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We deal with deterministic distributed routing algorithms on arbitrary
n-node networks. For each router, we want to minimize the amount of routing
information that must be stored in order to implement the local routing algo-
rithm, even if the names of the routers can be chosen in advance. We take
also into account the length of the routing paths and consider the stretch
factor, which is the maximum ratio between the length of the paths computed
by the routing algorithm and the distance between the source and the
destination. We show that there exists an n-node network on which every
routing algorithm of stretch factor s<3 requires at least a total of 0(n2) bits
of routing information. We show a similar result for networks of diameter 2.
� 2001 Academic Press
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1. INTRODUCTION AND MODEL

When routing messages, we need the shortest possible routing paths (or paths
that are almost the shortest), which means that the ratio between the length of the
path and the distance between the nodes is bounded by a constant, which is called
the stretch factor of the path. This definition is naturally extended to a network G;
the stretch factor of a routing R on a network G is defined as s(R, G)=
maxx{ y dR (x, y)�dG(x, y), where dR (x, y) is the routing path length between x and
y, and dG(x, y) the distance in G.
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Routing tables are commonly used. Messages for node i are sent to the port number
which is read at the ith entry of the table. While such a technique is universal and
can generate the shortest paths, each router needs to store O(n log n) bits, leading
to a total of O(n2 log n) bits for an n-node network. However, one can hope to do
better because topologies are not always arbitrary. Routing in a ring, for example,
requires a simple algorithm for each router, if the labeling of nodes can be freely
chosen [4]. If not, the routers in a ring could require 3(n) bits. In [2], many
models of memory complexity are described with results for lower and upper
bounds for the average case. In this paper, we choose a very strong model, which
takes the names of the nodes in the set [1, ..., n] and allows output port relabeling.

It is straightforward to show that 0(n) bits are necessary to store any neighbor-
optimal routing table if no node-labeling is allowed. However, if name and output
port relabeling is allowed, less bits could be required to optimally route to
neighbors. Consider, as an example, the complete graph Kn and assume that, for
each node x, the output port numbered i reaches node y, which has the ith lowest
label among the n&1 neighbors of x. Hence, a message from x to a neighbor y uses
output port y, if y<x, and y&1, otherwise. Thus, it is sufficient for router x to
know its name. Less than 0(n) bits are also sufficient for a neighbor-optimal rout-
ing scheme on trees. A specific labeling shows that O(- n) per router suffices to
route along shortest paths in every n-node tree [6], and this is done independently
of the degree.

Our result is proved for a model of routing function described in [8]. A routing
function R is a pair (P, H) consisting of a port function P and a header function H.
For any two distinct nodes u and v, R produces a path u=u0 , u1 , ..., uk=v of
nodes, a sequence h0 , h1 , ..., hk of headers, and a sequence p0 , p1 , ..., pk of output
port numbers. A message with header hi , arriving at node ui through input port
pi , is forwarded to the output port P(ui , pi , h i)= pi+1 with a new header
H(ui , pi , hi)=hi+1 . The input and output ports numbered 0 are associated with the
links between the router and its host. Hence, we impose that p0=0, P(uk , pk , hk)
=0 and h0=v, fixing the initial header provided to the routing function. Routing
functions are expressed as collections of local routing functions Rx=(Px , Hx),
indexed by the names x of the nodes. A routing scheme is a function that returns
a routing function R for any n-node network.

Our contribution is a lower bound of 0(n) bits of local storage needed to imple-
ment any local routing function of any stretch factor s<3 in a worst-case n-node
network. We show that this situation occurs on 3(n) routers. The lower bound is
extended to networks of diameter 2. All these results are established in a context
where node and port relabeling is allowed, yielding bounds that are valid for
whatever choice of the node or port names.

2. PREVIOUS WORK

The best-known upper bound for stretch factor s = 3 was established by
Awerbuch et al. in [1, p. 321]:
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Theorem 1 (Awerbuch, Bar-Noy, Linial, and Peleg). Every n-node graph has a
routing algorithm of stretch factor at most 3 with a total memory requirement
O(n3�2 log3�2 n) bits.4

