On the Communication Complexity
of Distributed Name-Independant Routing Schemes
Cyril Gavoille, Christian Glacet,
Nicolas Hanusse, David Ilcinkas Bordeaux U. - CNRS (France)

Motivation

- Routing among the 35000 Autonomous Systems: BGP!
- Main observations:
- Network size increases
- Highly Dynamic: from 1 to 1000 path change per update
- Engineering techniques progress << Routing Tables increase

Routing \& Performance

- Latency of a routing
- Time to traverse links (stretch)
- Lookup Time in routing tables (size of routing tables/Memory)
- Maintenance cost: \#messages to update tables
- Maintenance time: convergence time

Stretch $=$ Path length of the routing /distance

Our model

- A weighted graph G of weights in [1,W]
- n nodes, m edges
- Hop distance hd $(u, v)=$ minimum number of hops of shortest paths between u and v
- Hop diameter D = max hd (u,v)
- Two distributed models:
- LOCAL: delay = 1
- ASYNC: delay < 1
- Name-independant Schemes: relabeling nodes is not allowed

What can be achieved ?

- Lower bounds !
- Stretch $=1 \rightarrow \Omega(n)$ entries per node can be required [G.-Perennes 1996]
- Stretch $<5 \rightarrow \Omega\left(\mathrm{n}^{1 / 2}\right)$ entries per node can be required [Abraham-GavoilleMalkhi 2006]
- Upper bounds !
- Stretch 1, $O\left(n^{2} \log n\right)$ messages but time $\Theta(D \log n)$ [Afek, Ricklin 1993]
- Stretch $12 \mathrm{k}+3, \mathrm{O}\left(\mathrm{k}^{3} \mathrm{n}^{1 / k}\right)$ entries on average for unweighted graphs [Peleg - Upfal 1989]
- Stretch $2^{\mathrm{k}}-1$ and $\mathrm{O}\left(\mathrm{kn}^{1 / \mathrm{k}}\right)$ entries on average [Awerbuch et al. 1990]
- Stretch k^{2} and $O\left(n^{2 / k}\right)$ entries per node [Arias et al. 2006]
- Stretch $\mathrm{O}(\mathrm{k})$ and $\mathrm{O}\left(\mathrm{n}^{1 / k}\right)$ entries per node [Abraham, Gavoille, Malkhi 2006]
- Distance/path vector has conv. time D and $\Omega(m n)$ messages
- Compact routing schemes: centralized or synchronous !!

Our goal:

How to build tables from scratch ?

Universal:

\rightarrow Any topology, asynchronous network Fast distributed computation:
\rightarrow Convergence time O(D).
Light consumption:
\rightarrow Memory: $\mathrm{O}\left(\mathrm{n}^{1 / k}\right)$
\rightarrow Messages: o($n^{2} \log n$) for a synchronous version
Guarantee on routing:
\rightarrow Stretch O(k)

Our results

Asynchronous distributed name-independant routing schemes
\checkmark Stretch 7
\checkmark Convergence Time O(D)
\checkmark Memory O($\mathrm{n}^{1 / 2}$)
In a synchronous scenario
$\checkmark \mathrm{O}\left(\xi\left(m n^{1 / 2}\right)+n^{3 / 2} \min \left(D, n^{1 / 2}\right)\right)$ messages
$\xi=1+D(1-1 / W)$ for weighted graphs
$\xi=1$ for unweighted graphs

Our results for « realistic graphs » in a synchronous scenario

Schemes	Stretch	Memory	\#Messages	Time	
Dist/Path Vector	1	$\Omega(n)$	$O\left(n^{2}\right)$	$O(D)$	
ALGO 1	7	$O\left(n^{1 / 2}\right)$	$O\left(n^{3 / 2}\right)$	$O(D)$	
ALGO 2	5	$O\left(n^{2 / 3}\right)$	$O\left(n^{5 / 3}\right)$	$O(D)$	
Memory LB	$<2 k+1$	$\Omega\left((n \log n)^{1 / k}\right)$	Any	Any	Abraham- Gavoille- Malkhi 2006
Message LB	1	Any	$\Omega\left(n^{2}\right)$	$o(n)$	
Time LB	$<n / 3 D$	Any	Any	$\Omega(D)$	

«realistic graphs »: O(n $\log n$) edges, hop-diameter $O(\log n)$ and unweighted.

Our results for « realistic graphs » in a synchronous scenario

Schemes	Stretch	Memory	\#Messages	Time	
Dist/Path Vector	1	$\Omega(n)$	$O\left(n^{2}\right)$	$O(D)$	
ALGO 1	7	$O\left(n^{1 / 2}\right)$	$O\left(n^{3 / 2}\right)$	$O(D)$	
ALGO 2	5	$O\left(n^{2 / 3}\right)$	$O\left(n^{5 / 3}\right)$	$O(D)$	
Memory LB	$<2 k+1$	$\Omega\left((n \log n)^{1 / k}\right)$	Any	Any	Abraham- Gavoille- Malkhi 2006
Message LB	1	Any	$\Omega\left(n^{2}\right)$	$O(n)$	
Time LB	$<n / 3 D$	Any	Any	$\Omega(D)$	

«realistic graphs »: O(n $\log n)$ edges, hop-diameter $O(\log n)$ and unweighted.

