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ABSTRACT
This paper investigates compact routing schemes that are
very efficient with respect to the memory used to store rout-
ing tables in internet-like graphs. We propose a new com-
pact name-independent routing scheme whose theoretically
proven average memory per node is upper-bounded by nγ ,
with constant γ < 1/2, while the maximum memory of any
node is bounded by

√
n and the maximum stretch of any

route is bounded by 5. These bounds are given for the Ran-
dom Power Low Graphs (RPLG) and hold with high proba-
bility. Moreover, we experimentally show that our scheme is
very efficient in terms of stretch and memory in internet-like
graphs (CAIDA and other maps). We complete this study
by comparing our analytic and experimental results to sev-
eral compact routing schemes. In particular, we show that
the average memory requirements is better by at least one
order of magnitude than previous schemes for CAIDA maps
on 16K nodes.
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1. INTRODUCTION
To achieve the routing task, a routing protocol typically

uses routing tables stored at each node in order to find a
path in the network. These tables are computed beforehand
by what is usually called a routing scheme. One of the main
goals in the context of routing is to reduce the storage of
the routing information at each node (to allow quick routing
decisions, fast updates, and scalability), while maintaining
routes along paths as short as possible.
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A routing scheme that guarantees a sub-linear1 routing
table size at each node is qualified to be compact. There is
a trade-off between the route efficiency (measured in terms
of stretch) and the memory requirements (measured by the
size or the number of entries in the routing tables). An
extra desirable property of a routing scheme is to use arbi-
trary routing addresses (say based on processor IDs or MAC
addresses) and thus independent of any topological informa-
tion. Such routing schemes are called name-independent, in
contrast with labeled routing schemes for which nodes are
labeled by poly-logarithmic size addresses that do depend
on the graph and can be freely designed to help routing de-
cisions. In practical use, a labeled routing scheme has to
use a location service that maps local information to labels,
which could be a bottle-neck in regards to routing scalabil-
ity, mobility and multi-homing.

Trade-offs between stretch and memory for routing in
arbitrary graphs are well known, and optimal name-
independent algorithms exist (see for example [AGM+08]).
Nevertheless for some types of routing, like routing in the
AS-internet graph, optimizations can be done and trade-offs
are still barely known. Indeed, this network, like many oth-
ers, exhibits several structural properties that can help a lot
for routing.

Routing in internet-like graphs has already received
some attention in the literature. In particular [CSTW12]
and [TZLL13] respectively studied labeled and name-
independent compact routing scheme for internet-like
graphs. They both proved that the average number of en-
tries in the routing tables for Random Power Low Graphs
(RPLG, see Fig. 1) can be significantly lower than for arbi-
trary graphs, and they both confirmed experimentally their
analytic results on large CAIDA and “BC” maps2.

2. RESULTS
Our contributions are the following. First we present a

new stretch-5 name-independent routing scheme, that guar-

1W.r.t. the number of nodes in the graph.
2The latter maps are the benchmark graphs used in the
study of [BC06]. They are based on Power Low Random
Graphs (a.k.a. PLRG) a model for internet-like graphs
whose analytic study is less convenient than the RPLG
model.
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Figure 1: The largest connected component of a
graph sampled from RPLG(n, τ) for n = 300 and
power-law exponent τ = 2.9. This component has
216 nodes (whose size is depicted proportional to
their degree), 280 edges, and maximum degree 19.

antees, in internet-like graphs, to produce compact routing
tables of very small average size at every node.

Theorem 1. For any n-node graph sampled from
RPLG(n, τ) with power-low exponent τ ∈ (2, 3), within its
largest connected component, the name-independent routing
scheme CLUSTER has w.h.p.3 the following properties:

1. the maximal size of the routing tables is O(
√
n );

2. the average size of the routing tables is4 Õ(nγ) with

γ = 1
2
· τ−2
τ−1

for τ ≤ 2.5, and γ = (τ−2)2

τ−1
otherwise;

3. the stretch factor is at most 5;
4. every routing decision takes constant time; and
5. headers have poly-logarithmic size.

