Cyril Gavoille, Pierre Halftermeyer

LaBRI, Université de Bordeaux 1

November 22, 2012

向下 イヨト イヨト

- Plan

1 Introduction

- Forbidden-set connectivity problem
- Approach
- A compact labeled approach

2 Our result

- Theorem
- Sketch of proof

3 Conclusion

 - ∢ ⊒ →

- Introduction

1 Introduction

- Forbidden-set connectivity problem
- Approach
- A compact labeled approach

2 Our result

- Theorem
- Sketch of proof

3 Conclusion

(4回) (4回) (4回)

- Introduction

Forbidden-set connectivity problem

A simple problem

Problem

• Let
$$G = (V, E)$$
 be a graph

イロン イヨン イヨン イヨン

- Introduction

Forbidden-set connectivity problem

A simple problem

Problem

- Let G = (V, E) be a graph
- Let X be a subset of $V \cup E$ (called forbidden set)

- 4 回 2 4 三 2 4 三 2 4

- Introduction

Forbidden-set connectivity problem

A simple problem

Problem

- Let G = (V, E) be a graph
- Let X be a subset of $V \cup E$ (called forbidden set)
- Let u and v two vertices of V

- Introduction

Forbidden-set connectivity problem

A simple problem

Problem

- Let G = (V, E) be a graph
- Let X be a subset of $V \cup E$ (called forbidden set)
- Let u and v two vertices of V
- Are u and v in the same connected component of $V \setminus X$?

-Introduction

Forbidden-set connectivity problem

FS-connectivity problem

Cyril Gavoille, Pierre Halftermeyer Forbidden-set connectivity - A compact-labeled approach.

◆□ > ◆□ > ◆臣 > ◆臣 > ○

- Introduction

Forbidden-set connectivity problem

A natural question

Computer network

- Introduction

Forbidden-set connectivity problem

A natural question

Computer network

cable cut

- Introduction

Forbidden-set connectivity problem

A natural question

Computer network

- cable cut
- down router

- Introduction

Forbidden-set connectivity problem

A natural question

Computer network

- cable cut
- down router
- malicious attack

- Introduction

Forbidden-set connectivity problem

A natural question

Computer network

- cable cut
- down router
- malicious attack
- Physical network

- Introduction

Forbidden-set connectivity problem

A natural question

- Computer network
 - cable cut
 - down router
 - malicious attack
- Physical network
 - Natural disaster

- Introduction

Forbidden-set connectivity problem

A natural question

Computer network

- cable cut
- down router
- malicious attack
- Physical network
 - Natural disaster
 - Public works on roads

- Introduction

Forbidden-set connectivity problem

A natural question

Computer network

- cable cut
- down router
- malicious attack
- Physical network
 - Natural disaster
 - Public works on roads
- Etc.

Approach

$$X = \emptyset$$
, $|X| = 1$, $|X| = 2$, ...

If X = Ø, it's easy to calculate in time O(n) a data structure which answers the connected component of a vertex in O(1) time.

同 と く き と く き と

- Introduction

Approach

$$X=\emptyset$$
, $|X|=1$, $|X|=2$, ...

- If X = Ø, it's easy to calculate in time O(n) a data structure which answers the connected component of a vertex in O(1) time.
- If |X| = 1, too. By studying bridges an articulation points.

伺下 イヨト イヨト

Introduction

Approach

$$X=\emptyset$$
, $|X|=1$, $|X|=2$, ...

- If X = Ø, it's easy to calculate in time O(n) a data structure which answers the connected component of a vertex in O(1) time.
- If |X| = 1, too. By studying bridges an articulation points.
- If |X| = k ≥ 2, the problem is harder to solve. (Almost optimally solved for forbidden sets of edges. [Patrascu, Thorup '07]

(4月) (4日) (4日) 日

Introduction

Approach

$$X=\emptyset$$
, $|X|=1$, $|X|=2$, ...

- If X = Ø, it's easy to calculate in time O(n) a data structure which answers the connected component of a vertex in O(1) time.
- If |X| = 1, too. By studying bridges an articulation points.
- If |X| = k ≥ 2, the problem is harder to solve. (Almost optimally solved for forbidden sets of edges. [Patrascu, Thorup '07]
- We naturally aim to create a data structure that answers a connectivity-query in time O(k).

Introduction

Approach

$$X=\emptyset$$
, $|X|=1$, $|X|=2$, ...

- If X = Ø, it's easy to calculate in time O(n) a data structure which answers the connected component of a vertex in O(1) time.
- If |X| = 1, too. By studying bridges an articulation points.
- If |X| = k ≥ 2, the problem is harder to solve. (Almost optimally solved for forbidden sets of edges. [Patrascu, Thorup '07]
- We naturally aim to create a data structure that answers a connectivity-query in time O(k).
- Idea : Let's associate a small amount of data to each vertex.

(ロ) (同) (E) (E) (E)

- Introduction

A compact labeled approach

Compact labeling

What is a compact labeling scheme ?

