On the Communication Complexity
of Distributed Name-Independant
Routing Schemes

Cyril Gavoille, Christian Glacet,
Nicolas Hanusse, David llcinkas

Bordeaux U. — CNRS (France)

Motivation

40000

Number of AS advertised in BGP routing table
3501 _//.:
35.269
30 ’/’/ .
=3 ,//-"
§ = 5 //’
@ P
B e
= Pr)
g S50 i s H i
£ 4000 __—"Ratio: prefix/AS ~ 10
o~
100 P
/“//
501 = ot L
g
Qa9g 2000 2002 2!2‘04 2 (:('6 2 IZ.I oS

Maintenance cost/time 1

* Routing among the 35 000 Autonomous Systems: BGP !
* Main observations:

— Network size increases

— Highly Dynamic: from 1 to 1000 path change per update

— Engineering techniques progress << Routing Tables increase

Routing & Performance

e Latency of a routing
— Time to traverse links (stretch)

— Lookup Time in routing tables (size of routing
tables/Memory)

* Maintenance cost: #messages to update
tables

* Maintenance time: convergence time

Stretch = Path length of the routing /distance

Our model

A weighted graph G of weights in [1,W]
— n nodes, m edges

— Hop distance hd(u,v) = minimum number of hops of
shortest paths between u and v

— Hop diameter D = max hd(u,v)
* Two distributed models:

— LOCAL: delay =1

— ASYNC: delay < 1

* Name-independant Schemes: relabeling nodes is
not allowed

What can be achieved ?

Lower bounds !

— Stretch =1 - Q(n) entries per node can be required [G.-Perennes 1996]

— Stretch < 5 = Q(n%?) entries per node can be required [Abraham-Gavoille-
Malkhi 2006]

Upper bounds !

— Stretch 1, O(n? log n) messages but time O(D log n) [Afek, Ricklin 1993]

— Stretch 12k+3, O(k*n'¥) entries on average for unweighted graphs [Peleg
— Upfal 1989]

— Stretch 21 and O(kn'/¥) entries on average [Awerbuch et al. 1990]
— Stretch k?and O(n?¥) entries per node [Arias et al. 2006]
— Stretch O(k) and O(n'/%) entries per node [Abraham, Gavoille, Malkhi 2006]

Distance/path vector has conv. time D and Q(mn) messages
Compact routing schemes: centralized or synchronous !!

Our goal:
How to build tables from scratch ?

Universal:

—> Any topology, asynchronous network

Fast distributed computation:

— Convergence time O(D).

Light consumption:

> Memory: O(n'/k)

— Messages: o(n? log n) for a synchronous version
Guarantee on routing:

— Stretch O(k)

Our results

Asynchronous distributed name-independant
routing schemes

v’ Stretch 7

v Convergence Time O(D)

v’ Memory O(n/?)

In a synchronous scenario

v O(€ (m nY2) + n32 min(D, n¥/2)) messages
¢=1+D(1-1/W) for weighted graphs

¢=1 for unweighted graphs

Our results for « realistic graphs » in a
synchronous scenario

sieme v wenan i Iime _L__

Dist/Path Q(n) O(n?) O(D)

Vector

ALGO 1 7 0(n1/2) 0(n3/2) o(D)

ALGO 2 5 O(n?/3) O(n>/3) O(D)

Memory LB < 2k+1 Q((n log n)¥%) Any Any Abraham-
Gavoille-
Malkhi 2006

Message LB 1 Any Q(n?) o(n)

Time LB <n/3D Any Any Q(D)

« realistic graphs »: O(n log n) edges, hop-diameter O(log n) and unweighted.

Our results for « realistic graphs » in a
synchronous scenario

sieme v wenan i Iime _L__

Dist/Path Q(n) O(n?) O(D)

Vector

ALGO 1 7 0(n1/2) 0(n3/2) o(D)

ALGO 2 5 O(n?/3) O(n>/3) O(D)

Memory LB < 2k+1 Q((n log n)¥%) Any Any Abraham-
Gavoille-
Malkhi 2006

Message LB 1 Any Q(n?) o(n)

Time LB <n/3D Any Any Q(D)

« realistic graphs »: O(n log n) edges, hop-diameter O(log n) and unweighted.

To sum up
inspired by Abraham-Gavoille-Malkhi-Nisan-Thorup 2008

Each node has a color c(u) among k
Random hash function h: identifier — [1,k]
Some nodes are of type landmark (can be color 1)

Complete and minimal vicinity balls B(u): closest nodes
with at least one node of each color and one landmark
L(u).