We will see that routing with stretch factor s<3 requires 0(n2) bits, significantly
more than for s=3. The 0(n2) lower bound recalls the minimum number of bits to
code a n-node network as the number of (unlabeled) topologies is 2n2�2+o(n2) [12].
However, this counting argument neither gives any way to compute the routing
functions, nor can it be applied to obtain a lower bound. Indeed, the number of
routing functions generated by a scheme is smaller than the number of topologies.
Peleg and Upfal [11] described an example of nonisomorphic graphs supporting a
same shortest path routing table. In [11], Peleg and Upfal proved that 20(n1+1�(2s+4))

routing functions are required to route with stretch factor at most s on any n-node
network. In [5], Fraigniaud and Gavoille improved this lower bound by proving
the existence of 20(n2) nonisomorphic routing functions of stretch factor s<2,
including the case of shortest path routing (s=1). Krizanc and Kranakis [9] refor-
mulated the proof of [5] in terms of Kolmogorov Complexity and showed also a
lower bound of 0(n2) bits for s<2. For stretch factor 1, Gavoille and Pe� renne� s
showed in [8] an optimal lower bound of 3(n2 log n) bits, while Buhrman et al.
showed in [2] that O(n2) bits are sufficient for shortest-path routing on almost all
networks. For s=3, Peleg�Upfal's lower bound gives 0(n1.1) bits, whereas
O(n3�2 log3�2 n) bits suffices [1]. We will show that 0(n2) are necessary for any
stretch factor s<3.

3. LOWER BOUND OF THE MEMORY REQUIREMENT

We will lower bound the number of bits required to describe a routing function
of stretch factor less than 3 on n-node networks. We assume that the names of the
nodes are unique integers taken in the set [1, ..., n]. For every x, the port numbers
are unique integers taken in the set [1, ..., deg (x)], where deg(x) is the degree of x.
Headers are of unlimited size and can be modified before the message is forwarded.
However, the first routing decision, in the router of the source, must be taken
knowing only the name of the destination, in agreement with h0=v and p0=0 of
the definition in Section 1. The topology of the network is represented by an
undirected, unlabeled, connected graph. Given G=(V, E) and a routing algorithm
R=[Rx | x # V] on G, we define the memory requirement of node x as the length
of the smallest program that computes Rx , expressed, e.g., in terms of the
Kolmogorov Complexity [10]. The local memory requirement of R is the largest
memory requirement of a node taken over all nodes of G. The total memory require-
ment of R is the sum of all local memory requirements.

The basic idea is to show that some graphs of girth 4 cannot optimally route
messages to their neighbors if all the routers store only o(n) bits.5 It follows that
certain routers, say x, that must send a message to some neighbors, say y, forward
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FIG. 1. A router ai with c connections in the set W.

the message to some other node z, y{z. Either the message returns from z to x
before reaching y, or the message routes from z to y along some other path. In all
cases, the length of the path, and hence the stretch factor, is at least 3. So, some
routers need at least 0(n) bits to route with s<3. This situation may happen inde-
pendently on 3(n) routers, whence a total of 0(n2) bits. We can prove the following
result using Stirling's Formula.

Lemma 1. For every q�1, ( q
4q�5)�( 2q�5

q�5 )>#( 5
4)q, with #r0.619.

Theorem 2. For every sufficiently large integer n, there exists an n-node graph on
which every routing algorithm of stretch factor s<3 has a total memory requirement
of n2�25 bits at least.

Proof. Let p=wn�4x , q=n&2t
6 n�2 and c integer, with q�2<c<q. Let M be

the set of p_q boolean matrices having exactly c 1-entries per row. The cardinality
of M is |M|=( q

c) p. For matrix M = (mi, j), we build a graph G = (V, E), with
2p+q=n nodes. V=W _ A _ B, where W=[v1 , ..., vq], A=[a1 , ..., ap], and B=
[b1 , ..., bp]. For every i # [1, ..., p], ai is adjacent to bi , and for every j # [1, ..., q],
vj is adjacent to ai if mi, j=1, or to bi if mi, j=0. In other words, the i th row of M
is a bit-vector that indicates which nodes of W are neighbors of ai . By construction,
the distance between nodes of W is at least 2. See Fig. 1 for a component [ai , bi].
Assume that ai sends a message to one of its neighbors in W, say vj . If ai forwards
a message to some other node, either to bj or to some vk # W with k{ j, the resulting
path will be of length at least 3, which is not admissible with s<3. Thus, any routing
function R with s < 3 must route messages from any node ai # A to one of the
neighbors of ai in W as if the stretch factor was 1.

Let R=[Rx | x # V] be any routing algorithm of stretch factor s<3 on G. Let
MR(x) be the local memory requirement of x. The nodes and their ports are
assumed to be optimally labeled. With the following objects, we can compute
exactly M: the integers n, c, p, and q; the sequence (v1 , ..., vq) of the labels of nodes
of W; the set F=[Rx | x # A] of routing functions; a permutation ? of [1, ..., p]; a
sequence T=(t1 , ..., tp) of integers. We may assume that the routing functions of
the set F are ordered lexicographically; i.e., F=[F1 , ..., Fp]. The permutation ? is
defined by ?(i)= j if and only if Fj=Rai

, for every i # [1, ..., p]. Let us now describe
how to rebuild M.
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(1) For each v # W and x # A, store in a p_q integer matrix M$=(m$i, j) the
values returned by Rx=(Px , Hx) when the input port is 0; i.e., m$i, j=Q?(i) (0, vj),
where Q?(i) is the port function of F?(i) # F.

