On the Communication Complexity of Distributed Name-Independant Routing Schemes

Cyril Gavoille, <u>Christian Glacet</u>, Nicolas Hanusse, David Ilcinkas Bordeaux U. – CNRS (France)

Motivation

- Routing among the 35 000 Autonomous Systems: BGP !
- Main observations:
 - Network size increases
 - Highly Dynamic: from 1 to 1000 path change per update
 - Engineering techniques progress << Routing Tables increase

Routing & Performance

- Latency of a routing
 - Time to traverse links (stretch)
 - Lookup Time in routing tables (size of routing tables/Memory)
- Maintenance cost: #messages to update tables
- Maintenance time: convergence time

Stretch = Path length of the routing /distance

Our model

- A weighted graph G of weights in [1,W]
 - n nodes, m edges
 - Hop distance hd(u,v) = minimum number of hops of shortest paths between u and v
 - Hop diameter D = max hd(u,v)
- Two distributed models:
 - LOCAL: delay = 1
 - ASYNC: delay < 1</p>
- Name-independent Schemes: relabeling nodes is not allowed

What can be achieved ?

- Lower bounds !
 - Stretch = $1 \rightarrow \Omega(n)$ entries per node can be required [G.-Perennes 1996]
 - Stretch < 5 $\rightarrow \Omega(n^{1/2})$ entries per node can be required [Abraham-Gavoille-Malkhi 2006]
- Upper bounds !
 - Stretch 1, $O(n^2 \log n)$ messages but time $\Theta(D \log n)$ [Afek, Ricklin 1993]
 - Stretch 12k+3, O(k³n^{1/k}) entries on average for unweighted graphs [Peleg
 Upfal 1989]
 - Stretch 2^k-1 and O(kn^{1/k}) entries on average [Awerbuch et al. 1990]
 - Stretch k^2 and $O(n^{2/k})$ entries per node [Arias et al. 2006]
 - Stretch O(k) and O(n^{1/k}) entries per node [Abraham, Gavoille, Malkhi 2006]
- Distance/path vector has conv. time D and $\Omega(mn)$ messages
- Compact routing schemes: centralized or synchronous !!

Our goal:

How to build tables from scratch ?

Universal:

 \rightarrow Any topology, asynchronous network

Fast distributed computation:

 \rightarrow Convergence time O(D).

Light consumption:

- \rightarrow Memory: O(n^{1/k})
- \rightarrow Messages: o(n² log n) for a synchronous version

Guarantee on routing:

 \rightarrow Stretch O(k)

Our results

- Asynchronous distributed name-independant routing schemes
- ✓ Stretch 7
- ✓ Convergence Time O(D)
 ✓ Memory O(n^{1/2})
 In a synchronous scenario
- ✓ O(ξ (m n^{1/2}) + n^{3/2} min(D, n^{1/2})) messages
- **ξ**=1+D(1-1/W) for weighted graphs
- **ξ**=1 for unweighted graphs

Our results for « realistic graphs » in a synchronous scenario

Schemes	Stretch	Memory	#Messages	Time	
Dist/Path Vector	1	Ω(n)	O(n ²)	O(D)	
ALGO 1	7	O(n ^{1/2})	O(n ^{3/2})	O(D)	
ALGO 2	5	O(n ^{2/3})	O(n ^{5/3})	O(D)	
Memory LB	< 2k+1	Ω((n log n) ^{1/k})	Any	Any	Abraham- Gavoille- Malkhi 2006
Message LB	1	Any	Ω(n²)	o(n)	
Time LB	< n/3D	Any	Any	Ω(D)	

« realistic graphs »: O(n log n) edges, hop-diameter O(log n) and unweighted.

Our results for « realistic graphs » in a synchronous scenario

Schemes	Stretch	Memory	#Messages	Time	
Dist/Path Vector	1	Ω(n)	O(n ²)	O(D)	
ALGO 1	7	O(n ^{1/2})	O(n ^{3/2})	O(D)	
ALGO 2	5	O(n ^{2/3})	O(n ^{5/3})	O(D)	
Memory LB	< 2k+1	Ω((n log n) ^{1/k})	Any	Any	Abraham- Gavoille- Malkhi 2006
Message LB	1	Any	Ω(n²)	o(n)	
Time LB	< n/3D	Any	Any	Ω(D)	

« realistic graphs »: O(n log n) edges, hop-diameter O(log n) and unweighted.