To sum up

 inspired by Abraham-Gavoille-Malkhi-Nisan-Thorup 2008- Each node has a color $\mathrm{c}(\mathrm{u})$ among k
- Random hash function h : identifier $\rightarrow[1, \mathrm{k}]$
- Some nodes are of type landmark (can be color 1)
- Complete and minimal vicinity balls $B(u)$: closest nodes with at least one node of each color and one landmark $\mathrm{L}(\mathrm{u})$.
- Color Table $C(u):$ « paths » to v such that $h(v)=c(u)$
- 2 routing mecanisms:
- Direct: within balls and toward landmarks
- Indirect: through intermediate nodes/landmarks

ALGO 1 ingredients
 Vicinity Balls B

ALGO 1 ingredients

$B(u)$ - closest nodes from u respecting two properties:

- complete, contains at least one of each color,
- minimal in number of nodes

ALGO 1 routes

Every node u has to know routes to :

- B(u), close nodes
- L, landmarks
- C(u), nodes v managed by color c (u) $=\mathrm{h}(\mathrm{v})$
we also define $L(u)$ as the closest landmark of u.

Route within a vicinity ball

The routing protocol to
route to a destination in
$B(u)$ or L is a shortest
path routing.

How to route further

1. Source u computes $h(v)=c$
2. Forward message to $M(c)$, its manager of color c in $B(u)$
3. $M(c)$ knows Path $P=L(v) \rightarrow v$ and forward message to $L(v)$
4. Message follows P to reach v

Random coloring

Each node chooses its color uniformly at random
\rightarrow between $n / 2 k$ and $3 n / 2 k$ nodes per color w.h.p.
$\rightarrow B$ has size $\Theta(k \log k)$ w.h.p.
\rightarrow L has size $\Theta(n / k)$ w.h.p

How to build such distributed data

 structures with a low communication cost ?Synchronization of few asynchronous phases:

1. Detection of landmarks and election of one leader tree
2. Vicinity Balls and Landmarks trees: bellman-ford based
3. Compact Routing labels assignements
4. Color tables construction using overlay networks (one per color) from the leader tree

Phases 1, 2 are done in parallel before phases $\mathbf{3}$ and phase 4.

Details on the communication cost

Truncated Bellman-Ford for non landmarks nodes

- Entries of B:
- Id, distance,hop-distance,nexthop
- For a non-landmark node v : tree T_{v}
- If u in T_{v} then v in $B(u)$
- Add nodes to $B(u)$ until $B(u)$ is complete
- Get better nodes for $B(u)$
- For any node inserted/removed/updated (distance,hop-distance):
- Send this event to neighbors

Analysis of synchronous truncated BFS

Step 1 - Insertions: B is complete as soon as $|B|$ reaches $k \log k$ at time $i(<k l o g k$ messages for one node)

Analysis of synchronous truncated BFS

Step 2 - Get closer nodes: Some nodes are removed (added) from B between time i and time $j \leq \min (D, i W)$.
$\rightarrow \mathrm{j}-\mathrm{i} \leq \mathrm{j}(1-1 / \mathrm{W}) \leq \mathrm{D}(1-1 / \mathrm{W})=\xi-1$
For all nodes: $m k \log k+(\xi-1) m k \log k=\xi m k \log k$

Details on the communication cost

How to route further

1. Source u computes $h(v)=c$
2. Forward message to $M(c)$, its manager of color c in $B(u)$
3. $M(c)$ knows Path $P=L(v) \rightarrow v$ and forward message to $L(v)$
4. Message follows P to reach v

Learning $C(u)$ avoiding wild broadcasts

A first idea
\checkmark Every node v broadcasts piece of info: $L(v) \rightarrow V, \ldots$ using landmark trees
$\checkmark \mathrm{nm}$ messages
A better idea
\checkmark Nodes of same color shares same interest
\checkmark Make them communicate !
$\checkmark \mathrm{n}^{2} \min (\mathrm{k}, \mathrm{D}) / \mathrm{k}$ messages on average

Communication within an overlay network

- A landmark $L_{\text {min }}$ (and its tree) is elected
- One overlay per color

Communication within an overlay network

- Overlay Construction

Every node of a given color search for an ancestor of same color

Communication within an overlay network

- Overlay Construction

Each node knows the paths to its logical neighbors through $L_{\text {min }}$

Communication within an overlay network

- Color Table construction

1. Each node v chooses a manager node u of color $h(v)$ in its ball
2. Nodes of color $h(v)$ exchange routing information to $v \prime s: L(v) \rightarrow v$

Conclusion

- Good step toward dynamic and light compact routing schemes (not far from being selfstabilizing)
- Can we get a smaller stretch with a similar communication cost?