Definition

A compact labeling scheme for a query $Q(x_1, x_2, \dots, x_n)$ is composed of :

1 A labeling algorithm that computes a compact label L(x) to each vertex x of the graph.

(4月) イヨト イヨト

Introduction

A compact labeled approach

Compact labeling

What is a compact labeling scheme ?

Definition

A compact labeling scheme for a query $Q(x_1, x_2, \dots, x_n)$ is composed of :

- **1** A labeling algorithm that computes a compact label L(x) to each vertex x of the graph.
- 2 A query algorithm that answers the query from the labels of the vertices related to the query : $L(x_1), L(x_2), \dots, L(x_n)$.

イロト イポト イヨト イヨト

- Introduction

A compact labeled approach

Known result

Theorem (Courcelle et al. '08)

The family of 3-connected planar graphs admits a compact labeling scheme in which :

• Labels are computed in time O(n)

・ 同 ト ・ ヨ ト ・ ヨ ト

- Introduction

A compact labeled approach

Known result

Theorem (Courcelle et al. '08)

The family of 3-connected planar graphs admits a compact labeling scheme in which :

- Labels are computed in time O(n)
- The size of a label is O(log n) bits

向下 イヨト イヨト

Introduction

A compact labeled approach

Known result

Theorem (Courcelle et al. '08)

The family of 3-connected planar graphs admits a compact labeling scheme in which :

- Labels are computed in time O(n)
- The size of a label is O(log n) bits
- A(u, v)-connectivity query is answered in time $O(\log n)$

- 4 周 ト - 4 日 ト - 4 日 ト

Introduction

A compact labeled approach

Known result

Theorem (Courcelle et al. '08)

The family of 3-connected planar graphs admits a compact labeling scheme in which :

- Labels are computed in time O(n)
- The size of a label is O(log n) bits
- A (u, v)-connectivity query is answered in time $O(\log n)$
- after a $O(|X|^2)$ -time query-preprocessing of X.

(4月) イヨト イヨト

1 Introduction

- Forbidden-set connectivity problem
- Approach
- A compact labeled approach

2 Our result

- Theorem
- Sketch of proof

3 Conclusion

<回と < 目と < 目と

Our result

L Theorem

Our result

Theorem

The family of 3-connected planar genus-g graphs admits a compact labeling scheme in which :

• Labels are computed in time O(n) O(n+g) (still optimal)

(本間) (本語) (本語)

- Theorem

Our result

Theorem

The family of 3-connected planar genus-g graphs admits a compact labeling scheme in which :

- Labels are computed in time O(n) O(n+g) (still optimal)
- The size of a label is $O(\log n) O(g \log n)$ bits

・ 同 ト ・ ヨ ト ・ ヨ ト

- Theorem

Our result

Theorem

The family of 3-connected planar genus-g graphs admits a compact labeling scheme in which :

- Labels are computed in time O(n) O(n+g) (still optimal)
- The size of a label is O(log n) O(g log n) bits
- A (u, v)-connectivity query is answered in optimal time O(log n) O(log log n)

- 本部 ト イヨ ト - - ヨ

- Theorem

Our result

Theorem

The family of 3-connected planar genus-g graphs admits a compact labeling scheme in which :

- Labels are computed in time O(n) O(n+g) (still optimal)
- The size of a label is O(log n) O(g log n) bits
- A (u, v)-connectivity query is answered in optimal time O(log n) O(log log n)
- after a $O(|X|^2)$ -time $O(|X| \cdot \log n)$ -time query-preprocessing of X.

イロン イ部ン イヨン イヨン 三日

- Theorem

Our result

Theorem

The family of 3-connected planar genus-g graphs admits a compact labeling scheme in which :

- Labels are computed in time O(n+g)
- The size of a label is O(g log n) bits
- A (u, v)-connectivity query is answered in optimal time O(log log n)
- after a $O(|X| \log n)$ -time query-preprocessing of X.

Both theorems extend to planar graphs. Complexity analysis has not been done yet.

イロト イポト イヨト イヨト

Sketch of proof

scheme in trees

Let G a genus-g graph embedded in a genus-g surface (orientable or not).

We compute in O(n + g)-time a cut-graph C of the surface.
 A cut-graph C is a subgraph of G such that the surface M obtained by cuting along the edges of C is a disc.

Sketch of proof

scheme in trees

Let G a genus-g graph embedded in a genus-g surface (orientable or not).

- We compute in O(n + g)-time a cut-graph C of the surface.
 A cut-graph C is a subgraph of G such that the surface M obtained by cuting along the edges of C is a disc.
- We can ensure C to be a bounded-degree spanning tree of G to which O(g) edges are added.

Sketch of proof

scheme in trees

Let G a genus-g graph embedded in a genus-g surface (orientable or not).

