-connected, which makes the construction valid.
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Centers and connectivity. We define C = {(x, y) ∈ ( ℓ2Z)
2 |

√
x2 + y2 ⩽

ρ − ℓ
4} the vertices of the ℓ

2 -grid, restricted to the disk of center (0, 0) and
radius ρ− ℓ

4 . We say that two elements (x, y) and (x′, y′) in C are adjacent if
x′ = x∧ y′ = y± ℓ

2 or x′ = x± ℓ
2 ∧ y

′ = y. A subset C ⊆ C is connected if for
any c, c′ ∈ C, there exists a path of adjacent elements of C with extremities
c and c′.

We also define C∗ = C \ {(0, 0)} and m = min(n, |C∗|). Note that, since
(ℓ, ρ, n) is admissible, and by Lemma 12, we have m ⩾ ρ/ℓ. We are now
going to prove a lower bound of Ω(ℓ2 logm) ⊆ Ω(ℓ2 log ρ/ℓ).

We denote by Cm some subset of C∗ with m elements such that Cm ∪
{(0, 0)} is connected, and contains at least {(0, ℓ

2), (0, 2
ℓ
2), . . . , (0, ⌊ρ/ℓ⌋

ℓ
2)}.

Note that this is always feasible because, on the one hand, m ⩾ ⌊ρ/ℓ⌋, and
on the other hand, ⌊ρ/ℓ⌋ ℓ

2 ⩽ ρ/2 ⩽ ρ− ℓ
4 , so all these points are actually in

C∗.

Disks, ℓ-connectivity. For any c = (x, y) ∈ Cm, let us define the disk of
center c by Dc = Bc(ℓ/4), of area πℓ2

16 . Let us also define Dm = ∪c∈CmDc

and D∗ = ∪c∈C∗Dc . Note that different disks in Dm are pairwise disjoints
(except one single point), that Dm ⊂ B(0,0)(ρ), and that the area of Dm is
|Cm|πℓ

2

16 .

ℓ/4

(a) Scheme of the general construc-
tion of Theorem 2, with set D∗ col-
ored in red.

3ρ
4

3ρ

4
√
2
⩾ ρ

2

ℓ/2

(b) Scheme of the proof of Lemma 12
with S in blue.

Figure 5: Proof of the Lower Bound
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Construction of the set P(A). Let us first suppose that n ⩽ |C∗|. The
construction of the set of initial positions P(A) depends on the considered
algorithm A. The process consists in placing exactly one robot per disk
Dc ∈ Dm, at position pc. This construction guarantees that the instance
(P, s) is consistent with the tuple (ℓ, ρ, n). In particular, the set is actually
ℓ-connected according to Lemma 13 and because Cm is connected. Given one
disk Dc ∈ Dm, the exact localisation pc is defined as the last position of Sc to
be explored by the previously awakened robots, under the execution of the
algorithm. In other words, the algorithm must integrally explore Sc before it
discovers the new robot in it. If n > |C∗|, then the construction is similar for
the first |C∗| − 1 positions. The initial localization of the remaining robots
can be in any arbitrary small disk of radius ε included in some area of Dm

that has not been discovered yet.

Proof of the lower bound Ω(ℓ2 logm). We denote by RA(t) the set of
awake robots at time t, and given the set of initial positions P = P(A), we
denote by DP(t) ⊆ Dm the set of points of Dm that have been discovered at
time t or before. More formally, DP(t) is the set of points p ∈ Dm such that
∃t′ ⩽ t,∃r ∈ RA(t

′) : |pr(t′)p| ⩽ 1.
We denote by ∥DP(t)∥ the area of DP(t). Finally, let us define, ∀i ∈

[0,m], ti = inf{t ⩾ 0 | ∥DP(t)∥ ⩾ iπℓ2/16}. By construction of P(A) we
have ∀i,∀t < ti, |RA(ti)| ⩽ i. Since robots have a field of view of radius 1,
they discover an area of amplitude 2 along an unitary move, which mean that
an awake robot exploring during t′ units of time can discover an area of at
most 2t′. Therefore we have ∀i,∀t ⩾ ti, ∥DP(t)∥−∥DP(ti)∥ ⩽ 2(t−ti)|RA(t)|.
Furthermore, ∥DP(ti+1)∥ − ∥DP(ti)∥ = πℓ2

16 . By having t tend to ti+1 by
inferior values, we obtain: ∀i ⩾ 0, ∥DP(ti+1)∥ − ∥DP(ti)∥ ⩽ 2(ti+1 − ti) ×
(i+ 1).

