Subquadratic additive spanners for directed graphs

Cyril Gavoille¹ *Quentin Godfroy*¹ Laurent Viennot²

¹LaBRI Université Bordeaux I

²INRIA – LIAFA Université Paris VII

JGA 2010

Part I: Introduction to problem

General background

G = (V, E) some weighted graph, #V = n, #E = m. Potentially $m = n^2$. Can we spare some edges while keeping:

- connectivity ?
- some distance property ?

Spanners

Introduced by Peleg and Schäffer in 89 for undirected graphs.

Let δ be a metric

Definition

H covering subgraph of G is an (α, β) -spanner of G if for any $u, v \in V$,

 $\delta_{H}(\boldsymbol{U},\boldsymbol{V}) \leqslant \alpha \cdot \delta_{G}(\boldsymbol{U},\boldsymbol{V}) + \beta$

 (α, β) is called the stretch.

An additive spanner is a spanner where α is as small as possible, possibly 1.

What counts for a spanner?

Three elements to determine the quality:

- Number of edges: less is better.
- The stretch: smaller is better.
- Computation time.

For some stretch, the less edges the better.

Undirected graphs fast survey

Let $\delta(u, v) = d(u, v)$ be the length of a smallest path between u and v, and G an undirected graph

Easy to do:

- (2k-1,0) for all k size $O(n^{1+1/k})$ (possibly optimal)
- (1,2) size $O(n^{3/2})$ (optimal)

Less easy:

• (1,6) size $O(n^{4/3})$ (optimal)

Directed graphs

Cowen 99: bounded stretch and $\delta = d \rightarrow n^2$ edges.

Definition

Roundtrip distance: $\delta = d^{rig}(u, v) = d(u \rightarrow v) + d(u \leftarrow v)$ It respects the triangular inequality (crutial).

Roditty et alii 08:

- $(2k + \epsilon)$ -spanner with $O((k^2/\epsilon)n^{1+1/k}\log(nW))$ edges
- $(2^k 1, 0)$ -spanner with $\tilde{O}(n^{1+1/k})$ edges

This work:

• (2,8W)-spanner with $O(n^{3/2})$ edges (2 is optimal).

It is an adaptation from Gavoille, G. and Viennot 10 which presents a spanner which preserves cycles in undirected graphs, itself an adaptation from the (1,2) construction.

Part II: Spanner construction

Construction Tools

- Intree(u) MST following inward edges
- Outree(*u*) MST following outward edges
- B[□](u, 4) subgraph obtained by collating all edges and nodes participating in a directed cycle of length less than 4 passing through u.
- *B*²(*u*, 4) subgraph obtained by collating all edges and nodes participating in an <u>undirected</u> cycle of length less than 4 passing through *u*.
- N(u) neighbours of u in the undirected graph.

Figure: N(u), $B^2(u, 4)$ and $B^{rightarrow}(u, 4)$

The scheme works in weighted graphs, we present here the unweighted case for simplicity. The loop is done from larger to smaller balls.

$$\begin{split} H &= (V, \emptyset); \\ G_1 &= G; \\ \texttt{tant que } \exists u \text{ s.t. } N(u) \cap B^2(u, 4) \geqslant \sqrt{n} \text{ faire} \\ & E(H) = E(H) \cup \text{Intree}(u) + \text{Outtree}(u); \\ G_1 &= G_1 \setminus (N(u) \cap B^{\leftrightarrows}(u, 4)); \\ & E(G_1) = E(G_1) \setminus \{u - x \text{ s.t. } x \in B^2(u, 4)\}; \\ E(H) &= E(H) \cup E(G_1); \end{split}$$

Figure: building algorithm

Algorithm Find a ball

Find a big ball (in cyan & blue):

Algorithm Add intree

Add intree to everybody in *H*:

Algorithm Add outtree

Add outtree to everybody in H:

Algorithm Remove what's removable

Remove what's removable from G_1 :

The stretch

analysis of stretch

Let a, b a pair of nodes, P_G a cycle which realises $d^{i=}(u, v)$.

Two cases are possible:

- **1** P_G exists in *H*: nothing to do !
- **2** P_G does not exist in *H*.

In case 2, let *u* be the first center which removes edges.

The stretch Drawing

There is a bound on the size of the path in the roundtrip tree, thanks to the path between *a* and *b*.

Number of edges

- Unions of In/Out-trees: $O(2n \cdot \sqrt{n}) = O(n^{3/2})$.
- Graph left after while loop, two components:
 - Union of edges incident to some u in $B^2(u, 4)$: G'.
 - The rest G".
- G' is composed of vertices with degree less than \sqrt{n} : $O(n \cdot \sqrt{n})$.
- G" has cycles of length no less than 5: $O(n^{1+1/2})$.

Is it optimal?

The factor 2 in (2, 8) is optimal:

Removing one edge from the graph multiplies by two for some pair of nodes in the bipartite part.

Summary

- We showed how to make a (2,8)-roundtrip spanner with $O(n^{3/2})$ edges.
- We showed the bound on multiplicative constant for such spanners

- Future prospects:
 - Improve the 8 ?
 - What if δ does not respect triangular inequality ?