To sum up

inspired by Abraham-Gavoille-Malkhi-Nisan-Thorup 2008

- Each node has a color c(u) among k
- Random hash function h: identifier \rightarrow [1,k]
- Some nodes are of type **landmark** (can be color 1)
- Complete and minimal vicinity balls B(u): closest nodes with at least one node of each color and one landmark L(u).
- Color Table C(u): « paths » to v such that h(v)=c(u)
- 2 routing mecanisms:
 - Direct: within balls and toward landmarks
 - Indirect: through intermediate nodes/landmarks

ALGO 1 ingredients Vicinity Balls B

B(u) - closest nodes from u respecting two properties :

 complete, contains at least one of each color,

ALGO 1 ingredients

B(u) - closest nodes from u respecting two properties :

- complete, contains at least one of each color,
- **minimal** in number of nodes

ALGO 1 routes

Every node **u** has to know routes to :

- B(u), close nodes
- L, landmarks
- C(u), nodes v managed by color c (u)=h(v)

we also define L(u) as the closest landmark of u.

Route within a vicinity ball

The routing protocol to route to a destination in B(u) or L is a shortest path routing.

How to route further

- 1. Source u computes h(v)=c
- 2. Forward message to M(c), its manager of color c in B(u)
- 3. M(c) knows Path $P=L(v) \rightarrow v$ and forward message to L(v)
- 4. Message follows P to reach v

Random coloring

Each node chooses its color uniformly at random

- \rightarrow between n/2k and 3n/2k nodes per color w.h.p.
- \rightarrow B has size $\Theta(k \log k)$ w.h.p.
- \rightarrow L has size $\Theta(n/k)$ w.h.p

How to build such distributed data structures with a low communication cost ?

Synchronization of few asynchronous phases:

- 1. Detection of landmarks and election of one leader tree
- 2. Vicinity Balls and Landmarks trees: bellman-ford based
- 3. Compact Routing labels assignements
- 4. Color tables construction using overlay networks (one per color) from the leader tree

Phases 1, 2 are done in parallel before phases 3 and phase 4.

Details on the communication cost

- One per color
- n min(k,D)

Color Information Exchange in Overlays

• n²/k min(k,D)

BFS trees

- minimal
- Complete
- ξ(mn/k + m k log k)
- Termination Detection

Compact

Routing

Labels

- Landmark trees
- mn/k

Truncated Bellman-Ford for non landmarks nodes

- Entries of B:
 - Id, distance, hop-distance, nexthop
- For a non-landmark node v: tree T_v
 If u in T_v then v in B(u)
- Add nodes to B(u) until B(u) is complete
- Get better nodes for B(u)
- For any node inserted/removed/updated (distance,hop-distance):
 - Send this event to neighbors

Analysis of synchronous truncated BFS

Step 1 - Insertions: B is **complete** as soon as |B| reaches k log k at time i (< klog k messages for one node)

Analysis of synchronous truncated BFS

Step 2 – Get closer nodes: Some nodes are removed (added) from B between time i and time $j \le min(D,iW)$.

 \rightarrow j-i \leq j(1-1/W) \leq D(1-1/W)= ξ -1

For all nodes: mk log k + (ξ -1) mk log k= ξ mk log k

Details on the communication cost

- One per color
- n min(k,D)

Color Information Exchange in Overlays

• n²/k min(k,D)

BFS trees

- minimal
- Complete
- ξ(mn/k + m k log k)
- Termination Detection

Compact

Routing

Labels

- Landmark trees
- mn/k

How to route further

- 1. Source u computes h(v)=c
- 2. Forward message to M(c), its manager of color c in B(u)
- 3. M(c) knows Path $P=L(v) \rightarrow v$ and forward message to L(v)
- 4. Message follows P to reach v

Learning C(u) avoiding wild broadcasts

A first idea

✓ Every node v broadcasts piece of info: L(v)→V, ...
 using landmark trees

✓ nm messages

A better idea

✓ Nodes of same color shares same interest

✓ Make them communicate !

✓ n²min(k,D)/k messages on average

- A landmark L_{min} (and its tree) is elected
- One overlay per color

• Overlay Construction

Every node of a given color search for an ancestor of same color

• Overlay Construction

Each node knows the paths to its logical neighbors through L_{min}

Color Table construction

1. Each node v chooses a manager node u of color h(v) in its ball

2. Nodes of color h(v) exchange routing information to v's: $L(v) \rightarrow v$

Conclusion

- Good step toward dynamic and light compact routing schemes (not far from being selfstabilizing)
- Can we get a smaller stretch with a similar communication cost ?