From fault tolerant spanners to multipath spanners

Cyril Gavoille ${ }^{1}$
Quentin Godfroy ${ }^{1}$
Laurent Viennot ${ }^{2}$

${ }^{1}$ LaBRI
Université Bordeaux I
${ }^{2}$ INRIA - LIAFA
Université Paris VII

2011-12-13-OPODIS 2011 - Toulouse

Part I: Spanners

General background

$G=(V, E)$ some weighted graph, $\# V=n, \# E=m$. Potentially $m=n^{2}$. Can we spare some edges while keeping:

- connectivity?
- some distance property?

Spanners

Introduced by Peleg and Schäffer in 89 for undirected graphs.

Let $d(u, v)$ be the distance: length of smallest path between u and v.
Definition
H covering subgraph of \boldsymbol{G} is an (α, β)-spanner of \boldsymbol{G} if for any $u, v \in V$,

$$
d_{H}(u, v) \leqslant \alpha \cdot d_{G}(u, v)+\beta
$$

(α, β) (or only α if $\beta=0$) is called the stretch.

- A multiplicative spanner is a spanner where $\beta=0$.
- An additive spanner is a spanner where α is as small as possible, possibly 1 .

What counts for a spanner?

Three elements to determine the quality:

- Number of edges: less is better.
- The stretch: smaller is better.
- Computation time.

For some stretch, the less edges the better.

Why spanners?

Fundamental object related to:

- Compact routing
- Distance oracles
- Distributed distance guessing

One can view them as a possible extension of spanning trees.

Some spanners

- $(2 k-1,0)$-spanner with $O\left(n^{1+1 / k}\right)$ edges.
- (1,2)-spanner with $O\left(n^{3 / 2}\right)$ edges.
- (1,6)-spanner with $O\left(n^{4 / 3}\right)$ edges.
- $(k, k-1)$-spanner with $O\left(n^{1+1 / k}\right)$ edges.
- $(1+\epsilon, 4)$ with $O\left(1 / \epsilon \cdot n^{4 / 3}\right)$ edges.

Probably optimal.

Part II: Multipath spanners

Goals for improvement

We would like to:

- Improve bandwidth
- Be tolerant to faulty vertices/links
- Minimize delays

Multipath spanners

The standard spanner definition is oblivious to the metric used.

Definition 1
$d^{p}(a, b)$ is the minimum cost of a subgraph containing p vertex-disjoint paths between a and b.
We plug d^{p} into the definition:
Definition 2
H is a p-multipath (α, β)-spanner of G if $\forall u, v$:

$$
d_{H}^{p}(u, v) \leqslant \alpha \cdot d_{G}^{p}(u, v)+\beta
$$

Question
Can we construct such things ?

Bad news

We have bad news :

Figure: $d^{2}(u, v) \& d^{2}(v, w)$ finite, yet $d^{2}(u, w)=\infty$

And most of spanner algorithms make use of triangular inequality.

Fault-tolerant spanners

Close cousin built for vertex fault tolerance

Definition
A f-fault-tolerant spanner is a spanner that can tolerate f faults and still be a spanner on the remaining graph.

Question
Is a p - 1 -fault tolerant s-spanner a p-multipath spanner?
Answer
In weighted graphs: NO if it is not a spanner of the same graph with all edges weights equal to 1 .

Example

Figure: Cycle of n hops, weight s / n. Blue paths of weight s. Stretch unbound for d^{2} but bounded for 1-fault.

Node disjoint spanners
 Theorem

Theorem 1
A s-hop $p-1$-fault tolerant spanner is a p-multipath $s p \cdot O(1+p / S)^{s}$-spanner.

Bonus

It is buildable in the $\mathcal{L O C} \mathcal{A} \mathcal{L}$ model in no additional time.
Idea
Do every possible fault on a path, and recursively.

That explains why we need bounded hop spanners.

Node disjoint spanners

Another theorem

Theorem 2
Every graph has a spanner of stretch $(2, O(1))$ and $O\left(n^{3 / 2}\right)$ edges for the d^{2} metric.

Idea
The proof is inspired by the $(2,1)$ spanner algorithm: remove highly connected nodes, and replace then with an efficient structure.

Tools
 Balls

We define a new type of balls:
Definition
$\tilde{B}(u v, r)$: all x such that $d^{2}(u v, x) \leqslant r$.
Implication
$x, y \in \tilde{B}(u v, r) \Rightarrow d^{2}(x, y)$ bounded.

Algorithm

(1) While $\exists \tilde{B}(u v, 4) \cap(N(u) \cup N(v))>\sqrt{n}$ do:
(1) Add 2-tree $\cup B F S(u, 2) \cup B F S(v, 2)$
(2) $G=G \backslash B \cap N \ldots$
(2) $H=H \cup G$

Must check:

- Number of edges
- Stretch

Number of edges

Useful result:
Lemma
A graph whith every $\tilde{B}(u v, 2 k) \cap N(u) \leqslant n^{1 / k}$ has $O\left(n^{1+1 / k}\right)$ edges.
And:

- "While" executes itself n / \sqrt{n} times.
- "While" adds $O(n)$ edges at each step.
- Apply lemma to remaining graph G before step 4 and $k=2$.
So H has $O\left(n^{3 / 2}\right)$ edges.

Stretch

Let two nodes a, b, and a cycle P which realize $d^{2}(a, b)$.

Two cases are possible:

- The path is in H : nothing to prove
- It is not: some edge is missing. Take the first one.

Stretch

Sketch

- One of the vertices t is in vicinity of the root edge of some $\tilde{B}(u v, 4)$
- Because of BFS it is covered by another node to u
- $d^{2}(t, u) \leqslant 6$

Stretch

Sketch (continued)

It goes the same for every nodes of edges missing. The closest from a and b are the important ones.

We use these cycles to bound $d^{2}(a, u v)$ and $d^{2}(b, u v)$ in G, and so in H because of the 2-tree. We use menger theorem to finally bound $d^{2}(a, b)$ in H.

Conclusion

Summary

- We showed that fault-tolerant spanners existed, and can be built in a local setting.
- We showed how to construct a (2, $O(1)$)-bipath-spanner.

What next?

- factor 2 mandatory for 2-paths ?
- Other special constructions?
- Improve the stretch of the general result ?