Therefore by adding this telescopic sum, we obtain:

tm ⩾
πℓ2

32

m∑
i=1

i ⩾
πℓ2

32
ln(m+ 1) ∈ Ω(ℓ2 logm)

Conclusion. Since n ⩾ ρ
ℓ and |C∗| ⩾ ρ2/ℓ2, and m = min(n, |C∗|), we

have obtained a lower bound of Ω(ℓ2 log ρ
ℓ ). Furthermore, by construction

of Cm, and by definition of P, robots have explore all points of D(0,⌊ρ/ℓ⌋ ℓ
2
),

which means that there exists a path from (0, 0) to a point at distance 1
of (0, ⌊ρ/ℓ⌋ ℓ

2). Such a path has a length at least ⌊ρ/ℓ⌋ ℓ
2 − 1 ⩾ ρ

2ℓ
ℓ
2 − 1 ⩾

ρ/4 − 1 ∈ Ω(ρ). We therefore have shown that the makespan of A on that
set of point is Ω(ρ+ ℓ2 log ρ

ℓ ).

Intermediate Lemmas.
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Lemma 12. |C| ⩾ 1 + ρ2/ℓ2.

Proof. Let us consider S the square included in the disk with center (0, 0)
and radius 3ρ

4 , itself included in the disk with same center and with radius
ρ − ℓ

4 , as pictured in Figure 5b. Let us count the number of points of C
included in S. The semi-width of this square is 3ρ

4
√
2
⩾ ρ

2 . Therefore, the

number of points of C on one vertical line of S is 1 + 2
⌊
ρ/2
ℓ/2

⌋
= 1 + 2

⌊ρ
ℓ

⌋
.

Since ρ ⩾ ℓ, we have
⌊ρ
ℓ

⌋
⩾ 1

2
ρ
ℓ , and thus the number of points of C in S is

at least (1 + ρ
ℓ )

2 ⩾ 1 + ρ2/ℓ2.

Lemma 13. For any adjacent points c, c′ ∈ Cm, for any two points (p, p′) ∈
Dc ×Dc′, we have |pp′| ⩽ ℓ.

Proof. Both Dc and Dc′ are included in the disk of center c+c′

2 and radius
ℓ
2 .

9.2 About energy constraint

Let us recall and prove Theorem 3:

Theorem 3 (Lower Bound on the energy budget). For every admissible
tuple (ℓ, ρ, n) and algorithm A with energy budget B < π(ℓ2 − 1)/2, there
exists an n-point set P and a source s such that ℓ∗ ⩽ ℓ and ρ∗ ⩽ ρ such that
the execution of A on P does not wake-up any robot.

Proof. We construct the n-point set in a similar way as in the proof of
Theorem 2. Similarly as before, let us first present the situation where
n = 1. The position of robot r1 in v depends of the behavior of algorithm
A. More precisely, it is the last position of B(0,0)(ℓ) to be discovered by s.
Therefore, s can wake up robot r1 only after it has discovered the entire disk
B(0,0)(ℓ), with area πℓ2. At t = 0, the discovered area is π, and corresponds
to the disk of radius 1 around s. During a move of amplitude δ, robot s
discover a new area of at most 2δ, which mean that to discover the entire
disk, s has to move with a total amplitude of at least πℓ2−π

2 , which concludes
the proof. If n > 1, then we can either place all the sleeping robots at the
exact same position, either consider a small enough disk with radius ε which
is not discovered by s before it has consumed its entire energy.

9.3 With energy constraint

Let us recall Theorem 6:

Theorem 6 (Lower Bound for energy constrained). For every admissi-
ble tuple (ℓ, ρ, n), for every B > ℓ, and for every ξ ∈ [ρ,min{nℓ −
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ρ/3,
⌊
ρ2/(2(B + 1)) + 1

⌋
}], there exists an n-points set P and a source s

of connectivity threshold ℓ, radius ρ, and ℓ-eccentricity ξℓ = ξ such that the
makespan of any algorithm A solving the dFTP for (P, s) given (ℓ, ρ, n) and
energy budget B, is Ω(ξ + ℓ2 log (ξ/ℓ)).

We first show how to define a n-point set P and a source s with a pre-
scribed eccentricity ξ such that ℓ∗ ⩽ ℓ, ρ∗ ⩽ ρ and ξℓ = ξ. We prove in
Lemma 14 that the construction is valid. We then prove Theorem 6 using
this construction and Theorem 2.

Let us briefly explain how we construct (P, s). The source s has position
ps = (0, 0). The main idea is to define the positions of points P along a
rectilinear path Π, that is a path that consists only of horizontal and vertical
segments, defined such that any point on a horizontal segment is space out of
at least B + 1 from any other horizontal segment. Positions of P are spread
over Π such that the ℓ-disk graph of P ∩ ps is indeed connected.

Our construction of Π is such its length determines the ℓ-eccentricity of
(P, s). The length of Π should match the prescribed ξ, which yields some
constraints over the values of ξ, depending on the values of ρ, n and B.

Path definition The rectilinear path Π is defined by vertical segments
of length V = B + 1 and horizontal segments of length H = ρ/

√
2. Let

J = ⌊ξ/(H + V )⌋ be the number of vertical segments. We define Π by the
points u0, v0, v1, u1, u2, v2, ..., uJ−1, vJ−1, vJ , uJ . There is a vertical segment
between [vjvj+1] or [ujuj+1] and a horizontal segment between [ujvj ]. The
position of points are more formally defined by the following coordinates.

