Subquadratic additive spanners for directed graphs

Cyril Gavoille ${ }^{1}$
Quentin Godfroy ${ }^{1}$
Laurent Viennot ${ }^{2}$

'LaBRI
Université Bordeaux I

${ }^{2}$ INRIA - LIAFA
Université Paris VII

JGA 2010

Part I: Introduction to problem

General background

$G=(V, E)$ some weighted graph, $\# V=n, \# E=m$. Potentially $m=n^{2}$. Can we spare some edges while keeping:

- connectivity?
- some distance property ?

Spanners

Introduced by Peleg and Schäffer in 89 for undirected graphs.

Let δ be a metric
Definition
H covering subgraph of \boldsymbol{G} is an (α, β)-spanner of \boldsymbol{G} if for any $u, v \in V$,

$$
\delta_{H}(u, v) \leqslant \alpha \cdot \delta_{G}(u, v)+\beta
$$

(α, β) is called the stretch.
An additive spanner is a spanner where α is as small as possible, possibly 1.

What counts for a spanner?

Three elements to determine the quality:

- Number of edges: less is better.
- The stretch: smaller is better.
- Computation time.

For some stretch, the less edges the better.

Undirected graphs
 fast survey

Let $\delta(u, v)=d(u, v)$ be the length of a smallest path between u and v, and G an undirected graph

Easy to do:

- $(2 k-1,0)$ for all k size $O\left(n^{1+1 / k}\right)$ (possibly optimal)
- $(1,2)$ size $O\left(n^{3 / 2}\right)$ (optimal)

Less easy:

- $(1,6)$ size $O\left(n^{4 / 3}\right)$ (optimal)

Directed graphs

Cowen 99: bounded stretch and $\delta=d \rightarrow n^{2}$ edges.
Definition
Roundtrip distance: $\delta=d^{\hbar}(u, v)=d(u \rightarrow v)+d(u \leftarrow v)$ It respects the triangular inequality (crutial).

Roditty et alii 08:

- $(2 k+\epsilon)$-spanner with $O\left(\left(k^{2} / \epsilon\right) n^{1+1 / k} \log (n W)\right)$ edges
- $\left(2^{k}-1,0\right)$-spanner with $\tilde{O}\left(n^{1+1 / k}\right)$ edges

This work:

- $(2,8 W)$-spanner with $O\left(n^{3 / 2}\right)$ edges (2 is optimal).

It is an adaptation from Gavoille, G. and Viennot 10 which presents a spanner which preserves cycles in undirected graphs, itself an adaptation from the $(1,2)$ construction.

Part II: Spanner construction

Construction

Tools

- Intree(u) MST following inward edges
- Outree(u) MST following outward edges
- $B^{\leftrightarrows}(u, 4)$ subgraph obtained by collating all edges and nodes participating in a directed cycle of length less than 4 passing through u.
- $B^{2}(u, 4)$ subgraph obtained by collating all edges and nodes participating in an undirected cycle of length less than 4 passing through u.
- $N(u)$ neighbours of u in the undirected graph.

Figure: $N(u), B^{2}(u, 4)$ and $B^{\leftrightarrows}(u, 4)$

Construction

Algorithm
The scheme works in weighted graphs, we present here the unweighted case for simplicity. The loop is done from larger to smaller balls.

```
\(H=(V, \emptyset) ;\)
\(G_{1}=G ;\)
tant que \(\exists u\) s.t. \(N(u) \cap B^{2}(u, 4) \geqslant \sqrt{n}\) faire
    \(E(H)=E(H) \cup\) Intree \((u)+\) Outtree \((u)\);
    \(G_{1}=G_{1} \backslash\left(N(u) \cap B^{\leftrightarrows}(u, 4)\right) ;\)
    \(E\left(G_{1}\right)=E\left(G_{1}\right) \backslash\left\{u-x\right.\) s.t. \(\left.x \in B^{2}(u, 4)\right\} ;\)
\(E(H)=E(H) \cup E\left(G_{1}\right)\);
```

Figure: building algorithm

Algorithm

Find a ball
Find a big ball (in cyan \& blue):

Algorithm
 Add intree

Add intree to everybody in H :

Add outtree to everybody in H :

Algorithm

Remove what's removable
Remove what's removable from G_{1} :

The stretch analysis of stretch

Let a, b a pair of nodes, P_{G} a cycle which realises $d^{\leftrightarrows}(u, v)$.
Two cases are possible:
(1) P_{G} exists in H : nothing to do !
(2) P_{G} does not exist in H.

In case 2, let u be the first center which removes edges.

The stretch

Drawing

There is a bound on the size of the path in the roundtrip tree, thanks to the path between a and b.

Number of edges

- Unions of In/Out-trees: $O(2 n \cdot \sqrt{n})=O\left(n^{3 / 2}\right)$.
- Graph left after while loop, two components:
- Union of edges incident to some u in $B^{2}(u, 4): G^{\prime}$.
- The rest $G^{\prime \prime}$.
- G^{\prime} is composed of vertices with degree less than \sqrt{n} : $O(n \cdot \sqrt{n})$.
- $G^{\prime \prime}$ has cycles of length no less than 5: $O\left(n^{1+1 / 2}\right)$.

Is it optimal?

The factor 2 in $(2,8)$ is optimal:

Removing one edge from the graph multiplies by two for some pair of nodes in the bipartite part.

Summary

- We showed how to make a $(2,8)$-roundtrip spanner with $O\left(n^{3 / 2}\right)$ edges.
- We showed the bound on multiplicative constant for such spanners
- Future prospects:
- Improve the 8 ?
- What if δ does not respect triangular inequality?