If the stretch factor was s=1, each row of M$ would use all the output ports of
the sender and all the ports, except one, would occur exactly once. From this, we
could immediately rebuild M as the unique occurrences correspond to the neighbors
of the sender in W. However, with a stretch factor s>1, messages (to nonneighbors
of the sender) may initially be sent to a wrong node, thereby perturbing the unique
occurrences. We now show how to overcome this problem. The following steps are
applied to all the rows of M$. Let L be the ith row.

(2) From L, compute U, the bit-vector of unique occurrences of L, where the
jth bit of U is set if and only if the jth entry of L appears once in L.

(3) Let z be the number of 0-entries of U. Enumerate, using lexicographic
order, all the subsets of [1, ..., z] of size c&(q&z). Using sequence T, we take
the ti th subset, say B, which represents the positions of the 0-entries of U to flip.
Compute X by flipping the corresponding positions in U.

We claim that X is exactly the ith row of M. Step (1) stores in M$ the answers
of the routers of A for the nodes of W. Call L the ith row of M$.

Claim 1. The number of unique occurrences of L is at least 2c&q.

L has at least c distinct entries, otherwise the routing function R would be of
stretch factor s�3. Thus, at most q&c entries can disturb in L the c distinct entries
originally in the ith row of M and there are at least c&(q&c)=2c&q>0 entries
of L with unique occurrences. After Step (2), the bits set to 1 in U are correct. Sup-
pose that q&z bits are correct. Step (3) tries to determine the c&(q&z) entries
that are not ``correct.'' Since these are among the z 0-entries of U, it is sufficient to
describe the right set of positions to flip, using B, to rebuild the ith row of M
entirely. The number of ways to do it is ( z

c&(q&z)). Let us now compute the total
number of bits used for this construction. The following claims are easy to establish.

Claim 2. Every finite sequence S=(s1 , ..., sk) of integers with 1�si�m, can be
described, knowing k and m, by at most k log m+O(1) bits.

Claim 3. z�2(q&c) and ( z
c&(q&z))�( 2(q&c)

q&c ).

The integers n, c, p, and q can be described with O(log n) bits. By Claim 1, the
sequence (v1 , ..., vq) can be stored on q log n+O(1) bits. The permutation ? can be
stored on p log p+O(1) bits. T can be described by

p log \2(q&c)
q&c ++O(1)

bits using Claim 2 and Claim 3. If K is the number of bits to store the set F of
routing functions, we have

K�log \ |M|<\2(q&c)
q&c +

p

+&O(n log n).
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On the other hand, we know that K��x # A MR(x)+O(log MR(x)). Therefore,
using Lemma 1 and choosing c=4q�5, we get �x # A MR(x)>pq log( 5

4)&O(n log n)
� n2

25 . K

We showed that at least one graph has a memory requirement of 0(n2) bits. By
a counting argument, one checks that (1&o(1)) 2n2�25

t2n2�25 graphs need a total of
n2�25 bits to route with stretch factor s<3. It is well known that almost all graphs
have diameter 2. We strengthen Theorem 2 by showing that 0(n2) bits can be
required for some worst-case graphs of diameter 2. The next lemma will be useful
for the main theorem.

Lemma 2. Let c, p, q be sufficiently large integers with 0<c<q. Let M be the
set of p_q boolean matrices having c 1-entries per row. Let M1 be the subset of
matrices of M such that any two columns are noncomplemented. Let M2 be the subset
of matrices of M such that any 2_q matrix composed of a pair of rows of M

contains the submatrix

_0
0

0
1

1
0

1
1&

up to a column permutation. We have the following two properties. If q=o(r p�2), then
|M1|t |M|, where r=2(1&1�q). If p=o(rq�2), then |M2 |t |M|, where r=2q&1�(2q)

if c=q�2, and r=:&2: (2:&1)2:&1 with :=max[c�q, 1&c�q], otherwise.

Proof. The complete proof can be found in [7]. K

Theorem 3. For every sufficiently large integer n, there exists an n-node graph of
diameter 2 on which every routing algorithm of stretch factor s<3 has a total
memory requirement of n2�25 bits at least.