- We compute in O(n + g)-time a cut-graph C of the surface.
 A cut-graph C is a subgraph of G such that the surface M obtained by cuting along the edges of C is a disc.
- We can ensure C to be a bounded-degree spanning tree of G to which O(g) edges are added.
- M's skeleton is a planar graph whose vertices lie on the border, so it's an outerplanar graph. Its number of vertices is O(gn)

Sketch of proof

Sketch of proof

• We construct a specific forbidden-set connectivity labeling scheme for both graphs *M* and *C*.

向下 イヨト イヨト

Sketch of proof

Sketch of proof

- We construct a specific forbidden-set connectivity labeling scheme for both graphs *M* and *C*.
- For the outerplanar graph M, we obtain labels of O(log(gn)) = O(log n) bits. The scheme is more efficient than Courcelle's general planar one.

向下 イヨト イヨト

Sketch of proof

Sketch of proof

- We construct a specific forbidden-set connectivity labeling scheme for both graphs *M* and *C*.
- For the outerplanar graph *M*, we obtain labels of O(log(gn)) = O(log n) bits. The scheme is more efficient than Courcelle's general planar one.
- For the cut-graph *C* we develop an ad-hoc scheme with *O*(*g* log *n*)-bit labels.

高 とう ヨン うまと

Sketch of proof

Sketch of proof

- We construct a specific forbidden-set connectivity labeling scheme for both graphs *M* and *C*.
- For the outerplanar graph M, we obtain labels of O(log(gn)) = O(log n) bits. The scheme is more efficient than Courcelle's general planar one.
- For the cut-graph *C* we develop an ad-hoc scheme with *O*(*g* log *n*)-bit labels.
- Both constructions proceed by reducing to a FS-connectivity labeling-scheme in trees.

・ 同 ト ・ ヨ ト ・ ヨ ト

Sketch of proof

Sketch of proof

- We construct a specific forbidden-set connectivity labeling scheme for both graphs *M* and *C*.
- For the outerplanar graph M, we obtain labels of O(log(gn)) = O(log n) bits. The scheme is more efficient than Courcelle's general planar one.
- For the cut-graph *C* we develop an ad-hoc scheme with *O*(*g* log *n*)-bit labels.
- Both constructions proceed by reducing to a FS-connectivity labeling-scheme in trees.
- Our construction then uses a meta-scheme that allows to find the connected component of u in G \ X by querying in M \ X and C \ X. Our meta-scheme query preprocessing of X costs O(|X| + g) once X has been sorted.

Our result

Sketch of proof

Some details of the proof

From outerplanar to trees.

同 ト イヨ ト イヨ ト

Our result

Sketch of proof

Some details of the proof

From outerplanar to trees.

A scheme in trees.

向下 イヨト イヨト

-Our result

Sketch of proof

outerplanar to tree

(4回) (4回) (4回)

-Our result

Sketch of proof

outerplanar to tree

Cyril Gavoille, Pierre Halftermeyer Forbidden-set connectivity - A compact-labeled approach.

- < ≣ >

A ■

< ≣ >

-Our result

Sketch of proof

scheme in trees

▲ロ > ▲圖 > ▲ 圖 > ▲ 圖 >

Our result

Sketch of proof

scheme in trees

イロト イヨト イヨト イヨト

-Our result

Sketch of proof

scheme in trees

Cyril Gavoille, Pierre Halftermeyer Forbidden-set connectivity - A compact-labeled approach.

◆□ > ◆□ > ◆臣 > ◆臣 > ○

-Our result

Sketch of proof

scheme in trees

1	2	11	14	16	25	29	35
((())	())
1	2	11	2	1	25	1	X

・ロト ・回ト ・ヨト ・ヨト

3

PREDECESSOR ROUTING

Our result

Sketch of proof

scheme in trees

 PREDECESSOR in a universe of *n* integer is answered in time O(log log *n*).

Our result

Sketch of proof

scheme in trees

- PREDECESSOR in a universe of *n* integer is answered in time O(log log *n*).
- ROUTING in trees can be done in O(1) time with O(log n)-bit labels. [Fraignaud, Gavoille]

.

- Conclusion

1 Introduction

- Forbidden-set connectivity problem
- Approach
- A compact labeled approach

2 Our result

- Theorem
- Sketch of proof

3 Conclusion

・ 同 ト ・ ヨ ト ・ ヨ ト

- Conclusion

 The label length of O(g log n)-bits can conceivably be improved.

回 と く ヨ と く ヨ と

- Conclusion

- The label length of O(g log n)-bits can conceivably be improved.
- One can show that $\Omega(\sqrt{g} + \log n)$ -bit labels are required.

同 と く き と く き と

Conclusion

- The label length of O(g log n)-bits can conceivably be improved.
- One can show that $\Omega(\sqrt{g} + \log n)$ -bit labels are required.
- We leave open the problem of determining the optimal label length for genus-*g* graphs. Our meta-scheme may help.

・ 同 ト ・ ヨ ト ・ ヨ ト