Actually, Properties 3,4,5 hold for every connected graph.
Secondly we experimentally compare our scheme to

AGMNT [AGM+08], DCR [GGHI13], HDLBR [TZLL13], and
TZ+ [CSTW12]. In particular, Table 1 shows that our
scheme, CLUSTER, improves significantly the routing table
sizes on a CAIDA map (sampled from the AS network [Cai])
and on a BC graph, even though TZ+ (a specialized vari-
ant of Thorup-Zwick routing scheme) is a labeled routing
scheme. Moreover, TZ+ scheme makes the assumption that
τ is known whereas our scheme does not need this parame-
ter. We have provided a fully distributed implementation for
the schemes DCR, HDLBR, CLUSTER, and proved that each
one generates all the routing tables in Õ(n3/2) messages. No
distributed implementation within o(n2) messages is known
for AGMNT.

3. OUR SCHEME

Preliminaries.
Similarly to TZ+ and HDLBR, our algorithm is based on

a set of landmark nodes positioned in the “center” of the
graph. In our case, the k landmarks are composed of the
highest degree node `1 plus its k−1 neighbors of highest de-
gree, where k − 1 = min{d

√
n e, deg(`1)}. Moreover, every

3I.e., with probabilty at least 1− 1/n.
4The notation Õ(f(n)) stands for O(f(n) · polylogf(n)).

landmark node `i, i ∈ {1, . . . , k}, is provided with a dis-
tinct color c(`i) ∈ {1, . . . , k}. Landmark nodes also share a
balanced (w.h.p.) hash function h, as in [AGM+08], map-
ping in constant time all node identifiers to the color set
{1, . . . , k}.

Routing tables.
Any landmark node `i stores one entry per node v whose

hash value is equal to the color of `i, namely c(`i). This
entry corresponds to the path from `i to v in some fixed
shortest-path spanning tree T rooted at `1. Each path of T
can be compressed into a poly-logarithmic size entry, e.g. by
using the classical labeled compact routing scheme for trees
from [FG01]. This adds one entry to every node. Every
landmark also stores one entry for each color c. This entry
corresponds to the next-hop from `i to the landmark with
color c along a shortest path in the subgraph induced by
the landmarks, a diameter two subgraph. As the hash func-
tion is balanced, the number of entries for landmark routing
tables is at most k + n/k +O(1).

For every non-landmark node u, we define its vicinity ball
Bu as the set of all nodes that are strictly closer to u than
`u, where `u is a landmark closest to u. For every node v in
Bu ∪N(u) ∪ {`u}, node u stores the next-hop on a shortest
path to v, where N(u) denotes the neighbors of u. Thus,
the number of entries for the routing table of u is at most
|Bu| + deg(u) + O(1). However, for each node u with no
landmark neighbors, N(u) ⊆ Bu.

Routing from u to v.
If u has an entry for v, then u can route directly to v.

Otherwise u forwards the packet to `u, its closest landmark.
At this point, `u computes the hash value h(v) of node v
and forwards the packet to the landmark `h of color h(v).
Finally, the information stored in the entry corresponding
to v in the routing table of `h is used to route the packet to
its final destination v via the tree T .

4. SKETCH OF THE PROOF
The proof of our main theorem is based on topological ob-

servations done on RPLG(n, τ) graphs [CL03]. Those graphs
are defined as follows. With each node vi, i ∈ {1, . . . , n},
we assign a weight wi = (n/i)1/(τ−1). There is an edge
between node vi and vj with probability min{1, wiwj/σ},
where σ =

P
i wi.

Memory size analysis.
The first step is to show that, w.h.p., k = d

√
n e, i.e.,

the highest degree node `1 is larger than
√
n. This implies

that landmark routing tables have at most 2
√
n entries, and

contributes to at most k · 2
√
n = 2n to the total number of

entries. The degree of every non-landmark u is also lower
than

√
n. So, the maximum number of entries in a routing

table is dominated by maxu |Bu| +
√
n. And, the average

number of entries is bounded by 1
n

P
u |Bu|+O(1) since the

average degree is O(σ/n) = O(1), the main component has
Ω(n) nodes, and the landmark routing tables contribute to
only 2n/Ω(n) = O(1) entries on the average.