Proof. Let us consider the set M$=M1 & M2 of Lemma 2 and show that all the
graphs built from M$ are of diameter 2. Let M # M$ and G=(V, E) its correspond-
ing graph, constructed as in Theorem 2. The distance between any ai (or bi) and
any vj is at most 2. M # M1 implies that columns of M are pairwise noncomple-
mented. Thus for every j, j $ there exists an i such that mi, j=mi, j $ . If mi, j=mi, j $=1,
then vj and vj $ are both neighbors of ai . If mi, j=mi, j $=0, both are neighbors of bi .
Hence, dG(vj , vj $)=2. Since M # M2 , we know that, for any two distinct rows i
and i $, there exist j1 such that mi, j1

=1=m i $, j1
, j2 such that mi, j2

=0=mi $, j2
, j3

such that mi, j3
=1{m i $, j3

and j4 such that m i, j4
=0{mi $, j4

. Thus, dG(a i , ai $)=2 as
mi, j1

=1=mi $, j1
implies that vj1

is a neighbor of both ai and ai $ . The other cases are
proved in the same way and establish that G is of diameter 2.

Choose ptn�4, and qtn�2. Let c=:q, and :=4�5. From Lemma 2, |M$|t
|M| , if q=o(r p�2

1 ), and p=o(rq�2
2 ), with r1=2(1&1�q)t2(1&2�n), and with r2=

(5�16) } 42�5 } 33�5
r1.05. We get q=o(2n�8 (1&2�n)n�8)=o(2n�8), and p=o(1.05n�4),

thus |M$|=(1&o(1)) |M|. Let us apply the proof of Theorem 2 for the set M$
instead of M. We have

:
x # A

MR(x)>log \ |M$|<\2(q&c)
q&c +

p

+&O(n log n),
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with

|M$|=(1&o(1)) \q
c+

p

.

For :=c�q=4�5, Lemma 1 gives

|M$|<\2q�5
q�5 +

p

>(1&o(1)) # p \5
4+

pq

.

As #<1, we have

:
x # A

MR(x)>pq log \5
4+&O( p)&O(n log n)>

n2

25
. K

4. IMPROVING THE LOWER BOUNDS

Theorem 4. For every sufficiently large n, there exists an n-node graph of
diameter 2 on which every routing algorithm of stretch factor s<3 has a local
memory requirement asymptotically of n log(5�4)r0.32n bits at least.

Proof. Consider the same graphs as in Theorem 3, built from the set of matrices
M$, with p=n�log n, q=n&2ptn and :=c�q=4�5. To apply Lemma 2 it suffices
to check that q=o(rn�log n), and p=o(1.05n�2&o(n)), with r=2(1&1�q)t2(1&1�n).
We check that rn�log n>2(n&2)�log n and q=o(2(n&2)�log n). So, |M$|t |M|. By the last
inequality of Theorem 3, there exists at least one router of A, x0 , such that

MR(x0)>q log \5
4+&O \n log n

p + ,

which implies that MR(x0)>n log(5�4)&O(log2n). K

Actually, the bound of the total memory requirement in Theorem 2 can be
improved by a factor two, but the graph is not of diameter two.

Theorem 5. For every sufficiently large integer n, there exists an n-node graph of
diameter 3 on which every routing algorithm of stretch factor s<3 has a total
memory requirement n2�13 bits at least.

Proof. Let G be any graph built like in Theorem 2 from the set of p_q matrices
with c 1-entries per row, M. Choose c=4q�5, p=wn�2x, and q=Wn�2X&1. We
transform G into H obtained by removing all the nodes bi of G, and by adding a
new node a0 connected to all the nodes vi , for i # [1, ..., q]. H has p+q+1=n
nodes exactly and diameter 3. Let R be any routing algorithm on H of stretch fac-
tor s<3. The proof of Theorem 2 applies for H as well. If a router ai would not
route to all its neighbors optimally, R would be of stretch factor s�3. As the
rebuilding procedure of Theorem 2 does not depend of the nodes bi , we can rebuild
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the routing functions of the ai of H using the same procedure as in Theorem 2. The
last inequality of Theorem 3 holds and

:
x # A

MR(x)>pq log \5
4+&O(n log n)>

n2

13
. K

5. CONCLUSION

We proved a lower bound of 0(n2) bits for the entire network to route with any
stretch factor s<3. Let s(m), for any integer function m, be the smallest real such
that every network supports a distributed algorithm of stretch factor s�s(m) with
a total of o(m) bits. We showed that there is a gap for stretch factor 3, and
s(n2)=3. It would be interesting to compute s(n2 log n), i.e., the threshold stretch
factor for compression of routing tables. At the present time, best estimations are
1<s(n2 log n)�3. The same evaluation on stretch factor threshold for compression
of routing information, s� (m), could be done for the average of all the networks,
rather than for the worst-case. Works of [2] tends to show a quite different
behavior between s(m) and s� (m), for instance s� (n2 log n)=1.
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