∀j ∈ [0, J ] :

∣∣∣∣∣∣
uj = (0, j(B + 1))

vj = (
ρ√
2
, j(B + 1))

For j ∈ [0, J [ the j-th section of Π is a sequence of a horizontal segment
[ujvj ] and a vertical segment, either [vjvj+1] for even j or [ujuj + 1] if j is
odd.

If no point of Π is at distance ρ from ps then we need to define an
additional segment line between v0 = (ρ/

√
2, 0) and a point w0 = (ρ, 0) to

spread out some points of P on [v0w0] until ρ∗ = ρ. Conversely, note that
Π should fit in a square Sρ of width ρ/

√
2 whose bottom left corner is ps.

Thus the sum of the length of vertical segments JV can not exceed ρ/
√
2.

ξ

H + V
⩽

H

V
(13)

ξ ⩽
H2 + V

V
(14)

ξ ⩽
ρ2

2(B + 1)
+ 1 (15)
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Placements of P. Let us set the first position pt such that the sub-path of
Π between ps and pt has length exactly ξ. This point lies on the the J-th sec-
tion of Π. Other points of P are positioned on the subpath from ps to pt and
on [psw0] if needed. The ℓ-eccentricity of the resulting (P, s) must be ξ. This
requires to carefully assign positions around a corner ̂ujvjvj+1 or ̂vjujuj+1

in order to avoid any shortcut in the ℓ-disk graph between horizontal and
vertical segment.

We start by placing a subset P1 ⊂ P/{pt} of size 2(J−1) on the extrem-
ities of each segment except for u0 where ps lies and vJ (resp. uJ) if J is even
(resp. odd). This ensure that no points are positioned beyond pt. Remain-
ing positions are placed such that (1) there is no point at distance strictly
less than ℓ from a point of P1 and (2) the resulting (P, s) has connectivity
threshold ℓ.

Note that this requirement about the connectivity threshold constrains
the eccentricity of (P, s) as the number n may not be always large enough to
cover Π. There must be at least ξ/ℓ positions of P on Π and ρ(1− 1/

√
2) ⩽

ρ/3ℓ positions on [v0w0]. Therefore the number of positions n is such that
n ⩾ ξ/ℓ+ ρ/3ℓ. This is true whenever ξ ⩽ nℓ− ρ/3.

Lemma 14. The construction of (P, s) such that ρ∗ = ρ, ℓ∗ = ℓ and ξℓ = ξ.

Proof. Firstly we show ρ∗ = ρ. Since the path Π is entirely contained in the
square Sρ, the farthest point from ps to a point on Π is the up right corner
of Sρ. Its distance from ps is equal to the diagonal of Sρ which is exactly
ρ. If no points of Π does not reach that corner, then we added the segment
[v0w0] which ensures that there is at least one point at distance ρ from ps.

We show that ξℓ = ξ. By Theorem 3, B > ℓ, so the eccentricity of the
ℓ-disk graph of P is the maximum between the length of Π and the length of
[ps, w0] which is ρ. Since by assumption ξ ⩾ ρ, we get that the eccentricity
of the ℓ-disk graph of P is the length of Π. Let us compute the length of Π.
By definition it is

J(H + V ) =

⌊
ξ

H + V

⌋
(H + V ) = ξ (16)

By construction we directly have ℓ∗ = ℓ.

Let us prove Theorem 6.

Proof. Let us start by showing that the makespan of the instance (P, s)
constructed above is Ω(ξ). Any wake-up strategy can not be quicker than
the eccentricity of s in the B-disk graph of (P, s). In the B-disk graph any
path from ps to pt goes entirely through section. This is because for j ∈ [0, J [
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any point of [ujvj ] is at distance B+1 from any point of [uj+1, vj+1], so the
path goes trough the points of the vertical segment [uj , uj+1] or [vj , vj+1] to
reach [uj+1, vj+1].

Such a path has a length longer than the sum of |ujvj |, that is JH =⌊
ξ

H+V

⌋
H.

We have several cases depending the value of J :

• If J = 0, the ℓ-eccentricity of (P, s) is [ps, w0] = ρ and we have ρ ⩽
ξ ⩽ H + V ⩽ 2ρ/

√
2 therefore ξℓ = ρ = Θ(ξ)

• If J = 1, then ρ ⩽ ξ ⩽ 2(H + V ) ⩽ 2
√
2ρ and ξℓ = Θ(ξ)

• If J ⩾ 2, then ξ ⩾ 2(H + V )⌊
ξ

H + V

⌋
H ⩾

ξH

H + V
−H

⩾
H(ξ −H − V )

H + V
⩾

ξ

4

We conclude the proof by recalling that the lower bound with uncon-
strained energy naturally apply to dFTP with constrained energy (See The-
orem 2), and by noticing that ρ/ℓ ⩽ ξℓ/ℓ ⩽ 12ρ2/ℓ2. Therefore the makespan
of A is Θ(ξℓ + ℓ2 log(ξℓ/ℓ)).
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