Next we show that the sum of the weights, called the
volume, of the set of nodes inside the cluster is polyno-
mial, depends on τ ∈ (2, 3), but is always much larger than√
n. Then, we use one lemma from [CL03] which states that

(w.h.p.) two sets of nodes with high volumes are adjacent
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Name-indep.
RPLG(n, τ) for τ = 2.1 AS graph (n = 16 301) BC graph (n = 10K, τ = 2.1)

Stretchmax Memavg Memmax Stretchavg Memavg Memmax Stretchavg Memavg Memmax

AGMNT 3 Õ(
√
n ) Õ(

√
n ) ?? 465 1 261 1.56 396 1 143

DCR 7 Õ(
√
n ) Õ(

√
n ) 1.74 465 1 261 1.63 396 1 143

HDLBR ≥6 O(
√
n ) Ω(n1/2+ε) 1.52 106 2 324 1.24 404 1 877

CLUSTER 5 Õ(n1/22) O(
√
n ) 1.59 4.05 415 1.75 6.47 228

Labeled

TZ+ 5 O(n1/12) O(n1/12) ?? ?? ?? 1.30 55.2 ??

Table 1: According to [VPSV02] the AS power-law exponent τ can be estimated to 2.1. The main component
of the BC graph has 7873 nodes, whereas the AS graph is connected. It is proved in [TZLL13] that the route
length for HDLBR is at most 2d+ 2δ(τ) where d is the source-destination distance and δ(τ) the inter-landmark
distance. We note that, w.h.p., δ(2.1) > 1, and from this observation one can derive that the maximum stretch
is at least 6. We ran our own (distributed) version of HDLBR since results for AS and BC maps were not
available. TZ+ is not a name-independent routing scheme, and we have not implemented it. Thus, we have
some unknown experimental values for this algorithm.

or intersect. This implies that the volume of every vicinity
ball is upper bounded by a small polynomial. The last part
consists in exhibiting a strong relationship between the vol-
ume and the number of nodes in the vicinity balls. We use
the facts, shown in [CSTW12], that the volume of a set of
nodes is likely to be equal to the sum of their degrees, and
that two balls of radius r and r + 1 do not differ too much
in terms of their number of nodes.

Stretch analysis.
From the routing algorithm from u to v taken from the

main connected component of G, we derive that the route
length is either the distance d = dG(u, v) if v ∈ Bu, or
bounded by dG(u, `u)+dG(`u, `h)+dT (`h, v) otherwise. (Re-
call that the route goes first from u to `u along a shortest
path in G, then to `h using the landmark subgraph, and then
to v using T .) If w denotes the closest ancestor of v in T in
the cluster, then the length of the route from `h to v can be
bounded by dT (`h, v) ≤ dT (`h, w)+dT (w, v) ≤ dG(`v, v)+2
by definition of `v and T . Since dG(`u, `h) ≤ 2, the route
length is at most dG(u, `u) + dG(v, `v) + 4. Note also that
dG(v, `v) ≤ dG(v, u) + dG(u, `u) = d+ dG(u, `u) since other-
wise `u would be a closer landmark for v than `v. Assuming
that v /∈ Bu (otherwise the stretch is 1), it turns out also
that dG(u, `u) ≤ d. Overall, combining these inequalities,
the route length is at most 3d + 4. However, if u is a land-
mark, the route length is at most dG(u, `u)+dG(v, `v)+4 ≤
dG(u, `u) + [d + dG(u, `u)] + 4 = d + 4 since in this case
`u = u.

To summarize, either u is a landmark and the stretch is
at most (d + 4)/d = 1 + 4/d ≤ 5, or u is not a landmark
and the stretch is at most (3d + 4)/d = 3 + 4/d. This is at
most 5 if d ≥ 2. On the other hand, if d = 1 then the stretch
is only 1 since each non-landmark node u has the entries for
N(u). Thus, the stretch factor of our scheme is at most 5
for all connected graphs.

Optimization.
For our experimentations, we proceed to several optimiza-

tions for the CLUSTER scheme. In particular, for every non-
landmark node u, we remove every entry for w ∈ Bu such
that the shortest-path routing from u to w can actually be
achieved by routing from u to its landmark `u. In other

words, we can clean Bu by removing every node w such that
dG(u,w) = 1 + dG(u′, w) where u′ is the next-hop to reach
`u from u. Another optimization addresses the landmark
routing tables. For a landmark `i, the set of entries to each
node v with h(v) = c(`i) is partionned into: 1) the entries for
nodes at distance at most r = dlogn/ log logne from `i; and
2) the remaining entries (for further nodes). For these latter
entries we store a routing label of log2 n/ log log n = r logn
bits used for the routing in T as described in [FG01]. And,
for the former entries we use a different routing label, still of
r logn bits, composed of the first r next-hops on a shortest
path from `i to v. Overall, this improves the average route
length without extra cost on the number of entries or their
size.
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