Color Table C(u): « paths » to v such that h(v)=c(u)

2 routing mecanisms:

— Direct: within balls and toward landmarks

— Indirect: through intermediate nodes/landmarks

ALGO 1 ingredients
Vicinity Balls B

B(u) - closest nodes from u
respecting two properties :

* complete, contains at least
one of each color,

ALGO 1 ingredients

S~ O
B(u) - closest nodes from u
respecting two properties :
* complete, contains at least
one of each color,
O

* minimal in number of nodes

ALGO 1 routes

Every node u has to know routes to :

® B(u), close nodes
* |, landmarks

® C(u), nodes v managed by color
¢ (u)=h(v)

we also define L(u) as the closest landmark of u.

Route within a vicinity ball

The routing protocol to
route to a destination in
B(u) or L is a shortest

path routing.

B wnN e

How to route further

L: set of landmarks

L(u) L(v)

M(v)

Source u computes h(v)=c

Forward message to M(c), its manager of color c in B(u)
M(c) knows Path P=L(v) - v and forward message to L(v)
Message follows P to reach v

Random coloring

L: random set of landmarks

N

L(u) L(v

/

(]
u
M(v)

Each node chooses its color uniformly at random
- between n/2k and 3n/2k nodes per color w.h.p.
— B has size ©O(k log k) w.h.p.

— L has size ©(n/k) w.h.p

How to build such distributed data

structures with a low communication

cost ?

Synchronization of few asynchronous phases:

1.

Detection of landmarks and election of one leader tree

2. Vicinity Balls and Landmarks trees: bellman-ford based
3.
4. Color tables construction using overlay networks (one

Compact Routing labels assignements

per color) from the leader tree

Phases 1, 2 are done in parallel before phases 3 and
phase 4.

Details on the communication cost

‘Color

‘ Information
Overlay Exchange in
' e One per color Overlays
e n min(k,D .
Compact P * n*/kmin(k,D)
Routing
Labels
- e Termination

BFS trees Detection

e minimal e Landmark trees

e Complete e mn/k

e ¢{(mn/k + mklogk)

Truncated Bellman-Ford for
non landmarks nodes

Entries of B:
— Id, distance,hop-distance,nexthop

For a non-landmark node v: tree T,
—Ifuin T, then vin B(u)

Add nodes to B(u) until B(u) is complete
Get better nodes for B(u)

For any node inserted/removed/updated
(distance,hop-distance):
— Send this event to neighbors

Analysis of synchronous truncated BFS

\

Step 1 - Insertions: B is complete as soon as |B|
reaches k log k at time i (< klog k messages for
one node)

Analysis of synchronous truncated BFS

\

Step 2 — Get closer nodes: Some nodes are removed
(added) from B between time i and time j < min(D,iW).

- j-i<j(1-1/W) < D(1-1/W)=¢-1
For all nodes: mk log k + (¢€-1) mk log k=€ mk log k

Details on the communication cost

‘Color

‘ Information
Overlay Exchange in
. e One per color Overlays
e n min(k,D .
Compact P * n*/kmin(k,D)
Routing
Labels
- e Termination

BFS trees Detection

e minimal e Landmark trees

e Complete e mn/k

e ¢{(mn/k + mklogk)

B wnN e

How to route further

L: set of landmarks

L(u) L(v)
) >
® nexthop 7?2
u O
v
M(v)

Source u computes h(v)=c

Forward message to M(c), its manager of color c in B(u)
M(c) knows Path P=L(v) - v and forward message to L(v)
Message follows P to reach v

Learning C(u) avoiding wild broadcasts

A first idea

v'Every node v broadcasts piece of info: L(v)—V, ...
using landmark trees

v’ nm messages

A better idea
v'Nodes of same color shares same interest
v'Make them communicate !
v n?min(k,D)/k messages on average

Communication within an overlay
network

e Alandmark L

* One overlay per color
L

(and its tree) is elected

min

min

Communication within an overlay
network

* Overlay Construction

min

n min(k,D) expected
messages for k trees

Every node of a given color search for an ancestor of same color

Communication within an overlay
network

* Overlay Construction

Each node knows the paths to its logical neighbors through L .

Communication within an overlay
network

e Color Table construction

1. Each node v chooses a manager node u of color h(v) in its ball
2. Nodes of color h(v) exchange routing information to v’s: L(v)—V

Conclusion

* Good step toward dynamic and light compact
routing schemes (not far from being self-
stabilizing)

* Can we get a smaller stretch with a similar
communication cost ?

